blob: 165bc86c596267f701cf6997422f953ec412227a [file] [log] [blame]
/*
* Samsung S5P Multi Format Codec v 5.1
*
* Copyright (c) 2011 Samsung Electronics Co., Ltd.
* Kamil Debski, <k.debski@samsung.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/videodev2.h>
#include <media/v4l2-event.h>
#include <linux/workqueue.h>
#include <linux/of.h>
#include <media/videobuf2-core.h>
#include "s5p_mfc_common.h"
#include "s5p_mfc_ctrl.h"
#include "s5p_mfc_debug.h"
#include "s5p_mfc_dec.h"
#include "s5p_mfc_enc.h"
#include "s5p_mfc_intr.h"
#include "s5p_mfc_opr.h"
#include "s5p_mfc_cmd.h"
#include "s5p_mfc_pm.h"
#define S5P_MFC_NAME "s5p-mfc"
#define S5P_MFC_DEC_NAME "s5p-mfc-dec"
#define S5P_MFC_ENC_NAME "s5p-mfc-enc"
int mfc_debug_level;
module_param_named(debug, mfc_debug_level, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(debug, "Debug level - higher value produces more verbose messages");
/* Helper functions for interrupt processing */
/* Remove from hw execution round robin */
void clear_work_bit(struct s5p_mfc_ctx *ctx)
{
struct s5p_mfc_dev *dev = ctx->dev;
spin_lock(&dev->condlock);
__clear_bit(ctx->num, &dev->ctx_work_bits);
spin_unlock(&dev->condlock);
}
/* Add to hw execution round robin */
void set_work_bit(struct s5p_mfc_ctx *ctx)
{
struct s5p_mfc_dev *dev = ctx->dev;
spin_lock(&dev->condlock);
__set_bit(ctx->num, &dev->ctx_work_bits);
spin_unlock(&dev->condlock);
}
/* Remove from hw execution round robin */
void clear_work_bit_irqsave(struct s5p_mfc_ctx *ctx)
{
struct s5p_mfc_dev *dev = ctx->dev;
unsigned long flags;
spin_lock_irqsave(&dev->condlock, flags);
__clear_bit(ctx->num, &dev->ctx_work_bits);
spin_unlock_irqrestore(&dev->condlock, flags);
}
/* Add to hw execution round robin */
void set_work_bit_irqsave(struct s5p_mfc_ctx *ctx)
{
struct s5p_mfc_dev *dev = ctx->dev;
unsigned long flags;
spin_lock_irqsave(&dev->condlock, flags);
__set_bit(ctx->num, &dev->ctx_work_bits);
spin_unlock_irqrestore(&dev->condlock, flags);
}
/* Wake up context wait_queue */
static void wake_up_ctx(struct s5p_mfc_ctx *ctx, unsigned int reason,
unsigned int err)
{
ctx->int_cond = 1;
ctx->int_type = reason;
ctx->int_err = err;
wake_up(&ctx->queue);
}
/* Wake up device wait_queue */
static void wake_up_dev(struct s5p_mfc_dev *dev, unsigned int reason,
unsigned int err)
{
dev->int_cond = 1;
dev->int_type = reason;
dev->int_err = err;
wake_up(&dev->queue);
}
static void s5p_mfc_watchdog(unsigned long arg)
{
struct s5p_mfc_dev *dev = (struct s5p_mfc_dev *)arg;
if (test_bit(0, &dev->hw_lock))
atomic_inc(&dev->watchdog_cnt);
if (atomic_read(&dev->watchdog_cnt) >= MFC_WATCHDOG_CNT) {
/* This means that hw is busy and no interrupts were
* generated by hw for the Nth time of running this
* watchdog timer. This usually means a serious hw
* error. Now it is time to kill all instances and
* reset the MFC. */
mfc_err("Time out during waiting for HW\n");
queue_work(dev->watchdog_workqueue, &dev->watchdog_work);
}
dev->watchdog_timer.expires = jiffies +
msecs_to_jiffies(MFC_WATCHDOG_INTERVAL);
add_timer(&dev->watchdog_timer);
}
static void s5p_mfc_watchdog_worker(struct work_struct *work)
{
struct s5p_mfc_dev *dev;
struct s5p_mfc_ctx *ctx;
unsigned long flags;
int mutex_locked;
int i, ret;
dev = container_of(work, struct s5p_mfc_dev, watchdog_work);
mfc_err("Driver timeout error handling\n");
/* Lock the mutex that protects open and release.
* This is necessary as they may load and unload firmware. */
mutex_locked = mutex_trylock(&dev->mfc_mutex);
if (!mutex_locked)
mfc_err("Error: some instance may be closing/opening\n");
spin_lock_irqsave(&dev->irqlock, flags);
s5p_mfc_clock_off();
for (i = 0; i < MFC_NUM_CONTEXTS; i++) {
ctx = dev->ctx[i];
if (!ctx)
continue;
ctx->state = MFCINST_ERROR;
s5p_mfc_hw_call_void(dev->mfc_ops, cleanup_queue,
&ctx->dst_queue, &ctx->vq_dst);
s5p_mfc_hw_call_void(dev->mfc_ops, cleanup_queue,
&ctx->src_queue, &ctx->vq_src);
clear_work_bit(ctx);
wake_up_ctx(ctx, S5P_MFC_R2H_CMD_ERR_RET, 0);
}
clear_bit(0, &dev->hw_lock);
spin_unlock_irqrestore(&dev->irqlock, flags);
/* Double check if there is at least one instance running.
