| /* |
| * This file is provided under a dual BSD/GPLv2 license. When using or |
| * redistributing this file, you may do so under either license. |
| * |
| * GPL LICENSE SUMMARY |
| * |
| * Copyright(c) 2004 - 2009 Intel Corporation. All rights reserved. |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms and conditions of the GNU General Public License, |
| * version 2, as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, but WITHOUT |
| * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| * more details. |
| * |
| * You should have received a copy of the GNU General Public License along with |
| * this program; if not, write to the Free Software Foundation, Inc., |
| * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. |
| * |
| * The full GNU General Public License is included in this distribution in |
| * the file called "COPYING". |
| * |
| * BSD LICENSE |
| * |
| * Copyright(c) 2004-2009 Intel Corporation. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions are met: |
| * |
| * * Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * * Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * * Neither the name of Intel Corporation nor the names of its |
| * contributors may be used to endorse or promote products derived |
| * from this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| * POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| /* |
| * Support routines for v3+ hardware |
| */ |
| |
| #include <linux/pci.h> |
| #include <linux/gfp.h> |
| #include <linux/dmaengine.h> |
| #include <linux/dma-mapping.h> |
| #include "registers.h" |
| #include "hw.h" |
| #include "dma.h" |
| #include "dma_v2.h" |
| |
| /* ioat hardware assumes at least two sources for raid operations */ |
| #define src_cnt_to_sw(x) ((x) + 2) |
| #define src_cnt_to_hw(x) ((x) - 2) |
| |
| /* provide a lookup table for setting the source address in the base or |
| * extended descriptor of an xor or pq descriptor |
| */ |
| static const u8 xor_idx_to_desc __read_mostly = 0xd0; |
| static const u8 xor_idx_to_field[] __read_mostly = { 1, 4, 5, 6, 7, 0, 1, 2 }; |
| static const u8 pq_idx_to_desc __read_mostly = 0xf8; |
| static const u8 pq_idx_to_field[] __read_mostly = { 1, 4, 5, 0, 1, 2, 4, 5 }; |
| |
| static dma_addr_t xor_get_src(struct ioat_raw_descriptor *descs[2], int idx) |
| { |
| struct ioat_raw_descriptor *raw = descs[xor_idx_to_desc >> idx & 1]; |
| |
| return raw->field[xor_idx_to_field[idx]]; |
| } |
| |
| static void xor_set_src(struct ioat_raw_descriptor *descs[2], |
| dma_addr_t addr, u32 offset, int idx) |
| { |
| struct ioat_raw_descriptor *raw = descs[xor_idx_to_desc >> idx & 1]; |
| |
| raw->field[xor_idx_to_field[idx]] = addr + offset; |
| } |
| |
| static dma_addr_t pq_get_src(struct ioat_raw_descriptor *descs[2], int idx) |
| { |
| struct ioat_raw_descriptor *raw = descs[pq_idx_to_desc >> idx & 1]; |
| |
| return raw->field[pq_idx_to_field[idx]]; |
| } |
| |
| static void pq_set_src(struct ioat_raw_descriptor *descs[2], |
| dma_addr_t addr, u32 offset, u8 coef, int idx) |
| { |
| struct ioat_pq_descriptor *pq = (struct ioat_pq_descriptor *) descs[0]; |
| struct ioat_raw_descriptor *raw = descs[pq_idx_to_desc >> idx & 1]; |
| |
| raw->field[pq_idx_to_field[idx]] = addr + offset; |
| pq->coef[idx] = coef; |
| } |
| |
| static void ioat3_dma_unmap(struct ioat2_dma_chan *ioat, |
| struct ioat_ring_ent *desc, int idx) |
| { |
| struct ioat_chan_common *chan = &ioat->base; |
| struct pci_dev *pdev = chan->device->pdev; |
| size_t len = desc->len; |
| size_t offset = len - desc->hw->size; |
| struct dma_async_tx_descriptor *tx = &desc->txd; |
| enum dma_ctrl_flags flags = tx->flags; |
| |
| switch (desc->hw->ctl_f.op) { |
| case IOAT_OP_COPY: |
| if (!desc->hw->ctl_f.null) /* skip 'interrupt' ops */ |
| ioat_dma_unmap(chan, flags, len, desc->hw); |
| break; |
| case IOAT_OP_FILL: { |
| struct ioat_fill_descriptor *hw = desc->fill; |
| |
| if (!(flags & DMA_COMPL_SKIP_DEST_UNMAP)) |
| ioat_unmap(pdev, hw->dst_addr - offset, len, |
| PCI_DMA_FROMDEVICE, flags, 1); |
| break; |
| } |
| case IOAT_OP_XOR_VAL: |
| case IOAT_OP_XOR: { |
| struct ioat_xor_descriptor *xor = desc->xor; |
| struct ioat_ring_ent *ext; |
| struct ioat_xor_ext_descriptor *xor_ex = NULL; |
| int src_cnt = src_cnt_to_sw(xor->ctl_f.src_cnt); |
| struct ioat_raw_descriptor *descs[2]; |
| int i; |
| |
| if (src_cnt > 5) { |
| ext = ioat2_get_ring_ent(ioat, idx + 1); |
| xor_ex = ext->xor_ex; |
| } |
| |
| if (!(flags & DMA_COMPL_SKIP_SRC_UNMAP)) { |
| descs[0] = (struct ioat_raw_descriptor *) xor; |
| descs[1] = (struct ioat_raw_descriptor *) xor_ex; |
| for (i = 0; i < src_cnt; i++) { |
| dma_addr_t src = xor_get_src(descs, i); |
| |
| ioat_unmap(pdev, src - offset, len, |
| PCI_DMA_TODEVICE, flags, 0); |
| } |
| |
| /* dest is a source in xor validate operations */ |
| if (xor->ctl_f.op == IOAT_OP_XOR_VAL) { |
| ioat_unmap(pdev, xor->dst_addr - offset, len, |
