| #ifndef _ASM_IA64_PROCESSOR_H |
| #define _ASM_IA64_PROCESSOR_H |
| |
| /* |
| * Copyright (C) 1998-2004 Hewlett-Packard Co |
| * David Mosberger-Tang <davidm@hpl.hp.com> |
| * Stephane Eranian <eranian@hpl.hp.com> |
| * Copyright (C) 1999 Asit Mallick <asit.k.mallick@intel.com> |
| * Copyright (C) 1999 Don Dugger <don.dugger@intel.com> |
| * |
| * 11/24/98 S.Eranian added ia64_set_iva() |
| * 12/03/99 D. Mosberger implement thread_saved_pc() via kernel unwind API |
| * 06/16/00 A. Mallick added csd/ssd/tssd for ia32 support |
| */ |
| |
| |
| #include <asm/intrinsics.h> |
| #include <asm/kregs.h> |
| #include <asm/ptrace.h> |
| #include <asm/ustack.h> |
| |
| #define IA64_NUM_PHYS_STACK_REG 96 |
| #define IA64_NUM_DBG_REGS 8 |
| |
| #define DEFAULT_MAP_BASE __IA64_UL_CONST(0x2000000000000000) |
| #define DEFAULT_TASK_SIZE __IA64_UL_CONST(0xa000000000000000) |
| |
| /* |
| * TASK_SIZE really is a mis-named. It really is the maximum user |
| * space address (plus one). On IA-64, there are five regions of 2TB |
| * each (assuming 8KB page size), for a total of 8TB of user virtual |
| * address space. |
| */ |
| #define TASK_SIZE_OF(tsk) ((tsk)->thread.task_size) |
| #define TASK_SIZE TASK_SIZE_OF(current) |
| |
| /* |
| * This decides where the kernel will search for a free chunk of vm |
| * space during mmap's. |
| */ |
| #define TASK_UNMAPPED_BASE (current->thread.map_base) |
| |
| #define IA64_THREAD_FPH_VALID (__IA64_UL(1) << 0) /* floating-point high state valid? */ |
| #define IA64_THREAD_DBG_VALID (__IA64_UL(1) << 1) /* debug registers valid? */ |
| #define IA64_THREAD_PM_VALID (__IA64_UL(1) << 2) /* performance registers valid? */ |
| #define IA64_THREAD_UAC_NOPRINT (__IA64_UL(1) << 3) /* don't log unaligned accesses */ |
| #define IA64_THREAD_UAC_SIGBUS (__IA64_UL(1) << 4) /* generate SIGBUS on unaligned acc. */ |
| #define IA64_THREAD_MIGRATION (__IA64_UL(1) << 5) /* require migration |
| sync at ctx sw */ |
| #define IA64_THREAD_FPEMU_NOPRINT (__IA64_UL(1) << 6) /* don't log any fpswa faults */ |
| #define IA64_THREAD_FPEMU_SIGFPE (__IA64_UL(1) << 7) /* send a SIGFPE for fpswa faults */ |
| |
| #define IA64_THREAD_UAC_SHIFT 3 |
| #define IA64_THREAD_UAC_MASK (IA64_THREAD_UAC_NOPRINT | IA64_THREAD_UAC_SIGBUS) |
| #define IA64_THREAD_FPEMU_SHIFT 6 |
| #define IA64_THREAD_FPEMU_MASK (IA64_THREAD_FPEMU_NOPRINT | IA64_THREAD_FPEMU_SIGFPE) |
| |
| |
| /* |
| * This shift should be large enough to be able to represent 1000000000/itc_freq with good |
| * accuracy while being small enough to fit 10*1000000000<<IA64_NSEC_PER_CYC_SHIFT in 64 bits |
| * (this will give enough slack to represent 10 seconds worth of time as a scaled number). |
| */ |
| #define IA64_NSEC_PER_CYC_SHIFT 30 |
| |
| #ifndef __ASSEMBLY__ |
| |
| #include <linux/cache.h> |
| #include <linux/compiler.h> |
