| /* |
| * GICv3 ITS emulation |
| * |
| * Copyright (C) 2015,2016 ARM Ltd. |
| * Author: Andre Przywara <andre.przywara@arm.com> |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program. If not, see <http://www.gnu.org/licenses/>. |
| */ |
| |
| #include <linux/cpu.h> |
| #include <linux/kvm.h> |
| #include <linux/kvm_host.h> |
| #include <linux/interrupt.h> |
| #include <linux/list.h> |
| #include <linux/uaccess.h> |
| |
| #include <linux/irqchip/arm-gic-v3.h> |
| |
| #include <asm/kvm_emulate.h> |
| #include <asm/kvm_arm.h> |
| #include <asm/kvm_mmu.h> |
| |
| #include "vgic.h" |
| #include "vgic-mmio.h" |
| |
| /* |
| * Creates a new (reference to a) struct vgic_irq for a given LPI. |
| * If this LPI is already mapped on another ITS, we increase its refcount |
| * and return a pointer to the existing structure. |
| * If this is a "new" LPI, we allocate and initialize a new struct vgic_irq. |
| * This function returns a pointer to the _unlocked_ structure. |
| */ |
| static struct vgic_irq *vgic_add_lpi(struct kvm *kvm, u32 intid) |
| { |
| struct vgic_dist *dist = &kvm->arch.vgic; |
| struct vgic_irq *irq = vgic_get_irq(kvm, NULL, intid), *oldirq; |
| |
| /* In this case there is no put, since we keep the reference. */ |
| if (irq) |
| return irq; |
| |
| irq = kzalloc(sizeof(struct vgic_irq), GFP_KERNEL); |
| if (!irq) |
| return ERR_PTR(-ENOMEM); |
| |
| INIT_LIST_HEAD(&irq->lpi_list); |
| INIT_LIST_HEAD(&irq->ap_list); |
| spin_lock_init(&irq->irq_lock); |
| |
| irq->config = VGIC_CONFIG_EDGE; |
| kref_init(&irq->refcount); |
| irq->intid = intid; |
| |
| spin_lock(&dist->lpi_list_lock); |
| |
| /* |
| * There could be a race with another vgic_add_lpi(), so we need to |
| * check that we don't add a second list entry with the same LPI. |
| */ |
| list_for_each_entry(oldirq, &dist->lpi_list_head, lpi_list) { |
| if (oldirq->intid != intid) |
| continue; |
| |
| /* Someone was faster with adding this LPI, lets use that. */ |
| kfree(irq); |
| irq = oldirq; |
| |
| /* |
| * This increases the refcount, the caller is expected to |
| * call vgic_put_irq() on the returned pointer once it's |
| * finished with the IRQ. |
| */ |
| vgic_get_irq_kref(irq); |
| |
| goto out_unlock; |
| } |
| |
| list_add_tail(&irq->lpi_list, &dist->lpi_list_head); |
| dist->lpi_list_count++; |
| |
| out_unlock: |
| spin_unlock(&dist->lpi_list_lock); |
| |
| return irq; |
| } |
| |
| struct its_device { |
| struct list_head dev_list; |
| |
| /* the head for the list of ITTEs */ |
| struct list_head itt_head; |
| u32 device_id; |
| }; |
| |
| #define COLLECTION_NOT_MAPPED ((u32)~0) |
| |
| struct its_collection { |
| struct list_head coll_list; |
| |
| u32 collection_id; |
| u32 target_addr; |
| }; |
| |
| #define its_is_collection_mapped(coll) ((coll) && \ |
| ((coll)->target_addr != COLLECTION_NOT_MAPPED)) |
| |
| struct its_itte { |
| struct list_head itte_list; |
| |
| struct vgic_irq *irq; |
| struct its_collection *collection; |
| u32 lpi; |
| u32 event_id; |
| }; |
| |
| /* |
| * Find and returns a device in the device table for an ITS. |
| * Must be called with the its_lock mutex held. |
| */ |
| static struct its_device *find_its_device(struct vgic_its *its, u32 device_id) |
| { |
| struct its_device *device; |
| |
| list_for_each_entry(device, &its->device_list, dev_list) |
| if (device_id == device->device_id) |
| return device; |
| |
| return NULL; |
| } |
| |
| /* |
| * Find and returns an interrupt translation table entry (ITTE) for a given |
| * Device ID/Event ID pair on an ITS. |
| * Must be called with the its_lock mutex held. |
| */ |
| static struct its_itte *find_itte(struct vgic_its *its, u32 device_id, |
| u32 event_id) |
| { |
| struct its_device *device; |
| struct its_itte *itte; |
| |
| device = find_its_device(its, device_id); |
| if (device == NULL) |
| return NULL; |
| |
| list_for_each_entry(itte, &device->itt_head, itte_list) |
| if (itte->event_id == event_id) |
| return itte; |
| |
| return NULL; |
| } |
| |
| /* To be used as an iterator this macro misses the enclosing parentheses */ |
| #define for_each_lpi_its(dev, itte, its) \ |
| list_for_each_entry(dev, &(its)->device_list, dev_list) \ |
| list_for_each_entry(itte, &(dev)->itt_head, itte_list) |
| |
| /* |
| * We only implement 48 bits of PA at the moment, although the ITS |
| * supports more. Let's be restrictive here. |
| */ |
| #define BASER_ADDRESS(x) ((x) & GENMASK_ULL(47, 16)) |
| #define CBASER_ADDRESS(x) ((x) & GENMASK_ULL(47, 12)) |
| #define PENDBASER_ADDRESS(x) ((x) & GENMASK_ULL(47, 16)) |
| #define PROPBASER_ADDRESS(x) ((x) & GENMASK_ULL(47, 12)) |
| |
| #define GIC_LPI_OFFSET 8192 |
| |
| /* |
| * Finds and returns a collection in the ITS collection table. |
| * Must be called with the its_lock mutex held. |
| */ |
| static struct its_collection *find_collection(struct vgic_its *its, int coll_id) |
| { |
| struct its_collection *collection; |
| |
| list_for_each_entry(collection, &its->collection_list, coll_list) { |
| if (coll_id == collection->collection_id) |
| return collection; |
| } |
| |
| return NULL; |
| } |
| |
| #define LPI_PROP_ENABLE_BIT(p) ((p) & LPI_PROP_ENABLED) |
| #define LPI_PROP_PRIORITY(p) ((p) & 0xfc) |
| |
| /* |
| * Reads the configuration data for a given LPI from guest memory and |
| * updates the fields in struct vgic_irq. |
| * If filter_vcpu is not NULL, applies only if the IRQ is targeting this |
| * VCPU. Unconditionally applies if filter_vcpu is NULL. |
| */ |
| static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq, |
| struct kvm_vcpu *filter_vcpu) |
| { |
| u64 propbase = PROPBASER_ADDRESS(kvm->arch.vgic.propbaser); |
