blob: bff6cdc9431d4b1a343d3e837bca4a41697f53df [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2010-2020, The Linux Foundation. All rights reserved.
*/
#include <linux/slab.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <asm/cacheflush.h>
#include <asm/compiler.h>
#include <soc/qcom/scm.h>
#include <soc/qcom/qtee_shmbridge.h>
#define CREATE_TRACE_POINTS
#include <trace/events/scm.h>
#define SCM_ENOMEM -9
#define SCM_EINVAL_ADDR -3
#define SCM_EINVAL_ARG -2
#define SCM_ERROR -1
#define SCM_INTERRUPTED 1
#define SCM_V2_EBUSY -12
static DEFINE_MUTEX(scm_lock);
/*
* MSM8996 V2 requires a lock to protect against
* concurrent accesses between the limits management
* driver and the clock controller
*/
DEFINE_MUTEX(scm_lmh_lock);
#define SCM_EBUSY_WAIT_MS 30
#define SCM_EBUSY_MAX_RETRY 67
#define N_EXT_SCM_ARGS 7
#define FIRST_EXT_ARG_IDX 3
#define SMC_ATOMIC_SYSCALL 31
#define N_REGISTER_ARGS (MAX_SCM_ARGS - N_EXT_SCM_ARGS + 1)
#define SMC64_MASK 0x40000000
#define SMC_ATOMIC_MASK 0x80000000
#define IS_CALL_AVAIL_CMD 1
#ifdef CONFIG_ARM64
#define R0_STR "x0"
#define R1_STR "x1"
#define R2_STR "x2"
#define R3_STR "x3"
#define R4_STR "x4"
#define R5_STR "x5"
#define R6_STR "x6"
/* Outer caches unsupported on ARM64 platforms */
#define outer_inv_range(x, y)
#define outer_flush_range(x, y)
#define __cpuc_flush_dcache_area __flush_dcache_area
#else
#define R0_STR "r0"
#define R1_STR "r1"
#define R2_STR "r2"
#define R3_STR "r3"
#define R4_STR "r4"
#define R5_STR "r5"
#define R6_STR "r6"
#endif
static int scm_remap_error(int err)
{
switch (err) {
case SCM_ERROR:
return -EOPNOTSUPP;
case SCM_EINVAL_ADDR:
case SCM_EINVAL_ARG:
return -EINVAL;
case SCM_ENOMEM:
return -ENOMEM;
case SCM_V2_EBUSY:
return -EBUSY;
}
return -EINVAL;
}
#ifdef CONFIG_ARM64
static int __scm_call_armv8_64(u64 x0, u64 x1, u64 x2, u64 x3, u64 x4, u64 x5,
u64 *ret1, u64 *ret2, u64 *ret3)
{
register u64 r0 asm("x0") = x0;
register u64 r1 asm("x1") = x1;
register u64 r2 asm("x2") = x2;
register u64 r3 asm("x3") = x3;
register u64 r4 asm("x4") = x4;
register u64 r5 asm("x5") = x5;
register u64 r6 asm("x6") = 0;
do {
asm volatile(
__asmeq("%0", R0_STR)
__asmeq("%1", R1_STR)
__asmeq("%2", R2_STR)
__asmeq("%3", R3_STR)
__asmeq("%4", R4_STR)
__asmeq("%5", R5_STR)
__asmeq("%6", R6_STR)
__asmeq("%7", R0_STR)
__asmeq("%8", R1_STR)
__asmeq("%9", R2_STR)
__asmeq("%10", R3_STR)
__asmeq("%11", R4_STR)
__asmeq("%12", R5_STR)
__asmeq("%13", R6_STR)
#ifdef REQUIRES_SEC
".arch_extension sec\n"
#endif
"smc #0\n"
: "=r" (r0), "=r" (r1), "=r" (r2), "=r" (r3),
"=r" (r4), "=r" (r5), "=r" (r6)
: "r" (r0), "r" (r1), "r" (r2), "r" (r3), "r" (r4),
"r" (r5), "r" (r6)
: "x7", "x8", "x9", "x10", "x11", "x12", "x13",
"x14", "x15", "x16", "x17");
} while (r0 == SCM_INTERRUPTED);
if (ret1)
*ret1 = r1;
if (ret2)
*ret2 = r2;
if (ret3)
*ret3 = r3;
return r0;
}