| #include <linux/threads.h> |
| #include <linux/types.h> |
| |
| #include <asm/fpu.h> |
| #include <asm/page.h> |
| #include <asm/percpu.h> |
| #include <asm/rse.h> |
| #include <asm/unwind.h> |
| #include <asm/atomic.h> |
| #ifdef CONFIG_NUMA |
| #include <asm/nodedata.h> |
| #endif |
| |
| /* like above but expressed as bitfields for more efficient access: */ |
| struct ia64_psr { |
| __u64 reserved0 : 1; |
| __u64 be : 1; |
| __u64 up : 1; |
| __u64 ac : 1; |
| __u64 mfl : 1; |
| __u64 mfh : 1; |
| __u64 reserved1 : 7; |
| __u64 ic : 1; |
| __u64 i : 1; |
| __u64 pk : 1; |
| __u64 reserved2 : 1; |
| __u64 dt : 1; |
| __u64 dfl : 1; |
| __u64 dfh : 1; |
| __u64 sp : 1; |
| __u64 pp : 1; |
| __u64 di : 1; |
| __u64 si : 1; |
| __u64 db : 1; |
| __u64 lp : 1; |
| __u64 tb : 1; |
| __u64 rt : 1; |
| __u64 reserved3 : 4; |
| __u64 cpl : 2; |
| __u64 is : 1; |
| __u64 mc : 1; |
| __u64 it : 1; |
| __u64 id : 1; |
| __u64 da : 1; |
| __u64 dd : 1; |
| __u64 ss : 1; |
| __u64 ri : 2; |
| __u64 ed : 1; |
| __u64 bn : 1; |
| __u64 reserved4 : 19; |
| }; |
| |
| union ia64_isr { |
| __u64 val; |
| struct { |
| __u64 code : 16; |
| __u64 vector : 8; |
| __u64 reserved1 : 8; |
| __u64 x : 1; |
| __u64 w : 1; |
| __u64 r : 1; |
| __u64 na : 1; |
| __u64 sp : 1; |
| __u64 rs : 1; |
| __u64 ir : 1; |
| __u64 ni : 1; |
| __u64 so : 1; |
| __u64 ei : 2; |
| __u64 ed : 1; |
| __u64 reserved2 : 20; |
| }; |
| }; |
| |
| union ia64_lid { |
| __u64 val; |
| struct { |
| __u64 rv : 16; |
| __u64 eid : 8; |
| __u64 id : 8; |
| __u64 ig : 32; |
| }; |
| }; |
| |
| union ia64_tpr { |
| __u64 val; |
| struct { |
| __u64 ig0 : 4; |
| __u64 mic : 4; |
| __u64 rsv : 8; |
| __u64 mmi : 1; |
| __u64 ig1 : 47; |
| }; |
| }; |
| |
| union ia64_itir { |
| __u64 val; |
| struct { |
| __u64 rv3 : 2; /* 0-1 */ |
| __u64 ps : 6; /* 2-7 */ |
| __u64 key : 24; /* 8-31 */ |
| __u64 rv4 : 32; /* 32-63 */ |
| }; |
| }; |
| |
| union ia64_rr { |
| __u64 val; |
| struct { |
| __u64 ve : 1; /* enable hw walker */ |
| __u64 reserved0: 1; /* reserved */ |
| __u64 ps : 6; /* log page size */ |
| __u64 rid : 24; /* region id */ |
| __u64 reserved1: 32; /* reserved */ |
| }; |
| }; |
| |
| /* |
| * CPU type, hardware bug flags, and per-CPU state. Frequently used |
| * state comes earlier: |
| */ |
| struct cpuinfo_ia64 { |
| __u32 softirq_pending; |
| __u64 itm_delta; /* # of clock cycles between clock ticks */ |
| __u64 itm_next; /* interval timer mask value to use for next clock tick */ |
| __u64 nsec_per_cyc; /* (1000000000<<IA64_NSEC_PER_CYC_SHIFT)/itc_freq */ |
| __u64 unimpl_va_mask; /* mask of unimplemented virtual address bits (from PAL) */ |
| __u64 unimpl_pa_mask; /* mask of unimplemented physical address bits (from PAL) */ |
| __u64 itc_freq; /* frequency of ITC counter */ |
