| /* |
| * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet |
| * driver for Linux. |
| * |
| * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved. |
| * |
| * This software is available to you under a choice of one of two |
| * licenses. You may choose to be licensed under the terms of the GNU |
| * General Public License (GPL) Version 2, available from the file |
| * COPYING in the main directory of this source tree, or the |
| * OpenIB.org BSD license below: |
| * |
| * Redistribution and use in source and binary forms, with or |
| * without modification, are permitted provided that the following |
| * conditions are met: |
| * |
| * - Redistributions of source code must retain the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer. |
| * |
| * - Redistributions in binary form must reproduce the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer in the documentation and/or other materials |
| * provided with the distribution. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
| * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF |
| * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
| * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS |
| * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN |
| * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN |
| * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| * SOFTWARE. |
| */ |
| |
| #include <linux/pci.h> |
| |
| #include "t4vf_common.h" |
| #include "t4vf_defs.h" |
| |
| #include "../cxgb4/t4_regs.h" |
| #include "../cxgb4/t4fw_api.h" |
| |
| /* |
| * Wait for the device to become ready (signified by our "who am I" register |
| * returning a value other than all 1's). Return an error if it doesn't |
| * become ready ... |
| */ |
| int t4vf_wait_dev_ready(struct adapter *adapter) |
| { |
| const u32 whoami = T4VF_PL_BASE_ADDR + PL_VF_WHOAMI; |
| const u32 notready1 = 0xffffffff; |
| const u32 notready2 = 0xeeeeeeee; |
| u32 val; |
| |
| val = t4_read_reg(adapter, whoami); |
| if (val != notready1 && val != notready2) |
| return 0; |
| msleep(500); |
| val = t4_read_reg(adapter, whoami); |
| if (val != notready1 && val != notready2) |
| return 0; |
| else |
| return -EIO; |
| } |
| |
| /* |
| * Get the reply to a mailbox command and store it in @rpl in big-endian order |
| * (since the firmware data structures are specified in a big-endian layout). |
| */ |
| static void get_mbox_rpl(struct adapter *adapter, __be64 *rpl, int size, |
| u32 mbox_data) |
| { |
| for ( ; size; size -= 8, mbox_data += 8) |
| *rpl++ = cpu_to_be64(t4_read_reg64(adapter, mbox_data)); |
| } |
| |
| /* |
| * Dump contents of mailbox with a leading tag. |
| */ |
| static void dump_mbox(struct adapter *adapter, const char *tag, u32 mbox_data) |
| { |
| dev_err(adapter->pdev_dev, |
| "mbox %s: %llx %llx %llx %llx %llx %llx %llx %llx\n", tag, |
| (unsigned long long)t4_read_reg64(adapter, mbox_data + 0), |
| (unsigned long long)t4_read_reg64(adapter, mbox_data + 8), |
| (unsigned long long)t4_read_reg64(adapter, mbox_data + 16), |
| (unsigned long long)t4_read_reg64(adapter, mbox_data + 24), |
| (unsigned long long)t4_read_reg64(adapter, mbox_data + 32), |
| (unsigned long long)t4_read_reg64(adapter, mbox_data + 40), |
| (unsigned long long)t4_read_reg64(adapter, mbox_data + 48), |
| (unsigned long long)t4_read_reg64(adapter, mbox_data + 56)); |
| } |
| |
| /** |
| * t4vf_wr_mbox_core - send a command to FW through the mailbox |
| * @adapter: the adapter |
| * @cmd: the command to write |
| * @size: command length in bytes |
| * @rpl: where to optionally store the reply |
| * @sleep_ok: if true we may sleep while awaiting command completion |
| * |
| * Sends the given command to FW through the mailbox and waits for the |