static int __scm_call_armv8_32(u32 w0, u32 w1, u32 w2, u32 w3, u32 w4, u32 w5,
u64 *ret1, u64 *ret2, u64 *ret3)
{
register u32 r0 asm("w0") = w0;
register u32 r1 asm("w1") = w1;
register u32 r2 asm("w2") = w2;
register u32 r3 asm("w3") = w3;
register u32 r4 asm("w4") = w4;
register u32 r5 asm("w5") = w5;
register u32 r6 asm("w6") = 0;
do {
asm volatile(
__asmeq("%0", R0_STR)
__asmeq("%1", R1_STR)
__asmeq("%2", R2_STR)
__asmeq("%3", R3_STR)
__asmeq("%4", R4_STR)
__asmeq("%5", R5_STR)
__asmeq("%6", R6_STR)
__asmeq("%7", R0_STR)
__asmeq("%8", R1_STR)
__asmeq("%9", R2_STR)
__asmeq("%10", R3_STR)
__asmeq("%11", R4_STR)
__asmeq("%12", R5_STR)
__asmeq("%13", R6_STR)
#ifdef REQUIRES_SEC
".arch_extension sec\n"
#endif
"smc #0\n"
: "=r" (r0), "=r" (r1), "=r" (r2), "=r" (r3),
"=r" (r4), "=r" (r5), "=r" (r6)
: "r" (r0), "r" (r1), "r" (r2), "r" (r3), "r" (r4),
"r" (r5), "r" (r6)
: "x7", "x8", "x9", "x10", "x11", "x12", "x13",
"x14", "x15", "x16", "x17");
} while (r0 == SCM_INTERRUPTED);
if (ret1)
*ret1 = r1;
if (ret2)
*ret2 = r2;
if (ret3)
*ret3 = r3;
return r0;
}
#else
static int __scm_call_armv8_32(u32 w0, u32 w1, u32 w2, u32 w3, u32 w4, u32 w5,
u64 *ret1, u64 *ret2, u64 *ret3)
{
register u32 r0 asm("r0") = w0;
register u32 r1 asm("r1") = w1;
register u32 r2 asm("r2") = w2;
register u32 r3 asm("r3") = w3;
register u32 r4 asm("r4") = w4;
register u32 r5 asm("r5") = w5;
register u32 r6 asm("r6") = 0;
do {
asm volatile(
__asmeq("%0", R0_STR)
__asmeq("%1", R1_STR)
__asmeq("%2", R2_STR)
__asmeq("%3", R3_STR)
__asmeq("%4", R4_STR)
__asmeq("%5", R5_STR)
__asmeq("%6", R6_STR)
__asmeq("%7", R0_STR)
__asmeq("%8", R1_STR)
__asmeq("%9", R2_STR)
__asmeq("%10", R3_STR)
__asmeq("%11", R4_STR)
__asmeq("%12", R5_STR)
__asmeq("%13", R6_STR)
#ifdef REQUIRES_SEC
".arch_extension sec\n"
#endif
"smc #0\n"
: "=r" (r0), "=r" (r1), "=r" (r2), "=r" (r3),
"=r" (r4), "=r" (r5), "=r" (r6)
: "r" (r0), "r" (r1), "r" (r2), "r" (r3), "r" (r4),
"r" (r5), "r" (r6));
} while (r0 == SCM_INTERRUPTED);
if (ret1)
*ret1 = r1;
if (ret2)
*ret2 = r2;
if (ret3)
*ret3 = r3;
return r0;
}
static int __scm_call_armv8_64(u64 x0, u64 x1, u64 x2, u64 x3, u64 x4, u64 x5,
u64 *ret1, u64 *ret2, u64 *ret3)
{
return 0;
}
#endif
struct scm_extra_arg {
union {
u32 args32[N_EXT_SCM_ARGS];
u64 args64[N_EXT_SCM_ARGS];
};
};
static enum scm_interface_version {
SCM_UNKNOWN,
SCM_LEGACY,
SCM_ARMV8_32,
SCM_ARMV8_64,
} scm_version = SCM_UNKNOWN;
/* This will be set to specify SMC32 or SMC64 */
static u32 scm_version_mask;
bool is_scm_armv8(void)
{
int ret;
u64 ret1, x0;
if (likely(scm_version != SCM_UNKNOWN))
return (scm_version == SCM_ARMV8_32) ||
(scm_version == SCM_ARMV8_64);
/*
* This is a one time check that runs on the first ever
* invocation of is_scm_armv8. We might be called in atomic
* context so no mutexes etc. Also, we can't use the scm_call2
* or scm_call2_APIs directly since they depend on this init.