| PCI_DMA_TODEVICE, flags, 1); |
| break; |
| } |
| } |
| |
| if (!(flags & DMA_COMPL_SKIP_DEST_UNMAP)) |
| ioat_unmap(pdev, xor->dst_addr - offset, len, |
| PCI_DMA_FROMDEVICE, flags, 1); |
| break; |
| } |
| case IOAT_OP_PQ_VAL: |
| case IOAT_OP_PQ: { |
| struct ioat_pq_descriptor *pq = desc->pq; |
| struct ioat_ring_ent *ext; |
| struct ioat_pq_ext_descriptor *pq_ex = NULL; |
| int src_cnt = src_cnt_to_sw(pq->ctl_f.src_cnt); |
| struct ioat_raw_descriptor *descs[2]; |
| int i; |
| |
| if (src_cnt > 3) { |
| ext = ioat2_get_ring_ent(ioat, idx + 1); |
| pq_ex = ext->pq_ex; |
| } |
| |
| /* in the 'continue' case don't unmap the dests as sources */ |
| if (dmaf_p_disabled_continue(flags)) |
| src_cnt--; |
| else if (dmaf_continue(flags)) |
| src_cnt -= 3; |
| |
| if (!(flags & DMA_COMPL_SKIP_SRC_UNMAP)) { |
| descs[0] = (struct ioat_raw_descriptor *) pq; |
| descs[1] = (struct ioat_raw_descriptor *) pq_ex; |
| for (i = 0; i < src_cnt; i++) { |
| dma_addr_t src = pq_get_src(descs, i); |
| |
| ioat_unmap(pdev, src - offset, len, |
| PCI_DMA_TODEVICE, flags, 0); |
| } |
| |
| /* the dests are sources in pq validate operations */ |
| if (pq->ctl_f.op == IOAT_OP_XOR_VAL) { |
| if (!(flags & DMA_PREP_PQ_DISABLE_P)) |
| ioat_unmap(pdev, pq->p_addr - offset, |
| len, PCI_DMA_TODEVICE, flags, 0); |
| if (!(flags & DMA_PREP_PQ_DISABLE_Q)) |
| ioat_unmap(pdev, pq->q_addr - offset, |
| len, PCI_DMA_TODEVICE, flags, 0); |
| break; |
| } |
| } |
| |
| if (!(flags & DMA_COMPL_SKIP_DEST_UNMAP)) { |
| if (!(flags & DMA_PREP_PQ_DISABLE_P)) |
| ioat_unmap(pdev, pq->p_addr - offset, len, |
| PCI_DMA_BIDIRECTIONAL, flags, 1); |
| if (!(flags & DMA_PREP_PQ_DISABLE_Q)) |
| ioat_unmap(pdev, pq->q_addr - offset, len, |
| PCI_DMA_BIDIRECTIONAL, flags, 1); |
| } |
| break; |
| } |
| default: |
| dev_err(&pdev->dev, "%s: unknown op type: %#x\n", |
| __func__, desc->hw->ctl_f.op); |
| } |
| } |
| |
| static bool desc_has_ext(struct ioat_ring_ent *desc) |
| { |
| struct ioat_dma_descriptor *hw = desc->hw; |
| |
| if (hw->ctl_f.op == IOAT_OP_XOR || |
| hw->ctl_f.op == IOAT_OP_XOR_VAL) { |
| struct ioat_xor_descriptor *xor = desc->xor; |
| |
| if (src_cnt_to_sw(xor->ctl_f.src_cnt) > 5) |
| return true; |
| } else if (hw->ctl_f.op == IOAT_OP_PQ || |
| hw->ctl_f.op == IOAT_OP_PQ_VAL) { |
| struct ioat_pq_descriptor *pq = desc->pq; |
| |
| if (src_cnt_to_sw(pq->ctl_f.src_cnt) > 3) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /** |
| * __cleanup - reclaim used descriptors |
| * @ioat: channel (ring) to clean |
| * |
| * The difference from the dma_v2.c __cleanup() is that this routine |
| * handles extended descriptors and dma-unmapping raid operations. |
| */ |
| static void __cleanup(struct ioat2_dma_chan *ioat, unsigned long phys_complete) |
| { |
| struct ioat_chan_common *chan = &ioat->base; |
| struct ioat_ring_ent *desc; |
| bool seen_current = false; |
| u16 active; |
| int i; |
| |
| dev_dbg(to_dev(chan), "%s: head: %#x tail: %#x issued: %#x\n", |
| __func__, ioat->head, ioat->tail, ioat->issued); |
| |
| active = ioat2_ring_active(ioat); |
| for (i = 0; i < active && !seen_current; i++) { |
| struct dma_async_tx_descriptor *tx; |
| |
| prefetch(ioat2_get_ring_ent(ioat, ioat->tail + i + 1)); |
| desc = ioat2_get_ring_ent(ioat, ioat->tail + i); |
| dump_desc_dbg(ioat, desc); |
| tx = &desc->txd; |
| if (tx->cookie) { |
| chan->completed_cookie = tx->cookie; |
| ioat3_dma_unmap(ioat, desc, ioat->tail + i); |
| tx->cookie = 0; |
| if (tx->callback) { |
| tx->callback(tx->callback_param); |
| tx->callback = NULL; |
| } |
| } |
| |
| if (tx->phys == phys_complete) |
| seen_current = true; |
| |
| /* skip extended descriptors */ |
| if (desc_has_ext(desc)) { |
| BUG_ON(i + 1 >= active); |
| i++; |
| } |
| } |
| ioat->tail += i; |
| BUG_ON(active && !seen_current); /* no active descs have written a completion? */ |
| chan->last_completion = phys_complete; |
| |
| active = ioat2_ring_active(ioat); |
| if (active == 0) { |
| dev_dbg(to_dev(chan), "%s: cancel completion timeout\n", |
| __func__); |
| clear_bit(IOAT_COMPLETION_PENDING, &chan->state); |
| mod_timer(&chan->timer, jiffies + IDLE_TIMEOUT); |
| } |
| /* 5 microsecond delay per pending descriptor */ |
| writew(min((5 * active), IOAT_INTRDELAY_MASK), |
| chan->device->reg_base + IOAT_INTRDELAY_OFFSET); |
| } |
| |
| /* try to cleanup, but yield (via spin_trylock) to incoming submissions |
| * with the expectation that we will immediately poll again shortly |
| */ |
| static void ioat3_cleanup_poll(struct ioat2_dma_chan *ioat) |
| { |
| struct ioat_chan_common *chan = &ioat->base; |
| unsigned long phys_complete; |
| |
| prefetch(chan->completion); |
| |
| if (!spin_trylock_bh(&chan->cleanup_lock)) |
| return; |
| |
| if (!ioat_cleanup_preamble(chan, &phys_complete)) { |
| spin_unlock_bh(&chan->cleanup_lock); |
| return; |
| } |
| |
| if (!spin_trylock_bh(&ioat->ring_lock)) { |
| spin_unlock_bh(&chan->cleanup_lock); |
| return; |
| } |
| |