| __u64 proc_freq; /* frequency of processor */ |
| __u64 cyc_per_usec; /* itc_freq/1000000 */ |
| __u64 ptce_base; |
| __u32 ptce_count[2]; |
| __u32 ptce_stride[2]; |
| struct task_struct *ksoftirqd; /* kernel softirq daemon for this CPU */ |
| |
| #ifdef CONFIG_SMP |
| __u64 loops_per_jiffy; |
| int cpu; |
| __u32 socket_id; /* physical processor socket id */ |
| __u16 core_id; /* core id */ |
| __u16 thread_id; /* thread id */ |
| __u16 num_log; /* Total number of logical processors on |
| * this socket that were successfully booted */ |
| __u8 cores_per_socket; /* Cores per processor socket */ |
| __u8 threads_per_core; /* Threads per core */ |
| #endif |
| |
| /* CPUID-derived information: */ |
| __u64 ppn; |
| __u64 features; |
| __u8 number; |
| __u8 revision; |
| __u8 model; |
| __u8 family; |
| __u8 archrev; |
| char vendor[16]; |
| char *model_name; |
| |
| #ifdef CONFIG_NUMA |
| struct ia64_node_data *node_data; |
| #endif |
| }; |
| |
| DECLARE_PER_CPU(struct cpuinfo_ia64, cpu_info); |
| |
| /* |
| * The "local" data variable. It refers to the per-CPU data of the currently executing |
| * CPU, much like "current" points to the per-task data of the currently executing task. |
| * Do not use the address of local_cpu_data, since it will be different from |
| * cpu_data(smp_processor_id())! |
| */ |
| #define local_cpu_data (&__ia64_per_cpu_var(cpu_info)) |
| #define cpu_data(cpu) (&per_cpu(cpu_info, cpu)) |
| |
| extern void print_cpu_info (struct cpuinfo_ia64 *); |
| |
| typedef struct { |
| unsigned long seg; |
| } mm_segment_t; |
| |
| #define SET_UNALIGN_CTL(task,value) \ |
| ({ \ |
| (task)->thread.flags = (((task)->thread.flags & ~IA64_THREAD_UAC_MASK) \ |
| | (((value) << IA64_THREAD_UAC_SHIFT) & IA64_THREAD_UAC_MASK)); \ |
| 0; \ |
| }) |
| #define GET_UNALIGN_CTL(task,addr) \ |
| ({ \ |
| put_user(((task)->thread.flags & IA64_THREAD_UAC_MASK) >> IA64_THREAD_UAC_SHIFT, \ |
| (int __user *) (addr)); \ |
| }) |
| |
| #define SET_FPEMU_CTL(task,value) \ |
| ({ \ |
| (task)->thread.flags = (((task)->thread.flags & ~IA64_THREAD_FPEMU_MASK) \ |
| | (((value) << IA64_THREAD_FPEMU_SHIFT) & IA64_THREAD_FPEMU_MASK)); \ |
| 0; \ |
| }) |
| #define GET_FPEMU_CTL(task,addr) \ |
| ({ \ |
| put_user(((task)->thread.flags & IA64_THREAD_FPEMU_MASK) >> IA64_THREAD_FPEMU_SHIFT, \ |
| (int __user *) (addr)); \ |
| }) |
| |
| #ifdef CONFIG_IA32_SUPPORT |
| struct desc_struct { |
| unsigned int a, b; |
| }; |
| |
| #define desc_empty(desc) (!((desc)->a | (desc)->b)) |
| #define desc_equal(desc1, desc2) (((desc1)->a == (desc2)->a) && ((desc1)->b == (desc2)->b)) |
| |
| #define GDT_ENTRY_TLS_ENTRIES 3 |
| #define GDT_ENTRY_TLS_MIN 6 |
| #define GDT_ENTRY_TLS_MAX (GDT_ENTRY_TLS_MIN + GDT_ENTRY_TLS_ENTRIES - 1) |
| |
| #define TLS_SIZE (GDT_ENTRY_TLS_ENTRIES * 8) |
| |
| struct ia64_partial_page_list; |
