| /* |
| * libata-bmdma.c - helper library for PCI IDE BMDMA |
| * |
| * Maintained by: Jeff Garzik <jgarzik@pobox.com> |
| * Please ALWAYS copy linux-ide@vger.kernel.org |
| * on emails. |
| * |
| * Copyright 2003-2006 Red Hat, Inc. All rights reserved. |
| * Copyright 2003-2006 Jeff Garzik |
| * |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2, or (at your option) |
| * any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; see the file COPYING. If not, write to |
| * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. |
| * |
| * |
| * libata documentation is available via 'make {ps|pdf}docs', |
| * as Documentation/DocBook/libata.* |
| * |
| * Hardware documentation available from http://www.t13.org/ and |
| * http://www.sata-io.org/ |
| * |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/pci.h> |
| #include <linux/libata.h> |
| |
| #include "libata.h" |
| |
| /** |
| * ata_irq_on - Enable interrupts on a port. |
| * @ap: Port on which interrupts are enabled. |
| * |
| * Enable interrupts on a legacy IDE device using MMIO or PIO, |
| * wait for idle, clear any pending interrupts. |
| * |
| * LOCKING: |
| * Inherited from caller. |
| */ |
| u8 ata_irq_on(struct ata_port *ap) |
| { |
| struct ata_ioports *ioaddr = &ap->ioaddr; |
| u8 tmp; |
| |
| ap->ctl &= ~ATA_NIEN; |
| ap->last_ctl = ap->ctl; |
| |
| iowrite8(ap->ctl, ioaddr->ctl_addr); |
| tmp = ata_wait_idle(ap); |
| |
| ap->ops->irq_clear(ap); |
| |
| return tmp; |
| } |
| |
| u8 ata_dummy_irq_on (struct ata_port *ap) { return 0; } |
| |
| /** |
| * ata_irq_ack - Acknowledge a device interrupt. |
| * @ap: Port on which interrupts are enabled. |
| * |
| * Wait up to 10 ms for legacy IDE device to become idle (BUSY |
| * or BUSY+DRQ clear). Obtain dma status and port status from |
| * device. Clear the interrupt. Return port status. |
| * |
| * LOCKING: |
| */ |
| |
| u8 ata_irq_ack(struct ata_port *ap, unsigned int chk_drq) |
| { |
| unsigned int bits = chk_drq ? ATA_BUSY | ATA_DRQ : ATA_BUSY; |
| u8 host_stat, post_stat, status; |
| |
| status = ata_busy_wait(ap, bits, 1000); |
| if (status & bits) |
| if (ata_msg_err(ap)) |
| printk(KERN_ERR "abnormal status 0x%X\n", status); |
| |
| /* get controller status; clear intr, err bits */ |
| host_stat = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS); |
| iowrite8(host_stat | ATA_DMA_INTR | ATA_DMA_ERR, |
| ap->ioaddr.bmdma_addr + ATA_DMA_STATUS); |
| |
| post_stat = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS); |
| |
| if (ata_msg_intr(ap)) |
| printk(KERN_INFO "%s: irq ack: host_stat 0x%X, new host_stat 0x%X, drv_stat 0x%X\n", |
| __FUNCTION__, |
| host_stat, post_stat, status); |
| |
| return status; |
| } |
| |
| u8 ata_dummy_irq_ack(struct ata_port *ap, unsigned int chk_drq) { return 0; } |
| |
| /** |
| * ata_tf_load - send taskfile registers to host controller |
| * @ap: Port to which output is sent |
| * @tf: ATA taskfile register set |
| * |
| * Outputs ATA taskfile to standard ATA host controller. |
| * |
| * LOCKING: |
| * Inherited from caller. |
| */ |
| |
| void ata_tf_load(struct ata_port *ap, const struct ata_taskfile *tf) |
| { |
| struct ata_ioports *ioaddr = &ap->ioaddr; |
| unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR; |