| u8 prop; |
| int ret; |
| |
| ret = kvm_read_guest(kvm, propbase + irq->intid - GIC_LPI_OFFSET, |
| &prop, 1); |
| |
| if (ret) |
| return ret; |
| |
| spin_lock(&irq->irq_lock); |
| |
| if (!filter_vcpu || filter_vcpu == irq->target_vcpu) { |
| irq->priority = LPI_PROP_PRIORITY(prop); |
| irq->enabled = LPI_PROP_ENABLE_BIT(prop); |
| |
| vgic_queue_irq_unlock(kvm, irq); |
| } else { |
| spin_unlock(&irq->irq_lock); |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Create a snapshot of the current LPI list, so that we can enumerate all |
| * LPIs without holding any lock. |
| * Returns the array length and puts the kmalloc'ed array into intid_ptr. |
| */ |
| static int vgic_copy_lpi_list(struct kvm *kvm, u32 **intid_ptr) |
| { |
| struct vgic_dist *dist = &kvm->arch.vgic; |
| struct vgic_irq *irq; |
| u32 *intids; |
| int irq_count = dist->lpi_list_count, i = 0; |
| |
| /* |
| * We use the current value of the list length, which may change |
| * after the kmalloc. We don't care, because the guest shouldn't |
| * change anything while the command handling is still running, |
| * and in the worst case we would miss a new IRQ, which one wouldn't |
| * expect to be covered by this command anyway. |
| */ |
| intids = kmalloc_array(irq_count, sizeof(intids[0]), GFP_KERNEL); |
| if (!intids) |
| return -ENOMEM; |
| |
| spin_lock(&dist->lpi_list_lock); |
| list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) { |
| /* We don't need to "get" the IRQ, as we hold the list lock. */ |
| intids[i] = irq->intid; |
| if (++i == irq_count) |
| break; |
| } |
| spin_unlock(&dist->lpi_list_lock); |
| |
| *intid_ptr = intids; |
| return irq_count; |
| } |
| |
| /* |
| * Promotes the ITS view of affinity of an ITTE (which redistributor this LPI |
| * is targeting) to the VGIC's view, which deals with target VCPUs. |
| * Needs to be called whenever either the collection for a LPIs has |
| * changed or the collection itself got retargeted. |
| */ |
| static void update_affinity_itte(struct kvm *kvm, struct its_itte *itte) |
| { |
| struct kvm_vcpu *vcpu; |
| |
| if (!its_is_collection_mapped(itte->collection)) |
| return; |
| |
| vcpu = kvm_get_vcpu(kvm, itte->collection->target_addr); |
| |
| spin_lock(&itte->irq->irq_lock); |
| itte->irq->target_vcpu = vcpu; |
| spin_unlock(&itte->irq->irq_lock); |
| } |
| |
| /* |
| * Updates the target VCPU for every LPI targeting this collection. |
| * Must be called with the its_lock mutex held. |
| */ |
| static void update_affinity_collection(struct kvm *kvm, struct vgic_its *its, |
| struct its_collection *coll) |
| { |
| struct its_device *device; |
| struct its_itte *itte; |
| |
| for_each_lpi_its(device, itte, its) { |
| if (!itte->collection || coll != itte->collection) |
| continue; |
| |
| update_affinity_itte(kvm, itte); |
| } |
| } |
| |
| static u32 max_lpis_propbaser(u64 propbaser) |
| { |
| int nr_idbits = (propbaser & 0x1f) + 1; |
| |
| return 1U << min(nr_idbits, INTERRUPT_ID_BITS_ITS); |
| } |
| |
| /* |
| * Scan the whole LPI pending table and sync the pending bit in there |
| * with our own data structures. This relies on the LPI being |
| * mapped before. |
| */ |
| static int its_sync_lpi_pending_table(struct kvm_vcpu *vcpu) |
| { |
| gpa_t pendbase = PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser); |
| struct vgic_irq *irq; |
| int last_byte_offset = -1; |
| int ret = 0; |
| u32 *intids; |
| int nr_irqs, i; |
| |
| nr_irqs = vgic_copy_lpi_list(vcpu->kvm, &intids); |
| if (nr_irqs < 0) |
| return nr_irqs; |
| |
| for (i = 0; i < nr_irqs; i++) { |
| int byte_offset, bit_nr; |
| u8 pendmask; |
| |
| byte_offset = intids[i] / BITS_PER_BYTE; |
| bit_nr = intids[i] % BITS_PER_BYTE; |
| |
| /* |
| * For contiguously allocated LPIs chances are we just read |
| * this very same byte in the last iteration. Reuse that. |
| */ |
| if (byte_offset != last_byte_offset) { |
| ret = kvm_read_guest(vcpu->kvm, pendbase + byte_offset, |
| &pendmask, 1); |
| if (ret) { |
| kfree(intids); |
| return ret; |
| } |
| last_byte_offset = byte_offset; |
| } |
| |
| irq = vgic_get_irq(vcpu->kvm, NULL, intids[i]); |
| spin_lock(&irq->irq_lock); |
| irq->pending_latch = pendmask & (1U << bit_nr); |
| vgic_queue_irq_unlock(vcpu->kvm, irq); |
| vgic_put_irq(vcpu->kvm, irq); |
| } |
| |
| kfree(intids); |
| |
| return ret; |
| } |
| |
| static unsigned long vgic_mmio_read_its_ctlr(struct kvm *vcpu, |
| struct vgic_its *its, |
| gpa_t addr, unsigned int len) |
| { |
| u32 reg = 0; |
| |
| mutex_lock(&its->cmd_lock); |
| if (its->creadr == its->cwriter) |
| reg |= GITS_CTLR_QUIESCENT; |
| if (its->enabled) |
| reg |= GITS_CTLR_ENABLE; |
| mutex_unlock(&its->cmd_lock); |
| |
| return reg; |
| } |
| |
| static void vgic_mmio_write_its_ctlr(struct kvm *kvm, struct vgic_its *its, |
| gpa_t addr, unsigned int len, |
| unsigned long val) |
| { |
| its->enabled = !!(val & GITS_CTLR_ENABLE); |
| } |
| |
| static unsigned long vgic_mmio_read_its_typer(struct kvm *kvm, |
| struct vgic_its *its, |
| gpa_t addr, unsigned int len) |
| { |
| u64 reg = GITS_TYPER_PLPIS; |
| |
| /* |
| * We use linear CPU numbers for redistributor addressing, |
| * so GITS_TYPER.PTA is 0. |
| * Also we force all PROPBASER registers to be the same, so |
| * CommonLPIAff is 0 as well. |
| * To avoid memory waste in the guest, we keep the number of IDBits and |
| * DevBits low - as least for the time being. |
| */ |
| reg |= 0x0f << GITS_TYPER_DEVBITS_SHIFT; |
| reg |= 0x0f << GITS_TYPER_IDBITS_SHIFT; |
| |
| return extract_bytes(reg, addr & 7, len); |
| } |
| |
| static unsigned long vgic_mmio_read_its_iidr(struct kvm *kvm, |
