| /* |
| * VFIO PCI interrupt handling |
| * |
| * Copyright (C) 2012 Red Hat, Inc. All rights reserved. |
| * Author: Alex Williamson <alex.williamson@redhat.com> |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| * |
| * Derived from original vfio: |
| * Copyright 2010 Cisco Systems, Inc. All rights reserved. |
| * Author: Tom Lyon, pugs@cisco.com |
| */ |
| |
| #include <linux/device.h> |
| #include <linux/interrupt.h> |
| #include <linux/eventfd.h> |
| #include <linux/msi.h> |
| #include <linux/pci.h> |
| #include <linux/file.h> |
| #include <linux/vfio.h> |
| #include <linux/wait.h> |
| #include <linux/slab.h> |
| |
| #include "vfio_pci_private.h" |
| |
| /* |
| * INTx |
| */ |
| static void vfio_send_intx_eventfd(void *opaque, void *unused) |
| { |
| struct vfio_pci_device *vdev = opaque; |
| |
| if (likely(is_intx(vdev) && !vdev->virq_disabled)) |
| eventfd_signal(vdev->ctx[0].trigger, 1); |
| } |
| |
| void vfio_pci_intx_mask(struct vfio_pci_device *vdev) |
| { |
| struct pci_dev *pdev = vdev->pdev; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&vdev->irqlock, flags); |
| |
| /* |
| * Masking can come from interrupt, ioctl, or config space |
| * via INTx disable. The latter means this can get called |
| * even when not using intx delivery. In this case, just |
| * try to have the physical bit follow the virtual bit. |
| */ |
| if (unlikely(!is_intx(vdev))) { |
| if (vdev->pci_2_3) |
| pci_intx(pdev, 0); |
| } else if (!vdev->ctx[0].masked) { |
| /* |
| * Can't use check_and_mask here because we always want to |
| * mask, not just when something is pending. |
| */ |
| if (vdev->pci_2_3) |
| pci_intx(pdev, 0); |
| else |
| disable_irq_nosync(pdev->irq); |
| |
| vdev->ctx[0].masked = true; |
| } |
| |
| spin_unlock_irqrestore(&vdev->irqlock, flags); |
| } |
| |
| /* |
| * If this is triggered by an eventfd, we can't call eventfd_signal |
| * or else we'll deadlock on the eventfd wait queue. Return >0 when |
| * a signal is necessary, which can then be handled via a work queue |
| * or directly depending on the caller. |
| */ |
| static int vfio_pci_intx_unmask_handler(void *opaque, void *unused) |
| { |
| struct vfio_pci_device *vdev = opaque; |
| struct pci_dev *pdev = vdev->pdev; |
| unsigned long flags; |
| int ret = 0; |
| |
| spin_lock_irqsave(&vdev->irqlock, flags); |
| |
| /* |
| * Unmasking comes from ioctl or config, so again, have the |
| * physical bit follow the virtual even when not using INTx. |
| */ |
| if (unlikely(!is_intx(vdev))) { |
| if (vdev->pci_2_3) |
| pci_intx(pdev, 1); |
| } else if (vdev->ctx[0].masked && !vdev->virq_disabled) { |
| /* |
| * A pending interrupt here would immediately trigger, |
| * but we can avoid that overhead by just re-sending |
| * the interrupt to the user. |
| */ |
| if (vdev->pci_2_3) { |
| if (!pci_check_and_unmask_intx(pdev)) |
| ret = 1; |
| } else |
| enable_irq(pdev->irq); |
| |
| vdev->ctx[0].masked = (ret > 0); |
| } |
| |
| spin_unlock_irqrestore(&vdev->irqlock, flags); |
| |
| return ret; |