*/
/* First try a SMC64 call */
scm_version = SCM_ARMV8_64;
ret1 = 0;
x0 = SCM_SIP_FNID(SCM_SVC_INFO, IS_CALL_AVAIL_CMD) | SMC_ATOMIC_MASK;
ret = __scm_call_armv8_64(x0 | SMC64_MASK, SCM_ARGS(1), x0, 0, 0, 0,
&ret1, NULL, NULL);
if (ret || !ret1) {
/* Try SMC32 call */
ret1 = 0;
ret = __scm_call_armv8_32(x0, SCM_ARGS(1), x0, 0, 0, 0,
&ret1, NULL, NULL);
if (ret || !ret1)
scm_version = SCM_LEGACY;
else
scm_version = SCM_ARMV8_32;
} else
scm_version_mask = SMC64_MASK;
pr_debug("scm_call: scm version is %x, mask is %x\n", scm_version,
scm_version_mask);
return (scm_version == SCM_ARMV8_32) ||
(scm_version == SCM_ARMV8_64);
}
/*
* If there are more than N_REGISTER_ARGS, allocate a buffer and place
* the additional arguments in it. The extra argument buffer will be
* pointed to by X5.
*/
static int allocate_extra_arg_buffer(struct scm_desc *desc, gfp_t flags)
{
int i, j;
int rc;
struct scm_extra_arg *argbuf;
int arglen = desc->arginfo & 0xf;
struct qtee_shm shm;
size_t argbuflen = PAGE_ALIGN(sizeof(struct scm_extra_arg));
desc->x5 = desc->args[FIRST_EXT_ARG_IDX];
if (likely(arglen <= N_REGISTER_ARGS))
return 0;
rc = qtee_shmbridge_allocate_shm(argbuflen, &shm);
if (rc)
return rc;
desc->shm = shm;
argbuf = shm.vaddr;
j = FIRST_EXT_ARG_IDX;
if (scm_version == SCM_ARMV8_64)
for (i = 0; i < N_EXT_SCM_ARGS; i++)
argbuf->args64[i] = desc->args[j++];
else
for (i = 0; i < N_EXT_SCM_ARGS; i++)
argbuf->args32[i] = desc->args[j++];
desc->x5 = shm.paddr;
__cpuc_flush_dcache_area(argbuf, argbuflen);
outer_flush_range(shm.paddr, shm.paddr + argbuflen);
return 0;
}
static int __scm_call2(u32 fn_id, struct scm_desc *desc, bool retry)
{
int arglen = desc->arginfo & 0xf;
int ret, retry_count = 0;
u64 x0;
if (unlikely(!is_scm_armv8()))
return -ENODEV;
ret = allocate_extra_arg_buffer(desc, GFP_NOIO);
if (ret)
return ret;
x0 = fn_id | scm_version_mask;
trace_scm_call_start(x0, desc);
do {
mutex_lock(&scm_lock);
if (SCM_SVC_ID(fn_id) == SCM_SVC_LMH)
mutex_lock(&scm_lmh_lock);
desc->ret[0] = desc->ret[1] = desc->ret[2] = 0;
if (scm_version == SCM_ARMV8_64)
ret = __scm_call_armv8_64(x0, desc->arginfo,
desc->args[0], desc->args[1],
desc->args[2], desc->x5,
&desc->ret[0], &desc->ret[1],
&desc->ret[2]);
else
ret = __scm_call_armv8_32(x0, desc->arginfo,
desc->args[0], desc->args[1],
desc->args[2], desc->x5,
&desc->ret[0], &desc->ret[1],
&desc->ret[2]);
if (SCM_SVC_ID(fn_id) == SCM_SVC_LMH)
mutex_unlock(&scm_lmh_lock);
mutex_unlock(&scm_lock);
if (!retry)
goto out;
if (ret == SCM_V2_EBUSY)
msleep(SCM_EBUSY_WAIT_MS);
if (retry_count == 33)
pr_warn("scm: secure world has been busy for 1 second!\n");
} while (ret == SCM_V2_EBUSY && (retry_count++ < SCM_EBUSY_MAX_RETRY));
out:
trace_scm_call_end(desc);
if (ret < 0)
pr_err("scm_call failed: func id %#llx, ret: %d, syscall returns: %#llx, %#llx, %#llx\n",
x0, ret, desc->ret[0], desc->ret[1], desc->ret[2]);
if (arglen > N_REGISTER_ARGS)
qtee_shmbridge_free_shm(&desc->shm);
if (ret < 0)
return scm_remap_error(ret);
return 0;
}
/**
* scm_call2() - Invoke a syscall in the secure world
* @fn_id: The function ID for this syscall
* @desc: Descriptor structure containing arguments and return values
*
* Sends a command to the SCM and waits for the command to finish processing.