* If no instance is in memory than no firmware should be present */
if (dev->num_inst > 0) {
ret = s5p_mfc_load_firmware(dev);
if (ret) {
mfc_err("Failed to reload FW\n");
goto unlock;
}
s5p_mfc_clock_on();
ret = s5p_mfc_init_hw(dev);
if (ret)
mfc_err("Failed to reinit FW\n");
}
unlock:
if (mutex_locked)
mutex_unlock(&dev->mfc_mutex);
}
static void s5p_mfc_clear_int_flags(struct s5p_mfc_dev *dev)
{
mfc_write(dev, 0, S5P_FIMV_RISC_HOST_INT);
mfc_write(dev, 0, S5P_FIMV_RISC2HOST_CMD);
mfc_write(dev, 0xffff, S5P_FIMV_SI_RTN_CHID);
}
static void s5p_mfc_handle_frame_all_extracted(struct s5p_mfc_ctx *ctx)
{
struct s5p_mfc_buf *dst_buf;
struct s5p_mfc_dev *dev = ctx->dev;
ctx->state = MFCINST_FINISHED;
ctx->sequence++;
while (!list_empty(&ctx->dst_queue)) {
dst_buf = list_entry(ctx->dst_queue.next,
struct s5p_mfc_buf, list);
mfc_debug(2, "Cleaning up buffer: %d\n",
dst_buf->b->v4l2_buf.index);
vb2_set_plane_payload(dst_buf->b, 0, 0);
vb2_set_plane_payload(dst_buf->b, 1, 0);
list_del(&dst_buf->list);
ctx->dst_queue_cnt--;
dst_buf->b->v4l2_buf.sequence = (ctx->sequence++);
if (s5p_mfc_hw_call(dev->mfc_ops, get_pic_type_top, ctx) ==
s5p_mfc_hw_call(dev->mfc_ops, get_pic_type_bot, ctx))
dst_buf->b->v4l2_buf.field = V4L2_FIELD_NONE;
else
dst_buf->b->v4l2_buf.field = V4L2_FIELD_INTERLACED;
ctx->dec_dst_flag &= ~(1 << dst_buf->b->v4l2_buf.index);
vb2_buffer_done(dst_buf->b, VB2_BUF_STATE_DONE);
}
}
static void s5p_mfc_handle_frame_copy_time(struct s5p_mfc_ctx *ctx)
{
struct s5p_mfc_dev *dev = ctx->dev;
struct s5p_mfc_buf *dst_buf, *src_buf;
size_t dec_y_addr;
unsigned int frame_type;
dec_y_addr = s5p_mfc_hw_call(dev->mfc_ops, get_dec_y_adr, dev);
frame_type = s5p_mfc_hw_call(dev->mfc_ops, get_dec_frame_type, dev);
/* Copy timestamp / timecode from decoded src to dst and set
appropriate flags */
src_buf = list_entry(ctx->src_queue.next, struct s5p_mfc_buf, list);
list_for_each_entry(dst_buf, &ctx->dst_queue, list) {
if (vb2_dma_contig_plane_dma_addr(dst_buf->b, 0) == dec_y_addr) {
dst_buf->b->v4l2_buf.timecode =
src_buf->b->v4l2_buf.timecode;
dst_buf->b->v4l2_buf.timestamp =
src_buf->b->v4l2_buf.timestamp;
dst_buf->b->v4l2_buf.flags &=
~V4L2_BUF_FLAG_TSTAMP_SRC_MASK;
dst_buf->b->v4l2_buf.flags |=
src_buf->b->v4l2_buf.flags
& V4L2_BUF_FLAG_TSTAMP_SRC_MASK;
switch (frame_type) {
case S5P_FIMV_DECODE_FRAME_I_FRAME:
dst_buf->b->v4l2_buf.flags |=
V4L2_BUF_FLAG_KEYFRAME;
break;
case S5P_FIMV_DECODE_FRAME_P_FRAME:
dst_buf->b->v4l2_buf.flags |=
V4L2_BUF_FLAG_PFRAME;
break;
case S5P_FIMV_DECODE_FRAME_B_FRAME:
dst_buf->b->v4l2_buf.flags |=
V4L2_BUF_FLAG_BFRAME;
break;
}
break;
}
}
}
static void s5p_mfc_handle_frame_new(struct s5p_mfc_ctx *ctx, unsigned int err)
{
struct s5p_mfc_dev *dev = ctx->dev;
struct s5p_mfc_buf *dst_buf;
size_t dspl_y_addr;
unsigned int frame_type;
dspl_y_addr = s5p_mfc_hw_call(dev->mfc_ops, get_dspl_y_adr, dev);
if (IS_MFCV6_PLUS(dev))
frame_type = s5p_mfc_hw_call(dev->mfc_ops,
get_disp_frame_type, ctx);
else
frame_type = s5p_mfc_hw_call(dev->mfc_ops,
get_dec_frame_type, dev);
/* If frame is same as previous then skip and do not dequeue */
if (frame_type == S5P_FIMV_DECODE_FRAME_SKIPPED) {
if (!ctx->after_packed_pb)
ctx->sequence++;
ctx->after_packed_pb = 0;
return;
}
ctx->sequence++;
/* The MFC returns address of the buffer, now we have to
* check which videobuf does it correspond to */
list_for_each_entry(dst_buf, &ctx->dst_queue, list) {
/* Check if this is the buffer we're looking for */
if (vb2_dma_contig_plane_dma_addr(dst_buf->b, 0) == dspl_y_addr) {
list_del(&dst_buf->list);
ctx->dst_queue_cnt--;
dst_buf->b->v4l2_buf.sequence = ctx->sequence;
if (s5p_mfc_hw_call(dev->mfc_ops,
get_pic_type_top, ctx) ==
s5p_mfc_hw_call(dev->mfc_ops,
get_pic_type_bot, ctx))
dst_buf->b->v4l2_buf.field = V4L2_FIELD_NONE;
else
dst_buf->b->v4l2_buf.field =
V4L2_FIELD_INTERLACED;
vb2_set_plane_payload(dst_buf->b, 0, ctx->luma_size);
vb2_set_plane_payload(dst_buf->b, 1, ctx->chroma_size);
clear_bit(dst_buf->b->v4l2_buf.index,
&ctx->dec_dst_flag);
vb2_buffer_done(dst_buf->b,
err ? VB2_BUF_STATE_ERROR : VB2_BUF_STATE_DONE);
break;
}
}
}
/* Handle frame decoding interrupt */
static void s5p_mfc_handle_frame(struct s5p_mfc_ctx *ctx,
unsigned int reason, unsigned int err)
{
struct s5p_mfc_dev *dev = ctx->dev;
unsigned int dst_frame_status;
unsigned int dec_frame_status;
struct s5p_mfc_buf *src_buf;
unsigned long flags;
unsigned int res_change;
dst_frame_status = s5p_mfc_hw_call(dev->mfc_ops, get_dspl_status, dev)
& S5P_FIMV_DEC_STATUS_DECODING_STATUS_MASK;
dec_frame_status = s5p_mfc_hw_call(dev->mfc_ops, get_dec_status, dev)
& S5P_FIMV_DEC_STATUS_DECODING_STATUS_MASK;
res_change = (s5p_mfc_hw_call(dev->mfc_ops, get_dspl_status, dev)
& S5P_FIMV_DEC_STATUS_RESOLUTION_MASK)
>> S5P_FIMV_DEC_STATUS_RESOLUTION_SHIFT;
mfc_debug(2, "Frame Status: %x\n", dst_frame_status);
if (ctx->state == MFCINST_RES_CHANGE_INIT)
ctx->state = MFCINST_RES_CHANGE_FLUSH;
if (res_change == S5P_FIMV_RES_INCREASE ||
res_change == S5P_FIMV_RES_DECREASE) {
ctx->state = MFCINST_RES_CHANGE_INIT;
s5p_mfc_hw_call_void(dev->mfc_ops, clear_int_flags, dev);
wake_up_ctx(ctx, reason, err);
if (test_and_clear_bit(0, &dev->hw_lock) == 0)
BUG();
s5p_mfc_clock_off();
s5p_mfc_hw_call_void(dev->mfc_ops, try_run, dev);