| } |
| |
| void vfio_pci_intx_unmask(struct vfio_pci_device *vdev) |
| { |
| if (vfio_pci_intx_unmask_handler(vdev, NULL) > 0) |
| vfio_send_intx_eventfd(vdev, NULL); |
| } |
| |
| static irqreturn_t vfio_intx_handler(int irq, void *dev_id) |
| { |
| struct vfio_pci_device *vdev = dev_id; |
| unsigned long flags; |
| int ret = IRQ_NONE; |
| |
| spin_lock_irqsave(&vdev->irqlock, flags); |
| |
| if (!vdev->pci_2_3) { |
| disable_irq_nosync(vdev->pdev->irq); |
| vdev->ctx[0].masked = true; |
| ret = IRQ_HANDLED; |
| } else if (!vdev->ctx[0].masked && /* may be shared */ |
| pci_check_and_mask_intx(vdev->pdev)) { |
| vdev->ctx[0].masked = true; |
| ret = IRQ_HANDLED; |
| } |
| |
| spin_unlock_irqrestore(&vdev->irqlock, flags); |
| |
| if (ret == IRQ_HANDLED) |
| vfio_send_intx_eventfd(vdev, NULL); |
| |
| return ret; |
| } |
| |
| static int vfio_intx_enable(struct vfio_pci_device *vdev) |
| { |
| if (!is_irq_none(vdev)) |
| return -EINVAL; |
| |
| if (!vdev->pdev->irq) |
| return -ENODEV; |
| |
| vdev->ctx = kzalloc(sizeof(struct vfio_pci_irq_ctx), GFP_KERNEL); |
| if (!vdev->ctx) |
| return -ENOMEM; |
| |
| vdev->num_ctx = 1; |
| |
| /* |
| * If the virtual interrupt is masked, restore it. Devices |
| * supporting DisINTx can be masked at the hardware level |
| * here, non-PCI-2.3 devices will have to wait until the |
| * interrupt is enabled. |
| */ |
| vdev->ctx[0].masked = vdev->virq_disabled; |
| if (vdev->pci_2_3) |
| pci_intx(vdev->pdev, !vdev->ctx[0].masked); |
| |
| vdev->irq_type = VFIO_PCI_INTX_IRQ_INDEX; |
| |
| return 0; |
| } |
| |
| static int vfio_intx_set_signal(struct vfio_pci_device *vdev, int fd) |
| { |
| struct pci_dev *pdev = vdev->pdev; |
| unsigned long irqflags = IRQF_SHARED; |
| struct eventfd_ctx *trigger; |
| unsigned long flags; |
| int ret; |
| |
| if (vdev->ctx[0].trigger) { |
| free_irq(pdev->irq, vdev); |
| kfree(vdev->ctx[0].name); |
| eventfd_ctx_put(vdev->ctx[0].trigger); |
| vdev->ctx[0].trigger = NULL; |
| } |
| |
| if (fd < 0) /* Disable only */ |
| return 0; |
| |
| vdev->ctx[0].name = kasprintf(GFP_KERNEL, "vfio-intx(%s)", |
| pci_name(pdev)); |
| if (!vdev->ctx[0].name) |
| return -ENOMEM; |
| |
| trigger = eventfd_ctx_fdget(fd); |
| if (IS_ERR(trigger)) { |
| kfree(vdev->ctx[0].name); |
| return PTR_ERR(trigger); |
| } |
| |
| vdev->ctx[0].trigger = trigger; |
| |
| if (!vdev->pci_2_3) |
| irqflags = 0; |
| |
| ret = request_irq(pdev->irq, vfio_intx_handler, |
| irqflags, vdev->ctx[0].name, vdev); |
| if (ret) { |
| vdev->ctx[0].trigger = NULL; |
| kfree(vdev->ctx[0].name); |
| eventfd_ctx_put(trigger); |
| return ret; |
| } |
| |
| /* |
| * INTx disable will stick across the new irq setup, |
| * disable_irq won't. |
| */ |
| spin_lock_irqsave(&vdev->irqlock, flags); |
| if (!vdev->pci_2_3 && vdev->ctx[0].masked) |
| disable_irq_nosync(pdev->irq); |
| spin_unlock_irqrestore(&vdev->irqlock, flags); |
| |
| return 0; |
| } |
| |
| static void vfio_intx_disable(struct vfio_pci_device *vdev) |
| { |
