| /* |
| * linux/drivers/clocksource/arm_arch_timer.c |
| * |
| * Copyright (C) 2011 ARM Ltd. |
| * All Rights Reserved |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| */ |
| |
| #define pr_fmt(fmt) "arm_arch_timer: " fmt |
| |
| #include <linux/init.h> |
| #include <linux/kernel.h> |
| #include <linux/device.h> |
| #include <linux/smp.h> |
| #include <linux/cpu.h> |
| #include <linux/cpu_pm.h> |
| #include <linux/clockchips.h> |
| #include <linux/clocksource.h> |
| #include <linux/interrupt.h> |
| #include <linux/of_irq.h> |
| #include <linux/of_address.h> |
| #include <linux/io.h> |
| #include <linux/slab.h> |
| #include <linux/sched/clock.h> |
| #include <linux/sched_clock.h> |
| #include <linux/acpi.h> |
| |
| #include <asm/arch_timer.h> |
| #include <asm/virt.h> |
| |
| #include <clocksource/arm_arch_timer.h> |
| |
| #undef pr_fmt |
| #define pr_fmt(fmt) "arch_timer: " fmt |
| |
| #define CNTTIDR 0x08 |
| #define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4)) |
| |
| #define CNTACR(n) (0x40 + ((n) * 4)) |
| #define CNTACR_RPCT BIT(0) |
| #define CNTACR_RVCT BIT(1) |
| #define CNTACR_RFRQ BIT(2) |
| #define CNTACR_RVOFF BIT(3) |
| #define CNTACR_RWVT BIT(4) |
| #define CNTACR_RWPT BIT(5) |
| |
| #define CNTVCT_LO 0x08 |
| #define CNTVCT_HI 0x0c |
| #define CNTFRQ 0x10 |
| #define CNTP_TVAL 0x28 |
| #define CNTP_CTL 0x2c |
| #define CNTCVAL_LO 0x30 |
| #define CNTCVAL_HI 0x34 |
| #define CNTV_TVAL 0x38 |
| #define CNTV_CTL 0x3c |
| |
| static unsigned arch_timers_present __initdata; |
| |
| static void __iomem *arch_counter_base; |
| |
| struct arch_timer { |
| void __iomem *base; |
| struct clock_event_device evt; |
| }; |
| |
| #define to_arch_timer(e) container_of(e, struct arch_timer, evt) |
| |
| static u32 arch_timer_rate; |
| static int arch_timer_ppi[ARCH_TIMER_MAX_TIMER_PPI]; |
| |
| static struct clock_event_device __percpu *arch_timer_evt; |
| |
| static enum arch_timer_ppi_nr arch_timer_uses_ppi = ARCH_TIMER_VIRT_PPI; |
| static bool arch_timer_c3stop; |
| static bool arch_timer_mem_use_virtual; |
| static bool arch_counter_suspend_stop; |
| static bool vdso_default = true; |
| |
| static cpumask_t evtstrm_available = CPU_MASK_NONE; |
| static bool evtstrm_enable = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM); |
| |
| static int __init early_evtstrm_cfg(char *buf) |
| { |
| return strtobool(buf, &evtstrm_enable); |
| } |
| early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg); |
| |
| /* |
| * Architected system timer support. |
| */ |
| |
| static __always_inline |
| void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val, |
| struct clock_event_device *clk) |
| { |
| if (access == ARCH_TIMER_MEM_PHYS_ACCESS) { |
| struct arch_timer *timer = to_arch_timer(clk); |
| switch (reg) { |
| case ARCH_TIMER_REG_CTRL: |
| writel_relaxed_no_log(val, timer->base + CNTP_CTL); |
| break; |
| case ARCH_TIMER_REG_TVAL: |
| writel_relaxed_no_log(val, timer->base + CNTP_TVAL); |
| break; |
| } |
| } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) { |
| struct arch_timer *timer = to_arch_timer(clk); |
| switch (reg) { |
| case ARCH_TIMER_REG_CTRL: |
| writel_relaxed_no_log(val, timer->base + CNTV_CTL); |
| break; |
| case ARCH_TIMER_REG_TVAL: |
| writel_relaxed_no_log(val, timer->base + CNTV_TVAL); |
| break; |
| } |
| } else { |
| arch_timer_reg_write_cp15(access, reg, val); |
| } |
| } |
| |
| static __always_inline |
| u32 arch_timer_reg_read(int access, enum arch_timer_reg reg, |
| struct clock_event_device *clk) |
| { |
| u32 val; |
| |
| if (access == ARCH_TIMER_MEM_PHYS_ACCESS) { |
| struct arch_timer *timer = to_arch_timer(clk); |
| switch (reg) { |
| case ARCH_TIMER_REG_CTRL: |
| val = readl_relaxed_no_log(timer->base + CNTP_CTL); |
| break; |
| case ARCH_TIMER_REG_TVAL: |
| val = readl_relaxed_no_log(timer->base + CNTP_TVAL); |
| break; |
| } |
| } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) { |
| struct arch_timer *timer = to_arch_timer(clk); |
| switch (reg) { |
| case ARCH_TIMER_REG_CTRL: |
| val = readl_relaxed_no_log(timer->base + CNTV_CTL); |
| break; |
| case ARCH_TIMER_REG_TVAL: |
| val = readl_relaxed_no_log(timer->base + CNTV_TVAL); |
| break; |
| } |
| } else { |
| val = arch_timer_reg_read_cp15(access, reg); |
| } |
| |
| return val; |
| } |
| |
| /* |
| * Default to cp15 based access because arm64 uses this function for |
| * sched_clock() before DT is probed and the cp15 method is guaranteed |
| * to exist on arm64. arm doesn't use this before DT is probed so even |
| * if we don't have the cp15 accessors we won't have a problem. |
| */ |
| u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct; |
| EXPORT_SYMBOL_GPL(arch_timer_read_counter); |
| |
| static u64 arch_counter_read(struct clocksource *cs) |
| { |
| return arch_timer_read_counter(); |
| } |
| |
| static u64 arch_counter_read_cc(const struct cyclecounter *cc) |
| { |
| return arch_timer_read_counter(); |
| } |
| |
| static struct clocksource clocksource_counter = { |
| .name = "arch_sys_counter", |
| .rating = 400, |
| .read = arch_counter_read, |
| .mask = CLOCKSOURCE_MASK(56), |
| .flags = CLOCK_SOURCE_IS_CONTINUOUS, |
| }; |
| |
| static struct cyclecounter cyclecounter __ro_after_init = { |
| .read = arch_counter_read_cc, |
| .mask = CLOCKSOURCE_MASK(56), |
| }; |
| |
| struct ate_acpi_oem_info { |
| char oem_id[ACPI_OEM_ID_SIZE + 1]; |
| char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1]; |
| u32 oem_revision; |
| }; |
| |
| #ifdef CONFIG_FSL_ERRATUM_A008585 |
| /* |
| * The number of retries is an arbitrary value well beyond the highest number |
| * of iterations the loop has been observed to take. |
| */ |
| #define __fsl_a008585_read_reg(reg) ({ \ |
| u64 _old, _new; \ |
| int _retries = 200; \ |
| \ |
| do { \ |
| _old = read_sysreg(reg); \ |
| _new = read_sysreg(reg); \ |
| _retries--; \ |
| } while (unlikely(_old != _new) && _retries); \ |
| \ |
| WARN_ON_ONCE(!_retries); \ |
| _new; \ |
| }) |
| |
| static u32 notrace fsl_a008585_read_cntp_tval_el0(void) |
| { |
| return __fsl_a008585_read_reg(cntp_tval_el0); |