| __cleanup(ioat, phys_complete); |
| |
| spin_unlock_bh(&ioat->ring_lock); |
| spin_unlock_bh(&chan->cleanup_lock); |
| } |
| |
| /* run cleanup now because we already delayed the interrupt via INTRDELAY */ |
| static void ioat3_cleanup_sync(struct ioat2_dma_chan *ioat) |
| { |
| struct ioat_chan_common *chan = &ioat->base; |
| unsigned long phys_complete; |
| |
| prefetch(chan->completion); |
| |
| spin_lock_bh(&chan->cleanup_lock); |
| if (!ioat_cleanup_preamble(chan, &phys_complete)) { |
| spin_unlock_bh(&chan->cleanup_lock); |
| return; |
| } |
| spin_lock_bh(&ioat->ring_lock); |
| |
| __cleanup(ioat, phys_complete); |
| |
| spin_unlock_bh(&ioat->ring_lock); |
| spin_unlock_bh(&chan->cleanup_lock); |
| } |
| |
| static void ioat3_cleanup_event(unsigned long data) |
| { |
| struct ioat2_dma_chan *ioat = to_ioat2_chan((void *) data); |
| |
| ioat3_cleanup_sync(ioat); |
| writew(IOAT_CHANCTRL_RUN, ioat->base.reg_base + IOAT_CHANCTRL_OFFSET); |
| } |
| |
| static void ioat3_restart_channel(struct ioat2_dma_chan *ioat) |
| { |
| struct ioat_chan_common *chan = &ioat->base; |
| unsigned long phys_complete; |
| |
| ioat2_quiesce(chan, 0); |
| if (ioat_cleanup_preamble(chan, &phys_complete)) |
| __cleanup(ioat, phys_complete); |
| |
| __ioat2_restart_chan(ioat); |
| } |
| |
| static void ioat3_timer_event(unsigned long data) |
| { |
| struct ioat2_dma_chan *ioat = to_ioat2_chan((void *) data); |
| struct ioat_chan_common *chan = &ioat->base; |
| |
| spin_lock_bh(&chan->cleanup_lock); |
| if (test_bit(IOAT_COMPLETION_PENDING, &chan->state)) { |
| unsigned long phys_complete; |
| u64 status; |
| |
| spin_lock_bh(&ioat->ring_lock); |
| status = ioat_chansts(chan); |
| |
| /* when halted due to errors check for channel |
| * programming errors before advancing the completion state |
| */ |
| if (is_ioat_halted(status)) { |
| u32 chanerr; |
| |
| chanerr = readl(chan->reg_base + IOAT_CHANERR_OFFSET); |
| dev_err(to_dev(chan), "%s: Channel halted (%x)\n", |
| __func__, chanerr); |
| BUG_ON(is_ioat_bug(chanerr)); |
| } |
| |
| /* if we haven't made progress and we have already |
| * acknowledged a pending completion once, then be more |
| * forceful with a restart |
| */ |
| if (ioat_cleanup_preamble(chan, &phys_complete)) |
| __cleanup(ioat, phys_complete); |
| else if (test_bit(IOAT_COMPLETION_ACK, &chan->state)) |
| ioat3_restart_channel(ioat); |
| else { |
| set_bit(IOAT_COMPLETION_ACK, &chan->state); |
| mod_timer(&chan->timer, jiffies + COMPLETION_TIMEOUT); |
| } |
| spin_unlock_bh(&ioat->ring_lock); |
| } else { |
| u16 active; |
| |
| /* if the ring is idle, empty, and oversized try to step |
| * down the size |
| */ |
| spin_lock_bh(&ioat->ring_lock); |
| active = ioat2_ring_active(ioat); |
| if (active == 0 && ioat->alloc_order > ioat_get_alloc_order()) |
| reshape_ring(ioat, ioat->alloc_order-1); |
| spin_unlock_bh(&ioat->ring_lock); |
| |
| /* keep shrinking until we get back to our minimum |
| * default size |
| */ |
| if (ioat->alloc_order > ioat_get_alloc_order()) |
| mod_timer(&chan->timer, jiffies + IDLE_TIMEOUT); |
| } |
| spin_unlock_bh(&chan->cleanup_lock); |
| } |
| |
| static enum dma_status |
| ioat3_is_complete(struct dma_chan *c, dma_cookie_t cookie, |
| dma_cookie_t *done, dma_cookie_t *used) |
| { |
| struct ioat2_dma_chan *ioat = to_ioat2_chan(c); |
| |
| if (ioat_is_complete(c, cookie, done, used) == DMA_SUCCESS) |
| return DMA_SUCCESS; |
| |
| ioat3_cleanup_poll(ioat); |
| |
| return ioat_is_complete(c, cookie, done, used); |
| } |
| |
| static struct dma_async_tx_descriptor * |
| ioat3_prep_memset_lock(struct dma_chan *c, dma_addr_t dest, int value, |
| size_t len, unsigned long flags) |
| { |
| struct ioat2_dma_chan *ioat = to_ioat2_chan(c); |
| struct ioat_ring_ent *desc; |
| size_t total_len = len; |
| struct ioat_fill_descriptor *fill; |
| int num_descs; |
| u64 src_data = (0x0101010101010101ULL) * (value & 0xff); |
| u16 idx; |
| int i; |
| |
| num_descs = ioat2_xferlen_to_descs(ioat, len); |
| if (likely(num_descs) && |
| ioat2_alloc_and_lock(&idx, ioat, num_descs) == 0) |
| /* pass */; |
| else |
| return NULL; |
| i = 0; |
| do { |
| size_t xfer_size = min_t(size_t, len, 1 << ioat->xfercap_log); |
| |
| desc = ioat2_get_ring_ent(ioat, idx + i); |
| fill = desc->fill; |
| |
| fill->size = xfer_size; |
| fill->src_data = src_data; |
| fill->dst_addr = dest; |
| fill->ctl = 0; |
| fill->ctl_f.op = IOAT_OP_FILL; |
| |
| len -= xfer_size; |
| dest += xfer_size; |
| dump_desc_dbg(ioat, desc); |
| } while (++i < num_descs); |
| |
| desc->txd.flags = flags; |
| desc->len = total_len; |
| fill->ctl_f.int_en = !!(flags & DMA_PREP_INTERRUPT); |
| fill->ctl_f.fence = !!(flags & DMA_PREP_FENCE); |
| fill->ctl_f.compl_write = 1; |
| dump_desc_dbg(ioat, desc); |
| |
| /* we leave the channel locked to ensure in order submission */ |
| return &desc->txd; |
| } |
| |
| static struct dma_async_tx_descriptor * |
