| /* |
| * intel_scu_ipc.c: Driver for the Intel SCU IPC mechanism |
| * |
| * (C) Copyright 2008-2010 Intel Corporation |
| * Author: Sreedhara DS (sreedhara.ds@intel.com) |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; version 2 |
| * of the License. |
| * |
| * SCU running in ARC processor communicates with other entity running in IA |
| * core through IPC mechanism which in turn messaging between IA core ad SCU. |
| * SCU has two IPC mechanism IPC-1 and IPC-2. IPC-1 is used between IA32 and |
| * SCU where IPC-2 is used between P-Unit and SCU. This driver delas with |
| * IPC-1 Driver provides an API for power control unit registers (e.g. MSIC) |
| * along with other APIs. |
| */ |
| #include <linux/delay.h> |
| #include <linux/errno.h> |
| #include <linux/init.h> |
| #include <linux/device.h> |
| #include <linux/pm.h> |
| #include <linux/pci.h> |
| #include <linux/interrupt.h> |
| #include <linux/sfi.h> |
| #include <linux/module.h> |
| #include <asm/intel-mid.h> |
| #include <asm/intel_scu_ipc.h> |
| |
| /* IPC defines the following message types */ |
| #define IPCMSG_WATCHDOG_TIMER 0xF8 /* Set Kernel Watchdog Threshold */ |
| #define IPCMSG_BATTERY 0xEF /* Coulomb Counter Accumulator */ |
| #define IPCMSG_FW_UPDATE 0xFE /* Firmware update */ |
| #define IPCMSG_PCNTRL 0xFF /* Power controller unit read/write */ |
| #define IPCMSG_FW_REVISION 0xF4 /* Get firmware revision */ |
| |
| /* Command id associated with message IPCMSG_PCNTRL */ |
| #define IPC_CMD_PCNTRL_W 0 /* Register write */ |
| #define IPC_CMD_PCNTRL_R 1 /* Register read */ |
| #define IPC_CMD_PCNTRL_M 2 /* Register read-modify-write */ |
| |
| /* |
| * IPC register summary |
| * |
| * IPC register blocks are memory mapped at fixed address of 0xFF11C000 |
| * To read or write information to the SCU, driver writes to IPC-1 memory |
| * mapped registers (base address 0xFF11C000). The following is the IPC |
| * mechanism |
| * |
| * 1. IA core cDMI interface claims this transaction and converts it to a |
| * Transaction Layer Packet (TLP) message which is sent across the cDMI. |
| * |
| * 2. South Complex cDMI block receives this message and writes it to |
| * the IPC-1 register block, causing an interrupt to the SCU |
| * |
| * 3. SCU firmware decodes this interrupt and IPC message and the appropriate |
| * message handler is called within firmware. |
| */ |
| |
| #define IPC_WWBUF_SIZE 20 /* IPC Write buffer Size */ |
| #define IPC_RWBUF_SIZE 20 /* IPC Read buffer Size */ |
| |
| enum { |
| SCU_IPC_LINCROFT, |
| SCU_IPC_PENWELL, |
| SCU_IPC_CLOVERVIEW, |
| SCU_IPC_TANGIER, |
| }; |
| |
| /* intel scu ipc driver data*/ |
| struct intel_scu_ipc_pdata_t { |
| u32 ipc_base; |
| u32 i2c_base; |
| u32 ipc_len; |
| u32 i2c_len; |
| }; |
| |
| static struct intel_scu_ipc_pdata_t intel_scu_ipc_pdata[] = { |
| [SCU_IPC_LINCROFT] = { |
| .ipc_base = 0xff11c000, |
| .i2c_base = 0xff12b000, |
| .ipc_len = 0x100, |
| .i2c_len = 0x10, |
| }, |
| [SCU_IPC_PENWELL] = { |
| .ipc_base = 0xff11c000, |
| .i2c_base = 0xff12b000, |
| .ipc_len = 0x100, |
| .i2c_len = 0x10, |
| }, |
| [SCU_IPC_CLOVERVIEW] = { |
| .ipc_base = 0xff11c000, |
| .i2c_base = 0xff12b000, |
| .ipc_len = 0x100, |
| .i2c_len = 0x10, |
| }, |