| * FW to execute the command. If @rpl is not %NULL it is used to store |
| * the FW's reply to the command. The command and its optional reply |
| * are of the same length. FW can take up to 500 ms to respond. |
| * @sleep_ok determines whether we may sleep while awaiting the response. |
| * If sleeping is allowed we use progressive backoff otherwise we spin. |
| * |
| * The return value is 0 on success or a negative errno on failure. A |
| * failure can happen either because we are not able to execute the |
| * command or FW executes it but signals an error. In the latter case |
| * the return value is the error code indicated by FW (negated). |
| */ |
| int t4vf_wr_mbox_core(struct adapter *adapter, const void *cmd, int size, |
| void *rpl, bool sleep_ok) |
| { |
| static const int delay[] = { |
| 1, 1, 3, 5, 10, 10, 20, 50, 100 |
| }; |
| |
| u32 v; |
| int i, ms, delay_idx; |
| const __be64 *p; |
| u32 mbox_data = T4VF_MBDATA_BASE_ADDR; |
| u32 mbox_ctl = T4VF_CIM_BASE_ADDR + CIM_VF_EXT_MAILBOX_CTRL; |
| |
| /* |
| * Commands must be multiples of 16 bytes in length and may not be |
| * larger than the size of the Mailbox Data register array. |
| */ |
| if ((size % 16) != 0 || |
| size > NUM_CIM_VF_MAILBOX_DATA_INSTANCES * 4) |
| return -EINVAL; |
| |
| /* |
| * Loop trying to get ownership of the mailbox. Return an error |
| * if we can't gain ownership. |
| */ |
| v = MBOWNER_GET(t4_read_reg(adapter, mbox_ctl)); |
| for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++) |
| v = MBOWNER_GET(t4_read_reg(adapter, mbox_ctl)); |
| if (v != MBOX_OWNER_DRV) |
| return v == MBOX_OWNER_FW ? -EBUSY : -ETIMEDOUT; |
| |
| /* |
| * Write the command array into the Mailbox Data register array and |
| * transfer ownership of the mailbox to the firmware. |
| * |
| * For the VFs, the Mailbox Data "registers" are actually backed by |
| * T4's "MA" interface rather than PL Registers (as is the case for |
| * the PFs). Because these are in different coherency domains, the |
| * write to the VF's PL-register-backed Mailbox Control can race in |
| * front of the writes to the MA-backed VF Mailbox Data "registers". |
| * So we need to do a read-back on at least one byte of the VF Mailbox |
| * Data registers before doing the write to the VF Mailbox Control |
| * register. |
| */ |
| for (i = 0, p = cmd; i < size; i += 8) |
| t4_write_reg64(adapter, mbox_data + i, be64_to_cpu(*p++)); |
| t4_read_reg(adapter, mbox_data); /* flush write */ |
| |
| t4_write_reg(adapter, mbox_ctl, |
| MBMSGVALID | MBOWNER(MBOX_OWNER_FW)); |
| t4_read_reg(adapter, mbox_ctl); /* flush write */ |
| |
| /* |
| * Spin waiting for firmware to acknowledge processing our command. |
| */ |
| delay_idx = 0; |
| ms = delay[0]; |
| |
| for (i = 0; i < FW_CMD_MAX_TIMEOUT; i += ms) { |
| if (sleep_ok) { |
| ms = delay[delay_idx]; |
| if (delay_idx < ARRAY_SIZE(delay) - 1) |
| delay_idx++; |
| msleep(ms); |
| } else |
| mdelay(ms); |
| |
| /* |
| * If we're the owner, see if this is the reply we wanted. |
| */ |
| v = t4_read_reg(adapter, mbox_ctl); |
| if (MBOWNER_GET(v) == MBOX_OWNER_DRV) { |
| /* |
| * If the Message Valid bit isn't on, revoke ownership |
| * of the mailbox and continue waiting for our reply. |
| */ |
| if ((v & MBMSGVALID) == 0) { |
| t4_write_reg(adapter, mbox_ctl, |
| MBOWNER(MBOX_OWNER_NONE)); |
| continue; |
| } |
| |
| /* |
| * We now have our reply. Extract the command return |
| * value, copy the reply back to our caller's buffer |
| * (if specified) and revoke ownership of the mailbox. |
| * We return the (negated) firmware command return |
| * code (this depends on FW_SUCCESS == 0). |
| */ |
| |
| /* return value in low-order little-endian word */ |