| #endif |
| |
| struct thread_struct { |
| __u32 flags; /* various thread flags (see IA64_THREAD_*) */ |
| /* writing on_ustack is performance-critical, so it's worth spending 8 bits on it... */ |
| __u8 on_ustack; /* executing on user-stacks? */ |
| __u8 pad[3]; |
| __u64 ksp; /* kernel stack pointer */ |
| __u64 map_base; /* base address for get_unmapped_area() */ |
| __u64 task_size; /* limit for task size */ |
| __u64 rbs_bot; /* the base address for the RBS */ |
| int last_fph_cpu; /* CPU that may hold the contents of f32-f127 */ |
| |
| #ifdef CONFIG_IA32_SUPPORT |
| __u64 eflag; /* IA32 EFLAGS reg */ |
| __u64 fsr; /* IA32 floating pt status reg */ |
| __u64 fcr; /* IA32 floating pt control reg */ |
| __u64 fir; /* IA32 fp except. instr. reg */ |
| __u64 fdr; /* IA32 fp except. data reg */ |
| __u64 old_k1; /* old value of ar.k1 */ |
| __u64 old_iob; /* old IOBase value */ |
| struct ia64_partial_page_list *ppl; /* partial page list for 4K page size issue */ |
| /* cached TLS descriptors. */ |
| struct desc_struct tls_array[GDT_ENTRY_TLS_ENTRIES]; |
| |
| # define INIT_THREAD_IA32 .eflag = 0, \ |
| .fsr = 0, \ |
| .fcr = 0x17800000037fULL, \ |
| .fir = 0, \ |
| .fdr = 0, \ |
| .old_k1 = 0, \ |
| .old_iob = 0, \ |
| .ppl = NULL, |
| #else |
| # define INIT_THREAD_IA32 |
| #endif /* CONFIG_IA32_SUPPORT */ |
| #ifdef CONFIG_PERFMON |
| void *pfm_context; /* pointer to detailed PMU context */ |
| unsigned long pfm_needs_checking; /* when >0, pending perfmon work on kernel exit */ |
| # define INIT_THREAD_PM .pfm_context = NULL, \ |
| .pfm_needs_checking = 0UL, |
| #else |
| # define INIT_THREAD_PM |
| #endif |
| __u64 dbr[IA64_NUM_DBG_REGS]; |
| __u64 ibr[IA64_NUM_DBG_REGS]; |
| struct ia64_fpreg fph[96]; /* saved/loaded on demand */ |
| }; |
| |
| #define INIT_THREAD { \ |
| .flags = 0, \ |
| .on_ustack = 0, \ |
| .ksp = 0, \ |
| .map_base = DEFAULT_MAP_BASE, \ |
| .rbs_bot = STACK_TOP - DEFAULT_USER_STACK_SIZE, \ |
| .task_size = DEFAULT_TASK_SIZE, \ |
| .last_fph_cpu = -1, \ |
| INIT_THREAD_IA32 \ |
| INIT_THREAD_PM \ |
| .dbr = {0, }, \ |
| .ibr = {0, }, \ |
| .fph = {{{{0}}}, } \ |
| } |
| |
| #define start_thread(regs,new_ip,new_sp) do { \ |
| set_fs(USER_DS); \ |
| regs->cr_ipsr = ((regs->cr_ipsr | (IA64_PSR_BITS_TO_SET | IA64_PSR_CPL)) \ |
| & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_RI | IA64_PSR_IS)); \ |
| regs->cr_iip = new_ip; \ |
| regs->ar_rsc = 0xf; /* eager mode, privilege level 3 */ \ |
| regs->ar_rnat = 0; \ |
| regs->ar_bspstore = current->thread.rbs_bot; \ |
| regs->ar_fpsr = FPSR_DEFAULT; \ |
| regs->loadrs = 0; \ |
| regs->r8 = get_dumpable(current->mm); /* set "don't zap registers" flag */ \ |
| regs->r12 = new_sp - 16; /* allocate 16 byte scratch area */ \ |
| if (unlikely(!get_dumpable(current->mm))) { \ |
| /* \ |