| } |
| |
| static u32 notrace fsl_a008585_read_cntv_tval_el0(void) |
| { |
| return __fsl_a008585_read_reg(cntv_tval_el0); |
| } |
| |
| static u64 notrace fsl_a008585_read_cntpct_el0(void) |
| { |
| return __fsl_a008585_read_reg(cntpct_el0); |
| } |
| |
| static u64 notrace fsl_a008585_read_cntvct_el0(void) |
| { |
| return __fsl_a008585_read_reg(cntvct_el0); |
| } |
| #endif |
| |
| #ifdef CONFIG_HISILICON_ERRATUM_161010101 |
| /* |
| * Verify whether the value of the second read is larger than the first by |
| * less than 32 is the only way to confirm the value is correct, so clear the |
| * lower 5 bits to check whether the difference is greater than 32 or not. |
| * Theoretically the erratum should not occur more than twice in succession |
| * when reading the system counter, but it is possible that some interrupts |
| * may lead to more than twice read errors, triggering the warning, so setting |
| * the number of retries far beyond the number of iterations the loop has been |
| * observed to take. |
| */ |
| #define __hisi_161010101_read_reg(reg) ({ \ |
| u64 _old, _new; \ |
| int _retries = 50; \ |
| \ |
| do { \ |
| _old = read_sysreg(reg); \ |
| _new = read_sysreg(reg); \ |
| _retries--; \ |
| } while (unlikely((_new - _old) >> 5) && _retries); \ |
| \ |
| WARN_ON_ONCE(!_retries); \ |
| _new; \ |
| }) |
| |
| static u32 notrace hisi_161010101_read_cntp_tval_el0(void) |
| { |
| return __hisi_161010101_read_reg(cntp_tval_el0); |
| } |
| |
| static u32 notrace hisi_161010101_read_cntv_tval_el0(void) |
| { |
| return __hisi_161010101_read_reg(cntv_tval_el0); |
| } |
| |
| static u64 notrace hisi_161010101_read_cntpct_el0(void) |
| { |
| return __hisi_161010101_read_reg(cntpct_el0); |
| } |
| |
| static u64 notrace hisi_161010101_read_cntvct_el0(void) |
| { |
| return __hisi_161010101_read_reg(cntvct_el0); |
| } |
| |
| static struct ate_acpi_oem_info hisi_161010101_oem_info[] = { |
| /* |
| * Note that trailing spaces are required to properly match |
| * the OEM table information. |
| */ |
| { |
| .oem_id = "HISI ", |
| .oem_table_id = "HIP05 ", |
| .oem_revision = 0, |
| }, |
| { |
| .oem_id = "HISI ", |
| .oem_table_id = "HIP06 ", |
| .oem_revision = 0, |
| }, |
| { |
| .oem_id = "HISI ", |
| .oem_table_id = "HIP07 ", |
| .oem_revision = 0, |
| }, |
| { /* Sentinel indicating the end of the OEM array */ }, |
| }; |
| #endif |
| |
| #ifdef CONFIG_ARM64_ERRATUM_858921 |
| static u64 notrace arm64_858921_read_cntpct_el0(void) |
| { |
| u64 old, new; |
| |
| old = read_sysreg(cntpct_el0); |
| new = read_sysreg(cntpct_el0); |
| return (((old ^ new) >> 32) & 1) ? old : new; |
| } |
| |
| static u64 notrace arm64_858921_read_cntvct_el0(void) |
| { |
| u64 old, new; |
| |
| old = read_sysreg(cntvct_el0); |
| new = read_sysreg(cntvct_el0); |
| return (((old ^ new) >> 32) & 1) ? old : new; |
| } |
| #endif |
| |
| #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1 |
| /* |
| * The low bits of the counter registers are indeterminate while bit 10 or |
| * greater is rolling over. Since the counter value can jump both backward |
| * (7ff -> 000 -> 800) and forward (7ff -> fff -> 800), ignore register values |
| * with all ones or all zeros in the low bits. Bound the loop by the maximum |
| * number of CPU cycles in 3 consecutive 24 MHz counter periods. |
| */ |
| #define __sun50i_a64_read_reg(reg) ({ \ |
| u64 _val; \ |
| int _retries = 150; \ |
| \ |
| do { \ |
| _val = read_sysreg(reg); \ |
| _retries--; \ |
| } while (((_val + 1) & GENMASK(9, 0)) <= 1 && _retries); \ |
| \ |
| WARN_ON_ONCE(!_retries); \ |
| _val; \ |
| }) |
| |
| static u64 notrace sun50i_a64_read_cntpct_el0(void) |
| { |
| return __sun50i_a64_read_reg(cntpct_el0); |
| } |
| |
| static u64 notrace sun50i_a64_read_cntvct_el0(void) |
| { |
| return __sun50i_a64_read_reg(cntvct_el0); |
| } |
| |
| static u32 notrace sun50i_a64_read_cntp_tval_el0(void) |
| { |
| return read_sysreg(cntp_cval_el0) - sun50i_a64_read_cntpct_el0(); |
| } |
| |
| static u32 notrace sun50i_a64_read_cntv_tval_el0(void) |
| { |
| return read_sysreg(cntv_cval_el0) - sun50i_a64_read_cntvct_el0(); |
| } |
| #endif |
| #ifdef CONFIG_ARM64_ERRATUM_1188873 |
| static u64 notrace arm64_1188873_read_cntvct_el0(void) |
| { |
| return read_sysreg(cntvct_el0); |
| } |
| #endif |
| |
| #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND |
| DEFINE_PER_CPU(const struct arch_timer_erratum_workaround *, timer_unstable_counter_workaround); |
| EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround); |
| |
| DEFINE_STATIC_KEY_FALSE(arch_timer_read_ool_enabled); |
| EXPORT_SYMBOL_GPL(arch_timer_read_ool_enabled); |
| |
| static void erratum_set_next_event_tval_generic(const int access, unsigned long evt, |
| struct clock_event_device *clk) |
| { |
| unsigned long ctrl; |
| u64 cval; |
| |
| ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk); |
| ctrl |= ARCH_TIMER_CTRL_ENABLE; |
| ctrl &= ~ARCH_TIMER_CTRL_IT_MASK; |
| |
| if (access == ARCH_TIMER_PHYS_ACCESS) { |
| cval = evt + arch_counter_get_cntpct(); |
| write_sysreg(cval, cntp_cval_el0); |
| } else { |
| cval = evt + arch_counter_get_cntvct(); |
| write_sysreg(cval, cntv_cval_el0); |
| } |
| |
| arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk); |
| } |
| |
| static __maybe_unused int erratum_set_next_event_tval_virt(unsigned long evt, |
| struct clock_event_device *clk) |
| { |
| erratum_set_next_event_tval_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk); |
| return 0; |
| } |
| |
| static __maybe_unused int erratum_set_next_event_tval_phys(unsigned long evt, |
| struct clock_event_device *clk) |
| { |
| erratum_set_next_event_tval_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk); |
| return 0; |
| } |
| |
| static const struct arch_timer_erratum_workaround ool_workarounds[] = { |
| #ifdef CONFIG_FSL_ERRATUM_A008585 |
| { |
| .match_type = ate_match_dt, |
| .id = "fsl,erratum-a008585", |
| .desc = "Freescale erratum a005858", |
| .read_cntp_tval_el0 = fsl_a008585_read_cntp_tval_el0, |