| struct vgic_its *its, |
| gpa_t addr, unsigned int len) |
| { |
| return (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0); |
| } |
| |
| static unsigned long vgic_mmio_read_its_idregs(struct kvm *kvm, |
| struct vgic_its *its, |
| gpa_t addr, unsigned int len) |
| { |
| switch (addr & 0xffff) { |
| case GITS_PIDR0: |
| return 0x92; /* part number, bits[7:0] */ |
| case GITS_PIDR1: |
| return 0xb4; /* part number, bits[11:8] */ |
| case GITS_PIDR2: |
| return GIC_PIDR2_ARCH_GICv3 | 0x0b; |
| case GITS_PIDR4: |
| return 0x40; /* This is a 64K software visible page */ |
| /* The following are the ID registers for (any) GIC. */ |
| case GITS_CIDR0: |
| return 0x0d; |
| case GITS_CIDR1: |
| return 0xf0; |
| case GITS_CIDR2: |
| return 0x05; |
| case GITS_CIDR3: |
| return 0xb1; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Find the target VCPU and the LPI number for a given devid/eventid pair |
| * and make this IRQ pending, possibly injecting it. |
| * Must be called with the its_lock mutex held. |
| * Returns 0 on success, a positive error value for any ITS mapping |
| * related errors and negative error values for generic errors. |
| */ |
| static int vgic_its_trigger_msi(struct kvm *kvm, struct vgic_its *its, |
| u32 devid, u32 eventid) |
| { |
| struct kvm_vcpu *vcpu; |
| struct its_itte *itte; |
| |
| if (!its->enabled) |
| return -EBUSY; |
| |
| itte = find_itte(its, devid, eventid); |
| if (!itte || !its_is_collection_mapped(itte->collection)) |
| return E_ITS_INT_UNMAPPED_INTERRUPT; |
| |
| vcpu = kvm_get_vcpu(kvm, itte->collection->target_addr); |
| if (!vcpu) |
| return E_ITS_INT_UNMAPPED_INTERRUPT; |
| |
| if (!vcpu->arch.vgic_cpu.lpis_enabled) |
| return -EBUSY; |
| |
| spin_lock(&itte->irq->irq_lock); |
| itte->irq->pending_latch = true; |
| vgic_queue_irq_unlock(kvm, itte->irq); |
| |
| return 0; |
| } |
| |
| static struct vgic_io_device *vgic_get_its_iodev(struct kvm_io_device *dev) |
| { |
| struct vgic_io_device *iodev; |
| |
| if (dev->ops != &kvm_io_gic_ops) |
| return NULL; |
| |
| iodev = container_of(dev, struct vgic_io_device, dev); |
| |
| if (iodev->iodev_type != IODEV_ITS) |
| return NULL; |
| |
| return iodev; |
| } |
| |
| /* |
| * Queries the KVM IO bus framework to get the ITS pointer from the given |
| * doorbell address. |
| * We then call vgic_its_trigger_msi() with the decoded data. |
| * According to the KVM_SIGNAL_MSI API description returns 1 on success. |
| */ |
| int vgic_its_inject_msi(struct kvm *kvm, struct kvm_msi *msi) |
| { |
| u64 address; |
| struct kvm_io_device *kvm_io_dev; |
| struct vgic_io_device *iodev; |
| int ret; |
| |
| if (!vgic_has_its(kvm)) |
| return -ENODEV; |
| |
| if (!(msi->flags & KVM_MSI_VALID_DEVID)) |
| return -EINVAL; |
| |
| address = (u64)msi->address_hi << 32 | msi->address_lo; |
| |
| kvm_io_dev = kvm_io_bus_get_dev(kvm, KVM_MMIO_BUS, address); |
| if (!kvm_io_dev) |
| return -EINVAL; |
| |
| iodev = vgic_get_its_iodev(kvm_io_dev); |
| if (!iodev) |
| return -EINVAL; |
| |
| mutex_lock(&iodev->its->its_lock); |
| ret = vgic_its_trigger_msi(kvm, iodev->its, msi->devid, msi->data); |
| mutex_unlock(&iodev->its->its_lock); |
| |
| if (ret < 0) |
| return ret; |
| |
| /* |
| * KVM_SIGNAL_MSI demands a return value > 0 for success and 0 |
| * if the guest has blocked the MSI. So we map any LPI mapping |
| * related error to that. |
| */ |
| if (ret) |
| return 0; |
| else |
| return 1; |
| } |
| |
| /* Requires the its_lock to be held. */ |
| static void its_free_itte(struct kvm *kvm, struct its_itte *itte) |
| { |
| list_del(&itte->itte_list); |
| |
| /* This put matches the get in vgic_add_lpi. */ |
| if (itte->irq) |
| vgic_put_irq(kvm, itte->irq); |
| |
| kfree(itte); |
| } |
| |
| static u64 its_cmd_mask_field(u64 *its_cmd, int word, int shift, int size) |
| { |
| return (le64_to_cpu(its_cmd[word]) >> shift) & (BIT_ULL(size) - 1); |
| } |
| |
| #define its_cmd_get_command(cmd) its_cmd_mask_field(cmd, 0, 0, 8) |
| #define its_cmd_get_deviceid(cmd) its_cmd_mask_field(cmd, 0, 32, 32) |
| #define its_cmd_get_id(cmd) its_cmd_mask_field(cmd, 1, 0, 32) |
| #define its_cmd_get_physical_id(cmd) its_cmd_mask_field(cmd, 1, 32, 32) |
| #define its_cmd_get_collection(cmd) its_cmd_mask_field(cmd, 2, 0, 16) |
| #define its_cmd_get_target_addr(cmd) its_cmd_mask_field(cmd, 2, 16, 32) |
| #define its_cmd_get_validbit(cmd) its_cmd_mask_field(cmd, 2, 63, 1) |
| |
| /* |
| * The DISCARD command frees an Interrupt Translation Table Entry (ITTE). |
| * Must be called with the its_lock mutex held. |
| */ |
| static int vgic_its_cmd_handle_discard(struct kvm *kvm, struct vgic_its *its, |
| u64 *its_cmd) |
| { |
| u32 device_id = its_cmd_get_deviceid(its_cmd); |
| u32 event_id = its_cmd_get_id(its_cmd); |
| struct its_itte *itte; |
| |
| |
| itte = find_itte(its, device_id, event_id); |
| if (itte && itte->collection) { |
| /* |
| * Though the spec talks about removing the pending state, we |
| * don't bother here since we clear the ITTE anyway and the |
| * pending state is a property of the ITTE struct. |
| */ |
| its_free_itte(kvm, itte); |
| return 0; |
| } |
| |
| return E_ITS_DISCARD_UNMAPPED_INTERRUPT; |
| } |
| |
| /* |
| * The MOVI command moves an ITTE to a different collection. |
| * Must be called with the its_lock mutex held. |
| */ |
| static int vgic_its_cmd_handle_movi(struct kvm *kvm, struct vgic_its *its, |
| u64 *its_cmd) |
| { |
| u32 device_id = its_cmd_get_deviceid(its_cmd); |
| u32 event_id = its_cmd_get_id(its_cmd); |
| u32 coll_id = its_cmd_get_collection(its_cmd); |
| struct kvm_vcpu *vcpu; |
| struct its_itte *itte; |