| [SCU_IPC_TANGIER] = { |
| .ipc_base = 0xff009000, |
| .i2c_base = 0xff00d000, |
| .ipc_len = 0x100, |
| .i2c_len = 0x10, |
| }, |
| }; |
| |
| static int ipc_probe(struct pci_dev *dev, const struct pci_device_id *id); |
| static void ipc_remove(struct pci_dev *pdev); |
| |
| struct intel_scu_ipc_dev { |
| struct pci_dev *pdev; |
| void __iomem *ipc_base; |
| void __iomem *i2c_base; |
| }; |
| |
| static struct intel_scu_ipc_dev ipcdev; /* Only one for now */ |
| |
| static int platform; /* Platform type */ |
| |
| /* |
| * IPC Read Buffer (Read Only): |
| * 16 byte buffer for receiving data from SCU, if IPC command |
| * processing results in response data |
| */ |
| #define IPC_READ_BUFFER 0x90 |
| |
| #define IPC_I2C_CNTRL_ADDR 0 |
| #define I2C_DATA_ADDR 0x04 |
| |
| static DEFINE_MUTEX(ipclock); /* lock used to prevent multiple call to SCU */ |
| |
| /* |
| * Command Register (Write Only): |
| * A write to this register results in an interrupt to the SCU core processor |
| * Format: |
| * |rfu2(8) | size(8) | command id(4) | rfu1(3) | ioc(1) | command(8)| |
| */ |
| static inline void ipc_command(u32 cmd) /* Send ipc command */ |
| { |
| writel(cmd, ipcdev.ipc_base); |
| } |
| |
| /* |
| * IPC Write Buffer (Write Only): |
| * 16-byte buffer for sending data associated with IPC command to |
| * SCU. Size of the data is specified in the IPC_COMMAND_REG register |
| */ |
| static inline void ipc_data_writel(u32 data, u32 offset) /* Write ipc data */ |
| { |
| writel(data, ipcdev.ipc_base + 0x80 + offset); |
| } |
| |
| /* |
| * Status Register (Read Only): |
| * Driver will read this register to get the ready/busy status of the IPC |
| * block and error status of the IPC command that was just processed by SCU |
| * Format: |
| * |rfu3(8)|error code(8)|initiator id(8)|cmd id(4)|rfu1(2)|error(1)|busy(1)| |
| */ |
| |
| static inline u8 ipc_read_status(void) |
| { |
| return __raw_readl(ipcdev.ipc_base + 0x04); |
| } |
| |
| static inline u8 ipc_data_readb(u32 offset) /* Read ipc byte data */ |
| { |
| return readb(ipcdev.ipc_base + IPC_READ_BUFFER + offset); |
| } |
| |
| static inline u32 ipc_data_readl(u32 offset) /* Read ipc u32 data */ |
| { |
| return readl(ipcdev.ipc_base + IPC_READ_BUFFER + offset); |
| } |
| |
| static inline int busy_loop(void) /* Wait till scu status is busy */ |
| { |
| u32 status = 0; |
| u32 loop_count = 0; |
| |
| status = ipc_read_status(); |
| while (status & 1) { |
| udelay(1); /* scu processing time is in few u secods */ |
| status = ipc_read_status(); |
| loop_count++; |
| /* break if scu doesn't reset busy bit after huge retry */ |
| if (loop_count > 100000) { |
| dev_err(&ipcdev.pdev->dev, "IPC timed out"); |
| return -ETIMEDOUT; |
| } |
| } |
| if ((status >> 1) & 1) |
| return -EIO; |
| |
| return 0; |
| } |
| |
| /* Read/Write power control(PMIC in Langwell, MSIC in PenWell) registers */ |
| static int pwr_reg_rdwr(u16 *addr, u8 *data, u32 count, u32 op, u32 id) |
| { |
| int nc; |
| u32 offset = 0; |
| int err; |
| u8 cbuf[IPC_WWBUF_SIZE] = { }; |
| u32 *wbuf = (u32 *)&cbuf; |
| |
| mutex_lock(&ipclock); |
| |
| memset(cbuf, 0, sizeof(cbuf)); |
| |
| if (ipcdev.pdev == NULL) { |
| mutex_unlock(&ipclock); |
| return -ENODEV; |