| .read_cntv_tval_el0 = fsl_a008585_read_cntv_tval_el0, |
| .read_cntpct_el0 = fsl_a008585_read_cntpct_el0, |
| .read_cntvct_el0 = fsl_a008585_read_cntvct_el0, |
| .set_next_event_phys = erratum_set_next_event_tval_phys, |
| .set_next_event_virt = erratum_set_next_event_tval_virt, |
| }, |
| #endif |
| #ifdef CONFIG_HISILICON_ERRATUM_161010101 |
| { |
| .match_type = ate_match_dt, |
| .id = "hisilicon,erratum-161010101", |
| .desc = "HiSilicon erratum 161010101", |
| .read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0, |
| .read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0, |
| .read_cntpct_el0 = hisi_161010101_read_cntpct_el0, |
| .read_cntvct_el0 = hisi_161010101_read_cntvct_el0, |
| .set_next_event_phys = erratum_set_next_event_tval_phys, |
| .set_next_event_virt = erratum_set_next_event_tval_virt, |
| }, |
| { |
| .match_type = ate_match_acpi_oem_info, |
| .id = hisi_161010101_oem_info, |
| .desc = "HiSilicon erratum 161010101", |
| .read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0, |
| .read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0, |
| .read_cntpct_el0 = hisi_161010101_read_cntpct_el0, |
| .read_cntvct_el0 = hisi_161010101_read_cntvct_el0, |
| .set_next_event_phys = erratum_set_next_event_tval_phys, |
| .set_next_event_virt = erratum_set_next_event_tval_virt, |
| }, |
| #endif |
| #ifdef CONFIG_ARM64_ERRATUM_858921 |
| { |
| .match_type = ate_match_local_cap_id, |
| .id = (void *)ARM64_WORKAROUND_858921, |
| .desc = "ARM erratum 858921", |
| .read_cntpct_el0 = arm64_858921_read_cntpct_el0, |
| .read_cntvct_el0 = arm64_858921_read_cntvct_el0, |
| }, |
| #endif |
| #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1 |
| { |
| .match_type = ate_match_dt, |
| .id = "allwinner,erratum-unknown1", |
| .desc = "Allwinner erratum UNKNOWN1", |
| .read_cntp_tval_el0 = sun50i_a64_read_cntp_tval_el0, |
| .read_cntv_tval_el0 = sun50i_a64_read_cntv_tval_el0, |
| .read_cntpct_el0 = sun50i_a64_read_cntpct_el0, |
| .read_cntvct_el0 = sun50i_a64_read_cntvct_el0, |
| .set_next_event_phys = erratum_set_next_event_tval_phys, |
| .set_next_event_virt = erratum_set_next_event_tval_virt, |
| }, |
| #endif |
| #ifdef CONFIG_ARM64_ERRATUM_1188873 |
| { |
| .match_type = ate_match_local_cap_id, |
| .id = (void *)ARM64_WORKAROUND_1188873, |
| .desc = "ARM erratum 1188873", |
| .read_cntvct_el0 = arm64_1188873_read_cntvct_el0, |
| }, |
| #endif |
| }; |
| |
| typedef bool (*ate_match_fn_t)(const struct arch_timer_erratum_workaround *, |
| const void *); |
| |
| static |
| bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround *wa, |
| const void *arg) |
| { |
| const struct device_node *np = arg; |
| |
| return of_property_read_bool(np, wa->id); |
| } |
| |
| static |
| bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround *wa, |
| const void *arg) |
| { |
| return this_cpu_has_cap((uintptr_t)wa->id); |
| } |
| |
| |
| static |
| bool arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround *wa, |
| const void *arg) |
| { |
| static const struct ate_acpi_oem_info empty_oem_info = {}; |
| const struct ate_acpi_oem_info *info = wa->id; |
| const struct acpi_table_header *table = arg; |
| |
| /* Iterate over the ACPI OEM info array, looking for a match */ |
| while (memcmp(info, &empty_oem_info, sizeof(*info))) { |
| if (!memcmp(info->oem_id, table->oem_id, ACPI_OEM_ID_SIZE) && |
| !memcmp(info->oem_table_id, table->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) && |
| info->oem_revision == table->oem_revision) |
| return true; |
| |
| info++; |
| } |
| |
| return false; |
| } |
| |
| static const struct arch_timer_erratum_workaround * |
| arch_timer_iterate_errata(enum arch_timer_erratum_match_type type, |
| ate_match_fn_t match_fn, |
| void *arg) |
| { |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) { |
| if (ool_workarounds[i].match_type != type) |
| continue; |
| |
| if (match_fn(&ool_workarounds[i], arg)) |
| return &ool_workarounds[i]; |
| } |
| |
| return NULL; |
| } |
| |
| static |
| void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround *wa, |
| bool local) |
| { |
| int i; |
| |
| if (local) { |
| __this_cpu_write(timer_unstable_counter_workaround, wa); |
| } else { |
| for_each_possible_cpu(i) |
| per_cpu(timer_unstable_counter_workaround, i) = wa; |
| } |
| |
| /* |
| * Use the locked version, as we're called from the CPU |
| * hotplug framework. Otherwise, we end-up in deadlock-land. |
| */ |
| static_branch_enable_cpuslocked(&arch_timer_read_ool_enabled); |
| |
| /* |
| * Don't use the vdso fastpath if errata require using the |
| * out-of-line counter accessor. We may change our mind pretty |
| * late in the game (with a per-CPU erratum, for example), so |
| * change both the default value and the vdso itself. |
| */ |
| if (wa->read_cntvct_el0) { |
| clocksource_counter.archdata.vdso_direct = false; |
| vdso_default = false; |
| } |
| } |
| |
| static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type, |
| void *arg) |
| { |
| const struct arch_timer_erratum_workaround *wa; |
| ate_match_fn_t match_fn = NULL; |
| bool local = false; |
| |
| switch (type) { |
| case ate_match_dt: |
| match_fn = arch_timer_check_dt_erratum; |
| break; |
| case ate_match_local_cap_id: |
| match_fn = arch_timer_check_local_cap_erratum; |
| local = true; |
| break; |
| case ate_match_acpi_oem_info: |
| match_fn = arch_timer_check_acpi_oem_erratum; |
| break; |
| default: |
| WARN_ON(1); |
| return; |
| } |
| |
| wa = arch_timer_iterate_errata(type, match_fn, arg); |
| if (!wa) |
| return; |
| |
| if (needs_unstable_timer_counter_workaround()) { |
| const struct arch_timer_erratum_workaround *__wa; |
| __wa = __this_cpu_read(timer_unstable_counter_workaround); |
| if (__wa && wa != __wa) |
| pr_warn("Can't enable workaround for %s (clashes with %s\n)", |
| wa->desc, __wa->desc); |
| |
| if (__wa) |
| return; |
| } |
| |
| arch_timer_enable_workaround(wa, local); |
| pr_info("Enabling %s workaround for %s\n", |
| local ? "local" : "global", wa->desc); |
| } |
| |
| #define erratum_handler(fn, r, ...) \ |
| ({ \ |