* This should *only* be called in pre-emptible context.
*
* A note on cache maintenance:
* Note that any buffers that are expected to be accessed by the secure world
* must be flushed before invoking scm_call and invalidated in the cache
* immediately after scm_call returns. An important point that must be noted
* is that on ARMV8 architectures, invalidation actually also causes a dirty
* cache line to be cleaned (flushed + unset-dirty-bit). Therefore it is of
* paramount importance that the buffer be flushed before invoking scm_call2,
* even if you don't care about the contents of that buffer.
*
* Note that cache maintenance on the argument buffer (desc->args) is taken care
* of by scm_call2; however, callers are responsible for any other cached
* buffers passed over to the secure world.
*/
int scm_call2(u32 fn_id, struct scm_desc *desc)
{
return __scm_call2(fn_id, desc, true);
}
EXPORT_SYMBOL(scm_call2);
/**
* scm_call2_noretry() - Invoke a syscall in the secure world
*
* Similar to scm_call2 except that there is no retry mechanism
* implemented.
*/
int scm_call2_noretry(u32 fn_id, struct scm_desc *desc)
{
return __scm_call2(fn_id, desc, false);
}
EXPORT_SYMBOL(scm_call2_noretry);
/**
* scm_call2_atomic() - Invoke a syscall in the secure world
*
* Similar to scm_call2 except that this can be invoked in atomic context.
* There is also no retry mechanism implemented. Please ensure that the
* secure world syscall can be executed in such a context and can complete
* in a timely manner.
*/
int scm_call2_atomic(u32 fn_id, struct scm_desc *desc)
{
int arglen = desc->arginfo & 0xf;
int ret;
u64 x0;
if (unlikely(!is_scm_armv8()))
return -ENODEV;
ret = allocate_extra_arg_buffer(desc, GFP_ATOMIC);
if (ret)
return ret;
x0 = fn_id | BIT(SMC_ATOMIC_SYSCALL) | scm_version_mask;
trace_scm_call_start(x0, desc);
if (scm_version == SCM_ARMV8_64)
ret = __scm_call_armv8_64(x0, desc->arginfo, desc->args[0],
desc->args[1], desc->args[2],
desc->x5, &desc->ret[0],
&desc->ret[1], &desc->ret[2]);
else
ret = __scm_call_armv8_32(x0, desc->arginfo, desc->args[0],
desc->args[1], desc->args[2],
desc->x5, &desc->ret[0],
&desc->ret[1], &desc->ret[2]);
trace_scm_call_end(desc);
if (ret < 0)
pr_err("scm_call failed: func id %#llx, ret: %d, syscall returns: %#llx, %#llx, %#llx\n",
x0, ret, desc->ret[0],
desc->ret[1], desc->ret[2]);
if (arglen > N_REGISTER_ARGS)
qtee_shmbridge_free_shm(&desc->shm);
if (ret < 0)
return scm_remap_error(ret);
return ret;
}
EXPORT_SYMBOL(scm_call2_atomic);
u32 scm_get_version(void)
{
int context_id;
static u32 version = -1;
register u32 r0 asm(R0_STR);
register u32 r1 asm(R1_STR);
if (version != -1)
return version;
mutex_lock(&scm_lock);
r0 = 0x1 << 8;
r1 = (uintptr_t)&context_id;
do {
asm volatile(
__asmeq("%0", R0_STR)
__asmeq("%1", R1_STR)
__asmeq("%2", R0_STR)
__asmeq("%3", R1_STR)
#ifdef REQUIRES_SEC
".arch_extension sec\n"
#endif
"smc #0\n"
: "=r" (r0), "=r" (r1)
: "r" (r0), "r" (r1)
: R2_STR, R3_STR);
} while (r0 == SCM_INTERRUPTED);
version = r1;
mutex_unlock(&scm_lock);
return version;
}
EXPORT_SYMBOL(scm_get_version);
#define SCM_IO_READ 0x1