| struct its_collection *collection; |
| |
| itte = find_itte(its, device_id, event_id); |
| if (!itte) |
| return E_ITS_MOVI_UNMAPPED_INTERRUPT; |
| |
| if (!its_is_collection_mapped(itte->collection)) |
| return E_ITS_MOVI_UNMAPPED_COLLECTION; |
| |
| collection = find_collection(its, coll_id); |
| if (!its_is_collection_mapped(collection)) |
| return E_ITS_MOVI_UNMAPPED_COLLECTION; |
| |
| itte->collection = collection; |
| vcpu = kvm_get_vcpu(kvm, collection->target_addr); |
| |
| spin_lock(&itte->irq->irq_lock); |
| itte->irq->target_vcpu = vcpu; |
| spin_unlock(&itte->irq->irq_lock); |
| |
| return 0; |
| } |
| |
| /* |
| * Check whether an ID can be stored into the corresponding guest table. |
| * For a direct table this is pretty easy, but gets a bit nasty for |
| * indirect tables. We check whether the resulting guest physical address |
| * is actually valid (covered by a memslot and guest accessbible). |
| * For this we have to read the respective first level entry. |
| */ |
| static bool vgic_its_check_id(struct vgic_its *its, u64 baser, int id) |
| { |
| int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K; |
| int index; |
| u64 indirect_ptr; |
| gfn_t gfn; |
| int esz = GITS_BASER_ENTRY_SIZE(baser); |
| |
| if (!(baser & GITS_BASER_INDIRECT)) { |
| phys_addr_t addr; |
| |
| if (id >= (l1_tbl_size / esz)) |
| return false; |
| |
| addr = BASER_ADDRESS(baser) + id * esz; |
| gfn = addr >> PAGE_SHIFT; |
| |
| return kvm_is_visible_gfn(its->dev->kvm, gfn); |
| } |
| |
| /* calculate and check the index into the 1st level */ |
| index = id / (SZ_64K / esz); |
| if (index >= (l1_tbl_size / sizeof(u64))) |
| return false; |
| |
| /* Each 1st level entry is represented by a 64-bit value. */ |
| if (kvm_read_guest(its->dev->kvm, |
| BASER_ADDRESS(baser) + index * sizeof(indirect_ptr), |
| &indirect_ptr, sizeof(indirect_ptr))) |
| return false; |
| |
| indirect_ptr = le64_to_cpu(indirect_ptr); |
| |
| /* check the valid bit of the first level entry */ |
| if (!(indirect_ptr & BIT_ULL(63))) |
| return false; |
| |
| /* |
| * Mask the guest physical address and calculate the frame number. |
| * Any address beyond our supported 48 bits of PA will be caught |
| * by the actual check in the final step. |
| */ |
| indirect_ptr &= GENMASK_ULL(51, 16); |
| |
| /* Find the address of the actual entry */ |
| index = id % (SZ_64K / esz); |
| indirect_ptr += index * esz; |
| gfn = indirect_ptr >> PAGE_SHIFT; |
| |
| return kvm_is_visible_gfn(its->dev->kvm, gfn); |
| } |
| |
| static int vgic_its_alloc_collection(struct vgic_its *its, |
| struct its_collection **colp, |
| u32 coll_id) |
| { |
| struct its_collection *collection; |
| |
| if (!vgic_its_check_id(its, its->baser_coll_table, coll_id)) |
| return E_ITS_MAPC_COLLECTION_OOR; |
| |
| collection = kzalloc(sizeof(*collection), GFP_KERNEL); |
| |
| collection->collection_id = coll_id; |
| collection->target_addr = COLLECTION_NOT_MAPPED; |
| |
| list_add_tail(&collection->coll_list, &its->collection_list); |
| *colp = collection; |
| |
| return 0; |
| } |
| |
| static void vgic_its_free_collection(struct vgic_its *its, u32 coll_id) |
| { |
| struct its_collection *collection; |
| struct its_device *device; |
| struct its_itte *itte; |
| |
| /* |
| * Clearing the mapping for that collection ID removes the |
| * entry from the list. If there wasn't any before, we can |
| * go home early. |
| */ |
| collection = find_collection(its, coll_id); |
| if (!collection) |
| return; |
| |
| for_each_lpi_its(device, itte, its) |
| if (itte->collection && |
| itte->collection->collection_id == coll_id) |
| itte->collection = NULL; |
| |
| list_del(&collection->coll_list); |
| kfree(collection); |
| } |
| |
| /* |
| * The MAPTI and MAPI commands map LPIs to ITTEs. |
| * Must be called with its_lock mutex held. |
| */ |
| static int vgic_its_cmd_handle_mapi(struct kvm *kvm, struct vgic_its *its, |
| u64 *its_cmd) |
| { |
| u32 device_id = its_cmd_get_deviceid(its_cmd); |
| u32 event_id = its_cmd_get_id(its_cmd); |
| u32 coll_id = its_cmd_get_collection(its_cmd); |
| struct its_itte *itte; |
| struct its_device *device; |
| struct its_collection *collection, *new_coll = NULL; |
| int lpi_nr; |
| struct vgic_irq *irq; |
| |
| device = find_its_device(its, device_id); |
| if (!device) |
| return E_ITS_MAPTI_UNMAPPED_DEVICE; |
| |
| if (its_cmd_get_command(its_cmd) == GITS_CMD_MAPTI) |
| lpi_nr = its_cmd_get_physical_id(its_cmd); |
| else |
| lpi_nr = event_id; |
| if (lpi_nr < GIC_LPI_OFFSET || |
| lpi_nr >= max_lpis_propbaser(kvm->arch.vgic.propbaser)) |
| return E_ITS_MAPTI_PHYSICALID_OOR; |
| |
| /* If there is an existing mapping, behavior is UNPREDICTABLE. */ |
| if (find_itte(its, device_id, event_id)) |
| return 0; |
| |
| collection = find_collection(its, coll_id); |
| if (!collection) { |
| int ret = vgic_its_alloc_collection(its, &collection, coll_id); |
| if (ret) |
| return ret; |
| new_coll = collection; |
| } |
| |
| itte = kzalloc(sizeof(struct its_itte), GFP_KERNEL); |
| if (!itte) { |
| if (new_coll) |
| vgic_its_free_collection(its, coll_id); |
| return -ENOMEM; |
| } |
| |
| itte->event_id = event_id; |
| list_add_tail(&itte->itte_list, &device->itt_head); |
| |
| itte->collection = collection; |
| itte->lpi = lpi_nr; |
| |
| irq = vgic_add_lpi(kvm, lpi_nr); |
| if (IS_ERR(irq)) { |
| if (new_coll) |
| vgic_its_free_collection(its, coll_id); |
| its_free_itte(kvm, itte); |
| return PTR_ERR(irq); |
| } |
| itte->irq = irq; |
| |
| update_affinity_itte(kvm, itte); |
| |
| /* |
| * We "cache" the configuration table entries in out struct vgic_irq's. |