| |
| if (tf->ctl != ap->last_ctl) { |
| iowrite8(tf->ctl, ioaddr->ctl_addr); |
| ap->last_ctl = tf->ctl; |
| ata_wait_idle(ap); |
| } |
| |
| if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) { |
| iowrite8(tf->hob_feature, ioaddr->feature_addr); |
| iowrite8(tf->hob_nsect, ioaddr->nsect_addr); |
| iowrite8(tf->hob_lbal, ioaddr->lbal_addr); |
| iowrite8(tf->hob_lbam, ioaddr->lbam_addr); |
| iowrite8(tf->hob_lbah, ioaddr->lbah_addr); |
| VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n", |
| tf->hob_feature, |
| tf->hob_nsect, |
| tf->hob_lbal, |
| tf->hob_lbam, |
| tf->hob_lbah); |
| } |
| |
| if (is_addr) { |
| iowrite8(tf->feature, ioaddr->feature_addr); |
| iowrite8(tf->nsect, ioaddr->nsect_addr); |
| iowrite8(tf->lbal, ioaddr->lbal_addr); |
| iowrite8(tf->lbam, ioaddr->lbam_addr); |
| iowrite8(tf->lbah, ioaddr->lbah_addr); |
| VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n", |
| tf->feature, |
| tf->nsect, |
| tf->lbal, |
| tf->lbam, |
| tf->lbah); |
| } |
| |
| if (tf->flags & ATA_TFLAG_DEVICE) { |
| iowrite8(tf->device, ioaddr->device_addr); |
| VPRINTK("device 0x%X\n", tf->device); |
| } |
| |
| ata_wait_idle(ap); |
| } |
| |
| /** |
| * ata_exec_command - issue ATA command to host controller |
| * @ap: port to which command is being issued |
| * @tf: ATA taskfile register set |
| * |
| * Issues ATA command, with proper synchronization with interrupt |
| * handler / other threads. |
| * |
| * LOCKING: |
| * spin_lock_irqsave(host lock) |
| */ |
| void ata_exec_command(struct ata_port *ap, const struct ata_taskfile *tf) |
| { |
| DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command); |
| |
| iowrite8(tf->command, ap->ioaddr.command_addr); |
| ata_pause(ap); |
| } |
| |
| /** |
| * ata_tf_read - input device's ATA taskfile shadow registers |
| * @ap: Port from which input is read |
| * @tf: ATA taskfile register set for storing input |
| * |
| * Reads ATA taskfile registers for currently-selected device |
| * into @tf. |
| * |
| * LOCKING: |
| * Inherited from caller. |
| */ |
| void ata_tf_read(struct ata_port *ap, struct ata_taskfile *tf) |
| { |
| struct ata_ioports *ioaddr = &ap->ioaddr; |
| |
| tf->command = ata_check_status(ap); |
| tf->feature = ioread8(ioaddr->error_addr); |
| tf->nsect = ioread8(ioaddr->nsect_addr); |
| tf->lbal = ioread8(ioaddr->lbal_addr); |
| tf->lbam = ioread8(ioaddr->lbam_addr); |
| tf->lbah = ioread8(ioaddr->lbah_addr); |
| tf->device = ioread8(ioaddr->device_addr); |
| |
| if (tf->flags & ATA_TFLAG_LBA48) { |
| iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr); |
| tf->hob_feature = ioread8(ioaddr->error_addr); |
| tf->hob_nsect = ioread8(ioaddr->nsect_addr); |
| tf->hob_lbal = ioread8(ioaddr->lbal_addr); |
| tf->hob_lbam = ioread8(ioaddr->lbam_addr); |
| tf->hob_lbah = ioread8(ioaddr->lbah_addr); |
| } |
| } |
| |
| /** |
| * ata_check_status - Read device status reg & clear interrupt |
| * @ap: port where the device is |
| * |
| * Reads ATA taskfile status register for currently-selected device |
| * and return its value. This also clears pending interrupts |
| * from this device |
| * |
| * LOCKING: |
| * Inherited from caller. |
| */ |
| u8 ata_check_status(struct ata_port *ap) |
| { |