| __ioat3_prep_xor_lock(struct dma_chan *c, enum sum_check_flags *result, |
| dma_addr_t dest, dma_addr_t *src, unsigned int src_cnt, |
| size_t len, unsigned long flags) |
| { |
| struct ioat2_dma_chan *ioat = to_ioat2_chan(c); |
| struct ioat_ring_ent *compl_desc; |
| struct ioat_ring_ent *desc; |
| struct ioat_ring_ent *ext; |
| size_t total_len = len; |
| struct ioat_xor_descriptor *xor; |
| struct ioat_xor_ext_descriptor *xor_ex = NULL; |
| struct ioat_dma_descriptor *hw; |
| u32 offset = 0; |
| int num_descs; |
| int with_ext; |
| int i; |
| u16 idx; |
| u8 op = result ? IOAT_OP_XOR_VAL : IOAT_OP_XOR; |
| |
| BUG_ON(src_cnt < 2); |
| |
| num_descs = ioat2_xferlen_to_descs(ioat, len); |
| /* we need 2x the number of descriptors to cover greater than 5 |
| * sources |
| */ |
| if (src_cnt > 5) { |
| with_ext = 1; |
| num_descs *= 2; |
| } else |
| with_ext = 0; |
| |
| /* completion writes from the raid engine may pass completion |
| * writes from the legacy engine, so we need one extra null |
| * (legacy) descriptor to ensure all completion writes arrive in |
| * order. |
| */ |
| if (likely(num_descs) && |
| ioat2_alloc_and_lock(&idx, ioat, num_descs+1) == 0) |
| /* pass */; |
| else |
| return NULL; |
| i = 0; |
| do { |
| struct ioat_raw_descriptor *descs[2]; |
| size_t xfer_size = min_t(size_t, len, 1 << ioat->xfercap_log); |
| int s; |
| |
| desc = ioat2_get_ring_ent(ioat, idx + i); |
| xor = desc->xor; |
| |
| /* save a branch by unconditionally retrieving the |
| * extended descriptor xor_set_src() knows to not write |
| * to it in the single descriptor case |
| */ |
| ext = ioat2_get_ring_ent(ioat, idx + i + 1); |
| xor_ex = ext->xor_ex; |
| |
| descs[0] = (struct ioat_raw_descriptor *) xor; |
| descs[1] = (struct ioat_raw_descriptor *) xor_ex; |
| for (s = 0; s < src_cnt; s++) |
| xor_set_src(descs, src[s], offset, s); |
| xor->size = xfer_size; |
| xor->dst_addr = dest + offset; |
| xor->ctl = 0; |
| xor->ctl_f.op = op; |
| xor->ctl_f.src_cnt = src_cnt_to_hw(src_cnt); |
| |
| len -= xfer_size; |
| offset += xfer_size; |
| dump_desc_dbg(ioat, desc); |
| } while ((i += 1 + with_ext) < num_descs); |
| |
| /* last xor descriptor carries the unmap parameters and fence bit */ |
| desc->txd.flags = flags; |
| desc->len = total_len; |
| if (result) |
| desc->result = result; |
| xor->ctl_f.fence = !!(flags & DMA_PREP_FENCE); |
| |
| /* completion descriptor carries interrupt bit */ |
| compl_desc = ioat2_get_ring_ent(ioat, idx + i); |
| compl_desc->txd.flags = flags & DMA_PREP_INTERRUPT; |
| hw = compl_desc->hw; |
| hw->ctl = 0; |
| hw->ctl_f.null = 1; |
| hw->ctl_f.int_en = !!(flags & DMA_PREP_INTERRUPT); |
| hw->ctl_f.compl_write = 1; |
| hw->size = NULL_DESC_BUFFER_SIZE; |
| dump_desc_dbg(ioat, compl_desc); |
| |
| /* we leave the channel locked to ensure in order submission */ |
| return &compl_desc->txd; |
| } |
| |
| static struct dma_async_tx_descriptor * |
| ioat3_prep_xor(struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src, |
| unsigned int src_cnt, size_t len, unsigned long flags) |
| { |
| return __ioat3_prep_xor_lock(chan, NULL, dest, src, src_cnt, len, flags); |
| } |
| |
| struct dma_async_tx_descriptor * |
| ioat3_prep_xor_val(struct dma_chan *chan, dma_addr_t *src, |
| unsigned int src_cnt, size_t len, |
| enum sum_check_flags *result, unsigned long flags) |
| { |
| /* the cleanup routine only sets bits on validate failure, it |
| * does not clear bits on validate success... so clear it here |
| */ |
| *result = 0; |
| |
| return __ioat3_prep_xor_lock(chan, result, src[0], &src[1], |
| src_cnt - 1, len, flags); |
| } |
| |
| static void |
| dump_pq_desc_dbg(struct ioat2_dma_chan *ioat, struct ioat_ring_ent *desc, struct ioat_ring_ent *ext) |
| { |
| struct device *dev = to_dev(&ioat->base); |
| struct ioat_pq_descriptor *pq = desc->pq; |
| struct ioat_pq_ext_descriptor *pq_ex = ext ? ext->pq_ex : NULL; |
| struct ioat_raw_descriptor *descs[] = { (void *) pq, (void *) pq_ex }; |
| int src_cnt = src_cnt_to_sw(pq->ctl_f.src_cnt); |
| int i; |
| |
| dev_dbg(dev, "desc[%d]: (%#llx->%#llx) flags: %#x" |
| " sz: %#x ctl: %#x (op: %d int: %d compl: %d pq: '%s%s' src_cnt: %d)\n", |
| desc_id(desc), (unsigned long long) desc->txd.phys, |
| (unsigned long long) (pq_ex ? pq_ex->next : pq->next), |
| desc->txd.flags, pq->size, pq->ctl, pq->ctl_f.op, pq->ctl_f.int_en, |
| pq->ctl_f.compl_write, |
| pq->ctl_f.p_disable ? "" : "p", pq->ctl_f.q_disable ? "" : "q", |
| pq->ctl_f.src_cnt); |
| for (i = 0; i < src_cnt; i++) |
| dev_dbg(dev, "\tsrc[%d]: %#llx coef: %#x\n", i, |
| (unsigned long long) pq_get_src(descs, i), pq->coef[i]); |
| dev_dbg(dev, "\tP: %#llx\n", pq->p_addr); |
| dev_dbg(dev, "\tQ: %#llx\n", pq->q_addr); |
| } |
| |
| static struct dma_async_tx_descriptor * |
| __ioat3_prep_pq_lock(struct dma_chan *c, enum sum_check_flags *result, |
| const dma_addr_t *dst, const dma_addr_t *src, |
| unsigned int src_cnt, const unsigned char *scf, |
| size_t len, unsigned long flags) |
