| /* |
| * IPv6 library code, needed by static components when full IPv6 support is |
| * not configured or static. |
| */ |
| #include <linux/export.h> |
| #include <net/ipv6.h> |
| |
| /* |
| * find out if nexthdr is a well-known extension header or a protocol |
| */ |
| |
| int ipv6_ext_hdr(u8 nexthdr) |
| { |
| /* |
| * find out if nexthdr is an extension header or a protocol |
| */ |
| return (nexthdr == NEXTHDR_HOP) || |
| (nexthdr == NEXTHDR_ROUTING) || |
| (nexthdr == NEXTHDR_FRAGMENT) || |
| (nexthdr == NEXTHDR_AUTH) || |
| (nexthdr == NEXTHDR_NONE) || |
| (nexthdr == NEXTHDR_DEST); |
| } |
| EXPORT_SYMBOL(ipv6_ext_hdr); |
| |
| /* |
| * Skip any extension headers. This is used by the ICMP module. |
| * |
| * Note that strictly speaking this conflicts with RFC 2460 4.0: |
| * ...The contents and semantics of each extension header determine whether |
| * or not to proceed to the next header. Therefore, extension headers must |
| * be processed strictly in the order they appear in the packet; a |
| * receiver must not, for example, scan through a packet looking for a |
| * particular kind of extension header and process that header prior to |
| * processing all preceding ones. |
| * |
| * We do exactly this. This is a protocol bug. We can't decide after a |
| * seeing an unknown discard-with-error flavour TLV option if it's a |
| * ICMP error message or not (errors should never be send in reply to |
| * ICMP error messages). |
| * |
| * But I see no other way to do this. This might need to be reexamined |
| * when Linux implements ESP (and maybe AUTH) headers. |
| * --AK |
| * |
| * This function parses (probably truncated) exthdr set "hdr". |
| * "nexthdrp" initially points to some place, |
| * where type of the first header can be found. |
| * |
| * It skips all well-known exthdrs, and returns pointer to the start |
| * of unparsable area i.e. the first header with unknown type. |
| * If it is not NULL *nexthdr is updated by type/protocol of this header. |
| * |
| * NOTES: - if packet terminated with NEXTHDR_NONE it returns NULL. |
| * - it may return pointer pointing beyond end of packet, |
| * if the last recognized header is truncated in the middle. |
| * - if packet is truncated, so that all parsed headers are skipped, |
| * it returns NULL. |
| * - First fragment header is skipped, not-first ones |
| * are considered as unparsable. |
| * - Reports the offset field of the final fragment header so it is |
| * possible to tell whether this is a first fragment, later fragment, |
| * or not fragmented. |
| * - ESP is unparsable for now and considered like |
| * normal payload protocol. |
| * - Note also special handling of AUTH header. Thanks to IPsec wizards. |
| * |
| * --ANK (980726) |
| */ |
| |
| int ipv6_skip_exthdr(const struct sk_buff *skb, int start, u8 *nexthdrp, |
| __be16 *frag_offp) |
| { |
| u8 nexthdr = *nexthdrp; |
| |
| *frag_offp = 0; |
| |
| while (ipv6_ext_hdr(nexthdr)) { |
| struct ipv6_opt_hdr _hdr, *hp; |
| int hdrlen; |
| |
| if (nexthdr == NEXTHDR_NONE) |
| return -1; |
| hp = skb_header_pointer(skb, start, sizeof(_hdr), &_hdr); |
| if (hp == NULL) |
| return -1; |
| if (nexthdr == NEXTHDR_FRAGMENT) { |
| __be16 _frag_off, *fp; |
| fp = skb_header_pointer(skb, |
| start+offsetof(struct frag_hdr, |
| frag_off), |
| sizeof(_frag_off), |
| &_frag_off); |
| if (fp == NULL) |
| return -1; |
| |
| *frag_offp = *fp; |
| if (ntohs(*frag_offp) & ~0x7) |
| break; |
| hdrlen = 8; |
| } else if (nexthdr == NEXTHDR_AUTH) |
| hdrlen = (hp->hdrlen+2)<<2; |
| else |
| hdrlen = ipv6_optlen(hp); |
| |
| nexthdr = hp->nexthdr; |
| start += hdrlen; |
| } |
| |
| *nexthdrp = nexthdr; |
| return start; |
| } |
| EXPORT_SYMBOL(ipv6_skip_exthdr); |