| vfio_virqfd_disable(&vdev->ctx[0].unmask); |
| vfio_virqfd_disable(&vdev->ctx[0].mask); |
| vfio_intx_set_signal(vdev, -1); |
| vdev->irq_type = VFIO_PCI_NUM_IRQS; |
| vdev->num_ctx = 0; |
| kfree(vdev->ctx); |
| } |
| |
| /* |
| * MSI/MSI-X |
| */ |
| static irqreturn_t vfio_msihandler(int irq, void *arg) |
| { |
| struct eventfd_ctx *trigger = arg; |
| |
| eventfd_signal(trigger, 1); |
| return IRQ_HANDLED; |
| } |
| |
| static int vfio_msi_enable(struct vfio_pci_device *vdev, int nvec, bool msix) |
| { |
| struct pci_dev *pdev = vdev->pdev; |
| int ret; |
| |
| if (!is_irq_none(vdev)) |
| return -EINVAL; |
| |
| vdev->ctx = kzalloc(nvec * sizeof(struct vfio_pci_irq_ctx), GFP_KERNEL); |
| if (!vdev->ctx) |
| return -ENOMEM; |
| |
| if (msix) { |
| int i; |
| |
| vdev->msix = kzalloc(nvec * sizeof(struct msix_entry), |
| GFP_KERNEL); |
| if (!vdev->msix) { |
| kfree(vdev->ctx); |
| return -ENOMEM; |
| } |
| |
| for (i = 0; i < nvec; i++) |
| vdev->msix[i].entry = i; |
| |
| ret = pci_enable_msix_range(pdev, vdev->msix, 1, nvec); |
| if (ret < nvec) { |
| if (ret > 0) |
| pci_disable_msix(pdev); |
| kfree(vdev->msix); |
| kfree(vdev->ctx); |
| return ret; |
| } |
| } else { |
| ret = pci_enable_msi_range(pdev, 1, nvec); |
| if (ret < nvec) { |
| if (ret > 0) |
| pci_disable_msi(pdev); |
| kfree(vdev->ctx); |
| return ret; |
| } |
| } |
| |
| vdev->num_ctx = nvec; |
| vdev->irq_type = msix ? VFIO_PCI_MSIX_IRQ_INDEX : |
| VFIO_PCI_MSI_IRQ_INDEX; |
| |
| if (!msix) { |
| /* |
| * Compute the virtual hardware field for max msi vectors - |
| * it is the log base 2 of the number of vectors. |
| */ |
| vdev->msi_qmax = fls(nvec * 2 - 1) - 1; |
| } |
| |
| return 0; |
| } |
| |
| static int vfio_msi_set_vector_signal(struct vfio_pci_device *vdev, |
| int vector, int fd, bool msix) |
| { |
| struct pci_dev *pdev = vdev->pdev; |
| struct eventfd_ctx *trigger; |
| int irq, ret; |
| |
| if (vector < 0 || vector >= vdev->num_ctx) |
| return -EINVAL; |
| |
| irq = msix ? vdev->msix[vector].vector : pdev->irq + vector; |
| |
| if (vdev->ctx[vector].trigger) { |
| free_irq(irq, vdev->ctx[vector].trigger); |
| irq_bypass_unregister_producer(&vdev->ctx[vector].producer); |
| kfree(vdev->ctx[vector].name); |
| eventfd_ctx_put(vdev->ctx[vector].trigger); |
| vdev->ctx[vector].trigger = NULL; |
| } |
| |
| if (fd < 0) |
| return 0; |
| |
| vdev->ctx[vector].name = kasprintf(GFP_KERNEL, "vfio-msi%s[%d](%s)", |
| msix ? "x" : "", vector, |
| pci_name(pdev)); |
| if (!vdev->ctx[vector].name) |
| return -ENOMEM; |
| |
| trigger = eventfd_ctx_fdget(fd); |
| if (IS_ERR(trigger)) { |
| kfree(vdev->ctx[vector].name); |
| return PTR_ERR(trigger); |
| } |
| |
| /* |
| * The MSIx vector table resides in device memory which may be cleared |
| * via backdoor resets. We don't allow direct access to the vector |
| * table so even if a userspace driver attempts to save/restore around |
| * such a reset it would be unsuccessful. To avoid this, restore the |
| * cached value of the message prior to enabling. |
| */ |