| return ioread8(ap->ioaddr.status_addr); |
| } |
| |
| /** |
| * ata_altstatus - Read device alternate status reg |
| * @ap: port where the device is |
| * |
| * Reads ATA taskfile alternate status register for |
| * currently-selected device and return its value. |
| * |
| * Note: may NOT be used as the check_altstatus() entry in |
| * ata_port_operations. |
| * |
| * LOCKING: |
| * Inherited from caller. |
| */ |
| u8 ata_altstatus(struct ata_port *ap) |
| { |
| if (ap->ops->check_altstatus) |
| return ap->ops->check_altstatus(ap); |
| |
| return ioread8(ap->ioaddr.altstatus_addr); |
| } |
| |
| /** |
| * ata_bmdma_setup - Set up PCI IDE BMDMA transaction |
| * @qc: Info associated with this ATA transaction. |
| * |
| * LOCKING: |
| * spin_lock_irqsave(host lock) |
| */ |
| void ata_bmdma_setup(struct ata_queued_cmd *qc) |
| { |
| struct ata_port *ap = qc->ap; |
| unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE); |
| u8 dmactl; |
| |
| /* load PRD table addr. */ |
| mb(); /* make sure PRD table writes are visible to controller */ |
| iowrite32(ap->prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS); |
| |
| /* specify data direction, triple-check start bit is clear */ |
| dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD); |
| dmactl &= ~(ATA_DMA_WR | ATA_DMA_START); |
| if (!rw) |
| dmactl |= ATA_DMA_WR; |
| iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD); |
| |
| /* issue r/w command */ |
| ap->ops->exec_command(ap, &qc->tf); |
| } |
| |
| /** |
| * ata_bmdma_start - Start a PCI IDE BMDMA transaction |
| * @qc: Info associated with this ATA transaction. |
| * |
| * LOCKING: |
| * spin_lock_irqsave(host lock) |
| */ |
| void ata_bmdma_start (struct ata_queued_cmd *qc) |
| { |
| struct ata_port *ap = qc->ap; |
| u8 dmactl; |
| |
| /* start host DMA transaction */ |
| dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD); |
| iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD); |
| |
| /* Strictly, one may wish to issue a readb() here, to |
| * flush the mmio write. However, control also passes |
| * to the hardware at this point, and it will interrupt |
| * us when we are to resume control. So, in effect, |
| * we don't care when the mmio write flushes. |
| * Further, a read of the DMA status register _immediately_ |
| * following the write may not be what certain flaky hardware |
| * is expected, so I think it is best to not add a readb() |
| * without first all the MMIO ATA cards/mobos. |
| * Or maybe I'm just being paranoid. |
| */ |
| } |
| |
| /** |
| * ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt. |
| * @ap: Port associated with this ATA transaction. |
| * |
| * Clear interrupt and error flags in DMA status register. |
| * |
| * May be used as the irq_clear() entry in ata_port_operations. |
| * |
| * LOCKING: |
| * spin_lock_irqsave(host lock) |
| */ |
| void ata_bmdma_irq_clear(struct ata_port *ap) |
| { |
| void __iomem *mmio = ap->ioaddr.bmdma_addr; |
| |
| if (!mmio) |
| return; |
| |
| iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS); |
| } |
| |
| /** |
| * ata_bmdma_status - Read PCI IDE BMDMA status |
| * @ap: Port associated with this ATA transaction. |
| * |
| * Read and return BMDMA status register. |
| * |