| * However we only have those structs for mapped IRQs, so we read in |
| * the respective config data from memory here upon mapping the LPI. |
| */ |
| update_lpi_config(kvm, itte->irq, NULL); |
| |
| return 0; |
| } |
| |
| /* Requires the its_lock to be held. */ |
| static void vgic_its_unmap_device(struct kvm *kvm, struct its_device *device) |
| { |
| struct its_itte *itte, *temp; |
| |
| /* |
| * The spec says that unmapping a device with still valid |
| * ITTEs associated is UNPREDICTABLE. We remove all ITTEs, |
| * since we cannot leave the memory unreferenced. |
| */ |
| list_for_each_entry_safe(itte, temp, &device->itt_head, itte_list) |
| its_free_itte(kvm, itte); |
| |
| list_del(&device->dev_list); |
| kfree(device); |
| } |
| |
| /* |
| * MAPD maps or unmaps a device ID to Interrupt Translation Tables (ITTs). |
| * Must be called with the its_lock mutex held. |
| */ |
| static int vgic_its_cmd_handle_mapd(struct kvm *kvm, struct vgic_its *its, |
| u64 *its_cmd) |
| { |
| u32 device_id = its_cmd_get_deviceid(its_cmd); |
| bool valid = its_cmd_get_validbit(its_cmd); |
| struct its_device *device; |
| |
| if (!vgic_its_check_id(its, its->baser_device_table, device_id)) |
| return E_ITS_MAPD_DEVICE_OOR; |
| |
| device = find_its_device(its, device_id); |
| |
| /* |
| * The spec says that calling MAPD on an already mapped device |
| * invalidates all cached data for this device. We implement this |
| * by removing the mapping and re-establishing it. |
| */ |
| if (device) |
| vgic_its_unmap_device(kvm, device); |
| |
| /* |
| * The spec does not say whether unmapping a not-mapped device |
| * is an error, so we are done in any case. |
| */ |
| if (!valid) |
| return 0; |
| |
| device = kzalloc(sizeof(struct its_device), GFP_KERNEL); |
| if (!device) |
| return -ENOMEM; |
| |
| device->device_id = device_id; |
| INIT_LIST_HEAD(&device->itt_head); |
| |
| list_add_tail(&device->dev_list, &its->device_list); |
| |
| return 0; |
| } |
| |
| /* |
| * The MAPC command maps collection IDs to redistributors. |
| * Must be called with the its_lock mutex held. |
| */ |
| static int vgic_its_cmd_handle_mapc(struct kvm *kvm, struct vgic_its *its, |
| u64 *its_cmd) |
| { |
| u16 coll_id; |
| u32 target_addr; |
| struct its_collection *collection; |
| bool valid; |
| |
| valid = its_cmd_get_validbit(its_cmd); |
| coll_id = its_cmd_get_collection(its_cmd); |
| target_addr = its_cmd_get_target_addr(its_cmd); |
| |
| if (target_addr >= atomic_read(&kvm->online_vcpus)) |
| return E_ITS_MAPC_PROCNUM_OOR; |
| |
| if (!valid) { |
| vgic_its_free_collection(its, coll_id); |
| } else { |
| collection = find_collection(its, coll_id); |
| |
| if (!collection) { |
| int ret; |
| |
| ret = vgic_its_alloc_collection(its, &collection, |
| coll_id); |
| if (ret) |
| return ret; |
| collection->target_addr = target_addr; |
| } else { |
| collection->target_addr = target_addr; |
| update_affinity_collection(kvm, its, collection); |
| } |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * The CLEAR command removes the pending state for a particular LPI. |
| * Must be called with the its_lock mutex held. |
| */ |
| static int vgic_its_cmd_handle_clear(struct kvm *kvm, struct vgic_its *its, |
| u64 *its_cmd) |
| { |
| u32 device_id = its_cmd_get_deviceid(its_cmd); |
| u32 event_id = its_cmd_get_id(its_cmd); |
| struct its_itte *itte; |
| |
| |
| itte = find_itte(its, device_id, event_id); |
| if (!itte) |
| return E_ITS_CLEAR_UNMAPPED_INTERRUPT; |
| |
| itte->irq->pending_latch = false; |
| |
| return 0; |
| } |
| |
| /* |
| * The INV command syncs the configuration bits from the memory table. |
| * Must be called with the its_lock mutex held. |
| */ |
| static int vgic_its_cmd_handle_inv(struct kvm *kvm, struct vgic_its *its, |
| u64 *its_cmd) |
| { |
| u32 device_id = its_cmd_get_deviceid(its_cmd); |
| u32 event_id = its_cmd_get_id(its_cmd); |
| struct its_itte *itte; |
| |
| |
| itte = find_itte(its, device_id, event_id); |
| if (!itte) |
| return E_ITS_INV_UNMAPPED_INTERRUPT; |
| |
| return update_lpi_config(kvm, itte->irq, NULL); |
| } |
| |
| /* |
| * The INVALL command requests flushing of all IRQ data in this collection. |
| * Find the VCPU mapped to that collection, then iterate over the VM's list |
| * of mapped LPIs and update the configuration for each IRQ which targets |
| * the specified vcpu. The configuration will be read from the in-memory |
| * configuration table. |
| * Must be called with the its_lock mutex held. |
| */ |
| static int vgic_its_cmd_handle_invall(struct kvm *kvm, struct vgic_its *its, |
| u64 *its_cmd) |
| { |
| u32 coll_id = its_cmd_get_collection(its_cmd); |
| struct its_collection *collection; |
| struct kvm_vcpu *vcpu; |
| struct vgic_irq *irq; |
| u32 *intids; |
| int irq_count, i; |
| |
| collection = find_collection(its, coll_id); |
| if (!its_is_collection_mapped(collection)) |
| return E_ITS_INVALL_UNMAPPED_COLLECTION; |
| |
| vcpu = kvm_get_vcpu(kvm, collection->target_addr); |
| |
| irq_count = vgic_copy_lpi_list(kvm, &intids); |
| if (irq_count < 0) |
| return irq_count; |
| |
| for (i = 0; i < irq_count; i++) { |
| irq = vgic_get_irq(kvm, NULL, intids[i]); |
| if (!irq) |
| continue; |
| update_lpi_config(kvm, irq, vcpu); |
| vgic_put_irq(kvm, irq); |
| } |
| |
| kfree(intids); |
| |
| return 0; |
| } |
| |
| /* |
| * The MOVALL command moves the pending state of all IRQs targeting one |
| * redistributor to another. We don't hold the pending state in the VCPUs, |
| * but in the IRQs instead, so there is really not much to do for us here. |
| * However the spec says that no IRQ must target the old redistributor |