| if (msix) { |
| struct msi_msg msg; |
| |
| get_cached_msi_msg(irq, &msg); |
| pci_write_msi_msg(irq, &msg); |
| } |
| |
| ret = request_irq(irq, vfio_msihandler, 0, |
| vdev->ctx[vector].name, trigger); |
| if (ret) { |
| kfree(vdev->ctx[vector].name); |
| eventfd_ctx_put(trigger); |
| return ret; |
| } |
| |
| vdev->ctx[vector].producer.token = trigger; |
| vdev->ctx[vector].producer.irq = irq; |
| ret = irq_bypass_register_producer(&vdev->ctx[vector].producer); |
| if (unlikely(ret)) |
| dev_info(&pdev->dev, |
| "irq bypass producer (token %p) registration fails: %d\n", |
| vdev->ctx[vector].producer.token, ret); |
| |
| vdev->ctx[vector].trigger = trigger; |
| |
| return 0; |
| } |
| |
| static int vfio_msi_set_block(struct vfio_pci_device *vdev, unsigned start, |
| unsigned count, int32_t *fds, bool msix) |
| { |
| int i, j, ret = 0; |
| |
| if (start >= vdev->num_ctx || start + count > vdev->num_ctx) |
| return -EINVAL; |
| |
| for (i = 0, j = start; i < count && !ret; i++, j++) { |
| int fd = fds ? fds[i] : -1; |
| ret = vfio_msi_set_vector_signal(vdev, j, fd, msix); |
| } |
| |
| if (ret) { |
| for (--j; j >= (int)start; j--) |
| vfio_msi_set_vector_signal(vdev, j, -1, msix); |
| } |
| |
| return ret; |
| } |
| |
| static void vfio_msi_disable(struct vfio_pci_device *vdev, bool msix) |
| { |
| struct pci_dev *pdev = vdev->pdev; |
| int i; |
| |
| for (i = 0; i < vdev->num_ctx; i++) { |
| vfio_virqfd_disable(&vdev->ctx[i].unmask); |
| vfio_virqfd_disable(&vdev->ctx[i].mask); |
| } |
| |
| vfio_msi_set_block(vdev, 0, vdev->num_ctx, NULL, msix); |
| |
| if (msix) { |
| pci_disable_msix(vdev->pdev); |
| kfree(vdev->msix); |
| } else |
| pci_disable_msi(pdev); |
| |
| /* |
| * Both disable paths above use pci_intx_for_msi() to clear DisINTx |
| * via their shutdown paths. Restore for NoINTx devices. |
| */ |
| if (vdev->nointx) |
| pci_intx(pdev, 0); |
| |
| vdev->irq_type = VFIO_PCI_NUM_IRQS; |
| vdev->num_ctx = 0; |
| kfree(vdev->ctx); |
| } |
| |
| /* |
| * IOCTL support |
| */ |
| static int vfio_pci_set_intx_unmask(struct vfio_pci_device *vdev, |
| unsigned index, unsigned start, |
| unsigned count, uint32_t flags, void *data) |
| { |
| if (!is_intx(vdev) || start != 0 || count != 1) |
| return -EINVAL; |
| |
| if (flags & VFIO_IRQ_SET_DATA_NONE) { |
| vfio_pci_intx_unmask(vdev); |
| } else if (flags & VFIO_IRQ_SET_DATA_BOOL) { |
| uint8_t unmask = *(uint8_t *)data; |
| if (unmask) |
| vfio_pci_intx_unmask(vdev); |
| } else if (flags & VFIO_IRQ_SET_DATA_EVENTFD) { |
| int32_t fd = *(int32_t *)data; |
| if (fd >= 0) |
| return vfio_virqfd_enable((void *) vdev, |
| vfio_pci_intx_unmask_handler, |
| vfio_send_intx_eventfd, NULL, |
| &vdev->ctx[0].unmask, fd); |
| |
| vfio_virqfd_disable(&vdev->ctx[0].unmask); |
| } |
| |
| return 0; |
| } |
| |
| static int vfio_pci_set_intx_mask(struct vfio_pci_device *vdev, |
| unsigned index, unsigned start, |
| unsigned count, uint32_t flags, void *data) |
| { |
| if (!is_intx(vdev) || start != 0 || count != 1) |