| } |
| |
| for (nc = 0; nc < count; nc++, offset += 2) { |
| cbuf[offset] = addr[nc]; |
| cbuf[offset + 1] = addr[nc] >> 8; |
| } |
| |
| if (id == IPC_CMD_PCNTRL_R) { |
| for (nc = 0, offset = 0; nc < count; nc++, offset += 4) |
| ipc_data_writel(wbuf[nc], offset); |
| ipc_command((count*2) << 16 | id << 12 | 0 << 8 | op); |
| } else if (id == IPC_CMD_PCNTRL_W) { |
| for (nc = 0; nc < count; nc++, offset += 1) |
| cbuf[offset] = data[nc]; |
| for (nc = 0, offset = 0; nc < count; nc++, offset += 4) |
| ipc_data_writel(wbuf[nc], offset); |
| ipc_command((count*3) << 16 | id << 12 | 0 << 8 | op); |
| } else if (id == IPC_CMD_PCNTRL_M) { |
| cbuf[offset] = data[0]; |
| cbuf[offset + 1] = data[1]; |
| ipc_data_writel(wbuf[0], 0); /* Write wbuff */ |
| ipc_command(4 << 16 | id << 12 | 0 << 8 | op); |
| } |
| |
| err = busy_loop(); |
| if (!err && id == IPC_CMD_PCNTRL_R) { /* Read rbuf */ |
| /* Workaround: values are read as 0 without memcpy_fromio */ |
| memcpy_fromio(cbuf, ipcdev.ipc_base + 0x90, 16); |
| for (nc = 0; nc < count; nc++) |
| data[nc] = ipc_data_readb(nc); |
| } |
| mutex_unlock(&ipclock); |
| return err; |
| } |
| |
| /** |
| * intel_scu_ipc_ioread8 - read a word via the SCU |
| * @addr: register on SCU |
| * @data: return pointer for read byte |
| * |
| * Read a single register. Returns 0 on success or an error code. All |
| * locking between SCU accesses is handled for the caller. |
| * |
| * This function may sleep. |
| */ |
| int intel_scu_ipc_ioread8(u16 addr, u8 *data) |
| { |
| return pwr_reg_rdwr(&addr, data, 1, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R); |
| } |
| EXPORT_SYMBOL(intel_scu_ipc_ioread8); |
| |
| /** |
| * intel_scu_ipc_ioread16 - read a word via the SCU |
| * @addr: register on SCU |
| * @data: return pointer for read word |
| * |
| * Read a register pair. Returns 0 on success or an error code. All |
| * locking between SCU accesses is handled for the caller. |
| * |
| * This function may sleep. |
| */ |
| int intel_scu_ipc_ioread16(u16 addr, u16 *data) |
| { |
| u16 x[2] = {addr, addr + 1 }; |
| return pwr_reg_rdwr(x, (u8 *)data, 2, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R); |
| } |
| EXPORT_SYMBOL(intel_scu_ipc_ioread16); |
| |
| /** |
| * intel_scu_ipc_ioread32 - read a dword via the SCU |
| * @addr: register on SCU |
| * @data: return pointer for read dword |
| * |
| * Read four registers. Returns 0 on success or an error code. All |
| * locking between SCU accesses is handled for the caller. |
| * |
| * This function may sleep. |
| */ |
| int intel_scu_ipc_ioread32(u16 addr, u32 *data) |
| { |
| u16 x[4] = {addr, addr + 1, addr + 2, addr + 3}; |
| return pwr_reg_rdwr(x, (u8 *)data, 4, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R); |
| } |
| EXPORT_SYMBOL(intel_scu_ipc_ioread32); |
| |
| /** |
| * intel_scu_ipc_iowrite8 - write a byte via the SCU |
| * @addr: register on SCU |
| * @data: byte to write |
| * |
| * Write a single register. Returns 0 on success or an error code. All |
| * locking between SCU accesses is handled for the caller. |
| * |
| * This function may sleep. |
| */ |
| int intel_scu_ipc_iowrite8(u16 addr, u8 data) |
| { |