| v = t4_read_reg(adapter, mbox_data); |
| if (FW_CMD_RETVAL_G(v)) |
| dump_mbox(adapter, "FW Error", mbox_data); |
| |
| if (rpl) { |
| /* request bit in high-order BE word */ |
| WARN_ON((be32_to_cpu(*(const u32 *)cmd) |
| & FW_CMD_REQUEST_F) == 0); |
| get_mbox_rpl(adapter, rpl, size, mbox_data); |
| WARN_ON((be32_to_cpu(*(u32 *)rpl) |
| & FW_CMD_REQUEST_F) != 0); |
| } |
| t4_write_reg(adapter, mbox_ctl, |
| MBOWNER(MBOX_OWNER_NONE)); |
| return -FW_CMD_RETVAL_G(v); |
| } |
| } |
| |
| /* |
| * We timed out. Return the error ... |
| */ |
| dump_mbox(adapter, "FW Timeout", mbox_data); |
| return -ETIMEDOUT; |
| } |
| |
| /** |
| * hash_mac_addr - return the hash value of a MAC address |
| * @addr: the 48-bit Ethernet MAC address |
| * |
| * Hashes a MAC address according to the hash function used by hardware |
| * inexact (hash) address matching. |
| */ |
| static int hash_mac_addr(const u8 *addr) |
| { |
| u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2]; |
| u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5]; |
| a ^= b; |
| a ^= (a >> 12); |
| a ^= (a >> 6); |
| return a & 0x3f; |
| } |
| |
| /** |
| * init_link_config - initialize a link's SW state |
| * @lc: structure holding the link state |
| * @caps: link capabilities |
| * |
| * Initializes the SW state maintained for each link, including the link's |
| * capabilities and default speed/flow-control/autonegotiation settings. |
| */ |
| static void init_link_config(struct link_config *lc, unsigned int caps) |
| { |
| lc->supported = caps; |
| lc->requested_speed = 0; |
| lc->speed = 0; |
| lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX; |
| if (lc->supported & SUPPORTED_Autoneg) { |
| lc->advertising = lc->supported; |
| lc->autoneg = AUTONEG_ENABLE; |
| lc->requested_fc |= PAUSE_AUTONEG; |
| } else { |
| lc->advertising = 0; |
| lc->autoneg = AUTONEG_DISABLE; |
| } |
| } |
| |
| /** |
| * t4vf_port_init - initialize port hardware/software state |
| * @adapter: the adapter |
| * @pidx: the adapter port index |
| */ |
| int t4vf_port_init(struct adapter *adapter, int pidx) |
| { |
| struct port_info *pi = adap2pinfo(adapter, pidx); |
| struct fw_vi_cmd vi_cmd, vi_rpl; |
| struct fw_port_cmd port_cmd, port_rpl; |
| int v; |
| u32 word; |
| |
| /* |
| * Execute a VI Read command to get our Virtual Interface information |
| * like MAC address, etc. |
| */ |
| memset(&vi_cmd, 0, sizeof(vi_cmd)); |
| vi_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | |
| FW_CMD_REQUEST_F | |
| FW_CMD_READ_F); |
| vi_cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(vi_cmd)); |
| vi_cmd.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(pi->viid)); |
| v = t4vf_wr_mbox(adapter, &vi_cmd, sizeof(vi_cmd), &vi_rpl); |
| if (v) |
| return v; |
| |
| BUG_ON(pi->port_id != FW_VI_CMD_PORTID_G(vi_rpl.portid_pkd)); |
| pi->rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(vi_rpl.rsssize_pkd)); |
| t4_os_set_hw_addr(adapter, pidx, vi_rpl.mac); |
| |
| /* |
| * If we don't have read access to our port information, we're done |
| * now. Otherwise, execute a PORT Read command to get it ... |
| */ |
| if (!(adapter->params.vfres.r_caps & FW_CMD_CAP_PORT)) |
| return 0; |
| |
| memset(&port_cmd, 0, sizeof(port_cmd)); |
| port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | |
| FW_CMD_REQUEST_F | |
| FW_CMD_READ_F | |
| FW_PORT_CMD_PORTID_V(pi->port_id)); |
| port_cmd.action_to_len16 = |
| cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_GET_PORT_INFO) | |
| FW_LEN16(port_cmd)); |
| v = t4vf_wr_mbox(adapter, &port_cmd, sizeof(port_cmd), &port_rpl); |
| if (v) |
| return v; |
| |
| v = 0; |
| word = be16_to_cpu(port_rpl.u.info.pcap); |
| if (word & FW_PORT_CAP_SPEED_100M) |