| { |
| struct ioat2_dma_chan *ioat = to_ioat2_chan(c); |
| struct ioat_chan_common *chan = &ioat->base; |
| struct ioat_ring_ent *compl_desc; |
| struct ioat_ring_ent *desc; |
| struct ioat_ring_ent *ext; |
| size_t total_len = len; |
| struct ioat_pq_descriptor *pq; |
| struct ioat_pq_ext_descriptor *pq_ex = NULL; |
| struct ioat_dma_descriptor *hw; |
| u32 offset = 0; |
| int num_descs; |
| int with_ext; |
| int i, s; |
| u16 idx; |
| u8 op = result ? IOAT_OP_PQ_VAL : IOAT_OP_PQ; |
| |
| dev_dbg(to_dev(chan), "%s\n", __func__); |
| /* the engine requires at least two sources (we provide |
| * at least 1 implied source in the DMA_PREP_CONTINUE case) |
| */ |
| BUG_ON(src_cnt + dmaf_continue(flags) < 2); |
| |
| num_descs = ioat2_xferlen_to_descs(ioat, len); |
| /* we need 2x the number of descriptors to cover greater than 3 |
| * sources (we need 1 extra source in the q-only continuation |
| * case and 3 extra sources in the p+q continuation case. |
| */ |
| if (src_cnt + dmaf_p_disabled_continue(flags) > 3 || |
| (dmaf_continue(flags) && !dmaf_p_disabled_continue(flags))) { |
| with_ext = 1; |
| num_descs *= 2; |
| } else |
| with_ext = 0; |
| |
| /* completion writes from the raid engine may pass completion |
| * writes from the legacy engine, so we need one extra null |
| * (legacy) descriptor to ensure all completion writes arrive in |
| * order. |
| */ |
| if (likely(num_descs) && |
| ioat2_alloc_and_lock(&idx, ioat, num_descs+1) == 0) |
| /* pass */; |
| else |
| return NULL; |
| i = 0; |
| do { |
| struct ioat_raw_descriptor *descs[2]; |
| size_t xfer_size = min_t(size_t, len, 1 << ioat->xfercap_log); |
| |
| desc = ioat2_get_ring_ent(ioat, idx + i); |
| pq = desc->pq; |
| |
| /* save a branch by unconditionally retrieving the |
| * extended descriptor pq_set_src() knows to not write |
| * to it in the single descriptor case |
| */ |
| ext = ioat2_get_ring_ent(ioat, idx + i + with_ext); |
| pq_ex = ext->pq_ex; |
| |
| descs[0] = (struct ioat_raw_descriptor *) pq; |
| descs[1] = (struct ioat_raw_descriptor *) pq_ex; |
| |
| for (s = 0; s < src_cnt; s++) |
| pq_set_src(descs, src[s], offset, scf[s], s); |
| |
| /* see the comment for dma_maxpq in include/linux/dmaengine.h */ |
| if (dmaf_p_disabled_continue(flags)) |
| pq_set_src(descs, dst[1], offset, 1, s++); |
| else if (dmaf_continue(flags)) { |
| pq_set_src(descs, dst[0], offset, 0, s++); |
| pq_set_src(descs, dst[1], offset, 1, s++); |
| pq_set_src(descs, dst[1], offset, 0, s++); |
| } |
| pq->size = xfer_size; |
| pq->p_addr = dst[0] + offset; |
| pq->q_addr = dst[1] + offset; |
| pq->ctl = 0; |
| pq->ctl_f.op = op; |
| pq->ctl_f.src_cnt = src_cnt_to_hw(s); |
| pq->ctl_f.p_disable = !!(flags & DMA_PREP_PQ_DISABLE_P); |
| pq->ctl_f.q_disable = !!(flags & DMA_PREP_PQ_DISABLE_Q); |
| |
| len -= xfer_size; |
| offset += xfer_size; |
| } while ((i += 1 + with_ext) < num_descs); |
| |
| /* last pq descriptor carries the unmap parameters and fence bit */ |
| desc->txd.flags = flags; |
| desc->len = total_len; |
| if (result) |
| desc->result = result; |
| pq->ctl_f.fence = !!(flags & DMA_PREP_FENCE); |
| dump_pq_desc_dbg(ioat, desc, ext); |
| |
| /* completion descriptor carries interrupt bit */ |
| compl_desc = ioat2_get_ring_ent(ioat, idx + i); |
| compl_desc->txd.flags = flags & DMA_PREP_INTERRUPT; |
| hw = compl_desc->hw; |
| hw->ctl = 0; |
| hw->ctl_f.null = 1; |
| hw->ctl_f.int_en = !!(flags & DMA_PREP_INTERRUPT); |
| hw->ctl_f.compl_write = 1; |
| hw->size = NULL_DESC_BUFFER_SIZE; |
| dump_desc_dbg(ioat, compl_desc); |
| |
| /* we leave the channel locked to ensure in order submission */ |
| return &compl_desc->txd; |
| } |
| |
| static struct dma_async_tx_descriptor * |
| ioat3_prep_pq(struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src, |
| unsigned int src_cnt, const unsigned char *scf, size_t len, |
| unsigned long flags) |
| { |
| /* specify valid address for disabled result */ |
| if (flags & DMA_PREP_PQ_DISABLE_P) |
| dst[0] = dst[1]; |
| if (flags & DMA_PREP_PQ_DISABLE_Q) |
| dst[1] = dst[0]; |
| |
| /* handle the single source multiply case from the raid6 |
| * recovery path |
| */ |
| if ((flags & DMA_PREP_PQ_DISABLE_P) && src_cnt == 1) { |
| dma_addr_t single_source[2]; |
| unsigned char single_source_coef[2]; |
| |
| BUG_ON(flags & DMA_PREP_PQ_DISABLE_Q); |
| single_source[0] = src[0]; |
| single_source[1] = src[0]; |
| single_source_coef[0] = scf[0]; |
| single_source_coef[1] = 0; |
| |
| return __ioat3_prep_pq_lock(chan, NULL, dst, single_source, 2, |
| single_source_coef, len, flags); |
| } else |
| return __ioat3_prep_pq_lock(chan, NULL, dst, src, src_cnt, scf, |
| len, flags); |
| } |
| |
| struct dma_async_tx_descriptor * |
| ioat3_prep_pq_val(struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src, |
| unsigned int src_cnt, const unsigned char *scf, size_t len, |
| enum sum_check_flags *pqres, unsigned long flags) |
| { |
| /* specify valid address for disabled result */ |