| * afterwards, so we make sure that no LPI is using the associated target_vcpu. |
| * This command affects all LPIs in the system that target that redistributor. |
| */ |
| static int vgic_its_cmd_handle_movall(struct kvm *kvm, struct vgic_its *its, |
| u64 *its_cmd) |
| { |
| struct vgic_dist *dist = &kvm->arch.vgic; |
| u32 target1_addr = its_cmd_get_target_addr(its_cmd); |
| u32 target2_addr = its_cmd_mask_field(its_cmd, 3, 16, 32); |
| struct kvm_vcpu *vcpu1, *vcpu2; |
| struct vgic_irq *irq; |
| |
| if (target1_addr >= atomic_read(&kvm->online_vcpus) || |
| target2_addr >= atomic_read(&kvm->online_vcpus)) |
| return E_ITS_MOVALL_PROCNUM_OOR; |
| |
| if (target1_addr == target2_addr) |
| return 0; |
| |
| vcpu1 = kvm_get_vcpu(kvm, target1_addr); |
| vcpu2 = kvm_get_vcpu(kvm, target2_addr); |
| |
| spin_lock(&dist->lpi_list_lock); |
| |
| list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) { |
| spin_lock(&irq->irq_lock); |
| |
| if (irq->target_vcpu == vcpu1) |
| irq->target_vcpu = vcpu2; |
| |
| spin_unlock(&irq->irq_lock); |
| } |
| |
| spin_unlock(&dist->lpi_list_lock); |
| |
| return 0; |
| } |
| |
| /* |
| * The INT command injects the LPI associated with that DevID/EvID pair. |
| * Must be called with the its_lock mutex held. |
| */ |
| static int vgic_its_cmd_handle_int(struct kvm *kvm, struct vgic_its *its, |
| u64 *its_cmd) |
| { |
| u32 msi_data = its_cmd_get_id(its_cmd); |
| u64 msi_devid = its_cmd_get_deviceid(its_cmd); |
| |
| return vgic_its_trigger_msi(kvm, its, msi_devid, msi_data); |
| } |
| |
| /* |
| * This function is called with the its_cmd lock held, but the ITS data |
| * structure lock dropped. |
| */ |
| static int vgic_its_handle_command(struct kvm *kvm, struct vgic_its *its, |
| u64 *its_cmd) |
| { |
| int ret = -ENODEV; |
| |
| mutex_lock(&its->its_lock); |
| switch (its_cmd_get_command(its_cmd)) { |
| case GITS_CMD_MAPD: |
| ret = vgic_its_cmd_handle_mapd(kvm, its, its_cmd); |
| break; |
| case GITS_CMD_MAPC: |
| ret = vgic_its_cmd_handle_mapc(kvm, its, its_cmd); |
| break; |
| case GITS_CMD_MAPI: |
| ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd); |
| break; |
| case GITS_CMD_MAPTI: |
| ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd); |
| break; |
| case GITS_CMD_MOVI: |
| ret = vgic_its_cmd_handle_movi(kvm, its, its_cmd); |
| break; |
| case GITS_CMD_DISCARD: |
| ret = vgic_its_cmd_handle_discard(kvm, its, its_cmd); |
| break; |
| case GITS_CMD_CLEAR: |
| ret = vgic_its_cmd_handle_clear(kvm, its, its_cmd); |
| break; |
| case GITS_CMD_MOVALL: |
| ret = vgic_its_cmd_handle_movall(kvm, its, its_cmd); |
| break; |
| case GITS_CMD_INT: |
| ret = vgic_its_cmd_handle_int(kvm, its, its_cmd); |
| break; |
| case GITS_CMD_INV: |
| ret = vgic_its_cmd_handle_inv(kvm, its, its_cmd); |
| break; |
| case GITS_CMD_INVALL: |
| ret = vgic_its_cmd_handle_invall(kvm, its, its_cmd); |
| break; |
| case GITS_CMD_SYNC: |
| /* we ignore this command: we are in sync all of the time */ |
| ret = 0; |
| break; |
| } |
| mutex_unlock(&its->its_lock); |
| |
| return ret; |
| } |
| |
| static u64 vgic_sanitise_its_baser(u64 reg) |
| { |
| reg = vgic_sanitise_field(reg, GITS_BASER_SHAREABILITY_MASK, |
| GITS_BASER_SHAREABILITY_SHIFT, |
| vgic_sanitise_shareability); |
| reg = vgic_sanitise_field(reg, GITS_BASER_INNER_CACHEABILITY_MASK, |
| GITS_BASER_INNER_CACHEABILITY_SHIFT, |
| vgic_sanitise_inner_cacheability); |
| reg = vgic_sanitise_field(reg, GITS_BASER_OUTER_CACHEABILITY_MASK, |
| GITS_BASER_OUTER_CACHEABILITY_SHIFT, |
| vgic_sanitise_outer_cacheability); |
| |
| /* Bits 15:12 contain bits 51:48 of the PA, which we don't support. */ |
| reg &= ~GENMASK_ULL(15, 12); |
| |
| /* We support only one (ITS) page size: 64K */ |
| reg = (reg & ~GITS_BASER_PAGE_SIZE_MASK) | GITS_BASER_PAGE_SIZE_64K; |
| |
| return reg; |
| } |
| |
| static u64 vgic_sanitise_its_cbaser(u64 reg) |
| { |
| reg = vgic_sanitise_field(reg, GITS_CBASER_SHAREABILITY_MASK, |
| GITS_CBASER_SHAREABILITY_SHIFT, |
| vgic_sanitise_shareability); |
| reg = vgic_sanitise_field(reg, GITS_CBASER_INNER_CACHEABILITY_MASK, |
| GITS_CBASER_INNER_CACHEABILITY_SHIFT, |
| vgic_sanitise_inner_cacheability); |
| reg = vgic_sanitise_field(reg, GITS_CBASER_OUTER_CACHEABILITY_MASK, |
| GITS_CBASER_OUTER_CACHEABILITY_SHIFT, |
| vgic_sanitise_outer_cacheability); |
| |
| /* |
| * Sanitise the physical address to be 64k aligned. |
| * Also limit the physical addresses to 48 bits. |
| */ |
| reg &= ~(GENMASK_ULL(51, 48) | GENMASK_ULL(15, 12)); |
| |
| return reg; |
| } |
| |
| static unsigned long vgic_mmio_read_its_cbaser(struct kvm *kvm, |
| struct vgic_its *its, |
| gpa_t addr, unsigned int len) |
| { |
| return extract_bytes(its->cbaser, addr & 7, len); |
| } |
| |
| static void vgic_mmio_write_its_cbaser(struct kvm *kvm, struct vgic_its *its, |
| gpa_t addr, unsigned int len, |
| unsigned long val) |
| { |
| /* When GITS_CTLR.Enable is 1, this register is RO. */ |
| if (its->enabled) |
| return; |
| |
| mutex_lock(&its->cmd_lock); |
| its->cbaser = update_64bit_reg(its->cbaser, addr & 7, len, val); |
| its->cbaser = vgic_sanitise_its_cbaser(its->cbaser); |
| its->creadr = 0; |
| /* |
| * CWRITER is architecturally UNKNOWN on reset, but we need to reset |
| * it to CREADR to make sure we start with an empty command buffer. |
| */ |
| its->cwriter = its->creadr; |
| mutex_unlock(&its->cmd_lock); |
| } |
| |
| #define ITS_CMD_BUFFER_SIZE(baser) ((((baser) & 0xff) + 1) << 12) |
| #define ITS_CMD_SIZE 32 |
| #define ITS_CMD_OFFSET(reg) ((reg) & GENMASK(19, 5)) |
| |
| /* |
| * By writing to CWRITER the guest announces new commands to be processed. |