return;
}
if (ctx->dpb_flush_flag)
ctx->dpb_flush_flag = 0;
spin_lock_irqsave(&dev->irqlock, flags);
/* All frames remaining in the buffer have been extracted */
if (dst_frame_status == S5P_FIMV_DEC_STATUS_DECODING_EMPTY) {
if (ctx->state == MFCINST_RES_CHANGE_FLUSH) {
static const struct v4l2_event ev_src_ch = {
.type = V4L2_EVENT_SOURCE_CHANGE,
.u.src_change.changes =
V4L2_EVENT_SRC_CH_RESOLUTION,
};
s5p_mfc_handle_frame_all_extracted(ctx);
ctx->state = MFCINST_RES_CHANGE_END;
v4l2_event_queue_fh(&ctx->fh, &ev_src_ch);
goto leave_handle_frame;
} else {
s5p_mfc_handle_frame_all_extracted(ctx);
}
}
if (dec_frame_status == S5P_FIMV_DEC_STATUS_DECODING_DISPLAY)
s5p_mfc_handle_frame_copy_time(ctx);
/* A frame has been decoded and is in the buffer */
if (dst_frame_status == S5P_FIMV_DEC_STATUS_DISPLAY_ONLY ||
dst_frame_status == S5P_FIMV_DEC_STATUS_DECODING_DISPLAY) {
s5p_mfc_handle_frame_new(ctx, err);
} else {
mfc_debug(2, "No frame decode\n");
}
/* Mark source buffer as complete */
if (dst_frame_status != S5P_FIMV_DEC_STATUS_DISPLAY_ONLY
&& !list_empty(&ctx->src_queue)) {
src_buf = list_entry(ctx->src_queue.next, struct s5p_mfc_buf,
list);
ctx->consumed_stream += s5p_mfc_hw_call(dev->mfc_ops,
get_consumed_stream, dev);
if (ctx->codec_mode != S5P_MFC_CODEC_H264_DEC &&
ctx->codec_mode != S5P_MFC_CODEC_VP8_DEC &&
ctx->consumed_stream + STUFF_BYTE <
src_buf->b->v4l2_planes[0].bytesused) {
/* Run MFC again on the same buffer */
mfc_debug(2, "Running again the same buffer\n");
ctx->after_packed_pb = 1;
} else {
mfc_debug(2, "MFC needs next buffer\n");
ctx->consumed_stream = 0;
if (src_buf->flags & MFC_BUF_FLAG_EOS)
ctx->state = MFCINST_FINISHING;
list_del(&src_buf->list);
ctx->src_queue_cnt--;
if (s5p_mfc_hw_call(dev->mfc_ops, err_dec, err) > 0)
vb2_buffer_done(src_buf->b, VB2_BUF_STATE_ERROR);
else
vb2_buffer_done(src_buf->b, VB2_BUF_STATE_DONE);
}
}
leave_handle_frame:
spin_unlock_irqrestore(&dev->irqlock, flags);
if ((ctx->src_queue_cnt == 0 && ctx->state != MFCINST_FINISHING)
|| ctx->dst_queue_cnt < ctx->pb_count)
clear_work_bit(ctx);
s5p_mfc_hw_call_void(dev->mfc_ops, clear_int_flags, dev);
wake_up_ctx(ctx, reason, err);
if (test_and_clear_bit(0, &dev->hw_lock) == 0)
BUG();
s5p_mfc_clock_off();
/* if suspending, wake up device and do not try_run again*/
if (test_bit(0, &dev->enter_suspend))
wake_up_dev(dev, reason, err);
else
s5p_mfc_hw_call_void(dev->mfc_ops, try_run, dev);
}
/* Error handling for interrupt */
static void s5p_mfc_handle_error(struct s5p_mfc_dev *dev,
struct s5p_mfc_ctx *ctx, unsigned int reason, unsigned int err)
{
unsigned long flags;
mfc_err("Interrupt Error: %08x\n", err);
if (ctx != NULL) {
/* Error recovery is dependent on the state of context */
switch (ctx->state) {
case MFCINST_RES_CHANGE_INIT:
case MFCINST_RES_CHANGE_FLUSH:
case MFCINST_RES_CHANGE_END:
case MFCINST_FINISHING:
case MFCINST_FINISHED:
case MFCINST_RUNNING:
/* It is highly probable that an error occurred
* while decoding a frame */
clear_work_bit(ctx);
ctx->state = MFCINST_ERROR;
/* Mark all dst buffers as having an error */
spin_lock_irqsave(&dev->irqlock, flags);
s5p_mfc_hw_call_void(dev->mfc_ops, cleanup_queue,
&ctx->dst_queue, &ctx->vq_dst);
/* Mark all src buffers as having an error */
s5p_mfc_hw_call_void(dev->mfc_ops, cleanup_queue,
&ctx->src_queue, &ctx->vq_src);
spin_unlock_irqrestore(&dev->irqlock, flags);
wake_up_ctx(ctx, reason, err);
break;
default:
clear_work_bit(ctx);
ctx->state = MFCINST_ERROR;
wake_up_ctx(ctx, reason, err);
break;
}
}
if (test_and_clear_bit(0, &dev->hw_lock) == 0)
BUG();
s5p_mfc_hw_call_void(dev->mfc_ops, clear_int_flags, dev);
s5p_mfc_clock_off();
wake_up_dev(dev, reason, err);
return;
}
/* Header parsing interrupt handling */
static void s5p_mfc_handle_seq_done(struct s5p_mfc_ctx *ctx,
unsigned int reason, unsigned int err)
{
struct s5p_mfc_dev *dev;
if (ctx == NULL)
return;
dev = ctx->dev;
if (ctx->c_ops->post_seq_start) {
if (ctx->c_ops->post_seq_start(ctx))
mfc_err("post_seq_start() failed\n");
} else {
ctx->img_width = s5p_mfc_hw_call(dev->mfc_ops, get_img_width,
dev);
ctx->img_height = s5p_mfc_hw_call(dev->mfc_ops, get_img_height,
dev);
s5p_mfc_hw_call_void(dev->mfc_ops, dec_calc_dpb_size, ctx);
ctx->pb_count = s5p_mfc_hw_call(dev->mfc_ops, get_dpb_count,
dev);
ctx->mv_count = s5p_mfc_hw_call(dev->mfc_ops, get_mv_count,
dev);
if (ctx->img_width == 0 || ctx->img_height == 0)
ctx->state = MFCINST_ERROR;
else
ctx->state = MFCINST_HEAD_PARSED;
if ((ctx->codec_mode == S5P_MFC_CODEC_H264_DEC ||
ctx->codec_mode == S5P_MFC_CODEC_H264_MVC_DEC) &&
!list_empty(&ctx->src_queue)) {
struct s5p_mfc_buf *src_buf;
src_buf = list_entry(ctx->src_queue.next,
struct s5p_mfc_buf, list);
if (s5p_mfc_hw_call(dev->mfc_ops, get_consumed_stream,
dev) <
src_buf->b->v4l2_planes[0].bytesused)
ctx->head_processed = 0;
else
ctx->head_processed = 1;
} else {
ctx->head_processed = 1;
}
}
s5p_mfc_hw_call_void(dev->mfc_ops, clear_int_flags, dev);
clear_work_bit(ctx);
if (test_and_clear_bit(0, &dev->hw_lock) == 0)
BUG();
s5p_mfc_clock_off();
s5p_mfc_hw_call_void(dev->mfc_ops, try_run, dev);
wake_up_ctx(ctx, reason, err);
}
/* Header parsing interrupt handling */
static void s5p_mfc_handle_init_buffers(struct s5p_mfc_ctx *ctx,