| v |= SUPPORTED_100baseT_Full; |
| if (word & FW_PORT_CAP_SPEED_1G) |
| v |= SUPPORTED_1000baseT_Full; |
| if (word & FW_PORT_CAP_SPEED_10G) |
| v |= SUPPORTED_10000baseT_Full; |
| if (word & FW_PORT_CAP_SPEED_40G) |
| v |= SUPPORTED_40000baseSR4_Full; |
| if (word & FW_PORT_CAP_ANEG) |
| v |= SUPPORTED_Autoneg; |
| init_link_config(&pi->link_cfg, v); |
| |
| return 0; |
| } |
| |
| /** |
| * t4vf_fw_reset - issue a reset to FW |
| * @adapter: the adapter |
| * |
| * Issues a reset command to FW. For a Physical Function this would |
| * result in the Firmware reseting all of its state. For a Virtual |
| * Function this just resets the state associated with the VF. |
| */ |
| int t4vf_fw_reset(struct adapter *adapter) |
| { |
| struct fw_reset_cmd cmd; |
| |
| memset(&cmd, 0, sizeof(cmd)); |
| cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RESET_CMD) | |
| FW_CMD_WRITE_F); |
| cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); |
| return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL); |
| } |
| |
| /** |
| * t4vf_query_params - query FW or device parameters |
| * @adapter: the adapter |
| * @nparams: the number of parameters |
| * @params: the parameter names |
| * @vals: the parameter values |
| * |
| * Reads the values of firmware or device parameters. Up to 7 parameters |
| * can be queried at once. |
| */ |
| static int t4vf_query_params(struct adapter *adapter, unsigned int nparams, |
| const u32 *params, u32 *vals) |
| { |
| int i, ret; |
| struct fw_params_cmd cmd, rpl; |
| struct fw_params_param *p; |
| size_t len16; |
| |
| if (nparams > 7) |
| return -EINVAL; |
| |
| memset(&cmd, 0, sizeof(cmd)); |
| cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) | |
| FW_CMD_REQUEST_F | |
| FW_CMD_READ_F); |
| len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd, |
| param[nparams].mnem), 16); |
| cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16)); |
| for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++) |
| p->mnem = htonl(*params++); |
| |
| ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl); |
| if (ret == 0) |
| for (i = 0, p = &rpl.param[0]; i < nparams; i++, p++) |
| *vals++ = be32_to_cpu(p->val); |
| return ret; |
| } |
| |
| /** |
| * t4vf_set_params - sets FW or device parameters |
| * @adapter: the adapter |
| * @nparams: the number of parameters |
| * @params: the parameter names |
| * @vals: the parameter values |
| * |
| * Sets the values of firmware or device parameters. Up to 7 parameters |
| * can be specified at once. |
| */ |
| int t4vf_set_params(struct adapter *adapter, unsigned int nparams, |
| const u32 *params, const u32 *vals) |
| { |
| int i; |
| struct fw_params_cmd cmd; |
| struct fw_params_param *p; |
| size_t len16; |
| |
| if (nparams > 7) |
| return -EINVAL; |
| |
| memset(&cmd, 0, sizeof(cmd)); |
| cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) | |
| FW_CMD_REQUEST_F | |
| FW_CMD_WRITE_F); |
| len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd, |
| param[nparams]), 16); |
| cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16)); |
| for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++) { |
| p->mnem = cpu_to_be32(*params++); |
| p->val = cpu_to_be32(*vals++); |
| } |
| |
| return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL); |
| } |
| |
| /** |
| * t4_bar2_sge_qregs - return BAR2 SGE Queue register information |
| * @adapter: the adapter |
| * @qid: the Queue ID |
| * @qtype: the Ingress or Egress type for @qid |
| * @pbar2_qoffset: BAR2 Queue Offset |
| * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues |
| * |
| * Returns the BAR2 SGE Queue Registers information associated with the |
| * indicated Absolute Queue ID. These are passed back in return value |