| return -EINVAL; |
| |
| if (flags & VFIO_IRQ_SET_DATA_NONE) { |
| vfio_pci_intx_mask(vdev); |
| } else if (flags & VFIO_IRQ_SET_DATA_BOOL) { |
| uint8_t mask = *(uint8_t *)data; |
| if (mask) |
| vfio_pci_intx_mask(vdev); |
| } else if (flags & VFIO_IRQ_SET_DATA_EVENTFD) { |
| return -ENOTTY; /* XXX implement me */ |
| } |
| |
| return 0; |
| } |
| |
| static int vfio_pci_set_intx_trigger(struct vfio_pci_device *vdev, |
| unsigned index, unsigned start, |
| unsigned count, uint32_t flags, void *data) |
| { |
| if (is_intx(vdev) && !count && (flags & VFIO_IRQ_SET_DATA_NONE)) { |
| vfio_intx_disable(vdev); |
| return 0; |
| } |
| |
| if (!(is_intx(vdev) || is_irq_none(vdev)) || start != 0 || count != 1) |
| return -EINVAL; |
| |
| if (flags & VFIO_IRQ_SET_DATA_EVENTFD) { |
| int32_t fd = *(int32_t *)data; |
| int ret; |
| |
| if (is_intx(vdev)) |
| return vfio_intx_set_signal(vdev, fd); |
| |
| ret = vfio_intx_enable(vdev); |
| if (ret) |
| return ret; |
| |
| ret = vfio_intx_set_signal(vdev, fd); |
| if (ret) |
| vfio_intx_disable(vdev); |
| |
| return ret; |
| } |
| |
| if (!is_intx(vdev)) |
| return -EINVAL; |
| |
| if (flags & VFIO_IRQ_SET_DATA_NONE) { |
| vfio_send_intx_eventfd(vdev, NULL); |
| } else if (flags & VFIO_IRQ_SET_DATA_BOOL) { |
| uint8_t trigger = *(uint8_t *)data; |
| if (trigger) |
| vfio_send_intx_eventfd(vdev, NULL); |
| } |
| return 0; |
| } |
| |
| static int vfio_pci_set_msi_trigger(struct vfio_pci_device *vdev, |
| unsigned index, unsigned start, |
| unsigned count, uint32_t flags, void *data) |
| { |
| int i; |
| bool msix = (index == VFIO_PCI_MSIX_IRQ_INDEX) ? true : false; |
| |
| if (irq_is(vdev, index) && !count && (flags & VFIO_IRQ_SET_DATA_NONE)) { |
| vfio_msi_disable(vdev, msix); |
| return 0; |
| } |
| |
| if (!(irq_is(vdev, index) || is_irq_none(vdev))) |
| return -EINVAL; |
| |
| if (flags & VFIO_IRQ_SET_DATA_EVENTFD) { |
| int32_t *fds = data; |
| int ret; |
| |
| if (vdev->irq_type == index) |
| return vfio_msi_set_block(vdev, start, count, |
| fds, msix); |
| |
| ret = vfio_msi_enable(vdev, start + count, msix); |
| if (ret) |
| return ret; |
| |
| ret = vfio_msi_set_block(vdev, start, count, fds, msix); |
| if (ret) |
| vfio_msi_disable(vdev, msix); |
| |
| return ret; |
| } |
| |
| if (!irq_is(vdev, index) || start + count > vdev->num_ctx) |
| return -EINVAL; |
| |
| for (i = start; i < start + count; i++) { |
| if (!vdev->ctx[i].trigger) |
| continue; |
| if (flags & VFIO_IRQ_SET_DATA_NONE) { |
| eventfd_signal(vdev->ctx[i].trigger, 1); |
| } else if (flags & VFIO_IRQ_SET_DATA_BOOL) { |
| uint8_t *bools = data; |
| if (bools[i - start]) |
| eventfd_signal(vdev->ctx[i].trigger, 1); |
| } |
| } |
| return 0; |
| } |
| |
| static int vfio_pci_set_ctx_trigger_single(struct eventfd_ctx **ctx, |
| unsigned int count, uint32_t flags, |
| void *data) |
| { |
| /* DATA_NONE/DATA_BOOL enables loopback testing */ |
| if (flags & VFIO_IRQ_SET_DATA_NONE) { |
| if (*ctx) { |
| if (count) { |
| eventfd_signal(*ctx, 1); |
| } else { |