| * Zap scratch regs to avoid leaking bits between processes with different \ |
| * uid/privileges. \ |
| */ \ |
| regs->ar_pfs = 0; regs->b0 = 0; regs->pr = 0; \ |
| regs->r1 = 0; regs->r9 = 0; regs->r11 = 0; regs->r13 = 0; regs->r15 = 0; \ |
| } \ |
| } while (0) |
| |
| /* Forward declarations, a strange C thing... */ |
| struct mm_struct; |
| struct task_struct; |
| |
| /* |
| * Free all resources held by a thread. This is called after the |
| * parent of DEAD_TASK has collected the exit status of the task via |
| * wait(). |
| */ |
| #define release_thread(dead_task) |
| |
| /* Prepare to copy thread state - unlazy all lazy status */ |
| #define prepare_to_copy(tsk) do { } while (0) |
| |
| /* |
| * This is the mechanism for creating a new kernel thread. |
| * |
| * NOTE 1: Only a kernel-only process (ie the swapper or direct |
| * descendants who haven't done an "execve()") should use this: it |
| * will work within a system call from a "real" process, but the |
| * process memory space will not be free'd until both the parent and |
| * the child have exited. |
| * |
| * NOTE 2: This MUST NOT be an inlined function. Otherwise, we get |
| * into trouble in init/main.c when the child thread returns to |
| * do_basic_setup() and the timing is such that free_initmem() has |
| * been called already. |
| */ |
| extern pid_t kernel_thread (int (*fn)(void *), void *arg, unsigned long flags); |
| |
| /* Get wait channel for task P. */ |
| extern unsigned long get_wchan (struct task_struct *p); |
| |
| /* Return instruction pointer of blocked task TSK. */ |
| #define KSTK_EIP(tsk) \ |
| ({ \ |
| struct pt_regs *_regs = task_pt_regs(tsk); \ |
| _regs->cr_iip + ia64_psr(_regs)->ri; \ |
| }) |
| |
| /* Return stack pointer of blocked task TSK. */ |
| #define KSTK_ESP(tsk) ((tsk)->thread.ksp) |
| |
| extern void ia64_getreg_unknown_kr (void); |
| extern void ia64_setreg_unknown_kr (void); |
| |
| #define ia64_get_kr(regnum) \ |
| ({ \ |
| unsigned long r = 0; \ |
| \ |
| switch (regnum) { \ |
| case 0: r = ia64_getreg(_IA64_REG_AR_KR0); break; \ |
| case 1: r = ia64_getreg(_IA64_REG_AR_KR1); break; \ |
| case 2: r = ia64_getreg(_IA64_REG_AR_KR2); break; \ |
| case 3: r = ia64_getreg(_IA64_REG_AR_KR3); break; \ |
| case 4: r = ia64_getreg(_IA64_REG_AR_KR4); break; \ |
| case 5: r = ia64_getreg(_IA64_REG_AR_KR5); break; \ |
| case 6: r = ia64_getreg(_IA64_REG_AR_KR6); break; \ |
| case 7: r = ia64_getreg(_IA64_REG_AR_KR7); break; \ |
| default: ia64_getreg_unknown_kr(); break; \ |
| } \ |
| r; \ |
| }) |
| |
| #define ia64_set_kr(regnum, r) \ |
| ({ \ |
| switch (regnum) { \ |
| case 0: ia64_setreg(_IA64_REG_AR_KR0, r); break; \ |
| case 1: ia64_setreg(_IA64_REG_AR_KR1, r); break; \ |
| case 2: ia64_setreg(_IA64_REG_AR_KR2, r); break; \ |
| case 3: ia64_setreg(_IA64_REG_AR_KR3, r); break; \ |