| if (flags & DMA_PREP_PQ_DISABLE_P) |
| pq[0] = pq[1]; |
| if (flags & DMA_PREP_PQ_DISABLE_Q) |
| pq[1] = pq[0]; |
| |
| /* the cleanup routine only sets bits on validate failure, it |
| * does not clear bits on validate success... so clear it here |
| */ |
| *pqres = 0; |
| |
| return __ioat3_prep_pq_lock(chan, pqres, pq, src, src_cnt, scf, len, |
| flags); |
| } |
| |
| static struct dma_async_tx_descriptor * |
| ioat3_prep_pqxor(struct dma_chan *chan, dma_addr_t dst, dma_addr_t *src, |
| unsigned int src_cnt, size_t len, unsigned long flags) |
| { |
| unsigned char scf[src_cnt]; |
| dma_addr_t pq[2]; |
| |
| memset(scf, 0, src_cnt); |
| pq[0] = dst; |
| flags |= DMA_PREP_PQ_DISABLE_Q; |
| pq[1] = dst; /* specify valid address for disabled result */ |
| |
| return __ioat3_prep_pq_lock(chan, NULL, pq, src, src_cnt, scf, len, |
| flags); |
| } |
| |
| struct dma_async_tx_descriptor * |
| ioat3_prep_pqxor_val(struct dma_chan *chan, dma_addr_t *src, |
| unsigned int src_cnt, size_t len, |
| enum sum_check_flags *result, unsigned long flags) |
| { |
| unsigned char scf[src_cnt]; |
| dma_addr_t pq[2]; |
| |
| /* the cleanup routine only sets bits on validate failure, it |
| * does not clear bits on validate success... so clear it here |
| */ |
| *result = 0; |
| |
| memset(scf, 0, src_cnt); |
| pq[0] = src[0]; |
| flags |= DMA_PREP_PQ_DISABLE_Q; |
| pq[1] = pq[0]; /* specify valid address for disabled result */ |
| |
| return __ioat3_prep_pq_lock(chan, result, pq, &src[1], src_cnt - 1, scf, |
| len, flags); |
| } |
| |
| static struct dma_async_tx_descriptor * |
| ioat3_prep_interrupt_lock(struct dma_chan *c, unsigned long flags) |
| { |
| struct ioat2_dma_chan *ioat = to_ioat2_chan(c); |
| struct ioat_ring_ent *desc; |
| struct ioat_dma_descriptor *hw; |
| u16 idx; |
| |
| if (ioat2_alloc_and_lock(&idx, ioat, 1) == 0) |
| desc = ioat2_get_ring_ent(ioat, idx); |
| else |
| return NULL; |
| |
| hw = desc->hw; |
| hw->ctl = 0; |
| hw->ctl_f.null = 1; |
| hw->ctl_f.int_en = 1; |
| hw->ctl_f.fence = !!(flags & DMA_PREP_FENCE); |
| hw->ctl_f.compl_write = 1; |
| hw->size = NULL_DESC_BUFFER_SIZE; |
| hw->src_addr = 0; |
| hw->dst_addr = 0; |
| |
| desc->txd.flags = flags; |
| desc->len = 1; |
| |
| dump_desc_dbg(ioat, desc); |
| |
| /* we leave the channel locked to ensure in order submission */ |
| return &desc->txd; |
| } |
| |
| static void __devinit ioat3_dma_test_callback(void *dma_async_param) |
| { |
| struct completion *cmp = dma_async_param; |
| |
| complete(cmp); |
| } |
| |
| #define IOAT_NUM_SRC_TEST 6 /* must be <= 8 */ |
| static int __devinit ioat_xor_val_self_test(struct ioatdma_device *device) |
| { |
| int i, src_idx; |
| struct page *dest; |
| struct page *xor_srcs[IOAT_NUM_SRC_TEST]; |
| struct page *xor_val_srcs[IOAT_NUM_SRC_TEST + 1]; |
| dma_addr_t dma_srcs[IOAT_NUM_SRC_TEST + 1]; |
| dma_addr_t dma_addr, dest_dma; |
| struct dma_async_tx_descriptor *tx; |
| struct dma_chan *dma_chan; |
| dma_cookie_t cookie; |
| u8 cmp_byte = 0; |
| u32 cmp_word; |
| u32 xor_val_result; |
| int err = 0; |
| struct completion cmp; |
| unsigned long tmo; |
| struct device *dev = &device->pdev->dev; |
| struct dma_device *dma = &device->common; |
| |
| dev_dbg(dev, "%s\n", __func__); |
| |
| if (!dma_has_cap(DMA_XOR, dma->cap_mask)) |
| return 0; |
| |
| for (src_idx = 0; src_idx < IOAT_NUM_SRC_TEST; src_idx++) { |
| xor_srcs[src_idx] = alloc_page(GFP_KERNEL); |
| if (!xor_srcs[src_idx]) { |
| while (src_idx--) |
| __free_page(xor_srcs[src_idx]); |
| return -ENOMEM; |
| } |
| } |
| |
| dest = alloc_page(GFP_KERNEL); |
| if (!dest) { |
| while (src_idx--) |
| __free_page(xor_srcs[src_idx]); |
| return -ENOMEM; |
| } |
| |
| /* Fill in src buffers */ |
| for (src_idx = 0; src_idx < IOAT_NUM_SRC_TEST; src_idx++) { |
| u8 *ptr = page_address(xor_srcs[src_idx]); |
| for (i = 0; i < PAGE_SIZE; i++) |
| ptr[i] = (1 << src_idx); |
| } |
| |
| for (src_idx = 0; src_idx < IOAT_NUM_SRC_TEST; src_idx++) |
| cmp_byte ^= (u8) (1 << src_idx); |
| |
| cmp_word = (cmp_byte << 24) | (cmp_byte << 16) | |
| (cmp_byte << 8) | cmp_byte; |
| |
| memset(page_address(dest), 0, PAGE_SIZE); |
| |
| dma_chan = container_of(dma->channels.next, struct dma_chan, |
| device_node); |
| if (dma->device_alloc_chan_resources(dma_chan) < 1) { |
| err = -ENODEV; |
| goto out; |
| } |
| |
| /* test xor */ |
| dest_dma = dma_map_page(dev, dest, 0, PAGE_SIZE, DMA_FROM_DEVICE); |
| for (i = 0; i < IOAT_NUM_SRC_TEST; i++) |
| dma_srcs[i] = dma_map_page(dev, xor_srcs[i], 0, PAGE_SIZE, |
| DMA_TO_DEVICE); |
| tx = dma->device_prep_dma_xor(dma_chan, dest_dma, dma_srcs, |
| IOAT_NUM_SRC_TEST, PAGE_SIZE, |
| DMA_PREP_INTERRUPT); |
| |
| if (!tx) { |
| dev_err(dev, "Self-test xor prep failed\n"); |
| err = -ENODEV; |
| goto free_resources; |
| } |
| |
| async_tx_ack(tx); |
| init_completion(&cmp); |
| tx->callback = ioat3_dma_test_callback; |
| tx->callback_param = &cmp; |