unsigned int reason, unsigned int err)
{
struct s5p_mfc_buf *src_buf;
struct s5p_mfc_dev *dev;
unsigned long flags;
if (ctx == NULL)
return;
dev = ctx->dev;
s5p_mfc_hw_call_void(dev->mfc_ops, clear_int_flags, dev);
ctx->int_type = reason;
ctx->int_err = err;
ctx->int_cond = 1;
clear_work_bit(ctx);
if (err == 0) {
ctx->state = MFCINST_RUNNING;
if (!ctx->dpb_flush_flag && ctx->head_processed) {
spin_lock_irqsave(&dev->irqlock, flags);
if (!list_empty(&ctx->src_queue)) {
src_buf = list_entry(ctx->src_queue.next,
struct s5p_mfc_buf, list);
list_del(&src_buf->list);
ctx->src_queue_cnt--;
vb2_buffer_done(src_buf->b,
VB2_BUF_STATE_DONE);
}
spin_unlock_irqrestore(&dev->irqlock, flags);
} else {
ctx->dpb_flush_flag = 0;
}
if (test_and_clear_bit(0, &dev->hw_lock) == 0)
BUG();
s5p_mfc_clock_off();
wake_up(&ctx->queue);
s5p_mfc_hw_call_void(dev->mfc_ops, try_run, dev);
} else {
if (test_and_clear_bit(0, &dev->hw_lock) == 0)
BUG();
s5p_mfc_clock_off();
wake_up(&ctx->queue);
}
}
static void s5p_mfc_handle_stream_complete(struct s5p_mfc_ctx *ctx,
unsigned int reason, unsigned int err)
{
struct s5p_mfc_dev *dev = ctx->dev;
struct s5p_mfc_buf *mb_entry;
mfc_debug(2, "Stream completed\n");
s5p_mfc_clear_int_flags(dev);
ctx->int_type = reason;
ctx->int_err = err;
ctx->state = MFCINST_FINISHED;
spin_lock(&dev->irqlock);
if (!list_empty(&ctx->dst_queue)) {
mb_entry = list_entry(ctx->dst_queue.next, struct s5p_mfc_buf,
list);
list_del(&mb_entry->list);
ctx->dst_queue_cnt--;
vb2_set_plane_payload(mb_entry->b, 0, 0);
vb2_buffer_done(mb_entry->b, VB2_BUF_STATE_DONE);
}
spin_unlock(&dev->irqlock);
clear_work_bit(ctx);
WARN_ON(test_and_clear_bit(0, &dev->hw_lock) == 0);
s5p_mfc_clock_off();
wake_up(&ctx->queue);
s5p_mfc_hw_call_void(dev->mfc_ops, try_run, dev);
}
/* Interrupt processing */
static irqreturn_t s5p_mfc_irq(int irq, void *priv)
{
struct s5p_mfc_dev *dev = priv;
struct s5p_mfc_ctx *ctx;
unsigned int reason;
unsigned int err;
mfc_debug_enter();
/* Reset the timeout watchdog */
atomic_set(&dev->watchdog_cnt, 0);
ctx = dev->ctx[dev->curr_ctx];
/* Get the reason of interrupt and the error code */
reason = s5p_mfc_hw_call(dev->mfc_ops, get_int_reason, dev);
err = s5p_mfc_hw_call(dev->mfc_ops, get_int_err, dev);
mfc_debug(1, "Int reason: %d (err: %08x)\n", reason, err);
switch (reason) {
case S5P_MFC_R2H_CMD_ERR_RET:
/* An error has occurred */
if (ctx->state == MFCINST_RUNNING &&
s5p_mfc_hw_call(dev->mfc_ops, err_dec, err) >=
dev->warn_start)
s5p_mfc_handle_frame(ctx, reason, err);
else
s5p_mfc_handle_error(dev, ctx, reason, err);
clear_bit(0, &dev->enter_suspend);
break;
case S5P_MFC_R2H_CMD_SLICE_DONE_RET:
case S5P_MFC_R2H_CMD_FIELD_DONE_RET:
case S5P_MFC_R2H_CMD_FRAME_DONE_RET:
if (ctx->c_ops->post_frame_start) {
if (ctx->c_ops->post_frame_start(ctx))
mfc_err("post_frame_start() failed\n");
s5p_mfc_hw_call_void(dev->mfc_ops, clear_int_flags, dev);
wake_up_ctx(ctx, reason, err);
if (test_and_clear_bit(0, &dev->hw_lock) == 0)
BUG();
s5p_mfc_clock_off();
s5p_mfc_hw_call_void(dev->mfc_ops, try_run, dev);
} else {
s5p_mfc_handle_frame(ctx, reason, err);
}
break;
case S5P_MFC_R2H_CMD_SEQ_DONE_RET:
s5p_mfc_handle_seq_done(ctx, reason, err);
break;
case S5P_MFC_R2H_CMD_OPEN_INSTANCE_RET:
ctx->inst_no = s5p_mfc_hw_call(dev->mfc_ops, get_inst_no, dev);
ctx->state = MFCINST_GOT_INST;
clear_work_bit(ctx);
wake_up(&ctx->queue);
goto irq_cleanup_hw;
case S5P_MFC_R2H_CMD_CLOSE_INSTANCE_RET:
clear_work_bit(ctx);
ctx->inst_no = MFC_NO_INSTANCE_SET;
ctx->state = MFCINST_FREE;
wake_up(&ctx->queue);
goto irq_cleanup_hw;
case S5P_MFC_R2H_CMD_SYS_INIT_RET:
case S5P_MFC_R2H_CMD_FW_STATUS_RET:
case S5P_MFC_R2H_CMD_SLEEP_RET:
case S5P_MFC_R2H_CMD_WAKEUP_RET:
if (ctx)
clear_work_bit(ctx);
s5p_mfc_hw_call_void(dev->mfc_ops, clear_int_flags, dev);
wake_up_dev(dev, reason, err);
clear_bit(0, &dev->hw_lock);
clear_bit(0, &dev->enter_suspend);
break;
case S5P_MFC_R2H_CMD_INIT_BUFFERS_RET:
s5p_mfc_handle_init_buffers(ctx, reason, err);
break;
case S5P_MFC_R2H_CMD_COMPLETE_SEQ_RET:
s5p_mfc_handle_stream_complete(ctx, reason, err);
break;
case S5P_MFC_R2H_CMD_DPB_FLUSH_RET:
clear_work_bit(ctx);
ctx->state = MFCINST_RUNNING;
wake_up(&ctx->queue);
goto irq_cleanup_hw;
default:
mfc_debug(2, "Unknown int reason\n");
s5p_mfc_hw_call_void(dev->mfc_ops, clear_int_flags, dev);
}
mfc_debug_leave();
return IRQ_HANDLED;
irq_cleanup_hw:
s5p_mfc_hw_call_void(dev->mfc_ops, clear_int_flags, dev);
ctx->int_type = reason;
ctx->int_err = err;
ctx->int_cond = 1;
if (test_and_clear_bit(0, &dev->hw_lock) == 0)
mfc_err("Failed to unlock hw\n");
s5p_mfc_clock_off();
s5p_mfc_hw_call_void(dev->mfc_ops, try_run, dev);
mfc_debug(2, "Exit via irq_cleanup_hw\n");
return IRQ_HANDLED;
}
/* Open an MFC node */
static int s5p_mfc_open(struct file *file)
{
struct video_device *vdev = video_devdata(file);
struct s5p_mfc_dev *dev = video_drvdata(file);
struct s5p_mfc_ctx *ctx = NULL;
struct vb2_queue *q;
int ret = 0;
mfc_debug_enter();
if (mutex_lock_interruptible(&dev->mfc_mutex))
return -ERESTARTSYS;
dev->num_inst++; /* It is guarded by mfc_mutex in vfd */
/* Allocate memory for context */
ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
if (!ctx) {
mfc_err("Not enough memory\n");
ret = -ENOMEM;
goto err_alloc;