| case 4: ia64_setreg(_IA64_REG_AR_KR4, r); break; \ |
| case 5: ia64_setreg(_IA64_REG_AR_KR5, r); break; \ |
| case 6: ia64_setreg(_IA64_REG_AR_KR6, r); break; \ |
| case 7: ia64_setreg(_IA64_REG_AR_KR7, r); break; \ |
| default: ia64_setreg_unknown_kr(); break; \ |
| } \ |
| }) |
| |
| /* |
| * The following three macros can't be inline functions because we don't have struct |
| * task_struct at this point. |
| */ |
| |
| /* |
| * Return TRUE if task T owns the fph partition of the CPU we're running on. |
| * Must be called from code that has preemption disabled. |
| */ |
| #define ia64_is_local_fpu_owner(t) \ |
| ({ \ |
| struct task_struct *__ia64_islfo_task = (t); \ |
| (__ia64_islfo_task->thread.last_fph_cpu == smp_processor_id() \ |
| && __ia64_islfo_task == (struct task_struct *) ia64_get_kr(IA64_KR_FPU_OWNER)); \ |
| }) |
| |
| /* |
| * Mark task T as owning the fph partition of the CPU we're running on. |
| * Must be called from code that has preemption disabled. |
| */ |
| #define ia64_set_local_fpu_owner(t) do { \ |
| struct task_struct *__ia64_slfo_task = (t); \ |
| __ia64_slfo_task->thread.last_fph_cpu = smp_processor_id(); \ |
| ia64_set_kr(IA64_KR_FPU_OWNER, (unsigned long) __ia64_slfo_task); \ |
| } while (0) |
| |
| /* Mark the fph partition of task T as being invalid on all CPUs. */ |
| #define ia64_drop_fpu(t) ((t)->thread.last_fph_cpu = -1) |
| |
| extern void __ia64_init_fpu (void); |
| extern void __ia64_save_fpu (struct ia64_fpreg *fph); |
| extern void __ia64_load_fpu (struct ia64_fpreg *fph); |
| extern void ia64_save_debug_regs (unsigned long *save_area); |
| extern void ia64_load_debug_regs (unsigned long *save_area); |
| |
| #ifdef CONFIG_IA32_SUPPORT |
| extern void ia32_save_state (struct task_struct *task); |
| extern void ia32_load_state (struct task_struct *task); |
| #endif |
| |
| #define ia64_fph_enable() do { ia64_rsm(IA64_PSR_DFH); ia64_srlz_d(); } while (0) |
| #define ia64_fph_disable() do { ia64_ssm(IA64_PSR_DFH); ia64_srlz_d(); } while (0) |
| |
| /* load fp 0.0 into fph */ |
| static inline void |
| ia64_init_fpu (void) { |
| ia64_fph_enable(); |
| __ia64_init_fpu(); |
| ia64_fph_disable(); |
| } |
| |
| /* save f32-f127 at FPH */ |
| static inline void |
| ia64_save_fpu (struct ia64_fpreg *fph) { |
| ia64_fph_enable(); |
| __ia64_save_fpu(fph); |
| ia64_fph_disable(); |
| } |
| |
| /* load f32-f127 from FPH */ |
| static inline void |
| ia64_load_fpu (struct ia64_fpreg *fph) { |
| ia64_fph_enable(); |
| __ia64_load_fpu(fph); |
| ia64_fph_disable(); |
| } |
| |
| static inline __u64 |
| ia64_clear_ic (void) |
| { |
| __u64 psr; |
| psr = ia64_getreg(_IA64_REG_PSR); |
| ia64_stop(); |
| ia64_rsm(IA64_PSR_I | IA64_PSR_IC); |
| ia64_srlz_i(); |
| return psr; |
| } |
| |
| /* |
| * Restore the psr. |
| */ |