| * To avoid any races in the first place, we take the its_cmd lock, which |
| * protects our ring buffer variables, so that there is only one user |
| * per ITS handling commands at a given time. |
| */ |
| static void vgic_mmio_write_its_cwriter(struct kvm *kvm, struct vgic_its *its, |
| gpa_t addr, unsigned int len, |
| unsigned long val) |
| { |
| gpa_t cbaser; |
| u64 cmd_buf[4]; |
| u32 reg; |
| |
| if (!its) |
| return; |
| |
| mutex_lock(&its->cmd_lock); |
| |
| reg = update_64bit_reg(its->cwriter, addr & 7, len, val); |
| reg = ITS_CMD_OFFSET(reg); |
| if (reg >= ITS_CMD_BUFFER_SIZE(its->cbaser)) { |
| mutex_unlock(&its->cmd_lock); |
| return; |
| } |
| |
| its->cwriter = reg; |
| cbaser = CBASER_ADDRESS(its->cbaser); |
| |
| while (its->cwriter != its->creadr) { |
| int ret = kvm_read_guest(kvm, cbaser + its->creadr, |
| cmd_buf, ITS_CMD_SIZE); |
| /* |
| * If kvm_read_guest() fails, this could be due to the guest |
| * programming a bogus value in CBASER or something else going |
| * wrong from which we cannot easily recover. |
| * According to section 6.3.2 in the GICv3 spec we can just |
| * ignore that command then. |
| */ |
| if (!ret) |
| vgic_its_handle_command(kvm, its, cmd_buf); |
| |
| its->creadr += ITS_CMD_SIZE; |
| if (its->creadr == ITS_CMD_BUFFER_SIZE(its->cbaser)) |
| its->creadr = 0; |
| } |
| |
| mutex_unlock(&its->cmd_lock); |
| } |
| |
| static unsigned long vgic_mmio_read_its_cwriter(struct kvm *kvm, |
| struct vgic_its *its, |
| gpa_t addr, unsigned int len) |
| { |
| return extract_bytes(its->cwriter, addr & 0x7, len); |
| } |
| |
| static unsigned long vgic_mmio_read_its_creadr(struct kvm *kvm, |
| struct vgic_its *its, |
| gpa_t addr, unsigned int len) |
| { |
| return extract_bytes(its->creadr, addr & 0x7, len); |
| } |
| |
| #define BASER_INDEX(addr) (((addr) / sizeof(u64)) & 0x7) |
| static unsigned long vgic_mmio_read_its_baser(struct kvm *kvm, |
| struct vgic_its *its, |
| gpa_t addr, unsigned int len) |
| { |
| u64 reg; |
| |
| switch (BASER_INDEX(addr)) { |
| case 0: |
| reg = its->baser_device_table; |
| break; |
| case 1: |
| reg = its->baser_coll_table; |
| break; |
| default: |
| reg = 0; |
| break; |
| } |
| |
| return extract_bytes(reg, addr & 7, len); |
| } |
| |
| #define GITS_BASER_RO_MASK (GENMASK_ULL(52, 48) | GENMASK_ULL(58, 56)) |
| static void vgic_mmio_write_its_baser(struct kvm *kvm, |
| struct vgic_its *its, |
| gpa_t addr, unsigned int len, |
| unsigned long val) |
| { |
| u64 entry_size, device_type; |
| u64 reg, *regptr, clearbits = 0; |
| |
| /* When GITS_CTLR.Enable is 1, we ignore write accesses. */ |
| if (its->enabled) |
| return; |
| |
| switch (BASER_INDEX(addr)) { |
| case 0: |
| regptr = &its->baser_device_table; |
| entry_size = 8; |
| device_type = GITS_BASER_TYPE_DEVICE; |
| break; |
| case 1: |
| regptr = &its->baser_coll_table; |
| entry_size = 8; |
| device_type = GITS_BASER_TYPE_COLLECTION; |
| clearbits = GITS_BASER_INDIRECT; |
| break; |
| default: |
| return; |
| } |
| |
| reg = update_64bit_reg(*regptr, addr & 7, len, val); |
| reg &= ~GITS_BASER_RO_MASK; |
| reg &= ~clearbits; |
| |
| reg |= (entry_size - 1) << GITS_BASER_ENTRY_SIZE_SHIFT; |
| reg |= device_type << GITS_BASER_TYPE_SHIFT; |
| reg = vgic_sanitise_its_baser(reg); |
| |
| *regptr = reg; |
| } |
| |
| #define REGISTER_ITS_DESC(off, rd, wr, length, acc) \ |
| { \ |
| .reg_offset = off, \ |
| .len = length, \ |
| .access_flags = acc, \ |
| .its_read = rd, \ |
| .its_write = wr, \ |
| } |
| |
| static void its_mmio_write_wi(struct kvm *kvm, struct vgic_its *its, |
| gpa_t addr, unsigned int len, unsigned long val) |
| { |
| /* Ignore */ |
| } |
| |
| static struct vgic_register_region its_registers[] = { |
| REGISTER_ITS_DESC(GITS_CTLR, |
| vgic_mmio_read_its_ctlr, vgic_mmio_write_its_ctlr, 4, |
| VGIC_ACCESS_32bit), |
| REGISTER_ITS_DESC(GITS_IIDR, |
| vgic_mmio_read_its_iidr, its_mmio_write_wi, 4, |
| VGIC_ACCESS_32bit), |
| REGISTER_ITS_DESC(GITS_TYPER, |
| vgic_mmio_read_its_typer, its_mmio_write_wi, 8, |
| VGIC_ACCESS_64bit | VGIC_ACCESS_32bit), |
| REGISTER_ITS_DESC(GITS_CBASER, |
| vgic_mmio_read_its_cbaser, vgic_mmio_write_its_cbaser, 8, |
| VGIC_ACCESS_64bit | VGIC_ACCESS_32bit), |
| REGISTER_ITS_DESC(GITS_CWRITER, |
| vgic_mmio_read_its_cwriter, vgic_mmio_write_its_cwriter, 8, |
| VGIC_ACCESS_64bit | VGIC_ACCESS_32bit), |
| REGISTER_ITS_DESC(GITS_CREADR, |
| vgic_mmio_read_its_creadr, its_mmio_write_wi, 8, |
| VGIC_ACCESS_64bit | VGIC_ACCESS_32bit), |
| REGISTER_ITS_DESC(GITS_BASER, |
| vgic_mmio_read_its_baser, vgic_mmio_write_its_baser, 0x40, |
| VGIC_ACCESS_64bit | VGIC_ACCESS_32bit), |
| REGISTER_ITS_DESC(GITS_IDREGS_BASE, |
| vgic_mmio_read_its_idregs, its_mmio_write_wi, 0x30, |
| VGIC_ACCESS_32bit), |
| }; |
| |
| /* This is called on setting the LPI enable bit in the redistributor. */ |
| void vgic_enable_lpis(struct kvm_vcpu *vcpu) |
| { |
| if (!(vcpu->arch.vgic_cpu.pendbaser & GICR_PENDBASER_PTZ)) |
| its_sync_lpi_pending_table(vcpu); |
| } |
| |
| static int vgic_register_its_iodev(struct kvm *kvm, struct vgic_its *its) |
| { |
| struct vgic_io_device *iodev = &its->iodev; |
| int ret; |
| |
| if (!its->initialized) |
| return -EBUSY; |
| |
| if (IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) |
| return -ENXIO; |
| |
| iodev->regions = its_registers; |
| iodev->nr_regions = ARRAY_SIZE(its_registers); |
| kvm_iodevice_init(&iodev->dev, &kvm_io_gic_ops); |
| |
| iodev->base_addr = its->vgic_its_base; |
| iodev->iodev_type = IODEV_ITS; |
| iodev->its = its; |
| mutex_lock(&kvm->slots_lock); |
| ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, iodev->base_addr, |