| cookie = tx->tx_submit(tx); |
| if (cookie < 0) { |
| dev_err(dev, "Self-test xor setup failed\n"); |
| err = -ENODEV; |
| goto free_resources; |
| } |
| dma->device_issue_pending(dma_chan); |
| |
| tmo = wait_for_completion_timeout(&cmp, msecs_to_jiffies(3000)); |
| |
| if (dma->device_is_tx_complete(dma_chan, cookie, NULL, NULL) != DMA_SUCCESS) { |
| dev_err(dev, "Self-test xor timed out\n"); |
| err = -ENODEV; |
| goto free_resources; |
| } |
| |
| dma_sync_single_for_cpu(dev, dest_dma, PAGE_SIZE, DMA_FROM_DEVICE); |
| for (i = 0; i < (PAGE_SIZE / sizeof(u32)); i++) { |
| u32 *ptr = page_address(dest); |
| if (ptr[i] != cmp_word) { |
| dev_err(dev, "Self-test xor failed compare\n"); |
| err = -ENODEV; |
| goto free_resources; |
| } |
| } |
| dma_sync_single_for_device(dev, dest_dma, PAGE_SIZE, DMA_TO_DEVICE); |
| |
| /* skip validate if the capability is not present */ |
| if (!dma_has_cap(DMA_XOR_VAL, dma_chan->device->cap_mask)) |
| goto free_resources; |
| |
| /* validate the sources with the destintation page */ |
| for (i = 0; i < IOAT_NUM_SRC_TEST; i++) |
| xor_val_srcs[i] = xor_srcs[i]; |
| xor_val_srcs[i] = dest; |
| |
| xor_val_result = 1; |
| |
| for (i = 0; i < IOAT_NUM_SRC_TEST + 1; i++) |
| dma_srcs[i] = dma_map_page(dev, xor_val_srcs[i], 0, PAGE_SIZE, |
| DMA_TO_DEVICE); |
| tx = dma->device_prep_dma_xor_val(dma_chan, dma_srcs, |
| IOAT_NUM_SRC_TEST + 1, PAGE_SIZE, |
| &xor_val_result, DMA_PREP_INTERRUPT); |
| if (!tx) { |
| dev_err(dev, "Self-test zero prep failed\n"); |
| err = -ENODEV; |
| goto free_resources; |
| } |
| |
| async_tx_ack(tx); |
| init_completion(&cmp); |
| tx->callback = ioat3_dma_test_callback; |
| tx->callback_param = &cmp; |
| cookie = tx->tx_submit(tx); |
| if (cookie < 0) { |
| dev_err(dev, "Self-test zero setup failed\n"); |
| err = -ENODEV; |
| goto free_resources; |
| } |
| dma->device_issue_pending(dma_chan); |
| |
| tmo = wait_for_completion_timeout(&cmp, msecs_to_jiffies(3000)); |
| |
| if (dma->device_is_tx_complete(dma_chan, cookie, NULL, NULL) != DMA_SUCCESS) { |
| dev_err(dev, "Self-test validate timed out\n"); |
| err = -ENODEV; |
| goto free_resources; |
| } |
| |
| if (xor_val_result != 0) { |
| dev_err(dev, "Self-test validate failed compare\n"); |
| err = -ENODEV; |
| goto free_resources; |
| } |
| |
| /* skip memset if the capability is not present */ |
| if (!dma_has_cap(DMA_MEMSET, dma_chan->device->cap_mask)) |
| goto free_resources; |
| |
| /* test memset */ |
| dma_addr = dma_map_page(dev, dest, 0, |
| PAGE_SIZE, DMA_FROM_DEVICE); |
| tx = dma->device_prep_dma_memset(dma_chan, dma_addr, 0, PAGE_SIZE, |
| DMA_PREP_INTERRUPT); |
| if (!tx) { |
| dev_err(dev, "Self-test memset prep failed\n"); |
| err = -ENODEV; |
| goto free_resources; |
| } |
| |
| async_tx_ack(tx); |
| init_completion(&cmp); |
| tx->callback = ioat3_dma_test_callback; |
| tx->callback_param = &cmp; |
| cookie = tx->tx_submit(tx); |
| if (cookie < 0) { |
| dev_err(dev, "Self-test memset setup failed\n"); |
| err = -ENODEV; |
| goto free_resources; |
| } |
| dma->device_issue_pending(dma_chan); |
| |
| tmo = wait_for_completion_timeout(&cmp, msecs_to_jiffies(3000)); |
| |
| if (dma->device_is_tx_complete(dma_chan, cookie, NULL, NULL) != DMA_SUCCESS) { |
| dev_err(dev, "Self-test memset timed out\n"); |
| err = -ENODEV; |
| goto free_resources; |
| } |
| |
| for (i = 0; i < PAGE_SIZE/sizeof(u32); i++) { |
| u32 *ptr = page_address(dest); |
| if (ptr[i]) { |
| dev_err(dev, "Self-test memset failed compare\n"); |
| err = -ENODEV; |
| goto free_resources; |
| } |
| } |
| |
| /* test for non-zero parity sum */ |
| xor_val_result = 0; |
| for (i = 0; i < IOAT_NUM_SRC_TEST + 1; i++) |
| dma_srcs[i] = dma_map_page(dev, xor_val_srcs[i], 0, PAGE_SIZE, |
| DMA_TO_DEVICE); |
| tx = dma->device_prep_dma_xor_val(dma_chan, dma_srcs, |
| IOAT_NUM_SRC_TEST + 1, PAGE_SIZE, |
| &xor_val_result, DMA_PREP_INTERRUPT); |
| if (!tx) { |
| dev_err(dev, "Self-test 2nd zero prep failed\n"); |
| err = -ENODEV; |
| goto free_resources; |
| } |
| |
| async_tx_ack(tx); |
| init_completion(&cmp); |
| tx->callback = ioat3_dma_test_callback; |
| tx->callback_param = &cmp; |
| cookie = tx->tx_submit(tx); |
| if (cookie < 0) { |
| dev_err(dev, "Self-test 2nd zero setup failed\n"); |
| err = -ENODEV; |
| goto free_resources; |
| } |
| dma->device_issue_pending(dma_chan); |
| |
| tmo = wait_for_completion_timeout(&cmp, msecs_to_jiffies(3000)); |
| |
| if (dma->device_is_tx_complete(dma_chan, cookie, NULL, NULL) != DMA_SUCCESS) { |
| dev_err(dev, "Self-test 2nd validate timed out\n"); |
| err = -ENODEV; |
| goto free_resources; |
| } |
| |
| if (xor_val_result != SUM_CHECK_P_RESULT) { |
| dev_err(dev, "Self-test validate failed compare\n"); |
| err = -ENODEV; |
| goto free_resources; |
| } |
| |
| free_resources: |
| dma->device_free_chan_resources(dma_chan); |
| out: |
| src_idx = IOAT_NUM_SRC_TEST; |
| while (src_idx--) |
| __free_page(xor_srcs[src_idx]); |
| __free_page(dest); |