| eventfd_ctx_put(*ctx); |
| *ctx = NULL; |
| } |
| return 0; |
| } |
| } else if (flags & VFIO_IRQ_SET_DATA_BOOL) { |
| uint8_t trigger; |
| |
| if (!count) |
| return -EINVAL; |
| |
| trigger = *(uint8_t *)data; |
| if (trigger && *ctx) |
| eventfd_signal(*ctx, 1); |
| |
| return 0; |
| } else if (flags & VFIO_IRQ_SET_DATA_EVENTFD) { |
| int32_t fd; |
| |
| if (!count) |
| return -EINVAL; |
| |
| fd = *(int32_t *)data; |
| if (fd == -1) { |
| if (*ctx) |
| eventfd_ctx_put(*ctx); |
| *ctx = NULL; |
| } else if (fd >= 0) { |
| struct eventfd_ctx *efdctx; |
| |
| efdctx = eventfd_ctx_fdget(fd); |
| if (IS_ERR(efdctx)) |
| return PTR_ERR(efdctx); |
| |
| if (*ctx) |
| eventfd_ctx_put(*ctx); |
| |
| *ctx = efdctx; |
| } |
| return 0; |
| } |
| |
| return -EINVAL; |
| } |
| |
| static int vfio_pci_set_err_trigger(struct vfio_pci_device *vdev, |
| unsigned index, unsigned start, |
| unsigned count, uint32_t flags, void *data) |
| { |
| if (index != VFIO_PCI_ERR_IRQ_INDEX || start != 0 || count > 1) |
| return -EINVAL; |
| |
| return vfio_pci_set_ctx_trigger_single(&vdev->err_trigger, |
| count, flags, data); |
| } |
| |
| static int vfio_pci_set_req_trigger(struct vfio_pci_device *vdev, |
| unsigned index, unsigned start, |
| unsigned count, uint32_t flags, void *data) |
| { |
| if (index != VFIO_PCI_REQ_IRQ_INDEX || start != 0 || count > 1) |
| return -EINVAL; |
| |
| return vfio_pci_set_ctx_trigger_single(&vdev->req_trigger, |
| count, flags, data); |
| } |
| |
| int vfio_pci_set_irqs_ioctl(struct vfio_pci_device *vdev, uint32_t flags, |
| unsigned index, unsigned start, unsigned count, |
| void *data) |
| { |
| int (*func)(struct vfio_pci_device *vdev, unsigned index, |
| unsigned start, unsigned count, uint32_t flags, |
| void *data) = NULL; |
| |
| switch (index) { |
| case VFIO_PCI_INTX_IRQ_INDEX: |
| switch (flags & VFIO_IRQ_SET_ACTION_TYPE_MASK) { |
| case VFIO_IRQ_SET_ACTION_MASK: |
| func = vfio_pci_set_intx_mask; |
| break; |
| case VFIO_IRQ_SET_ACTION_UNMASK: |
| func = vfio_pci_set_intx_unmask; |
| break; |
| case VFIO_IRQ_SET_ACTION_TRIGGER: |
| func = vfio_pci_set_intx_trigger; |
| break; |
| } |
| break; |
| case VFIO_PCI_MSI_IRQ_INDEX: |
| case VFIO_PCI_MSIX_IRQ_INDEX: |
| switch (flags & VFIO_IRQ_SET_ACTION_TYPE_MASK) { |
| case VFIO_IRQ_SET_ACTION_MASK: |
| case VFIO_IRQ_SET_ACTION_UNMASK: |
| /* XXX Need masking support exported */ |
| break; |
| case VFIO_IRQ_SET_ACTION_TRIGGER: |
| func = vfio_pci_set_msi_trigger; |
| break; |
| } |
| break; |
| case VFIO_PCI_ERR_IRQ_INDEX: |
| switch (flags & VFIO_IRQ_SET_ACTION_TYPE_MASK) { |
| case VFIO_IRQ_SET_ACTION_TRIGGER: |
| if (pci_is_pcie(vdev->pdev)) |
| func = vfio_pci_set_err_trigger; |
| break; |
| } |
| break; |
| case VFIO_PCI_REQ_IRQ_INDEX: |
| switch (flags & VFIO_IRQ_SET_ACTION_TYPE_MASK) { |
| case VFIO_IRQ_SET_ACTION_TRIGGER: |
| func = vfio_pci_set_req_trigger; |
| break; |
| } |
| break; |
| } |
| |
| if (!func) |
| return -ENOTTY; |
| |
| return func(vdev, index, start, count, flags, data); |
| } |