| * May be used as the bmdma_status() entry in ata_port_operations. |
| * |
| * LOCKING: |
| * spin_lock_irqsave(host lock) |
| */ |
| u8 ata_bmdma_status(struct ata_port *ap) |
| { |
| return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS); |
| } |
| |
| /** |
| * ata_bmdma_stop - Stop PCI IDE BMDMA transfer |
| * @qc: Command we are ending DMA for |
| * |
| * Clears the ATA_DMA_START flag in the dma control register |
| * |
| * May be used as the bmdma_stop() entry in ata_port_operations. |
| * |
| * LOCKING: |
| * spin_lock_irqsave(host lock) |
| */ |
| void ata_bmdma_stop(struct ata_queued_cmd *qc) |
| { |
| struct ata_port *ap = qc->ap; |
| void __iomem *mmio = ap->ioaddr.bmdma_addr; |
| |
| /* clear start/stop bit */ |
| iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START, |
| mmio + ATA_DMA_CMD); |
| |
| /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */ |
| ata_altstatus(ap); /* dummy read */ |
| } |
| |
| /** |
| * ata_bmdma_freeze - Freeze BMDMA controller port |
| * @ap: port to freeze |
| * |
| * Freeze BMDMA controller port. |
| * |
| * LOCKING: |
| * Inherited from caller. |
| */ |
| void ata_bmdma_freeze(struct ata_port *ap) |
| { |
| struct ata_ioports *ioaddr = &ap->ioaddr; |
| |
| ap->ctl |= ATA_NIEN; |
| ap->last_ctl = ap->ctl; |
| |
| iowrite8(ap->ctl, ioaddr->ctl_addr); |
| |
| /* Under certain circumstances, some controllers raise IRQ on |
| * ATA_NIEN manipulation. Also, many controllers fail to mask |
| * previously pending IRQ on ATA_NIEN assertion. Clear it. |
| */ |
| ata_chk_status(ap); |
| |
| ap->ops->irq_clear(ap); |
| } |
| |
| /** |
| * ata_bmdma_thaw - Thaw BMDMA controller port |
| * @ap: port to thaw |
| * |
| * Thaw BMDMA controller port. |
| * |
| * LOCKING: |
| * Inherited from caller. |
| */ |
| void ata_bmdma_thaw(struct ata_port *ap) |
| { |
| /* clear & re-enable interrupts */ |
| ata_chk_status(ap); |
| ap->ops->irq_clear(ap); |
| ap->ops->irq_on(ap); |
| } |
| |
| /** |
| * ata_bmdma_drive_eh - Perform EH with given methods for BMDMA controller |
| * @ap: port to handle error for |
| * @prereset: prereset method (can be NULL) |
| * @softreset: softreset method (can be NULL) |
| * @hardreset: hardreset method (can be NULL) |
| * @postreset: postreset method (can be NULL) |
| * |
| * Handle error for ATA BMDMA controller. It can handle both |
| * PATA and SATA controllers. Many controllers should be able to |
| * use this EH as-is or with some added handling before and |
| * after. |
| * |
| * This function is intended to be used for constructing |
| * ->error_handler callback by low level drivers. |
| * |
| * LOCKING: |
| * Kernel thread context (may sleep) |
| */ |
| void ata_bmdma_drive_eh(struct ata_port *ap, ata_prereset_fn_t prereset, |
| ata_reset_fn_t softreset, ata_reset_fn_t hardreset, |
| ata_postreset_fn_t postreset) |
| { |
| struct ata_queued_cmd *qc; |
| unsigned long flags; |
| int thaw = 0; |
| |
| qc = __ata_qc_from_tag(ap, ap->active_tag); |
| if (qc && !(qc->flags & ATA_QCFLAG_FAILED)) |
| qc = NULL; |
| |
| /* reset PIO HSM and stop DMA engine */ |
| spin_lock_irqsave(ap->lock, flags); |
| |
| ap->hsm_task_state = HSM_ST_IDLE; |
| |
| if (qc && (qc->tf.protocol == ATA_PROT_DMA || |