| bool __val; \ |
| if (needs_unstable_timer_counter_workaround()) { \ |
| const struct arch_timer_erratum_workaround *__wa; \ |
| __wa = __this_cpu_read(timer_unstable_counter_workaround); \ |
| if (__wa && __wa->fn) { \ |
| r = __wa->fn(__VA_ARGS__); \ |
| __val = true; \ |
| } else { \ |
| __val = false; \ |
| } \ |
| } else { \ |
| __val = false; \ |
| } \ |
| __val; \ |
| }) |
| |
| static bool arch_timer_this_cpu_has_cntvct_wa(void) |
| { |
| const struct arch_timer_erratum_workaround *wa; |
| |
| wa = __this_cpu_read(timer_unstable_counter_workaround); |
| return wa && wa->read_cntvct_el0; |
| } |
| #else |
| #define arch_timer_check_ool_workaround(t,a) do { } while(0) |
| #define erratum_set_next_event_tval_virt(...) ({BUG(); 0;}) |
| #define erratum_set_next_event_tval_phys(...) ({BUG(); 0;}) |
| #define erratum_handler(fn, r, ...) ({false;}) |
| #define arch_timer_this_cpu_has_cntvct_wa() ({false;}) |
| #endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */ |
| |
| static __always_inline irqreturn_t timer_handler(const int access, |
| struct clock_event_device *evt) |
| { |
| unsigned long ctrl; |
| |
| ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt); |
| if (ctrl & ARCH_TIMER_CTRL_IT_STAT) { |
| ctrl |= ARCH_TIMER_CTRL_IT_MASK; |
| arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt); |
| evt->event_handler(evt); |
| return IRQ_HANDLED; |
| } |
| |
| return IRQ_NONE; |
| } |
| |
| static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id) |
| { |
| struct clock_event_device *evt = dev_id; |
| |
| return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt); |
| } |
| |
| static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id) |
| { |
| struct clock_event_device *evt = dev_id; |
| |
| return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt); |
| } |
| |
| static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id) |
| { |
| struct clock_event_device *evt = dev_id; |
| |
| return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt); |
| } |
| |
| static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id) |
| { |
| struct clock_event_device *evt = dev_id; |
| |
| return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt); |
| } |
| |
| static __always_inline int timer_shutdown(const int access, |
| struct clock_event_device *clk) |
| { |
| unsigned long ctrl; |
| |
| ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk); |
| ctrl &= ~ARCH_TIMER_CTRL_ENABLE; |
| arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk); |
| |
| return 0; |
| } |
| |
| static int arch_timer_shutdown_virt(struct clock_event_device *clk) |
| { |
| return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk); |
| } |
| |
| static int arch_timer_shutdown_phys(struct clock_event_device *clk) |
| { |
| return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk); |
| } |
| |
| static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk) |
| { |
| return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk); |
| } |
| |
| static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk) |
| { |
| return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk); |
| } |
| |
| static __always_inline void set_next_event(const int access, unsigned long evt, |
| struct clock_event_device *clk) |
| { |
| unsigned long ctrl; |
| ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk); |
| ctrl |= ARCH_TIMER_CTRL_ENABLE; |
| ctrl &= ~ARCH_TIMER_CTRL_IT_MASK; |
| arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk); |
| arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk); |
| } |
| |
| static int arch_timer_set_next_event_virt(unsigned long evt, |
| struct clock_event_device *clk) |
| { |
| int ret; |
| |
| if (erratum_handler(set_next_event_virt, ret, evt, clk)) |
| return ret; |
| |
| set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk); |
| return 0; |
| } |
| |
| static int arch_timer_set_next_event_phys(unsigned long evt, |
| struct clock_event_device *clk) |
| { |
| int ret; |
| |
| if (erratum_handler(set_next_event_phys, ret, evt, clk)) |
| return ret; |
| |
| set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk); |
| return 0; |
| } |
| |
| static int arch_timer_set_next_event_virt_mem(unsigned long evt, |
| struct clock_event_device *clk) |
| { |
| set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk); |
| return 0; |
| } |
| |
| static int arch_timer_set_next_event_phys_mem(unsigned long evt, |
| struct clock_event_device *clk) |
| { |
| set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk); |
| return 0; |
| } |
| |
| static void __arch_timer_setup(unsigned type, |
| struct clock_event_device *clk) |
| { |
| clk->features = CLOCK_EVT_FEAT_ONESHOT; |
| |
| if (type == ARCH_TIMER_TYPE_CP15) { |
| if (arch_timer_c3stop) |
| clk->features |= CLOCK_EVT_FEAT_C3STOP; |
| clk->name = "arch_sys_timer"; |
| clk->rating = 450; |
| clk->cpumask = cpumask_of(smp_processor_id()); |
| clk->irq = arch_timer_ppi[arch_timer_uses_ppi]; |
| switch (arch_timer_uses_ppi) { |
| case ARCH_TIMER_VIRT_PPI: |
| clk->set_state_shutdown = arch_timer_shutdown_virt; |
| clk->set_state_oneshot_stopped = arch_timer_shutdown_virt; |
| clk->set_next_event = arch_timer_set_next_event_virt; |
| break; |
| case ARCH_TIMER_PHYS_SECURE_PPI: |
| case ARCH_TIMER_PHYS_NONSECURE_PPI: |
| case ARCH_TIMER_HYP_PPI: |
| clk->set_state_shutdown = arch_timer_shutdown_phys; |
| clk->set_state_oneshot_stopped = arch_timer_shutdown_phys; |
| clk->set_next_event = arch_timer_set_next_event_phys; |
| break; |
| default: |
| BUG(); |
| } |
| |
| arch_timer_check_ool_workaround(ate_match_local_cap_id, NULL); |
| } else { |
| clk->features |= CLOCK_EVT_FEAT_DYNIRQ; |
| clk->name = "arch_mem_timer"; |
| clk->rating = 400; |
| clk->cpumask = cpu_possible_mask; |
| if (arch_timer_mem_use_virtual) { |
| clk->set_state_shutdown = arch_timer_shutdown_virt_mem; |
| clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem; |
| clk->set_next_event = |
| arch_timer_set_next_event_virt_mem; |
| } else { |
| clk->set_state_shutdown = arch_timer_shutdown_phys_mem; |
| clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem; |
| clk->set_next_event = |
| arch_timer_set_next_event_phys_mem; |
| } |
| } |
| |
| clk->set_state_shutdown(clk); |
| |
| clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff); |
| } |
| |
| static void arch_timer_evtstrm_enable(int divider) |
| { |
| u32 cntkctl = arch_timer_get_cntkctl(); |
| |
| cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK; |
| /* Set the divider and enable virtual event stream */ |
| cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT) |
| | ARCH_TIMER_VIRT_EVT_EN; |
| arch_timer_set_cntkctl(cntkctl); |
| elf_hwcap |= HWCAP_EVTSTRM; |
| #ifdef CONFIG_COMPAT |
| compat_elf_hwcap |= COMPAT_HWCAP_EVTSTRM; |
| #endif |
| cpumask_set_cpu(smp_processor_id(), &evtstrm_available); |
| } |
| |
| static void arch_timer_configure_evtstream(void) |
| { |
| int evt_stream_div, pos; |
| |
| /* Find the closest power of two to the divisor */ |
| evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ; |
| pos = fls(evt_stream_div); |
| if (pos > 1 && !(evt_stream_div & (1 << (pos - 2)))) |
| pos--; |
| /* enable event stream */ |
| arch_timer_evtstrm_enable(min(pos, 15)); |
| } |
| |
| static void arch_counter_set_user_access(void) |
| { |
| u32 cntkctl = arch_timer_get_cntkctl(); |
| |
| /* Disable user access to the timers and both counters */ |
| /* Also disable virtual event stream */ |
| cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN |
| | ARCH_TIMER_USR_VT_ACCESS_EN |
| | ARCH_TIMER_USR_VCT_ACCESS_EN |
| | ARCH_TIMER_VIRT_EVT_EN |
| | ARCH_TIMER_USR_PCT_ACCESS_EN); |
| |
| /* |
| * Enable user access to the virtual counter if it doesn't |
| * need to be workaround. The vdso may have been already |
| * disabled though. |
| */ |
| if (arch_timer_this_cpu_has_cntvct_wa()) |
| pr_info("CPU%d: Trapping CNTVCT access\n", smp_processor_id()); |
| else |
| cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN; |
| |
| arch_timer_set_cntkctl(cntkctl); |
| } |
| |
| static bool arch_timer_has_nonsecure_ppi(void) |
| { |
| return (arch_timer_uses_ppi == ARCH_TIMER_PHYS_SECURE_PPI && |
| arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]); |
| } |
| |
| static u32 check_ppi_trigger(int irq) |
| { |
| u32 flags = irq_get_trigger_type(irq); |
| |
| if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) { |
| pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq); |
| pr_warn("WARNING: Please fix your firmware\n"); |
| flags = IRQF_TRIGGER_LOW; |
| } |
| |
| return flags; |
| } |
| |
| static int arch_timer_starting_cpu(unsigned int cpu) |
| { |
| struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt); |
| u32 flags; |
| |
| __arch_timer_setup(ARCH_TIMER_TYPE_CP15, clk); |
| |
| flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]); |
| enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags); |
| |
| if (arch_timer_has_nonsecure_ppi()) { |
| flags = check_ppi_trigger(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]); |
| enable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI], |
| flags); |
| } |
| |
| arch_counter_set_user_access(); |
| if (evtstrm_enable) |
| arch_timer_configure_evtstream(); |
| |
| return 0; |
| } |
| |
| /* |
| * For historical reasons, when probing with DT we use whichever (non-zero) |
| * rate was probed first, and don't verify that others match. If the first node |
| * probed has a clock-frequency property, this overrides the HW register. |
| */ |
| static void arch_timer_of_configure_rate(u32 rate, struct device_node *np) |
| { |
| /* Who has more than one independent system counter? */ |
| if (arch_timer_rate) |
| return; |
| |
| if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate)) |
| arch_timer_rate = rate; |
| |
| /* Check the timer frequency. */ |
| if (arch_timer_rate == 0) |
| pr_warn("frequency not available\n"); |
| } |
| |
| static void arch_timer_banner(unsigned type) |
| { |
| pr_info("%s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n", |
| type & ARCH_TIMER_TYPE_CP15 ? "cp15" : "", |
| type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? |
| " and " : "", |
| type & ARCH_TIMER_TYPE_MEM ? "mmio" : "", |
| (unsigned long)arch_timer_rate / 1000000, |
| (unsigned long)(arch_timer_rate / 10000) % 100, |
| type & ARCH_TIMER_TYPE_CP15 ? |
| (arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) ? "virt" : "phys" : |
| "", |
| type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? "/" : "", |
| type & ARCH_TIMER_TYPE_MEM ? |
| arch_timer_mem_use_virtual ? "virt" : "phys" : |
| ""); |
| } |
| |
| u32 arch_timer_get_rate(void) |
| { |
| return arch_timer_rate; |
| } |
| |
| bool arch_timer_evtstrm_available(void) |
| { |
| /* |
| * We might get called from a preemptible context. This is fine |
| * because availability of the event stream should be always the same |
| * for a preemptible context and context where we might resume a task. |
| */ |
| return cpumask_test_cpu(raw_smp_processor_id(), &evtstrm_available); |
| } |
| |
| void arch_timer_mem_get_cval(u32 *lo, u32 *hi) |
| { |
| u32 ctrl; |
| |
| *lo = *hi = ~0U; |
| |
| if (!arch_counter_base) |
| return; |
| |
| ctrl = readl_relaxed_no_log(arch_counter_base + CNTV_CTL); |
| |
| if (ctrl & ARCH_TIMER_CTRL_ENABLE) { |
| *lo = readl_relaxed_no_log(arch_counter_base + CNTCVAL_LO); |
| *hi = readl_relaxed_no_log(arch_counter_base + CNTCVAL_HI); |
| } |
| } |
| |
| static u64 arch_counter_get_cntvct_mem(void) |
| { |
| u32 vct_lo, vct_hi, tmp_hi; |
| |
| do { |
| vct_hi = readl_relaxed_no_log(arch_counter_base + CNTVCT_HI); |
| vct_lo = readl_relaxed_no_log(arch_counter_base + CNTVCT_LO); |
| tmp_hi = readl_relaxed_no_log(arch_counter_base + CNTVCT_HI); |
| } while (vct_hi != tmp_hi); |
| |
| return ((u64) vct_hi << 32) | vct_lo; |
| } |
| |
| static struct arch_timer_kvm_info arch_timer_kvm_info; |
| |
| struct arch_timer_kvm_info *arch_timer_get_kvm_info(void) |
| { |
| return &arch_timer_kvm_info; |
| } |
| |
| static void __init arch_counter_register(unsigned type) |
| { |
| u64 start_count; |
| |