| * pointers. @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue |
| * and T4_BAR2_QTYPE_INGRESS for Ingress Queues. |
| * |
| * This may return an error which indicates that BAR2 SGE Queue |
| * registers aren't available. If an error is not returned, then the |
| * following values are returned: |
| * |
| * *@pbar2_qoffset: the BAR2 Offset of the @qid Registers |
| * *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid |
| * |
| * If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which |
| * require the "Inferred Queue ID" ability may be used. E.g. the |
| * Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0, |
| * then these "Inferred Queue ID" register may not be used. |
| */ |
| int t4_bar2_sge_qregs(struct adapter *adapter, |
| unsigned int qid, |
| enum t4_bar2_qtype qtype, |
| u64 *pbar2_qoffset, |
| unsigned int *pbar2_qid) |
| { |
| unsigned int page_shift, page_size, qpp_shift, qpp_mask; |
| u64 bar2_page_offset, bar2_qoffset; |
| unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred; |
| |
| /* T4 doesn't support BAR2 SGE Queue registers. |
| */ |
| if (is_t4(adapter->params.chip)) |
| return -EINVAL; |
| |
| /* Get our SGE Page Size parameters. |
| */ |
| page_shift = adapter->params.sge.sge_vf_hps + 10; |
| page_size = 1 << page_shift; |
| |
| /* Get the right Queues per Page parameters for our Queue. |
| */ |
| qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS |
| ? adapter->params.sge.sge_vf_eq_qpp |
| : adapter->params.sge.sge_vf_iq_qpp); |
| qpp_mask = (1 << qpp_shift) - 1; |
| |
| /* Calculate the basics of the BAR2 SGE Queue register area: |
| * o The BAR2 page the Queue registers will be in. |
| * o The BAR2 Queue ID. |
| * o The BAR2 Queue ID Offset into the BAR2 page. |
| */ |
| bar2_page_offset = ((qid >> qpp_shift) << page_shift); |
| bar2_qid = qid & qpp_mask; |
| bar2_qid_offset = bar2_qid * SGE_UDB_SIZE; |
| |
| /* If the BAR2 Queue ID Offset is less than the Page Size, then the |
| * hardware will infer the Absolute Queue ID simply from the writes to |
| * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a |
| * BAR2 Queue ID of 0 for those writes). Otherwise, we'll simply |
| * write to the first BAR2 SGE Queue Area within the BAR2 Page with |
| * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID |
| * from the BAR2 Page and BAR2 Queue ID. |
| * |
| * One important censequence of this is that some BAR2 SGE registers |
| * have a "Queue ID" field and we can write the BAR2 SGE Queue ID |
| * there. But other registers synthesize the SGE Queue ID purely |
| * from the writes to the registers -- the Write Combined Doorbell |
| * Buffer is a good example. These BAR2 SGE Registers are only |
| * available for those BAR2 SGE Register areas where the SGE Absolute |
| * Queue ID can be inferred from simple writes. |
| */ |
| bar2_qoffset = bar2_page_offset; |
| bar2_qinferred = (bar2_qid_offset < page_size); |
| if (bar2_qinferred) { |
| bar2_qoffset += bar2_qid_offset; |
| bar2_qid = 0; |
| } |
| |
| *pbar2_qoffset = bar2_qoffset; |
| *pbar2_qid = bar2_qid; |
| return 0; |
| } |
| |
| /** |
| * t4vf_get_sge_params - retrieve adapter Scatter gather Engine parameters |
| * @adapter: the adapter |
| * |
| * Retrieves various core SGE parameters in the form of hardware SGE |
| * register values. The caller is responsible for decoding these as |
| * needed. The SGE parameters are stored in @adapter->params.sge. |
| */ |
| int t4vf_get_sge_params(struct adapter *adapter) |
| { |
| struct sge_params *sge_params = &adapter->params.sge; |
| u32 params[7], vals[7]; |
| int v; |
| |
| params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) | |
| FW_PARAMS_PARAM_XYZ_V(SGE_CONTROL)); |