| qc->tf.protocol == ATA_PROT_ATAPI_DMA)) { |
| u8 host_stat; |
| |
| host_stat = ap->ops->bmdma_status(ap); |
| |
| /* BMDMA controllers indicate host bus error by |
| * setting DMA_ERR bit and timing out. As it wasn't |
| * really a timeout event, adjust error mask and |
| * cancel frozen state. |
| */ |
| if (qc->err_mask == AC_ERR_TIMEOUT && (host_stat & ATA_DMA_ERR)) { |
| qc->err_mask = AC_ERR_HOST_BUS; |
| thaw = 1; |
| } |
| |
| ap->ops->bmdma_stop(qc); |
| } |
| |
| ata_altstatus(ap); |
| ata_chk_status(ap); |
| ap->ops->irq_clear(ap); |
| |
| spin_unlock_irqrestore(ap->lock, flags); |
| |
| if (thaw) |
| ata_eh_thaw_port(ap); |
| |
| /* PIO and DMA engines have been stopped, perform recovery */ |
| ata_do_eh(ap, prereset, softreset, hardreset, postreset); |
| } |
| |
| /** |
| * ata_bmdma_error_handler - Stock error handler for BMDMA controller |
| * @ap: port to handle error for |
| * |
| * Stock error handler for BMDMA controller. |
| * |
| * LOCKING: |
| * Kernel thread context (may sleep) |
| */ |
| void ata_bmdma_error_handler(struct ata_port *ap) |
| { |
| ata_reset_fn_t hardreset; |
| |
| hardreset = NULL; |
| if (sata_scr_valid(ap)) |
| hardreset = sata_std_hardreset; |
| |
| ata_bmdma_drive_eh(ap, ata_std_prereset, ata_std_softreset, hardreset, |
| ata_std_postreset); |
| } |
| |
| /** |
| * ata_bmdma_post_internal_cmd - Stock post_internal_cmd for |
| * BMDMA controller |
| * @qc: internal command to clean up |
| * |
| * LOCKING: |
| * Kernel thread context (may sleep) |
| */ |
| void ata_bmdma_post_internal_cmd(struct ata_queued_cmd *qc) |
| { |
| if (qc->ap->ioaddr.bmdma_addr) |
| ata_bmdma_stop(qc); |
| } |
| |
| #ifdef CONFIG_PCI |
| |
| static int ata_resources_present(struct pci_dev *pdev, int port) |
| { |
| int i; |
| |
| /* Check the PCI resources for this channel are enabled */ |
| port = port * 2; |
| for (i = 0; i < 2; i ++) { |
| if (pci_resource_start(pdev, port + i) == 0 || |
| pci_resource_len(pdev, port + i) == 0) |
| return 0; |
| } |
| return 1; |
| } |
| |
| /** |
| * ata_pci_init_native_mode - Initialize native-mode driver |
| * @pdev: pci device to be initialized |
| * @port: array[2] of pointers to port info structures. |
| * @ports: bitmap of ports present |
| * |
| * Utility function which allocates and initializes an |
| * ata_probe_ent structure for a standard dual-port |
| * PIO-based IDE controller. The returned ata_probe_ent |
| * structure can be passed to ata_device_add(). The returned |
| * ata_probe_ent structure should then be freed with kfree(). |
| * |
| * The caller need only pass the address of the primary port, the |
| * secondary will be deduced automatically. If the device has non |
| * standard secondary port mappings this function can be called twice, |
| * once for each interface. |
| */ |
| |
| struct ata_probe_ent * |
| ata_pci_init_native_mode(struct pci_dev *pdev, struct ata_port_info **port, int ports) |
| { |
| struct ata_probe_ent *probe_ent; |
| int i; |
| void __iomem * const *iomap; |
| |
| /* Discard disabled ports. Some controllers show their unused |
| * channels this way. Disabled ports will be made dummy. |
| */ |
| if (ata_resources_present(pdev, 0) == 0) |
| ports &= ~ATA_PORT_PRIMARY; |
| if (ata_resources_present(pdev, 1) == 0) |