| /* Register the CP15 based counter if we have one */ |
| if (type & ARCH_TIMER_TYPE_CP15) { |
| if ((IS_ENABLED(CONFIG_ARM64) && !is_hyp_mode_available()) || |
| arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) |
| arch_timer_read_counter = arch_counter_get_cntvct; |
| else |
| arch_timer_read_counter = arch_counter_get_cntpct; |
| |
| clocksource_counter.archdata.vdso_direct = vdso_default; |
| } else { |
| arch_timer_read_counter = arch_counter_get_cntvct_mem; |
| } |
| |
| if (!arch_counter_suspend_stop) |
| clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP; |
| start_count = arch_timer_read_counter(); |
| clocksource_register_hz(&clocksource_counter, arch_timer_rate); |
| cyclecounter.mult = clocksource_counter.mult; |
| cyclecounter.shift = clocksource_counter.shift; |
| timecounter_init(&arch_timer_kvm_info.timecounter, |
| &cyclecounter, start_count); |
| |
| /* 56 bits minimum, so we assume worst case rollover */ |
| sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate); |
| } |
| |
| static void arch_timer_stop(struct clock_event_device *clk) |
| { |
| pr_debug("disable IRQ%d cpu #%d\n", clk->irq, smp_processor_id()); |
| |
| disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]); |
| if (arch_timer_has_nonsecure_ppi()) |
| disable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]); |
| |
| clk->set_state_shutdown(clk); |
| } |
| |
| static int arch_timer_dying_cpu(unsigned int cpu) |
| { |
| struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt); |
| |
| cpumask_clear_cpu(smp_processor_id(), &evtstrm_available); |
| |
| arch_timer_stop(clk); |
| return 0; |
| } |
| |
| #ifdef CONFIG_CPU_PM |
| static DEFINE_PER_CPU(unsigned long, saved_cntkctl); |
| static int arch_timer_cpu_pm_notify(struct notifier_block *self, |
| unsigned long action, void *hcpu) |
| { |
| if (action == CPU_PM_ENTER) { |
| __this_cpu_write(saved_cntkctl, arch_timer_get_cntkctl()); |
| |
| cpumask_clear_cpu(smp_processor_id(), &evtstrm_available); |
| } else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT) { |
| arch_timer_set_cntkctl(__this_cpu_read(saved_cntkctl)); |
| |
| if (elf_hwcap & HWCAP_EVTSTRM) |
| cpumask_set_cpu(smp_processor_id(), &evtstrm_available); |
| } |
| return NOTIFY_OK; |
| } |
| |
| static struct notifier_block arch_timer_cpu_pm_notifier = { |
| .notifier_call = arch_timer_cpu_pm_notify, |
| }; |
| |
| static int __init arch_timer_cpu_pm_init(void) |
| { |
| return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier); |
| } |
| |
| static void __init arch_timer_cpu_pm_deinit(void) |
| { |
| WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier)); |
| } |
| |
| #else |
| static int __init arch_timer_cpu_pm_init(void) |
| { |
| return 0; |
| } |
| |
| static void __init arch_timer_cpu_pm_deinit(void) |
| { |
| } |
| #endif |
| |
| static int __init arch_timer_register(void) |
| { |
| int err; |
| int ppi; |
| |
| arch_timer_evt = alloc_percpu(struct clock_event_device); |
| if (!arch_timer_evt) { |
| err = -ENOMEM; |
| goto out; |
| } |
| |
| ppi = arch_timer_ppi[arch_timer_uses_ppi]; |
| switch (arch_timer_uses_ppi) { |
| case ARCH_TIMER_VIRT_PPI: |
| err = request_percpu_irq(ppi, arch_timer_handler_virt, |
| "arch_timer", arch_timer_evt); |
| break; |
| case ARCH_TIMER_PHYS_SECURE_PPI: |
| case ARCH_TIMER_PHYS_NONSECURE_PPI: |
| err = request_percpu_irq(ppi, arch_timer_handler_phys, |
| "arch_timer", arch_timer_evt); |
| if (!err && arch_timer_has_nonsecure_ppi()) { |
| ppi = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]; |
| err = request_percpu_irq(ppi, arch_timer_handler_phys, |
| "arch_timer", arch_timer_evt); |
| if (err) |
| free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_SECURE_PPI], |
| arch_timer_evt); |
| } |
| break; |
| case ARCH_TIMER_HYP_PPI: |
| err = request_percpu_irq(ppi, arch_timer_handler_phys, |
| "arch_timer", arch_timer_evt); |
| break; |
| default: |
| BUG(); |
| } |
| |
| if (err) { |
| pr_err("can't register interrupt %d (%d)\n", ppi, err); |
| goto out_free; |
| } |
| |
| err = arch_timer_cpu_pm_init(); |
| if (err) |
| goto out_unreg_notify; |
| |
| /* Register and immediately configure the timer on the boot CPU */ |
| err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING, |
| "clockevents/arm/arch_timer:starting", |
| arch_timer_starting_cpu, arch_timer_dying_cpu); |
| if (err) |
| goto out_unreg_cpupm; |
| return 0; |
| |
| out_unreg_cpupm: |
| arch_timer_cpu_pm_deinit(); |
| |
| out_unreg_notify: |
| free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt); |
| if (arch_timer_has_nonsecure_ppi()) |
| free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI], |
| arch_timer_evt); |
| |
| out_free: |
| free_percpu(arch_timer_evt); |
| out: |
| return err; |
| } |
| |
| static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq) |
| { |
| int ret; |
| irq_handler_t func; |
| struct arch_timer *t; |
| |
| t = kzalloc(sizeof(*t), GFP_KERNEL); |
| if (!t) |
| return -ENOMEM; |
| |
| t->base = base; |
| t->evt.irq = irq; |
| __arch_timer_setup(ARCH_TIMER_TYPE_MEM, &t->evt); |
| |
| if (arch_timer_mem_use_virtual) |
| func = arch_timer_handler_virt_mem; |
| else |
| func = arch_timer_handler_phys_mem; |
| |
| ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt); |
| if (ret) { |
| pr_err("Failed to request mem timer irq\n"); |
| kfree(t); |
| } |
| |
| return ret; |
| } |
| |
| static const struct of_device_id arch_timer_of_match[] __initconst = { |
| { .compatible = "arm,armv7-timer", }, |
| { .compatible = "arm,armv8-timer", }, |
| {}, |
| }; |
| |
| static const struct of_device_id arch_timer_mem_of_match[] __initconst = { |
| { .compatible = "arm,armv7-timer-mem", }, |
| {}, |
| }; |
| |
| static bool __init arch_timer_needs_of_probing(void) |
| { |
| struct device_node *dn; |
| bool needs_probing = false; |
| unsigned int mask = ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM; |
| |
| /* We have two timers, and both device-tree nodes are probed. */ |
| if ((arch_timers_present & mask) == mask) |
| return false; |
| |
| /* |