| params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) | |
| FW_PARAMS_PARAM_XYZ_V(SGE_HOST_PAGE_SIZE)); |
| params[2] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) | |
| FW_PARAMS_PARAM_XYZ_V(SGE_FL_BUFFER_SIZE0)); |
| params[3] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) | |
| FW_PARAMS_PARAM_XYZ_V(SGE_FL_BUFFER_SIZE1)); |
| params[4] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) | |
| FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_0_AND_1)); |
| params[5] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) | |
| FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_2_AND_3)); |
| params[6] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) | |
| FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_4_AND_5)); |
| v = t4vf_query_params(adapter, 7, params, vals); |
| if (v) |
| return v; |
| sge_params->sge_control = vals[0]; |
| sge_params->sge_host_page_size = vals[1]; |
| sge_params->sge_fl_buffer_size[0] = vals[2]; |
| sge_params->sge_fl_buffer_size[1] = vals[3]; |
| sge_params->sge_timer_value_0_and_1 = vals[4]; |
| sge_params->sge_timer_value_2_and_3 = vals[5]; |
| sge_params->sge_timer_value_4_and_5 = vals[6]; |
| |
| /* T4 uses a single control field to specify both the PCIe Padding and |
| * Packing Boundary. T5 introduced the ability to specify these |
| * separately with the Padding Boundary in SGE_CONTROL and and Packing |
| * Boundary in SGE_CONTROL2. So for T5 and later we need to grab |
| * SGE_CONTROL in order to determine how ingress packet data will be |
| * laid out in Packed Buffer Mode. Unfortunately, older versions of |
| * the firmware won't let us retrieve SGE_CONTROL2 so if we get a |
| * failure grabbing it we throw an error since we can't figure out the |
| * right value. |
| */ |
| if (!is_t4(adapter->params.chip)) { |
| params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) | |
| FW_PARAMS_PARAM_XYZ_V(SGE_CONTROL2_A)); |
| v = t4vf_query_params(adapter, 1, params, vals); |
| if (v != FW_SUCCESS) { |
| dev_err(adapter->pdev_dev, |
| "Unable to get SGE Control2; " |
| "probably old firmware.\n"); |
| return v; |
| } |
| sge_params->sge_control2 = vals[0]; |
| } |
| |
| params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) | |
| FW_PARAMS_PARAM_XYZ_V(SGE_INGRESS_RX_THRESHOLD)); |
| params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) | |
| FW_PARAMS_PARAM_XYZ_V(SGE_CONM_CTRL)); |
| v = t4vf_query_params(adapter, 2, params, vals); |
| if (v) |
| return v; |
| sge_params->sge_ingress_rx_threshold = vals[0]; |
| sge_params->sge_congestion_control = vals[1]; |
| |
| /* For T5 and later we want to use the new BAR2 Doorbells. |
| * Unfortunately, older firmware didn't allow the this register to be |
| * read. |
| */ |
| if (!is_t4(adapter->params.chip)) { |
| u32 whoami; |
| unsigned int pf, s_hps, s_qpp; |
| |
| params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) | |
| FW_PARAMS_PARAM_XYZ_V( |
| SGE_EGRESS_QUEUES_PER_PAGE_VF_A)); |
| params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) | |
| FW_PARAMS_PARAM_XYZ_V( |
| SGE_INGRESS_QUEUES_PER_PAGE_VF_A)); |
| v = t4vf_query_params(adapter, 2, params, vals); |
| if (v != FW_SUCCESS) { |
| dev_warn(adapter->pdev_dev, |
| "Unable to get VF SGE Queues/Page; " |
| "probably old firmware.\n"); |
| return v; |
| } |
| sge_params->sge_egress_queues_per_page = vals[0]; |
| sge_params->sge_ingress_queues_per_page = vals[1]; |
| |
| /* We need the Queues/Page for our VF. This is based on the |
| * PF from which we're instantiated and is indexed in the |
| * register we just read. Do it once here so other code in |
| * the driver can just use it. |
| */ |
| whoami = t4_read_reg(adapter, |
| T4VF_PL_BASE_ADDR + A_PL_VF_WHOAMI); |