| ports &= ~ATA_PORT_SECONDARY; |
| |
| if (!ports) { |
| dev_printk(KERN_ERR, &pdev->dev, "no available port\n"); |
| return NULL; |
| } |
| |
| /* iomap BARs */ |
| for (i = 0; i < 4; i++) { |
| if (!(ports & (1 << (i / 2)))) |
| continue; |
| if (pcim_iomap(pdev, i, 0) == NULL) { |
| dev_printk(KERN_ERR, &pdev->dev, |
| "failed to iomap PCI BAR %d\n", i); |
| return NULL; |
| } |
| } |
| |
| pcim_iomap(pdev, 4, 0); /* may fail */ |
| iomap = pcim_iomap_table(pdev); |
| |
| /* alloc and init probe_ent */ |
| probe_ent = ata_probe_ent_alloc(pci_dev_to_dev(pdev), port[0]); |
| if (!probe_ent) |
| return NULL; |
| |
| probe_ent->n_ports = 2; |
| probe_ent->irq = pdev->irq; |
| probe_ent->irq_flags = IRQF_SHARED; |
| |
| if (ports & ATA_PORT_PRIMARY) { |
| probe_ent->port[0].cmd_addr = iomap[0]; |
| probe_ent->port[0].altstatus_addr = |
| probe_ent->port[0].ctl_addr = (void __iomem *) |
| ((unsigned long)iomap[1] | ATA_PCI_CTL_OFS); |
| if (iomap[4]) { |
| if ((!(port[0]->flags & ATA_FLAG_IGN_SIMPLEX)) && |
| (ioread8(iomap[4] + 2) & 0x80)) |
| probe_ent->_host_flags |= ATA_HOST_SIMPLEX; |
| probe_ent->port[0].bmdma_addr = iomap[4]; |
| } |
| ata_std_ports(&probe_ent->port[0]); |
| } else |
| probe_ent->dummy_port_mask |= ATA_PORT_PRIMARY; |
| |
| if (ports & ATA_PORT_SECONDARY) { |
| probe_ent->port[1].cmd_addr = iomap[2]; |
| probe_ent->port[1].altstatus_addr = |
| probe_ent->port[1].ctl_addr = (void __iomem *) |
| ((unsigned long)iomap[3] | ATA_PCI_CTL_OFS); |
| if (iomap[4]) { |
| if ((!(port[1]->flags & ATA_FLAG_IGN_SIMPLEX)) && |
| (ioread8(iomap[4] + 10) & 0x80)) |
| probe_ent->_host_flags |= ATA_HOST_SIMPLEX; |
| probe_ent->port[1].bmdma_addr = iomap[4] + 8; |
| } |
| ata_std_ports(&probe_ent->port[1]); |
| probe_ent->pinfo2 = port[1]; |
| } else |
| probe_ent->dummy_port_mask |= ATA_PORT_SECONDARY; |
| |
| return probe_ent; |
| } |
| |
| static struct ata_probe_ent *ata_pci_init_legacy_port(struct pci_dev *pdev, |
| struct ata_port_info **port, int port_mask) |
| { |
| struct ata_probe_ent *probe_ent; |
| void __iomem *iomap[5] = { }, *bmdma; |
| |
| if (port_mask & ATA_PORT_PRIMARY) { |
| iomap[0] = devm_ioport_map(&pdev->dev, ATA_PRIMARY_CMD, 8); |
| iomap[1] = devm_ioport_map(&pdev->dev, ATA_PRIMARY_CTL, 1); |
| if (!iomap[0] || !iomap[1]) |
| return NULL; |
| } |
| |
| if (port_mask & ATA_PORT_SECONDARY) { |
| iomap[2] = devm_ioport_map(&pdev->dev, ATA_SECONDARY_CMD, 8); |
| iomap[3] = devm_ioport_map(&pdev->dev, ATA_SECONDARY_CTL, 1); |
| if (!iomap[2] || !iomap[3]) |
| return NULL; |
| } |
| |
| bmdma = pcim_iomap(pdev, 4, 16); /* may fail */ |
| |
| /* alloc and init probe_ent */ |
| probe_ent = ata_probe_ent_alloc(pci_dev_to_dev(pdev), port[0]); |
| if (!probe_ent) |
| return NULL; |
| |
| probe_ent->n_ports = 2; |
| probe_ent->irq_flags = IRQF_SHARED; |
| |
| if (port_mask & ATA_PORT_PRIMARY) { |
| probe_ent->irq = ATA_PRIMARY_IRQ(pdev); |
| probe_ent->port[0].cmd_addr = iomap[0]; |
| probe_ent->port[0].altstatus_addr = |
| probe_ent->port[0].ctl_addr = iomap[1]; |
| if (bmdma) { |
| probe_ent->port[0].bmdma_addr = bmdma; |
| if ((!(port[0]->flags & ATA_FLAG_IGN_SIMPLEX)) && |
| (ioread8(bmdma + 2) & 0x80)) |
| probe_ent->_host_flags |= ATA_HOST_SIMPLEX; |