| * Only one type of timer is probed, |
| * check if we have another type of timer node in device-tree. |
| */ |
| if (arch_timers_present & ARCH_TIMER_TYPE_CP15) |
| dn = of_find_matching_node(NULL, arch_timer_mem_of_match); |
| else |
| dn = of_find_matching_node(NULL, arch_timer_of_match); |
| |
| if (dn && of_device_is_available(dn)) |
| needs_probing = true; |
| |
| of_node_put(dn); |
| |
| return needs_probing; |
| } |
| |
| static int __init arch_timer_common_init(void) |
| { |
| int ret; |
| |
| arch_timer_banner(arch_timers_present); |
| arch_counter_register(arch_timers_present); |
| ret = arch_timer_arch_init(); |
| if (!ret) |
| clocksource_select_force(); |
| |
| return ret; |
| } |
| |
| /** |
| * arch_timer_select_ppi() - Select suitable PPI for the current system. |
| * |
| * If HYP mode is available, we know that the physical timer |
| * has been configured to be accessible from PL1. Use it, so |
| * that a guest can use the virtual timer instead. |
| * |
| * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE |
| * accesses to CNTP_*_EL1 registers are silently redirected to |
| * their CNTHP_*_EL2 counterparts, and use a different PPI |
| * number. |
| * |
| * If no interrupt provided for virtual timer, we'll have to |
| * stick to the physical timer. It'd better be accessible... |
| * For arm64 we never use the secure interrupt. |
| * |
| * Return: a suitable PPI type for the current system. |
| */ |
| static enum arch_timer_ppi_nr __init arch_timer_select_ppi(void) |
| { |
| if (is_kernel_in_hyp_mode()) |
| return ARCH_TIMER_HYP_PPI; |
| |
| if (!is_hyp_mode_available() && arch_timer_ppi[ARCH_TIMER_VIRT_PPI]) |
| return ARCH_TIMER_VIRT_PPI; |
| |
| if (IS_ENABLED(CONFIG_ARM64)) |
| return ARCH_TIMER_PHYS_NONSECURE_PPI; |
| |
| return ARCH_TIMER_PHYS_SECURE_PPI; |
| } |
| |
| static int __init arch_timer_of_init(struct device_node *np) |
| { |
| int i, ret; |
| u32 rate; |
| |
| if (arch_timers_present & ARCH_TIMER_TYPE_CP15) { |
| pr_warn("multiple nodes in dt, skipping\n"); |
| return 0; |
| } |
| |
| arch_timers_present |= ARCH_TIMER_TYPE_CP15; |
| for (i = ARCH_TIMER_PHYS_SECURE_PPI; i < ARCH_TIMER_MAX_TIMER_PPI; i++) |
| arch_timer_ppi[i] = irq_of_parse_and_map(np, i); |
| |
| arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI]; |
| |
| rate = arch_timer_get_cntfrq(); |
| arch_timer_of_configure_rate(rate, np); |
| |
| arch_timer_c3stop = !of_property_read_bool(np, "always-on"); |
| |
| /* Check for globally applicable workarounds */ |
| arch_timer_check_ool_workaround(ate_match_dt, np); |
| |
| /* |
| * If we cannot rely on firmware initializing the timer registers then |
| * we should use the physical timers instead. |
| */ |
| if (IS_ENABLED(CONFIG_ARM) && |
| of_property_read_bool(np, "arm,cpu-registers-not-fw-configured")) |
| arch_timer_uses_ppi = ARCH_TIMER_PHYS_SECURE_PPI; |
| else |
| arch_timer_uses_ppi = arch_timer_select_ppi(); |
| |
| if (!arch_timer_ppi[arch_timer_uses_ppi]) { |
| pr_err("No interrupt available, giving up\n"); |
| return -EINVAL; |
| } |
| |
| /* On some systems, the counter stops ticking when in suspend. */ |
| arch_counter_suspend_stop = of_property_read_bool(np, |
| "arm,no-tick-in-suspend"); |
| |
| ret = arch_timer_register(); |
| if (ret) |
| return ret; |
| |
| if (arch_timer_needs_of_probing()) |
| return 0; |
| |
| return arch_timer_common_init(); |
| } |
| TIMER_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init); |
| TIMER_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init); |
| |
| static u32 __init |
| arch_timer_mem_frame_get_cntfrq(struct arch_timer_mem_frame *frame) |
| { |
| void __iomem *base; |
| u32 rate; |
| |
| base = ioremap(frame->cntbase, frame->size); |
| if (!base) { |
| pr_err("Unable to map frame @ %pa\n", &frame->cntbase); |
| return 0; |
| } |
| |
| rate = readl_relaxed(base + CNTFRQ); |
| |
| iounmap(base); |
| |
| return rate; |
| } |
| |
| static struct arch_timer_mem_frame * __init |
| arch_timer_mem_find_best_frame(struct arch_timer_mem *timer_mem) |
| { |
| struct arch_timer_mem_frame *frame, *best_frame = NULL; |
| void __iomem *cntctlbase; |
| u32 cnttidr; |
| int i; |
| |
| cntctlbase = ioremap(timer_mem->cntctlbase, timer_mem->size); |
| if (!cntctlbase) { |
| pr_err("Can't map CNTCTLBase @ %pa\n", |
| &timer_mem->cntctlbase); |
| return NULL; |
| } |
| |
| cnttidr = readl_relaxed_no_log(cntctlbase + CNTTIDR); |
| |
| /* |
| * Try to find a virtual capable frame. Otherwise fall back to a |
| * physical capable frame. |
| */ |
| for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) { |
| u32 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT | |
| CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT; |
| |
| frame = &timer_mem->frame[i]; |
| if (!frame->valid) |
| continue; |
| |
| /* Try enabling everything, and see what sticks */ |
| writel_relaxed(cntacr, cntctlbase + CNTACR(i)); |
| cntacr = readl_relaxed(cntctlbase + CNTACR(i)); |
| |
| if ((cnttidr & CNTTIDR_VIRT(i)) && |
| !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) { |
| best_frame = frame; |
| arch_timer_mem_use_virtual = true; |
| break; |
| } |
| |
| if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT)) |
| continue; |
| |
| best_frame = frame; |
| } |
| |
| iounmap(cntctlbase); |
| |
| return best_frame; |
| } |
| |
| static int __init |
| arch_timer_mem_frame_register(struct arch_timer_mem_frame *frame) |
| { |
| void __iomem *base; |
| int ret, irq = 0; |
| |
| if (arch_timer_mem_use_virtual) |
| irq = frame->virt_irq; |
| else |
| irq = frame->phys_irq; |
| |
| if (!irq) { |
| pr_err("Frame missing %s irq.\n", |
| arch_timer_mem_use_virtual ? "virt" : "phys"); |
| return -EINVAL; |
| } |
| |
| if (!request_mem_region(frame->cntbase, frame->size, |
| "arch_mem_timer")) |
| return -EBUSY; |
| |
| base = ioremap(frame->cntbase, frame->size); |
| if (!base) { |
| pr_err("Can't map frame's registers\n"); |
| return -ENXIO; |
| } |
| |
| ret = arch_timer_mem_register(base, irq); |
| if (ret) { |
| iounmap(base); |
| return ret; |
| } |
| |
| arch_counter_base = base; |