}
v4l2_fh_init(&ctx->fh, vdev);
file->private_data = &ctx->fh;
v4l2_fh_add(&ctx->fh);
ctx->dev = dev;
INIT_LIST_HEAD(&ctx->src_queue);
INIT_LIST_HEAD(&ctx->dst_queue);
ctx->src_queue_cnt = 0;
ctx->dst_queue_cnt = 0;
/* Get context number */
ctx->num = 0;
while (dev->ctx[ctx->num]) {
ctx->num++;
if (ctx->num >= MFC_NUM_CONTEXTS) {
mfc_err("Too many open contexts\n");
ret = -EBUSY;
goto err_no_ctx;
}
}
/* Mark context as idle */
clear_work_bit_irqsave(ctx);
dev->ctx[ctx->num] = ctx;
if (vdev == dev->vfd_dec) {
ctx->type = MFCINST_DECODER;
ctx->c_ops = get_dec_codec_ops();
s5p_mfc_dec_init(ctx);
/* Setup ctrl handler */
ret = s5p_mfc_dec_ctrls_setup(ctx);
if (ret) {
mfc_err("Failed to setup mfc controls\n");
goto err_ctrls_setup;
}
} else if (vdev == dev->vfd_enc) {
ctx->type = MFCINST_ENCODER;
ctx->c_ops = get_enc_codec_ops();
/* only for encoder */
INIT_LIST_HEAD(&ctx->ref_queue);
ctx->ref_queue_cnt = 0;
s5p_mfc_enc_init(ctx);
/* Setup ctrl handler */
ret = s5p_mfc_enc_ctrls_setup(ctx);
if (ret) {
mfc_err("Failed to setup mfc controls\n");
goto err_ctrls_setup;
}
} else {
ret = -ENOENT;
goto err_bad_node;
}
ctx->fh.ctrl_handler = &ctx->ctrl_handler;
ctx->inst_no = MFC_NO_INSTANCE_SET;
/* Load firmware if this is the first instance */
if (dev->num_inst == 1) {
dev->watchdog_timer.expires = jiffies +
msecs_to_jiffies(MFC_WATCHDOG_INTERVAL);
add_timer(&dev->watchdog_timer);
ret = s5p_mfc_power_on();
if (ret < 0) {
mfc_err("power on failed\n");
goto err_pwr_enable;
}
s5p_mfc_clock_on();
ret = s5p_mfc_load_firmware(dev);
if (ret) {
s5p_mfc_clock_off();
goto err_load_fw;
}
/* Init the FW */
ret = s5p_mfc_init_hw(dev);
s5p_mfc_clock_off();
if (ret)
goto err_init_hw;
}
/* Init videobuf2 queue for CAPTURE */
q = &ctx->vq_dst;
q->type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
q->drv_priv = &ctx->fh;
if (vdev == dev->vfd_dec) {
q->io_modes = VB2_MMAP;
q->ops = get_dec_queue_ops();
} else if (vdev == dev->vfd_enc) {
q->io_modes = VB2_MMAP | VB2_USERPTR;
q->ops = get_enc_queue_ops();
} else {
ret = -ENOENT;
goto err_queue_init;
}
q->mem_ops = (struct vb2_mem_ops *)&vb2_dma_contig_memops;
q->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_COPY;
ret = vb2_queue_init(q);
if (ret) {
mfc_err("Failed to initialize videobuf2 queue(capture)\n");
goto err_queue_init;
}
/* Init videobuf2 queue for OUTPUT */
q = &ctx->vq_src;
q->type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
q->io_modes = VB2_MMAP;
q->drv_priv = &ctx->fh;
if (vdev == dev->vfd_dec) {
q->io_modes = VB2_MMAP;
q->ops = get_dec_queue_ops();
} else if (vdev == dev->vfd_enc) {
q->io_modes = VB2_MMAP | VB2_USERPTR;
q->ops = get_enc_queue_ops();
} else {
ret = -ENOENT;
goto err_queue_init;
}
q->mem_ops = (struct vb2_mem_ops *)&vb2_dma_contig_memops;
q->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_COPY;
ret = vb2_queue_init(q);
if (ret) {
mfc_err("Failed to initialize videobuf2 queue(output)\n");
goto err_queue_init;
}
init_waitqueue_head(&ctx->queue);
mutex_unlock(&dev->mfc_mutex);
mfc_debug_leave();
return ret;
/* Deinit when failure occurred */
err_queue_init:
if (dev->num_inst == 1)
s5p_mfc_deinit_hw(dev);
err_init_hw:
err_load_fw:
err_pwr_enable:
if (dev->num_inst == 1) {
if (s5p_mfc_power_off() < 0)
mfc_err("power off failed\n");
del_timer_sync(&dev->watchdog_timer);
}
err_ctrls_setup:
s5p_mfc_dec_ctrls_delete(ctx);
err_bad_node:
dev->ctx[ctx->num] = NULL;
err_no_ctx:
v4l2_fh_del(&ctx->fh);
v4l2_fh_exit(&ctx->fh);
kfree(ctx);
err_alloc:
dev->num_inst--;
mutex_unlock(&dev->mfc_mutex);
mfc_debug_leave();
return ret;
}
/* Release MFC context */
static int s5p_mfc_release(struct file *file)
{
struct s5p_mfc_ctx *ctx = fh_to_ctx(file->private_data);
struct s5p_mfc_dev *dev = ctx->dev;
mfc_debug_enter();
mutex_lock(&dev->mfc_mutex);
s5p_mfc_clock_on();
vb2_queue_release(&ctx->vq_src);
vb2_queue_release(&ctx->vq_dst);
/* Mark context as idle */
clear_work_bit_irqsave(ctx);
/* If instance was initialised and not yet freed,
* return instance and free resources */
if (ctx->state != MFCINST_FREE && ctx->state != MFCINST_INIT) {
mfc_debug(2, "Has to free instance\n");
s5p_mfc_close_mfc_inst(dev, ctx);
}
/* hardware locking scheme */
if (dev->curr_ctx == ctx->num)
clear_bit(0, &dev->hw_lock);
dev->num_inst--;
if (dev->num_inst == 0) {
mfc_debug(2, "Last instance\n");
s5p_mfc_deinit_hw(dev);
del_timer_sync(&dev->watchdog_timer);
if (s5p_mfc_power_off() < 0)
mfc_err("Power off failed\n");
}
mfc_debug(2, "Shutting down clock\n");
s5p_mfc_clock_off();
dev->ctx[ctx->num] = NULL;
s5p_mfc_dec_ctrls_delete(ctx);
v4l2_fh_del(&ctx->fh);
v4l2_fh_exit(&ctx->fh);
kfree(ctx);
mfc_debug_leave();
mutex_unlock(&dev->mfc_mutex);
return 0;
}
/* Poll */
static unsigned int s5p_mfc_poll(struct file *file,
struct poll_table_struct *wait)
{
struct s5p_mfc_ctx *ctx = fh_to_ctx(file->private_data);
struct s5p_mfc_dev *dev = ctx->dev;
struct vb2_queue *src_q, *dst_q;
struct vb2_buffer *src_vb = NULL, *dst_vb = NULL;
unsigned int rc = 0;
unsigned long flags;
mutex_lock(&dev->mfc_mutex);
src_q = &ctx->vq_src;
dst_q = &ctx->vq_dst;
/*
* There has to be at least one buffer queued on each queued_list, which
* means either in driver already or waiting for driver to claim it
* and start processing.