| } |
| ata_std_ports(&probe_ent->port[0]); |
| } else |
| probe_ent->dummy_port_mask |= ATA_PORT_PRIMARY; |
| |
| if (port_mask & ATA_PORT_SECONDARY) { |
| if (probe_ent->irq) |
| probe_ent->irq2 = ATA_SECONDARY_IRQ(pdev); |
| else |
| probe_ent->irq = ATA_SECONDARY_IRQ(pdev); |
| probe_ent->port[1].cmd_addr = iomap[2]; |
| probe_ent->port[1].altstatus_addr = |
| probe_ent->port[1].ctl_addr = iomap[3]; |
| if (bmdma) { |
| probe_ent->port[1].bmdma_addr = bmdma + 8; |
| if ((!(port[1]->flags & ATA_FLAG_IGN_SIMPLEX)) && |
| (ioread8(bmdma + 10) & 0x80)) |
| probe_ent->_host_flags |= ATA_HOST_SIMPLEX; |
| } |
| ata_std_ports(&probe_ent->port[1]); |
| |
| /* FIXME: could be pointing to stack area; must copy */ |
| probe_ent->pinfo2 = port[1]; |
| } else |
| probe_ent->dummy_port_mask |= ATA_PORT_SECONDARY; |
| |
| return probe_ent; |
| } |
| |
| |
| /** |
| * ata_pci_init_one - Initialize/register PCI IDE host controller |
| * @pdev: Controller to be initialized |
| * @port_info: Information from low-level host driver |
| * @n_ports: Number of ports attached to host controller |
| * |
| * This is a helper function which can be called from a driver's |
| * xxx_init_one() probe function if the hardware uses traditional |
| * IDE taskfile registers. |
| * |
| * This function calls pci_enable_device(), reserves its register |
| * regions, sets the dma mask, enables bus master mode, and calls |
| * ata_device_add() |
| * |
| * ASSUMPTION: |
| * Nobody makes a single channel controller that appears solely as |
| * the secondary legacy port on PCI. |
| * |
| * LOCKING: |
| * Inherited from PCI layer (may sleep). |
| * |
| * RETURNS: |
| * Zero on success, negative on errno-based value on error. |
| */ |
| |
| int ata_pci_init_one (struct pci_dev *pdev, struct ata_port_info **port_info, |
| unsigned int n_ports) |
| { |
| struct device *dev = &pdev->dev; |
| struct ata_probe_ent *probe_ent = NULL; |
| struct ata_port_info *port[2]; |
| u8 mask; |
| unsigned int legacy_mode = 0; |
| int rc; |
| |
| DPRINTK("ENTER\n"); |
| |
| if (!devres_open_group(dev, NULL, GFP_KERNEL)) |
| return -ENOMEM; |
| |
| BUG_ON(n_ports < 1 || n_ports > 2); |
| |
| port[0] = port_info[0]; |
| if (n_ports > 1) |
| port[1] = port_info[1]; |
| else |
| port[1] = port[0]; |
| |
| /* FIXME: Really for ATA it isn't safe because the device may be |
| multi-purpose and we want to leave it alone if it was already |
| enabled. Secondly for shared use as Arjan says we want refcounting |
| |
| Checking dev->is_enabled is insufficient as this is not set at |
| boot for the primary video which is BIOS enabled |
| */ |
| |
| rc = pcim_enable_device(pdev); |
| if (rc) |
| goto err_out; |
| |
| if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) { |
| u8 tmp8; |
| |
| /* TODO: What if one channel is in native mode ... */ |
| pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8); |
| mask = (1 << 2) | (1 << 0); |
| if ((tmp8 & mask) != mask) |
| legacy_mode = (1 << 3); |
| #if defined(CONFIG_NO_ATA_LEGACY) |
| /* Some platforms with PCI limits cannot address compat |
| port space. In that case we punt if their firmware has |
| left a device in compatibility mode */ |
| if (legacy_mode) { |