| return pwr_reg_rdwr(&addr, &data, 1, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W); |
| } |
| EXPORT_SYMBOL(intel_scu_ipc_iowrite8); |
| |
| /** |
| * intel_scu_ipc_iowrite16 - write a word via the SCU |
| * @addr: register on SCU |
| * @data: word to write |
| * |
| * Write two registers. Returns 0 on success or an error code. All |
| * locking between SCU accesses is handled for the caller. |
| * |
| * This function may sleep. |
| */ |
| int intel_scu_ipc_iowrite16(u16 addr, u16 data) |
| { |
| u16 x[2] = {addr, addr + 1 }; |
| return pwr_reg_rdwr(x, (u8 *)&data, 2, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W); |
| } |
| EXPORT_SYMBOL(intel_scu_ipc_iowrite16); |
| |
| /** |
| * intel_scu_ipc_iowrite32 - write a dword via the SCU |
| * @addr: register on SCU |
| * @data: dword to write |
| * |
| * Write four registers. Returns 0 on success or an error code. All |
| * locking between SCU accesses is handled for the caller. |
| * |
| * This function may sleep. |
| */ |
| int intel_scu_ipc_iowrite32(u16 addr, u32 data) |
| { |
| u16 x[4] = {addr, addr + 1, addr + 2, addr + 3}; |
| return pwr_reg_rdwr(x, (u8 *)&data, 4, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W); |
| } |
| EXPORT_SYMBOL(intel_scu_ipc_iowrite32); |
| |
| /** |
| * intel_scu_ipc_readvv - read a set of registers |
| * @addr: register list |
| * @data: bytes to return |
| * @len: length of array |
| * |
| * Read registers. Returns 0 on success or an error code. All |
| * locking between SCU accesses is handled for the caller. |
| * |
| * The largest array length permitted by the hardware is 5 items. |
| * |
| * This function may sleep. |
| */ |
| int intel_scu_ipc_readv(u16 *addr, u8 *data, int len) |
| { |
| return pwr_reg_rdwr(addr, data, len, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R); |
| } |
| EXPORT_SYMBOL(intel_scu_ipc_readv); |
| |
| /** |
| * intel_scu_ipc_writev - write a set of registers |
| * @addr: register list |
| * @data: bytes to write |
| * @len: length of array |
| * |
| * Write registers. Returns 0 on success or an error code. All |
| * locking between SCU accesses is handled for the caller. |
| * |
| * The largest array length permitted by the hardware is 5 items. |
| * |
| * This function may sleep. |
| * |
| */ |
| int intel_scu_ipc_writev(u16 *addr, u8 *data, int len) |
| { |
| return pwr_reg_rdwr(addr, data, len, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W); |
| } |
| EXPORT_SYMBOL(intel_scu_ipc_writev); |
| |
| |
| /** |
| * intel_scu_ipc_update_register - r/m/w a register |
| * @addr: register address |
| * @bits: bits to update |
| * @mask: mask of bits to update |
| * |
| * Read-modify-write power control unit register. The first data argument |
| * must be register value and second is mask value |
| * mask is a bitmap that indicates which bits to update. |
| * 0 = masked. Don't modify this bit, 1 = modify this bit. |
| * returns 0 on success or an error code. |
| * |
| * This function may sleep. Locking between SCU accesses is handled |
| * for the caller. |
| */ |
| int intel_scu_ipc_update_register(u16 addr, u8 bits, u8 mask) |
| { |
| u8 data[2] = { bits, mask }; |
| return pwr_reg_rdwr(&addr, data, 1, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_M); |