*/
if ((!src_q->streaming || list_empty(&src_q->queued_list))
&& (!dst_q->streaming || list_empty(&dst_q->queued_list))) {
rc = POLLERR;
goto end;
}
mutex_unlock(&dev->mfc_mutex);
poll_wait(file, &ctx->fh.wait, wait);
poll_wait(file, &src_q->done_wq, wait);
poll_wait(file, &dst_q->done_wq, wait);
mutex_lock(&dev->mfc_mutex);
if (v4l2_event_pending(&ctx->fh))
rc |= POLLPRI;
spin_lock_irqsave(&src_q->done_lock, flags);
if (!list_empty(&src_q->done_list))
src_vb = list_first_entry(&src_q->done_list, struct vb2_buffer,
done_entry);
if (src_vb && (src_vb->state == VB2_BUF_STATE_DONE
|| src_vb->state == VB2_BUF_STATE_ERROR))
rc |= POLLOUT | POLLWRNORM;
spin_unlock_irqrestore(&src_q->done_lock, flags);
spin_lock_irqsave(&dst_q->done_lock, flags);
if (!list_empty(&dst_q->done_list))
dst_vb = list_first_entry(&dst_q->done_list, struct vb2_buffer,
done_entry);
if (dst_vb && (dst_vb->state == VB2_BUF_STATE_DONE
|| dst_vb->state == VB2_BUF_STATE_ERROR))
rc |= POLLIN | POLLRDNORM;
spin_unlock_irqrestore(&dst_q->done_lock, flags);
end:
mutex_unlock(&dev->mfc_mutex);
return rc;
}
/* Mmap */
static int s5p_mfc_mmap(struct file *file, struct vm_area_struct *vma)
{
struct s5p_mfc_ctx *ctx = fh_to_ctx(file->private_data);
struct s5p_mfc_dev *dev = ctx->dev;
unsigned long offset = vma->vm_pgoff << PAGE_SHIFT;
int ret;
if (mutex_lock_interruptible(&dev->mfc_mutex))
return -ERESTARTSYS;
if (offset < DST_QUEUE_OFF_BASE) {
mfc_debug(2, "mmaping source\n");
ret = vb2_mmap(&ctx->vq_src, vma);
} else { /* capture */
mfc_debug(2, "mmaping destination\n");
vma->vm_pgoff -= (DST_QUEUE_OFF_BASE >> PAGE_SHIFT);
ret = vb2_mmap(&ctx->vq_dst, vma);
}
mutex_unlock(&dev->mfc_mutex);
return ret;
}
/* v4l2 ops */
static const struct v4l2_file_operations s5p_mfc_fops = {
.owner = THIS_MODULE,
.open = s5p_mfc_open,
.release = s5p_mfc_release,
.poll = s5p_mfc_poll,
.unlocked_ioctl = video_ioctl2,
.mmap = s5p_mfc_mmap,
};
static int match_child(struct device *dev, void *data)
{
if (!dev_name(dev))
return 0;
return !strcmp(dev_name(dev), (char *)data);
}
static void *mfc_get_drv_data(struct platform_device *pdev);
static int s5p_mfc_alloc_memdevs(struct s5p_mfc_dev *dev)
{
unsigned int mem_info[2] = { };
dev->mem_dev_l = devm_kzalloc(&dev->plat_dev->dev,
sizeof(struct device), GFP_KERNEL);
if (!dev->mem_dev_l) {
mfc_err("Not enough memory\n");
return -ENOMEM;
}
device_initialize(dev->mem_dev_l);
of_property_read_u32_array(dev->plat_dev->dev.of_node,
"samsung,mfc-l", mem_info, 2);
if (dma_declare_coherent_memory(dev->mem_dev_l, mem_info[0],
mem_info[0], mem_info[1],
DMA_MEMORY_MAP | DMA_MEMORY_EXCLUSIVE) == 0) {
mfc_err("Failed to declare coherent memory for\n"
"MFC device\n");
return -ENOMEM;
}
dev->mem_dev_r = devm_kzalloc(&dev->plat_dev->dev,
sizeof(struct device), GFP_KERNEL);
if (!dev->mem_dev_r) {
mfc_err("Not enough memory\n");
return -ENOMEM;
}
device_initialize(dev->mem_dev_r);
of_property_read_u32_array(dev->plat_dev->dev.of_node,
"samsung,mfc-r", mem_info, 2);
if (dma_declare_coherent_memory(dev->mem_dev_r, mem_info[0],
mem_info[0], mem_info[1],
DMA_MEMORY_MAP | DMA_MEMORY_EXCLUSIVE) == 0) {
pr_err("Failed to declare coherent memory for\n"
"MFC device\n");
return -ENOMEM;
}
return 0;
}
/* MFC probe function */
static int s5p_mfc_probe(struct platform_device *pdev)
{
struct s5p_mfc_dev *dev;
struct video_device *vfd;
struct resource *res;
int ret;
pr_debug("%s++\n", __func__);
dev = devm_kzalloc(&pdev->dev, sizeof(*dev), GFP_KERNEL);
if (!dev) {
dev_err(&pdev->dev, "Not enough memory for MFC device\n");
return -ENOMEM;
}
spin_lock_init(&dev->irqlock);
spin_lock_init(&dev->condlock);
dev->plat_dev = pdev;
if (!dev->plat_dev) {
dev_err(&pdev->dev, "No platform data specified\n");
return -ENODEV;
}
dev->variant = mfc_get_drv_data(pdev);
ret = s5p_mfc_init_pm(dev);
if (ret < 0) {
dev_err(&pdev->dev, "failed to get mfc clock source\n");
return ret;
}
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
dev->regs_base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(dev->regs_base))
return PTR_ERR(dev->regs_base);
res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
if (res == NULL) {
dev_err(&pdev->dev, "failed to get irq resource\n");
ret = -ENOENT;
goto err_res;
}
dev->irq = res->start;
ret = devm_request_irq(&pdev->dev, dev->irq, s5p_mfc_irq,
0, pdev->name, dev);
if (ret) {
dev_err(&pdev->dev, "Failed to install irq (%d)\n", ret);
goto err_res;
}
if (pdev->dev.of_node) {
ret = s5p_mfc_alloc_memdevs(dev);
if (ret < 0)
goto err_res;
} else {
dev->mem_dev_l = device_find_child(&dev->plat_dev->dev,
"s5p-mfc-l", match_child);
if (!dev->mem_dev_l) {
mfc_err("Mem child (L) device get failed\n");
ret = -ENODEV;
goto err_res;
}
dev->mem_dev_r = device_find_child(&dev->plat_dev->dev,
"s5p-mfc-r", match_child);
if (!dev->mem_dev_r) {
mfc_err("Mem child (R) device get failed\n");
ret = -ENODEV;
goto err_res;