| printk(KERN_ERR "ata: Compatibility mode ATA is not supported on this platform, skipping.\n"); |
| rc = -EOPNOTSUPP; |
| goto err_out; |
| } |
| #endif |
| } |
| |
| if (!legacy_mode) { |
| rc = pci_request_regions(pdev, DRV_NAME); |
| if (rc) { |
| pcim_pin_device(pdev); |
| goto err_out; |
| } |
| } else { |
| /* Deal with combined mode hack. This side of the logic all |
| goes away once the combined mode hack is killed in 2.6.21 */ |
| if (!devm_request_region(dev, ATA_PRIMARY_CMD, 8, "libata")) { |
| pcim_pin_device(pdev); |
| printk(KERN_WARNING "ata: 0x%0X IDE port busy\n", |
| ATA_PRIMARY_CMD); |
| } else |
| legacy_mode |= ATA_PORT_PRIMARY; |
| |
| if (!devm_request_region(dev, ATA_SECONDARY_CMD, 8, "libata")) { |
| pcim_pin_device(pdev); |
| printk(KERN_WARNING "ata: 0x%X IDE port busy\n", |
| ATA_SECONDARY_CMD); |
| } else |
| legacy_mode |= ATA_PORT_SECONDARY; |
| |
| if (legacy_mode & ATA_PORT_PRIMARY) |
| pci_request_region(pdev, 1, DRV_NAME); |
| if (legacy_mode & ATA_PORT_SECONDARY) |
| pci_request_region(pdev, 3, DRV_NAME); |
| /* If there is a DMA resource, allocate it */ |
| pci_request_region(pdev, 4, DRV_NAME); |
| } |
| |
| /* we have legacy mode, but all ports are unavailable */ |
| if (legacy_mode == (1 << 3)) { |
| rc = -EBUSY; |
| goto err_out; |
| } |
| |
| /* TODO: If we get no DMA mask we should fall back to PIO */ |
| rc = pci_set_dma_mask(pdev, ATA_DMA_MASK); |
| if (rc) |
| goto err_out; |
| rc = pci_set_consistent_dma_mask(pdev, ATA_DMA_MASK); |
| if (rc) |
| goto err_out; |
| |
| if (legacy_mode) { |
| probe_ent = ata_pci_init_legacy_port(pdev, port, legacy_mode); |
| } else { |
| if (n_ports == 2) |
| probe_ent = ata_pci_init_native_mode(pdev, port, ATA_PORT_PRIMARY | ATA_PORT_SECONDARY); |
| else |
| probe_ent = ata_pci_init_native_mode(pdev, port, ATA_PORT_PRIMARY); |
| } |
| if (!probe_ent) { |
| rc = -ENOMEM; |
| goto err_out; |
| } |
| |
| pci_set_master(pdev); |
| |
| if (!ata_device_add(probe_ent)) { |
| rc = -ENODEV; |
| goto err_out; |
| } |
| |
| devm_kfree(dev, probe_ent); |
| devres_remove_group(dev, NULL); |
| return 0; |
| |
| err_out: |
| devres_release_group(dev, NULL); |
| return rc; |
| } |
| |
| /** |
| * ata_pci_clear_simplex - attempt to kick device out of simplex |
| * @pdev: PCI device |
| * |
| * Some PCI ATA devices report simplex mode but in fact can be told to |
| * enter non simplex mode. This implements the neccessary logic to |
| * perform the task on such devices. Calling it on other devices will |
| * have -undefined- behaviour. |
| */ |
| |
| int ata_pci_clear_simplex(struct pci_dev *pdev) |
| { |
| unsigned long bmdma = pci_resource_start(pdev, 4); |
| u8 simplex; |
| |
| if (bmdma == 0) |
| return -ENOENT; |
| |
| simplex = inb(bmdma + 0x02); |
| outb(simplex & 0x60, bmdma + 0x02); |
| simplex = inb(bmdma + 0x02); |
| if (simplex & 0x80) |
| return -EOPNOTSUPP; |
| return 0; |
| } |
| |
| unsigned long ata_pci_default_filter(struct ata_device *adev, unsigned long xfer_mask) |
| { |
| /* Filter out DMA modes if the device has been configured by |
| the BIOS as PIO only */ |
| |
| if (adev->ap->ioaddr.bmdma_addr == 0) |
| xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); |
| return xfer_mask; |
| } |
| |
| #endif /* CONFIG_PCI */ |
| |