| pf = SOURCEPF_GET(whoami); |
| |
| s_hps = (HOSTPAGESIZEPF0_S + |
| (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * pf); |
| sge_params->sge_vf_hps = |
| ((sge_params->sge_host_page_size >> s_hps) |
| & HOSTPAGESIZEPF0_M); |
| |
| s_qpp = (QUEUESPERPAGEPF0_S + |
| (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * pf); |
| sge_params->sge_vf_eq_qpp = |
| ((sge_params->sge_egress_queues_per_page >> s_qpp) |
| & QUEUESPERPAGEPF0_MASK); |
| sge_params->sge_vf_iq_qpp = |
| ((sge_params->sge_ingress_queues_per_page >> s_qpp) |
| & QUEUESPERPAGEPF0_MASK); |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * t4vf_get_vpd_params - retrieve device VPD paremeters |
| * @adapter: the adapter |
| * |
| * Retrives various device Vital Product Data parameters. The parameters |
| * are stored in @adapter->params.vpd. |
| */ |
| int t4vf_get_vpd_params(struct adapter *adapter) |
| { |
| struct vpd_params *vpd_params = &adapter->params.vpd; |
| u32 params[7], vals[7]; |
| int v; |
| |
| params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | |
| FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK)); |
| v = t4vf_query_params(adapter, 1, params, vals); |
| if (v) |
| return v; |
| vpd_params->cclk = vals[0]; |
| |
| return 0; |
| } |
| |
| /** |
| * t4vf_get_dev_params - retrieve device paremeters |
| * @adapter: the adapter |
| * |
| * Retrives various device parameters. The parameters are stored in |
| * @adapter->params.dev. |
| */ |
| int t4vf_get_dev_params(struct adapter *adapter) |
| { |
| struct dev_params *dev_params = &adapter->params.dev; |
| u32 params[7], vals[7]; |
| int v; |
| |
| params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | |
| FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWREV)); |
| params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | |
| FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_TPREV)); |
| v = t4vf_query_params(adapter, 2, params, vals); |
| if (v) |
| return v; |
| dev_params->fwrev = vals[0]; |
| dev_params->tprev = vals[1]; |
| |
| return 0; |
| } |
| |
| /** |
| * t4vf_get_rss_glb_config - retrieve adapter RSS Global Configuration |
| * @adapter: the adapter |
| * |
| * Retrieves global RSS mode and parameters with which we have to live |
| * and stores them in the @adapter's RSS parameters. |
| */ |
| int t4vf_get_rss_glb_config(struct adapter *adapter) |
| { |
| struct rss_params *rss = &adapter->params.rss; |
| struct fw_rss_glb_config_cmd cmd, rpl; |
| int v; |
| |
| /* |
| * Execute an RSS Global Configuration read command to retrieve |
| * our RSS configuration. |
| */ |
| memset(&cmd, 0, sizeof(cmd)); |
| cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) | |
| FW_CMD_REQUEST_F | |
| FW_CMD_READ_F); |
| cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); |
| v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl); |
| if (v) |
| return v; |
| |
| /* |
| * Transate the big-endian RSS Global Configuration into our |
| * cpu-endian format based on the RSS mode. We also do first level |
| * filtering at this point to weed out modes which don't support |
| * VF Drivers ... |
| */ |
| rss->mode = FW_RSS_GLB_CONFIG_CMD_MODE_G( |
| be32_to_cpu(rpl.u.manual.mode_pkd)); |
| switch (rss->mode) { |
| case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: { |
| u32 word = be32_to_cpu( |
| rpl.u.basicvirtual.synmapen_to_hashtoeplitz); |
| |
| rss->u.basicvirtual.synmapen = |
| ((word & FW_RSS_GLB_CONFIG_CMD_SYNMAPEN_F) != 0); |
| rss->u.basicvirtual.syn4tupenipv6 = |
| ((word & FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV6_F) != 0); |
| rss->u.basicvirtual.syn2tupenipv6 = |
| ((word & FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV6_F) != 0); |