}
}
dev->alloc_ctx[0] = vb2_dma_contig_init_ctx(dev->mem_dev_l);
if (IS_ERR(dev->alloc_ctx[0])) {
ret = PTR_ERR(dev->alloc_ctx[0]);
goto err_res;
}
dev->alloc_ctx[1] = vb2_dma_contig_init_ctx(dev->mem_dev_r);
if (IS_ERR(dev->alloc_ctx[1])) {
ret = PTR_ERR(dev->alloc_ctx[1]);
goto err_mem_init_ctx_1;
}
mutex_init(&dev->mfc_mutex);
ret = s5p_mfc_alloc_firmware(dev);
if (ret)
goto err_alloc_fw;
ret = v4l2_device_register(&pdev->dev, &dev->v4l2_dev);
if (ret)
goto err_v4l2_dev_reg;
init_waitqueue_head(&dev->queue);
/* decoder */
vfd = video_device_alloc();
if (!vfd) {
v4l2_err(&dev->v4l2_dev, "Failed to allocate video device\n");
ret = -ENOMEM;
goto err_dec_alloc;
}
vfd->fops = &s5p_mfc_fops;
vfd->ioctl_ops = get_dec_v4l2_ioctl_ops();
vfd->release = video_device_release;
vfd->lock = &dev->mfc_mutex;
vfd->v4l2_dev = &dev->v4l2_dev;
vfd->vfl_dir = VFL_DIR_M2M;
snprintf(vfd->name, sizeof(vfd->name), "%s", S5P_MFC_DEC_NAME);
dev->vfd_dec = vfd;
ret = video_register_device(vfd, VFL_TYPE_GRABBER, 0);
if (ret) {
v4l2_err(&dev->v4l2_dev, "Failed to register video device\n");
video_device_release(vfd);
goto err_dec_reg;
}
v4l2_info(&dev->v4l2_dev,
"decoder registered as /dev/video%d\n", vfd->num);
video_set_drvdata(vfd, dev);
/* encoder */
vfd = video_device_alloc();
if (!vfd) {
v4l2_err(&dev->v4l2_dev, "Failed to allocate video device\n");
ret = -ENOMEM;
goto err_enc_alloc;
}
vfd->fops = &s5p_mfc_fops;
vfd->ioctl_ops = get_enc_v4l2_ioctl_ops();
vfd->release = video_device_release;
vfd->lock = &dev->mfc_mutex;
vfd->v4l2_dev = &dev->v4l2_dev;
vfd->vfl_dir = VFL_DIR_M2M;
snprintf(vfd->name, sizeof(vfd->name), "%s", S5P_MFC_ENC_NAME);
dev->vfd_enc = vfd;
ret = video_register_device(vfd, VFL_TYPE_GRABBER, 0);
if (ret) {
v4l2_err(&dev->v4l2_dev, "Failed to register video device\n");
video_device_release(vfd);
goto err_enc_reg;
}
v4l2_info(&dev->v4l2_dev,
"encoder registered as /dev/video%d\n", vfd->num);
video_set_drvdata(vfd, dev);
platform_set_drvdata(pdev, dev);
dev->hw_lock = 0;
dev->watchdog_workqueue = create_singlethread_workqueue(S5P_MFC_NAME);
INIT_WORK(&dev->watchdog_work, s5p_mfc_watchdog_worker);
atomic_set(&dev->watchdog_cnt, 0);
init_timer(&dev->watchdog_timer);
dev->watchdog_timer.data = (unsigned long)dev;
dev->watchdog_timer.function = s5p_mfc_watchdog;
/* Initialize HW ops and commands based on MFC version */
s5p_mfc_init_hw_ops(dev);
s5p_mfc_init_hw_cmds(dev);
s5p_mfc_init_regs(dev);
pr_debug("%s--\n", __func__);
return 0;
/* Deinit MFC if probe had failed */
err_enc_reg:
video_device_release(dev->vfd_enc);
err_enc_alloc:
video_unregister_device(dev->vfd_dec);
err_dec_reg:
video_device_release(dev->vfd_dec);
err_dec_alloc:
v4l2_device_unregister(&dev->v4l2_dev);
err_v4l2_dev_reg:
s5p_mfc_release_firmware(dev);
err_alloc_fw:
vb2_dma_contig_cleanup_ctx(dev->alloc_ctx[1]);
err_mem_init_ctx_1:
vb2_dma_contig_cleanup_ctx(dev->alloc_ctx[0]);
err_res:
s5p_mfc_final_pm(dev);
pr_debug("%s-- with error\n", __func__);
return ret;
}
/* Remove the driver */
static int s5p_mfc_remove(struct platform_device *pdev)
{
struct s5p_mfc_dev *dev = platform_get_drvdata(pdev);
v4l2_info(&dev->v4l2_dev, "Removing %s\n", pdev->name);
del_timer_sync(&dev->watchdog_timer);
flush_workqueue(dev->watchdog_workqueue);
destroy_workqueue(dev->watchdog_workqueue);
video_unregister_device(dev->vfd_enc);
video_unregister_device(dev->vfd_dec);
v4l2_device_unregister(&dev->v4l2_dev);
s5p_mfc_release_firmware(dev);
vb2_dma_contig_cleanup_ctx(dev->alloc_ctx[0]);
vb2_dma_contig_cleanup_ctx(dev->alloc_ctx[1]);
if (pdev->dev.of_node) {
put_device(dev->mem_dev_l);
put_device(dev->mem_dev_r);
}
s5p_mfc_final_pm(dev);
return 0;
}
#ifdef CONFIG_PM_SLEEP
static int s5p_mfc_suspend(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct s5p_mfc_dev *m_dev = platform_get_drvdata(pdev);
int ret;
if (m_dev->num_inst == 0)
return 0;
if (test_and_set_bit(0, &m_dev->enter_suspend) != 0) {
mfc_err("Error: going to suspend for a second time\n");
return -EIO;
}
/* Check if we're processing then wait if it necessary. */
while (test_and_set_bit(0, &m_dev->hw_lock) != 0) {
/* Try and lock the HW */
/* Wait on the interrupt waitqueue */
ret = wait_event_interruptible_timeout(m_dev->queue,
m_dev->int_cond, msecs_to_jiffies(MFC_INT_TIMEOUT));
if (ret == 0) {
mfc_err("Waiting for hardware to finish timed out\n");
return -EIO;
}
}
return s5p_mfc_sleep(m_dev);
}
static int s5p_mfc_resume(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct s5p_mfc_dev *m_dev = platform_get_drvdata(pdev);
if (m_dev->num_inst == 0)
return 0;
return s5p_mfc_wakeup(m_dev);
}
#endif
#ifdef CONFIG_PM_RUNTIME
static int s5p_mfc_runtime_suspend(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct s5p_mfc_dev *m_dev = platform_get_drvdata(pdev);
atomic_set(&m_dev->pm.power, 0);
return 0;
}