| static inline void |
| ia64_set_psr (__u64 psr) |
| { |
| ia64_stop(); |
| ia64_setreg(_IA64_REG_PSR_L, psr); |
| ia64_srlz_i(); |
| } |
| |
| /* |
| * Insert a translation into an instruction and/or data translation |
| * register. |
| */ |
| static inline void |
| ia64_itr (__u64 target_mask, __u64 tr_num, |
| __u64 vmaddr, __u64 pte, |
| __u64 log_page_size) |
| { |
| ia64_setreg(_IA64_REG_CR_ITIR, (log_page_size << 2)); |
| ia64_setreg(_IA64_REG_CR_IFA, vmaddr); |
| ia64_stop(); |
| if (target_mask & 0x1) |
| ia64_itri(tr_num, pte); |
| if (target_mask & 0x2) |
| ia64_itrd(tr_num, pte); |
| } |
| |
| /* |
| * Insert a translation into the instruction and/or data translation |
| * cache. |
| */ |
| static inline void |
| ia64_itc (__u64 target_mask, __u64 vmaddr, __u64 pte, |
| __u64 log_page_size) |
| { |
| ia64_setreg(_IA64_REG_CR_ITIR, (log_page_size << 2)); |
| ia64_setreg(_IA64_REG_CR_IFA, vmaddr); |
| ia64_stop(); |
| /* as per EAS2.6, itc must be the last instruction in an instruction group */ |
| if (target_mask & 0x1) |
| ia64_itci(pte); |
| if (target_mask & 0x2) |
| ia64_itcd(pte); |
| } |
| |
| /* |
| * Purge a range of addresses from instruction and/or data translation |
| * register(s). |
| */ |
| static inline void |
| ia64_ptr (__u64 target_mask, __u64 vmaddr, __u64 log_size) |
| { |
| if (target_mask & 0x1) |
| ia64_ptri(vmaddr, (log_size << 2)); |
| if (target_mask & 0x2) |
| ia64_ptrd(vmaddr, (log_size << 2)); |
| } |
| |
| /* Set the interrupt vector address. The address must be suitably aligned (32KB). */ |
| static inline void |
| ia64_set_iva (void *ivt_addr) |
| { |
| ia64_setreg(_IA64_REG_CR_IVA, (__u64) ivt_addr); |
| ia64_srlz_i(); |
| } |
| |
| /* Set the page table address and control bits. */ |
| static inline void |
| ia64_set_pta (__u64 pta) |
| { |
| /* Note: srlz.i implies srlz.d */ |
| ia64_setreg(_IA64_REG_CR_PTA, pta); |
| ia64_srlz_i(); |
| } |
| |
| static inline void |
| ia64_eoi (void) |
| { |
| ia64_setreg(_IA64_REG_CR_EOI, 0); |
| ia64_srlz_d(); |
| } |
| |
| #define cpu_relax() ia64_hint(ia64_hint_pause) |
| |
| static inline int |
| ia64_get_irr(unsigned int vector) |
| { |
| unsigned int reg = vector / 64; |
| unsigned int bit = vector % 64; |
| u64 irr; |
| |
| switch (reg) { |
| case 0: irr = ia64_getreg(_IA64_REG_CR_IRR0); break; |
| case 1: irr = ia64_getreg(_IA64_REG_CR_IRR1); break; |
| case 2: irr = ia64_getreg(_IA64_REG_CR_IRR2); break; |
| case 3: irr = ia64_getreg(_IA64_REG_CR_IRR3); break; |
| } |
| |
| return test_bit(bit, &irr); |
| } |
| |
| static inline void |
| ia64_set_lrr0 (unsigned long val) |
| { |
| ia64_setreg(_IA64_REG_CR_LRR0, val); |
| ia64_srlz_d(); |
| } |
| |
| static inline void |
| ia64_set_lrr1 (unsigned long val) |
| { |
| ia64_setreg(_IA64_REG_CR_LRR1, val); |
| ia64_srlz_d(); |