| return err; |
| } |
| |
| static int __devinit ioat3_dma_self_test(struct ioatdma_device *device) |
| { |
| int rc = ioat_dma_self_test(device); |
| |
| if (rc) |
| return rc; |
| |
| rc = ioat_xor_val_self_test(device); |
| if (rc) |
| return rc; |
| |
| return 0; |
| } |
| |
| static int ioat3_reset_hw(struct ioat_chan_common *chan) |
| { |
| /* throw away whatever the channel was doing and get it |
| * initialized, with ioat3 specific workarounds |
| */ |
| struct ioatdma_device *device = chan->device; |
| struct pci_dev *pdev = device->pdev; |
| u32 chanerr; |
| u16 dev_id; |
| int err; |
| |
| ioat2_quiesce(chan, msecs_to_jiffies(100)); |
| |
| chanerr = readl(chan->reg_base + IOAT_CHANERR_OFFSET); |
| writel(chanerr, chan->reg_base + IOAT_CHANERR_OFFSET); |
| |
| /* -= IOAT ver.3 workarounds =- */ |
| /* Write CHANERRMSK_INT with 3E07h to mask out the errors |
| * that can cause stability issues for IOAT ver.3, and clear any |
| * pending errors |
| */ |
| pci_write_config_dword(pdev, IOAT_PCI_CHANERRMASK_INT_OFFSET, 0x3e07); |
| err = pci_read_config_dword(pdev, IOAT_PCI_CHANERR_INT_OFFSET, &chanerr); |
| if (err) { |
| dev_err(&pdev->dev, "channel error register unreachable\n"); |
| return err; |
| } |
| pci_write_config_dword(pdev, IOAT_PCI_CHANERR_INT_OFFSET, chanerr); |
| |
| /* Clear DMAUNCERRSTS Cfg-Reg Parity Error status bit |
| * (workaround for spurious config parity error after restart) |
| */ |
| pci_read_config_word(pdev, IOAT_PCI_DEVICE_ID_OFFSET, &dev_id); |
| if (dev_id == PCI_DEVICE_ID_INTEL_IOAT_TBG0) |
| pci_write_config_dword(pdev, IOAT_PCI_DMAUNCERRSTS_OFFSET, 0x10); |
| |
| return ioat2_reset_sync(chan, msecs_to_jiffies(200)); |
| } |
| |
| int __devinit ioat3_dma_probe(struct ioatdma_device *device, int dca) |
| { |
| struct pci_dev *pdev = device->pdev; |
| int dca_en = system_has_dca_enabled(pdev); |
| struct dma_device *dma; |
| struct dma_chan *c; |
| struct ioat_chan_common *chan; |
| bool is_raid_device = false; |
| int err; |
| u32 cap; |
| |
| device->enumerate_channels = ioat2_enumerate_channels; |
| device->reset_hw = ioat3_reset_hw; |
| device->self_test = ioat3_dma_self_test; |
| dma = &device->common; |
| dma->device_prep_dma_memcpy = ioat2_dma_prep_memcpy_lock; |
| dma->device_issue_pending = ioat2_issue_pending; |
| dma->device_alloc_chan_resources = ioat2_alloc_chan_resources; |
| dma->device_free_chan_resources = ioat2_free_chan_resources; |
| |
| dma_cap_set(DMA_INTERRUPT, dma->cap_mask); |
| dma->device_prep_dma_interrupt = ioat3_prep_interrupt_lock; |
| |
| cap = readl(device->reg_base + IOAT_DMA_CAP_OFFSET); |
| |
| /* dca is incompatible with raid operations */ |
| if (dca_en && (cap & (IOAT_CAP_XOR|IOAT_CAP_PQ))) |
| cap &= ~(IOAT_CAP_XOR|IOAT_CAP_PQ); |
| |
| if (cap & IOAT_CAP_XOR) { |
| is_raid_device = true; |
| dma->max_xor = 8; |
| dma->xor_align = 2; |
| |
| dma_cap_set(DMA_XOR, dma->cap_mask); |
| dma->device_prep_dma_xor = ioat3_prep_xor; |
| |
| dma_cap_set(DMA_XOR_VAL, dma->cap_mask); |
| dma->device_prep_dma_xor_val = ioat3_prep_xor_val; |
| } |
| if (cap & IOAT_CAP_PQ) { |
| is_raid_device = true; |
| dma_set_maxpq(dma, 8, 0); |
| dma->pq_align = 2; |
| |
| dma_cap_set(DMA_PQ, dma->cap_mask); |
| dma->device_prep_dma_pq = ioat3_prep_pq; |
| |
| dma_cap_set(DMA_PQ_VAL, dma->cap_mask); |
| dma->device_prep_dma_pq_val = ioat3_prep_pq_val; |
| |
| if (!(cap & IOAT_CAP_XOR)) { |
| dma->max_xor = 8; |
| dma->xor_align = 2; |
| |
| dma_cap_set(DMA_XOR, dma->cap_mask); |
| dma->device_prep_dma_xor = ioat3_prep_pqxor; |
| |
| dma_cap_set(DMA_XOR_VAL, dma->cap_mask); |
| dma->device_prep_dma_xor_val = ioat3_prep_pqxor_val; |
| } |
| } |
| if (is_raid_device && (cap & IOAT_CAP_FILL_BLOCK)) { |
| dma_cap_set(DMA_MEMSET, dma->cap_mask); |
| dma->device_prep_dma_memset = ioat3_prep_memset_lock; |
| } |
| |
| |
| if (is_raid_device) { |
| dma->device_is_tx_complete = ioat3_is_complete; |
| device->cleanup_fn = ioat3_cleanup_event; |
| device->timer_fn = ioat3_timer_event; |
| } else { |
| dma->device_is_tx_complete = ioat_is_dma_complete; |
| device->cleanup_fn = ioat2_cleanup_event; |
| device->timer_fn = ioat2_timer_event; |
| } |
| |
| #ifdef CONFIG_ASYNC_TX_DISABLE_PQ_VAL_DMA |
| dma_cap_clear(DMA_PQ_VAL, dma->cap_mask); |
| dma->device_prep_dma_pq_val = NULL; |
| #endif |
| |
| #ifdef CONFIG_ASYNC_TX_DISABLE_XOR_VAL_DMA |
| dma_cap_clear(DMA_XOR_VAL, dma->cap_mask); |
| dma->device_prep_dma_xor_val = NULL; |
| #endif |
| |
| err = ioat_probe(device); |
| if (err) |
| return err; |
| ioat_set_tcp_copy_break(262144); |
| |
| list_for_each_entry(c, &dma->channels, device_node) { |
| chan = to_chan_common(c); |
| writel(IOAT_DMA_DCA_ANY_CPU, |
| chan->reg_base + IOAT_DCACTRL_OFFSET); |
| } |
| |
| err = ioat_register(device); |
| if (err) |
| return err; |
| |
| ioat_kobject_add(device, &ioat2_ktype); |
| |
| if (dca) |
| device->dca = ioat3_dca_init(pdev, device->reg_base); |
| |
| return 0; |
| } |