static int s5p_mfc_runtime_resume(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct s5p_mfc_dev *m_dev = platform_get_drvdata(pdev);
if (!m_dev->alloc_ctx)
return 0;
atomic_set(&m_dev->pm.power, 1);
return 0;
}
#endif
/* Power management */
static const struct dev_pm_ops s5p_mfc_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(s5p_mfc_suspend, s5p_mfc_resume)
SET_RUNTIME_PM_OPS(s5p_mfc_runtime_suspend, s5p_mfc_runtime_resume,
NULL)
};
static struct s5p_mfc_buf_size_v5 mfc_buf_size_v5 = {
.h264_ctx = MFC_H264_CTX_BUF_SIZE,
.non_h264_ctx = MFC_CTX_BUF_SIZE,
.dsc = DESC_BUF_SIZE,
.shm = SHARED_BUF_SIZE,
};
static struct s5p_mfc_buf_size buf_size_v5 = {
.fw = MAX_FW_SIZE,
.cpb = MAX_CPB_SIZE,
.priv = &mfc_buf_size_v5,
};
static struct s5p_mfc_buf_align mfc_buf_align_v5 = {
.base = MFC_BASE_ALIGN_ORDER,
};
static struct s5p_mfc_variant mfc_drvdata_v5 = {
.version = MFC_VERSION,
.version_bit = MFC_V5_BIT,
.port_num = MFC_NUM_PORTS,
.buf_size = &buf_size_v5,
.buf_align = &mfc_buf_align_v5,
.fw_name[0] = "s5p-mfc.fw",
};
static struct s5p_mfc_buf_size_v6 mfc_buf_size_v6 = {
.dev_ctx = MFC_CTX_BUF_SIZE_V6,
.h264_dec_ctx = MFC_H264_DEC_CTX_BUF_SIZE_V6,
.other_dec_ctx = MFC_OTHER_DEC_CTX_BUF_SIZE_V6,
.h264_enc_ctx = MFC_H264_ENC_CTX_BUF_SIZE_V6,
.other_enc_ctx = MFC_OTHER_ENC_CTX_BUF_SIZE_V6,
};
static struct s5p_mfc_buf_size buf_size_v6 = {
.fw = MAX_FW_SIZE_V6,
.cpb = MAX_CPB_SIZE_V6,
.priv = &mfc_buf_size_v6,
};
static struct s5p_mfc_buf_align mfc_buf_align_v6 = {
.base = 0,
};
static struct s5p_mfc_variant mfc_drvdata_v6 = {
.version = MFC_VERSION_V6,
.version_bit = MFC_V6_BIT,
.port_num = MFC_NUM_PORTS_V6,
.buf_size = &buf_size_v6,
.buf_align = &mfc_buf_align_v6,
.fw_name[0] = "s5p-mfc-v6.fw",
/*
* v6-v2 firmware contains bug fixes and interface change
* for init buffer command
*/
.fw_name[1] = "s5p-mfc-v6-v2.fw",
};
static struct s5p_mfc_buf_size_v6 mfc_buf_size_v7 = {
.dev_ctx = MFC_CTX_BUF_SIZE_V7,
.h264_dec_ctx = MFC_H264_DEC_CTX_BUF_SIZE_V7,
.other_dec_ctx = MFC_OTHER_DEC_CTX_BUF_SIZE_V7,
.h264_enc_ctx = MFC_H264_ENC_CTX_BUF_SIZE_V7,
.other_enc_ctx = MFC_OTHER_ENC_CTX_BUF_SIZE_V7,
};
static struct s5p_mfc_buf_size buf_size_v7 = {
.fw = MAX_FW_SIZE_V7,
.cpb = MAX_CPB_SIZE_V7,
.priv = &mfc_buf_size_v7,
};
static struct s5p_mfc_buf_align mfc_buf_align_v7 = {
.base = 0,
};
static struct s5p_mfc_variant mfc_drvdata_v7 = {
.version = MFC_VERSION_V7,
.version_bit = MFC_V7_BIT,
.port_num = MFC_NUM_PORTS_V7,
.buf_size = &buf_size_v7,
.buf_align = &mfc_buf_align_v7,
.fw_name[0] = "s5p-mfc-v7.fw",
};
static struct s5p_mfc_buf_size_v6 mfc_buf_size_v8 = {
.dev_ctx = MFC_CTX_BUF_SIZE_V8,
.h264_dec_ctx = MFC_H264_DEC_CTX_BUF_SIZE_V8,
.other_dec_ctx = MFC_OTHER_DEC_CTX_BUF_SIZE_V8,
.h264_enc_ctx = MFC_H264_ENC_CTX_BUF_SIZE_V8,
.other_enc_ctx = MFC_OTHER_ENC_CTX_BUF_SIZE_V8,
};
static struct s5p_mfc_buf_size buf_size_v8 = {
.fw = MAX_FW_SIZE_V8,
.cpb = MAX_CPB_SIZE_V8,
.priv = &mfc_buf_size_v8,
};
static struct s5p_mfc_buf_align mfc_buf_align_v8 = {
.base = 0,
};
static struct s5p_mfc_variant mfc_drvdata_v8 = {
.version = MFC_VERSION_V8,
.version_bit = MFC_V8_BIT,
.port_num = MFC_NUM_PORTS_V8,
.buf_size = &buf_size_v8,
.buf_align = &mfc_buf_align_v8,
.fw_name[0] = "s5p-mfc-v8.fw",
};
static struct platform_device_id mfc_driver_ids[] = {
{
.name = "s5p-mfc",
.driver_data = (unsigned long)&mfc_drvdata_v5,
}, {
.name = "s5p-mfc-v5",
.driver_data = (unsigned long)&mfc_drvdata_v5,
}, {
.name = "s5p-mfc-v6",
.driver_data = (unsigned long)&mfc_drvdata_v6,
}, {
.name = "s5p-mfc-v7",
.driver_data = (unsigned long)&mfc_drvdata_v7,
}, {
.name = "s5p-mfc-v8",
.driver_data = (unsigned long)&mfc_drvdata_v8,
},
{},
};
MODULE_DEVICE_TABLE(platform, mfc_driver_ids);
static const struct of_device_id exynos_mfc_match[] = {
{
.compatible = "samsung,mfc-v5",
.data = &mfc_drvdata_v5,
}, {
.compatible = "samsung,mfc-v6",
.data = &mfc_drvdata_v6,
}, {
.compatible = "samsung,mfc-v7",
.data = &mfc_drvdata_v7,
}, {
.compatible = "samsung,mfc-v8",
.data = &mfc_drvdata_v8,
},
{},
};
MODULE_DEVICE_TABLE(of, exynos_mfc_match);
static void *mfc_get_drv_data(struct platform_device *pdev)
{
struct s5p_mfc_variant *driver_data = NULL;
if (pdev->dev.of_node) {
const struct of_device_id *match;
match = of_match_node(exynos_mfc_match,
pdev->dev.of_node);
if (match)
driver_data = (struct s5p_mfc_variant *)match->data;
} else {
driver_data = (struct s5p_mfc_variant *)
platform_get_device_id(pdev)->driver_data;
}
return driver_data;
}
static struct platform_driver s5p_mfc_driver = {
.probe = s5p_mfc_probe,
.remove = s5p_mfc_remove,
.id_table = mfc_driver_ids,
.driver = {
.name = S5P_MFC_NAME,
.owner = THIS_MODULE,
.pm = &s5p_mfc_pm_ops,
.of_match_table = exynos_mfc_match,
},
};
module_platform_driver(s5p_mfc_driver);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Kamil Debski <k.debski@samsung.com>");
MODULE_DESCRIPTION("Samsung S5P Multi Format Codec V4L2 driver");