| } |
| |
| |
| /* |
| * Given the address to which a spill occurred, return the unat bit |
| * number that corresponds to this address. |
| */ |
| static inline __u64 |
| ia64_unat_pos (void *spill_addr) |
| { |
| return ((__u64) spill_addr >> 3) & 0x3f; |
| } |
| |
| /* |
| * Set the NaT bit of an integer register which was spilled at address |
| * SPILL_ADDR. UNAT is the mask to be updated. |
| */ |
| static inline void |
| ia64_set_unat (__u64 *unat, void *spill_addr, unsigned long nat) |
| { |
| __u64 bit = ia64_unat_pos(spill_addr); |
| __u64 mask = 1UL << bit; |
| |
| *unat = (*unat & ~mask) | (nat << bit); |
| } |
| |
| /* |
| * Return saved PC of a blocked thread. |
| * Note that the only way T can block is through a call to schedule() -> switch_to(). |
| */ |
| static inline unsigned long |
| thread_saved_pc (struct task_struct *t) |
| { |
| struct unw_frame_info info; |
| unsigned long ip; |
| |
| unw_init_from_blocked_task(&info, t); |
| if (unw_unwind(&info) < 0) |
| return 0; |
| unw_get_ip(&info, &ip); |
| return ip; |
| } |
| |
| /* |
| * Get the current instruction/program counter value. |
| */ |
| #define current_text_addr() \ |
| ({ void *_pc; _pc = (void *)ia64_getreg(_IA64_REG_IP); _pc; }) |
| |
| static inline __u64 |
| ia64_get_ivr (void) |
| { |
| __u64 r; |
| ia64_srlz_d(); |
| r = ia64_getreg(_IA64_REG_CR_IVR); |
| ia64_srlz_d(); |
| return r; |
| } |
| |
| static inline void |
| ia64_set_dbr (__u64 regnum, __u64 value) |
| { |
| __ia64_set_dbr(regnum, value); |
| #ifdef CONFIG_ITANIUM |
| ia64_srlz_d(); |
| #endif |
| } |
| |
| static inline __u64 |
| ia64_get_dbr (__u64 regnum) |
| { |
| __u64 retval; |
| |
| retval = __ia64_get_dbr(regnum); |
| #ifdef CONFIG_ITANIUM |
| ia64_srlz_d(); |
| #endif |
| return retval; |
| } |
| |
| static inline __u64 |
| ia64_rotr (__u64 w, __u64 n) |
| { |
| return (w >> n) | (w << (64 - n)); |
| } |
| |
| #define ia64_rotl(w,n) ia64_rotr((w), (64) - (n)) |
| |
| /* |
| * Take a mapped kernel address and return the equivalent address |
| * in the region 7 identity mapped virtual area. |
| */ |
| static inline void * |
| ia64_imva (void *addr) |
| { |
| void *result; |
| result = (void *) ia64_tpa(addr); |
| return __va(result); |
| } |
| |
| #define ARCH_HAS_PREFETCH |
| #define ARCH_HAS_PREFETCHW |
| #define ARCH_HAS_SPINLOCK_PREFETCH |
| #define PREFETCH_STRIDE L1_CACHE_BYTES |
| |
| static inline void |
| prefetch (const void *x) |
| { |
| ia64_lfetch(ia64_lfhint_none, x); |
| } |
| |
| static inline void |
| prefetchw (const void *x) |
| { |
| ia64_lfetch_excl(ia64_lfhint_none, x); |
| } |
| |
| #define spin_lock_prefetch(x) prefetchw(x) |
| |
| extern unsigned long boot_option_idle_override; |
| extern unsigned long idle_halt; |
| |
| #endif /* !__ASSEMBLY__ */ |
| |
| #endif /* _ASM_IA64_PROCESSOR_H */ |