| } |
| EXPORT_SYMBOL(intel_scu_ipc_update_register); |
| |
| /** |
| * intel_scu_ipc_simple_command - send a simple command |
| * @cmd: command |
| * @sub: sub type |
| * |
| * Issue a simple command to the SCU. Do not use this interface if |
| * you must then access data as any data values may be overwritten |
| * by another SCU access by the time this function returns. |
| * |
| * This function may sleep. Locking for SCU accesses is handled for |
| * the caller. |
| */ |
| int intel_scu_ipc_simple_command(int cmd, int sub) |
| { |
| int err; |
| |
| mutex_lock(&ipclock); |
| if (ipcdev.pdev == NULL) { |
| mutex_unlock(&ipclock); |
| return -ENODEV; |
| } |
| ipc_command(sub << 12 | cmd); |
| err = busy_loop(); |
| mutex_unlock(&ipclock); |
| return err; |
| } |
| EXPORT_SYMBOL(intel_scu_ipc_simple_command); |
| |
| /** |
| * intel_scu_ipc_command - command with data |
| * @cmd: command |
| * @sub: sub type |
| * @in: input data |
| * @inlen: input length in dwords |
| * @out: output data |
| * @outlein: output length in dwords |
| * |
| * Issue a command to the SCU which involves data transfers. Do the |
| * data copies under the lock but leave it for the caller to interpret |
| */ |
| |
| int intel_scu_ipc_command(int cmd, int sub, u32 *in, int inlen, |
| u32 *out, int outlen) |
| { |
| int i, err; |
| |
| mutex_lock(&ipclock); |
| if (ipcdev.pdev == NULL) { |
| mutex_unlock(&ipclock); |
| return -ENODEV; |
| } |
| |
| for (i = 0; i < inlen; i++) |
| ipc_data_writel(*in++, 4 * i); |
| |
| ipc_command((inlen << 16) | (sub << 12) | cmd); |
| err = busy_loop(); |
| |
| if (!err) { |
| for (i = 0; i < outlen; i++) |
| *out++ = ipc_data_readl(4 * i); |
| } |
| |
| mutex_unlock(&ipclock); |
| return err; |
| } |
| EXPORT_SYMBOL(intel_scu_ipc_command); |
| |
| /*I2C commands */ |
| #define IPC_I2C_WRITE 1 /* I2C Write command */ |
| #define IPC_I2C_READ 2 /* I2C Read command */ |
| |
| /** |
| * intel_scu_ipc_i2c_cntrl - I2C read/write operations |
| * @addr: I2C address + command bits |
| * @data: data to read/write |
| * |
| * Perform an an I2C read/write operation via the SCU. All locking is |
| * handled for the caller. This function may sleep. |
| * |
| * Returns an error code or 0 on success. |
| * |
| * This has to be in the IPC driver for the locking. |
| */ |
| int intel_scu_ipc_i2c_cntrl(u32 addr, u32 *data) |
| { |
| u32 cmd = 0; |
| |
| mutex_lock(&ipclock); |
| if (ipcdev.pdev == NULL) { |
| mutex_unlock(&ipclock); |
| return -ENODEV; |
| } |
| cmd = (addr >> 24) & 0xFF; |
| if (cmd == IPC_I2C_READ) { |
| writel(addr, ipcdev.i2c_base + IPC_I2C_CNTRL_ADDR); |
| /* Write not getting updated without delay */ |
| mdelay(1); |
| *data = readl(ipcdev.i2c_base + I2C_DATA_ADDR); |
| } else if (cmd == IPC_I2C_WRITE) { |
| writel(*data, ipcdev.i2c_base + I2C_DATA_ADDR); |
| mdelay(1); |
| writel(addr, ipcdev.i2c_base + IPC_I2C_CNTRL_ADDR); |
| } else { |
| dev_err(&ipcdev.pdev->dev, |
| "intel_scu_ipc: I2C INVALID_CMD = 0x%x\n", cmd); |
| |
| mutex_unlock(&ipclock); |
| return -EIO; |
| } |
| mutex_unlock(&ipclock); |
| return 0; |
| } |
| EXPORT_SYMBOL(intel_scu_ipc_i2c_cntrl); |
| |
| /* |
| * Interrupt handler gets called when ioc bit of IPC_COMMAND_REG set to 1 |