#define SCM_IO_WRITE 0x2
u32 scm_io_read(phys_addr_t address)
{
struct scm_desc desc = {
.args[0] = address,
.arginfo = SCM_ARGS(1),
};
scm_call2_atomic(SCM_SIP_FNID(SCM_SVC_IO, SCM_IO_READ), &desc);
return desc.ret[0];
}
EXPORT_SYMBOL(scm_io_read);
int scm_io_write(phys_addr_t address, u32 val)
{
int ret;
struct scm_desc desc = {
.args[0] = address,
.args[1] = val,
.arginfo = SCM_ARGS(2),
};
ret = scm_call2_atomic(SCM_SIP_FNID(SCM_SVC_IO, SCM_IO_WRITE),
&desc);
return ret;
}
EXPORT_SYMBOL(scm_io_write);
int scm_is_call_available(u32 svc_id, u32 cmd_id)
{
int ret;
struct scm_desc desc = {0};
desc.arginfo = SCM_ARGS(1);
desc.args[0] = SCM_SIP_FNID(svc_id, cmd_id);
ret = scm_call2(SCM_SIP_FNID(SCM_SVC_INFO, IS_CALL_AVAIL_CMD), &desc);
if (ret)
return ret;
return desc.ret[0];
}
EXPORT_SYMBOL(scm_is_call_available);
#define GET_FEAT_VERSION_CMD 3
int scm_get_feat_version(u32 feat)
{
struct scm_desc desc = {0};
int ret;
ret = scm_is_call_available(SCM_SVC_INFO, GET_FEAT_VERSION_CMD);
if (ret <= 0)
return 0;
desc.args[0] = feat;
desc.arginfo = SCM_ARGS(1);
ret = scm_call2(SCM_SIP_FNID(SCM_SVC_INFO, GET_FEAT_VERSION_CMD),
&desc);
if (!ret)
return desc.ret[0];
return 0;
}
EXPORT_SYMBOL(scm_get_feat_version);
#define RESTORE_SEC_CFG 2
int scm_restore_sec_cfg(u32 device_id, u32 spare, int *scm_ret)
{
struct scm_desc desc = {0};
int ret;
struct restore_sec_cfg {
u32 device_id;
u32 spare;
} cfg;
cfg.device_id = device_id;
cfg.spare = spare;
if (IS_ERR_OR_NULL(scm_ret))
return -EINVAL;
desc.args[0] = device_id;
desc.args[1] = spare;
desc.arginfo = SCM_ARGS(2);
ret = scm_call2(SCM_SIP_FNID(SCM_SVC_MP, RESTORE_SEC_CFG), &desc);
if (ret)
return ret;
*scm_ret = desc.ret[0];
return 0;
}
EXPORT_SYMBOL(scm_restore_sec_cfg);
/*
* SCM call command ID to check secure mode
* Return zero for secure device.
* Return one for non secure device or secure
* device with debug enabled device.
*/
#define TZ_INFO_GET_SECURE_STATE 0x4
bool scm_is_secure_device(void)
{
struct scm_desc desc = {0};
int ret = 0, resp;
desc.args[0] = 0;
desc.arginfo = 0;
ret = scm_call2(SCM_SIP_FNID(SCM_SVC_INFO,
TZ_INFO_GET_SECURE_STATE),
&desc);
resp = desc.ret[0];
if (ret) {
pr_err("%s: SCM call failed\n", __func__);
return false;
}
if ((resp & BIT(0)) || (resp & BIT(2)))
return true;
else
return false;
}
EXPORT_SYMBOL(scm_is_secure_device);
#ifdef CONFIG_ARM64
/*
* SCM call command ID to protect kernel memory
* in Hyp Stage 2 page tables.
* Return zero for success.
* Return non-zero for failure.
*/
#define TZ_RTIC_ENABLE_MEM_PROTECTION 0x4
#if IS_ENABLED(CONFIG_QCOM_QHEE_ENABLE_MEM_PROTECTION)
static int __init scm_mem_protection_init(void)
{
struct scm_desc desc = {0};
int ret = 0, resp;
desc.args[0] = 0;
desc.arginfo = 0;
ret = scm_call2(SCM_SIP_FNID(SCM_SVC_RTIC,
TZ_RTIC_ENABLE_MEM_PROTECTION),
&desc);
resp = desc.ret[0];
if (ret == -1) {
pr_err("%s: SCM call not supported\n", __func__);
return ret;
} else if (ret || resp) {
pr_err("%s: SCM call failed\n", __func__);
if (ret)
return ret;
else
return resp;
}
return resp;
}
early_initcall(scm_mem_protection_init);
#endif
#endif