| KVM_VGIC_V3_ITS_SIZE, &iodev->dev); |
| mutex_unlock(&kvm->slots_lock); |
| |
| return ret; |
| } |
| |
| #define INITIAL_BASER_VALUE \ |
| (GIC_BASER_CACHEABILITY(GITS_BASER, INNER, RaWb) | \ |
| GIC_BASER_CACHEABILITY(GITS_BASER, OUTER, SameAsInner) | \ |
| GIC_BASER_SHAREABILITY(GITS_BASER, InnerShareable) | \ |
| ((8ULL - 1) << GITS_BASER_ENTRY_SIZE_SHIFT) | \ |
| GITS_BASER_PAGE_SIZE_64K) |
| |
| #define INITIAL_PROPBASER_VALUE \ |
| (GIC_BASER_CACHEABILITY(GICR_PROPBASER, INNER, RaWb) | \ |
| GIC_BASER_CACHEABILITY(GICR_PROPBASER, OUTER, SameAsInner) | \ |
| GIC_BASER_SHAREABILITY(GICR_PROPBASER, InnerShareable)) |
| |
| static int vgic_its_create(struct kvm_device *dev, u32 type) |
| { |
| struct vgic_its *its; |
| |
| if (type != KVM_DEV_TYPE_ARM_VGIC_ITS) |
| return -ENODEV; |
| |
| its = kzalloc(sizeof(struct vgic_its), GFP_KERNEL); |
| if (!its) |
| return -ENOMEM; |
| |
| mutex_init(&its->its_lock); |
| mutex_init(&its->cmd_lock); |
| |
| its->vgic_its_base = VGIC_ADDR_UNDEF; |
| |
| INIT_LIST_HEAD(&its->device_list); |
| INIT_LIST_HEAD(&its->collection_list); |
| |
| dev->kvm->arch.vgic.has_its = true; |
| its->initialized = false; |
| its->enabled = false; |
| its->dev = dev; |
| |
| its->baser_device_table = INITIAL_BASER_VALUE | |
| ((u64)GITS_BASER_TYPE_DEVICE << GITS_BASER_TYPE_SHIFT); |
| its->baser_coll_table = INITIAL_BASER_VALUE | |
| ((u64)GITS_BASER_TYPE_COLLECTION << GITS_BASER_TYPE_SHIFT); |
| dev->kvm->arch.vgic.propbaser = INITIAL_PROPBASER_VALUE; |
| |
| dev->private = its; |
| |
| return 0; |
| } |
| |
| static void vgic_its_destroy(struct kvm_device *kvm_dev) |
| { |
| struct kvm *kvm = kvm_dev->kvm; |
| struct vgic_its *its = kvm_dev->private; |
| struct its_device *dev; |
| struct its_itte *itte; |
| struct list_head *dev_cur, *dev_temp; |
| struct list_head *cur, *temp; |
| |
| /* |
| * We may end up here without the lists ever having been initialized. |
| * Check this and bail out early to avoid dereferencing a NULL pointer. |
| */ |
| if (!its->device_list.next) |
| return; |
| |
| mutex_lock(&its->its_lock); |
| list_for_each_safe(dev_cur, dev_temp, &its->device_list) { |
| dev = container_of(dev_cur, struct its_device, dev_list); |
| list_for_each_safe(cur, temp, &dev->itt_head) { |
| itte = (container_of(cur, struct its_itte, itte_list)); |
| its_free_itte(kvm, itte); |
| } |
| list_del(dev_cur); |
| kfree(dev); |
| } |
| |
| list_for_each_safe(cur, temp, &its->collection_list) { |
| list_del(cur); |
| kfree(container_of(cur, struct its_collection, coll_list)); |
| } |
| mutex_unlock(&its->its_lock); |
| |
| kfree(its); |
| } |
| |
| static int vgic_its_has_attr(struct kvm_device *dev, |
| struct kvm_device_attr *attr) |
| { |
| switch (attr->group) { |
| case KVM_DEV_ARM_VGIC_GRP_ADDR: |
| switch (attr->attr) { |
| case KVM_VGIC_ITS_ADDR_TYPE: |
| return 0; |
| } |
| break; |
| case KVM_DEV_ARM_VGIC_GRP_CTRL: |
| switch (attr->attr) { |
| case KVM_DEV_ARM_VGIC_CTRL_INIT: |
| return 0; |
| } |
| break; |
| } |
| return -ENXIO; |
| } |
| |
| static int vgic_its_set_attr(struct kvm_device *dev, |
| struct kvm_device_attr *attr) |
| { |
| struct vgic_its *its = dev->private; |
| int ret; |
| |
| switch (attr->group) { |
| case KVM_DEV_ARM_VGIC_GRP_ADDR: { |
| u64 __user *uaddr = (u64 __user *)(long)attr->addr; |
| unsigned long type = (unsigned long)attr->attr; |
| u64 addr; |
| |
| if (type != KVM_VGIC_ITS_ADDR_TYPE) |
| return -ENODEV; |
| |
| if (copy_from_user(&addr, uaddr, sizeof(addr))) |
| return -EFAULT; |
| |
| ret = vgic_check_ioaddr(dev->kvm, &its->vgic_its_base, |
| addr, SZ_64K); |
| if (ret) |
| return ret; |
| |
| its->vgic_its_base = addr; |
| |
| return 0; |
| } |
| case KVM_DEV_ARM_VGIC_GRP_CTRL: |
| switch (attr->attr) { |
| case KVM_DEV_ARM_VGIC_CTRL_INIT: |
| its->initialized = true; |
| |
| return 0; |
| } |
| break; |
| } |
| return -ENXIO; |
| } |
| |
| static int vgic_its_get_attr(struct kvm_device *dev, |
| struct kvm_device_attr *attr) |
| { |
| switch (attr->group) { |
| case KVM_DEV_ARM_VGIC_GRP_ADDR: { |
| struct vgic_its *its = dev->private; |
| u64 addr = its->vgic_its_base; |
| u64 __user *uaddr = (u64 __user *)(long)attr->addr; |
| unsigned long type = (unsigned long)attr->attr; |
| |
| if (type != KVM_VGIC_ITS_ADDR_TYPE) |
| return -ENODEV; |
| |
| if (copy_to_user(uaddr, &addr, sizeof(addr))) |
| return -EFAULT; |
| break; |
| default: |
| return -ENXIO; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static struct kvm_device_ops kvm_arm_vgic_its_ops = { |
| .name = "kvm-arm-vgic-its", |
| .create = vgic_its_create, |
| .destroy = vgic_its_destroy, |
| .set_attr = vgic_its_set_attr, |
| .get_attr = vgic_its_get_attr, |
| .has_attr = vgic_its_has_attr, |
| }; |
| |
| int kvm_vgic_register_its_device(void) |
| { |
| return kvm_register_device_ops(&kvm_arm_vgic_its_ops, |
| KVM_DEV_TYPE_ARM_VGIC_ITS); |
| } |
| |
| /* |
| * Registers all ITSes with the kvm_io_bus framework. |
| * To follow the existing VGIC initialization sequence, this has to be |
| * done as late as possible, just before the first VCPU runs. |
| */ |
| int vgic_register_its_iodevs(struct kvm *kvm) |
| { |
| struct kvm_device *dev; |
| int ret = 0; |
| |
| list_for_each_entry(dev, &kvm->devices, vm_node) { |
| if (dev->ops != &kvm_arm_vgic_its_ops) |
| continue; |
| |
| ret = vgic_register_its_iodev(kvm, dev->private); |
| if (ret) |
| return ret; |
| /* |
| * We don't need to care about tearing down previously |
| * registered ITSes, as the kvm_io_bus framework removes |
| * them for us if the VM gets destroyed. |
| */ |
| } |
| |
| return ret; |
| } |