| * When ioc bit is set to 1, caller api must wait for interrupt handler called |
| * which in turn unlocks the caller api. Currently this is not used |
| * |
| * This is edge triggered so we need take no action to clear anything |
| */ |
| static irqreturn_t ioc(int irq, void *dev_id) |
| { |
| return IRQ_HANDLED; |
| } |
| |
| /** |
| * ipc_probe - probe an Intel SCU IPC |
| * @dev: the PCI device matching |
| * @id: entry in the match table |
| * |
| * Enable and install an intel SCU IPC. This appears in the PCI space |
| * but uses some hard coded addresses as well. |
| */ |
| static int ipc_probe(struct pci_dev *dev, const struct pci_device_id *id) |
| { |
| int err, pid; |
| struct intel_scu_ipc_pdata_t *pdata; |
| resource_size_t pci_resource; |
| |
| if (ipcdev.pdev) /* We support only one SCU */ |
| return -EBUSY; |
| |
| pid = id->driver_data; |
| pdata = &intel_scu_ipc_pdata[pid]; |
| |
| ipcdev.pdev = pci_dev_get(dev); |
| |
| err = pci_enable_device(dev); |
| if (err) |
| return err; |
| |
| err = pci_request_regions(dev, "intel_scu_ipc"); |
| if (err) |
| return err; |
| |
| pci_resource = pci_resource_start(dev, 0); |
| if (!pci_resource) |
| return -ENOMEM; |
| |
| if (request_irq(dev->irq, ioc, 0, "intel_scu_ipc", &ipcdev)) |
| return -EBUSY; |
| |
| ipcdev.ipc_base = ioremap_nocache(pdata->ipc_base, pdata->ipc_len); |
| if (!ipcdev.ipc_base) |
| return -ENOMEM; |
| |
| ipcdev.i2c_base = ioremap_nocache(pdata->i2c_base, pdata->i2c_len); |
| if (!ipcdev.i2c_base) { |
| iounmap(ipcdev.ipc_base); |
| return -ENOMEM; |
| } |
| |
| intel_scu_devices_create(); |
| |
| return 0; |
| } |
| |
| /** |
| * ipc_remove - remove a bound IPC device |
| * @pdev: PCI device |
| * |
| * In practice the SCU is not removable but this function is also |
| * called for each device on a module unload or cleanup which is the |
| * path that will get used. |
| * |
| * Free up the mappings and release the PCI resources |
| */ |
| static void ipc_remove(struct pci_dev *pdev) |
| { |
| free_irq(pdev->irq, &ipcdev); |
| pci_release_regions(pdev); |
| pci_dev_put(ipcdev.pdev); |
| iounmap(ipcdev.ipc_base); |
| iounmap(ipcdev.i2c_base); |
| ipcdev.pdev = NULL; |
| intel_scu_devices_destroy(); |
| } |
| |
| static DEFINE_PCI_DEVICE_TABLE(pci_ids) = { |
| {PCI_VDEVICE(INTEL, 0x082a), SCU_IPC_LINCROFT}, |
| {PCI_VDEVICE(INTEL, 0x080e), SCU_IPC_PENWELL}, |
| {PCI_VDEVICE(INTEL, 0x08ea), SCU_IPC_CLOVERVIEW}, |
| {PCI_VDEVICE(INTEL, 0x11a0), SCU_IPC_TANGIER}, |
| { 0,} |
| }; |
| MODULE_DEVICE_TABLE(pci, pci_ids); |
| |
| static struct pci_driver ipc_driver = { |
| .name = "intel_scu_ipc", |
| .id_table = pci_ids, |
| .probe = ipc_probe, |
| .remove = ipc_remove, |
| }; |
| |
| |
| static int __init intel_scu_ipc_init(void) |
| { |
| platform = intel_mid_identify_cpu(); |
| if (platform == 0) |
| return -ENODEV; |
| return pci_register_driver(&ipc_driver); |
| } |
| |
| static void __exit intel_scu_ipc_exit(void) |
| { |
| pci_unregister_driver(&ipc_driver); |
| } |
| |
| MODULE_AUTHOR("Sreedhara DS <sreedhara.ds@intel.com>"); |
| MODULE_DESCRIPTION("Intel SCU IPC driver"); |
| MODULE_LICENSE("GPL"); |
| |
| module_init(intel_scu_ipc_init); |
| module_exit(intel_scu_ipc_exit); |