| arch_timers_present |= ARCH_TIMER_TYPE_MEM; |
| |
| return 0; |
| } |
| |
| static int __init arch_timer_mem_of_init(struct device_node *np) |
| { |
| struct arch_timer_mem *timer_mem; |
| struct arch_timer_mem_frame *frame; |
| struct device_node *frame_node; |
| struct resource res; |
| int ret = -EINVAL; |
| u32 rate; |
| |
| timer_mem = kzalloc(sizeof(*timer_mem), GFP_KERNEL); |
| if (!timer_mem) |
| return -ENOMEM; |
| |
| if (of_address_to_resource(np, 0, &res)) |
| goto out; |
| timer_mem->cntctlbase = res.start; |
| timer_mem->size = resource_size(&res); |
| |
| for_each_available_child_of_node(np, frame_node) { |
| u32 n; |
| struct arch_timer_mem_frame *frame; |
| |
| if (of_property_read_u32(frame_node, "frame-number", &n)) { |
| pr_err(FW_BUG "Missing frame-number.\n"); |
| of_node_put(frame_node); |
| goto out; |
| } |
| if (n >= ARCH_TIMER_MEM_MAX_FRAMES) { |
| pr_err(FW_BUG "Wrong frame-number, only 0-%u are permitted.\n", |
| ARCH_TIMER_MEM_MAX_FRAMES - 1); |
| of_node_put(frame_node); |
| goto out; |
| } |
| frame = &timer_mem->frame[n]; |
| |
| if (frame->valid) { |
| pr_err(FW_BUG "Duplicated frame-number.\n"); |
| of_node_put(frame_node); |
| goto out; |
| } |
| |
| if (of_address_to_resource(frame_node, 0, &res)) { |
| of_node_put(frame_node); |
| goto out; |
| } |
| frame->cntbase = res.start; |
| frame->size = resource_size(&res); |
| |
| frame->virt_irq = irq_of_parse_and_map(frame_node, |
| ARCH_TIMER_VIRT_SPI); |
| frame->phys_irq = irq_of_parse_and_map(frame_node, |
| ARCH_TIMER_PHYS_SPI); |
| |
| frame->valid = true; |
| } |
| |
| frame = arch_timer_mem_find_best_frame(timer_mem); |
| if (!frame) { |
| pr_err("Unable to find a suitable frame in timer @ %pa\n", |
| &timer_mem->cntctlbase); |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| rate = arch_timer_mem_frame_get_cntfrq(frame); |
| arch_timer_of_configure_rate(rate, np); |
| |
| ret = arch_timer_mem_frame_register(frame); |
| if (!ret && !arch_timer_needs_of_probing()) |
| ret = arch_timer_common_init(); |
| out: |
| kfree(timer_mem); |
| return ret; |
| } |
| TIMER_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem", |
| arch_timer_mem_of_init); |
| |
| #ifdef CONFIG_ACPI_GTDT |
| static int __init |
| arch_timer_mem_verify_cntfrq(struct arch_timer_mem *timer_mem) |
| { |
| struct arch_timer_mem_frame *frame; |
| u32 rate; |
| int i; |
| |
| for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) { |
| frame = &timer_mem->frame[i]; |
| |
| if (!frame->valid) |
| continue; |
| |
| rate = arch_timer_mem_frame_get_cntfrq(frame); |
| if (rate == arch_timer_rate) |
| continue; |
| |
| pr_err(FW_BUG "CNTFRQ mismatch: frame @ %pa: (0x%08lx), CPU: (0x%08lx)\n", |
| &frame->cntbase, |
| (unsigned long)rate, (unsigned long)arch_timer_rate); |
| |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static int __init arch_timer_mem_acpi_init(int platform_timer_count) |
| { |
| struct arch_timer_mem *timers, *timer; |
| struct arch_timer_mem_frame *frame, *best_frame = NULL; |
| int timer_count, i, ret = 0; |
| |
| timers = kcalloc(platform_timer_count, sizeof(*timers), |
| GFP_KERNEL); |
| if (!timers) |
| return -ENOMEM; |
| |
| ret = acpi_arch_timer_mem_init(timers, &timer_count); |
| if (ret || !timer_count) |
| goto out; |
| |
| /* |
| * While unlikely, it's theoretically possible that none of the frames |
| * in a timer expose the combination of feature we want. |
| */ |
| for (i = 0; i < timer_count; i++) { |
| timer = &timers[i]; |
| |
| frame = arch_timer_mem_find_best_frame(timer); |
| if (!best_frame) |
| best_frame = frame; |
| |
| ret = arch_timer_mem_verify_cntfrq(timer); |
| if (ret) { |
| pr_err("Disabling MMIO timers due to CNTFRQ mismatch\n"); |
| goto out; |
| } |
| |
| if (!best_frame) /* implies !frame */ |
| /* |
| * Only complain about missing suitable frames if we |
| * haven't already found one in a previous iteration. |
| */ |
| pr_err("Unable to find a suitable frame in timer @ %pa\n", |
| &timer->cntctlbase); |
| } |
| |
| if (best_frame) |
| ret = arch_timer_mem_frame_register(best_frame); |
| out: |
| kfree(timers); |
| return ret; |
| } |
| |
| /* Initialize per-processor generic timer and memory-mapped timer(if present) */ |
| static int __init arch_timer_acpi_init(struct acpi_table_header *table) |
| { |
| int ret, platform_timer_count; |
| |
| if (arch_timers_present & ARCH_TIMER_TYPE_CP15) { |
| pr_warn("already initialized, skipping\n"); |
| return -EINVAL; |
| } |
| |
| arch_timers_present |= ARCH_TIMER_TYPE_CP15; |
| |
| ret = acpi_gtdt_init(table, &platform_timer_count); |
| if (ret) { |
| pr_err("Failed to init GTDT table.\n"); |
| return ret; |
| } |
| |
| arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI] = |
| acpi_gtdt_map_ppi(ARCH_TIMER_PHYS_NONSECURE_PPI); |
| |
| arch_timer_ppi[ARCH_TIMER_VIRT_PPI] = |
| acpi_gtdt_map_ppi(ARCH_TIMER_VIRT_PPI); |
| |
| arch_timer_ppi[ARCH_TIMER_HYP_PPI] = |
| acpi_gtdt_map_ppi(ARCH_TIMER_HYP_PPI); |
| |
| arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI]; |
| |
| /* |
| * When probing via ACPI, we have no mechanism to override the sysreg |
| * CNTFRQ value. This *must* be correct. |
| */ |
| arch_timer_rate = arch_timer_get_cntfrq(); |
| if (!arch_timer_rate) { |
| pr_err(FW_BUG "frequency not available.\n"); |
| return -EINVAL; |
| } |
| |
| arch_timer_uses_ppi = arch_timer_select_ppi(); |
| if (!arch_timer_ppi[arch_timer_uses_ppi]) { |
| pr_err("No interrupt available, giving up\n"); |
| return -EINVAL; |
| } |
| |
| /* Always-on capability */ |
| arch_timer_c3stop = acpi_gtdt_c3stop(arch_timer_uses_ppi); |
| |
| /* Check for globally applicable workarounds */ |
| arch_timer_check_ool_workaround(ate_match_acpi_oem_info, table); |
| |
| ret = arch_timer_register(); |
| if (ret) |
| return ret; |
| |
| if (platform_timer_count && |
| arch_timer_mem_acpi_init(platform_timer_count)) |
| pr_err("Failed to initialize memory-mapped timer.\n"); |
| |
| return arch_timer_common_init(); |
| } |
| TIMER_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init); |
| #endif |