| rss->u.basicvirtual.syn4tupenipv4 = |
| ((word & FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV4_F) != 0); |
| rss->u.basicvirtual.syn2tupenipv4 = |
| ((word & FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV4_F) != 0); |
| |
| rss->u.basicvirtual.ofdmapen = |
| ((word & FW_RSS_GLB_CONFIG_CMD_OFDMAPEN_F) != 0); |
| |
| rss->u.basicvirtual.tnlmapen = |
| ((word & FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F) != 0); |
| rss->u.basicvirtual.tnlalllookup = |
| ((word & FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F) != 0); |
| |
| rss->u.basicvirtual.hashtoeplitz = |
| ((word & FW_RSS_GLB_CONFIG_CMD_HASHTOEPLITZ_F) != 0); |
| |
| /* we need at least Tunnel Map Enable to be set */ |
| if (!rss->u.basicvirtual.tnlmapen) |
| return -EINVAL; |
| break; |
| } |
| |
| default: |
| /* all unknown/unsupported RSS modes result in an error */ |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * t4vf_get_vfres - retrieve VF resource limits |
| * @adapter: the adapter |
| * |
| * Retrieves configured resource limits and capabilities for a virtual |
| * function. The results are stored in @adapter->vfres. |
| */ |
| int t4vf_get_vfres(struct adapter *adapter) |
| { |
| struct vf_resources *vfres = &adapter->params.vfres; |
| struct fw_pfvf_cmd cmd, rpl; |
| int v; |
| u32 word; |
| |
| /* |
| * Execute PFVF Read command to get VF resource limits; bail out early |
| * with error on command failure. |
| */ |
| memset(&cmd, 0, sizeof(cmd)); |
| cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | |
| FW_CMD_REQUEST_F | |
| FW_CMD_READ_F); |
| cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); |
| v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl); |
| if (v) |
| return v; |
| |
| /* |
| * Extract VF resource limits and return success. |
| */ |
| word = be32_to_cpu(rpl.niqflint_niq); |
| vfres->niqflint = FW_PFVF_CMD_NIQFLINT_G(word); |
| vfres->niq = FW_PFVF_CMD_NIQ_G(word); |
| |
| word = be32_to_cpu(rpl.type_to_neq); |
| vfres->neq = FW_PFVF_CMD_NEQ_G(word); |
| vfres->pmask = FW_PFVF_CMD_PMASK_G(word); |
| |
| word = be32_to_cpu(rpl.tc_to_nexactf); |
| vfres->tc = FW_PFVF_CMD_TC_G(word); |
| vfres->nvi = FW_PFVF_CMD_NVI_G(word); |
| vfres->nexactf = FW_PFVF_CMD_NEXACTF_G(word); |
| |
| word = be32_to_cpu(rpl.r_caps_to_nethctrl); |
| vfres->r_caps = FW_PFVF_CMD_R_CAPS_G(word); |
| vfres->wx_caps = FW_PFVF_CMD_WX_CAPS_G(word); |
| vfres->nethctrl = FW_PFVF_CMD_NETHCTRL_G(word); |
| |
| return 0; |
| } |
| |
| /** |
| * t4vf_read_rss_vi_config - read a VI's RSS configuration |
| * @adapter: the adapter |
| * @viid: Virtual Interface ID |
| * @config: pointer to host-native VI RSS Configuration buffer |
| * |
| * Reads the Virtual Interface's RSS configuration information and |
| * translates it into CPU-native format. |
| */ |
| int t4vf_read_rss_vi_config(struct adapter *adapter, unsigned int viid, |
| union rss_vi_config *config) |
| { |
| struct fw_rss_vi_config_cmd cmd, rpl; |
| int v; |
| |
| memset(&cmd, 0, sizeof(cmd)); |
| cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) | |
| FW_CMD_REQUEST_F | |
| FW_CMD_READ_F | |
| FW_RSS_VI_CONFIG_CMD_VIID(viid)); |
| cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); |
| v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl); |
| if (v) |
| return v; |
| |
| switch (adapter->params.rss.mode) { |
| case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: { |
| u32 word = be32_to_cpu(rpl.u.basicvirtual.defaultq_to_udpen); |
| |
| config->basicvirtual.ip6fourtupen = |
| ((word & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F) != 0); |
| config->basicvirtual.ip6twotupen = |
| ((word & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F) != 0); |
| config->basicvirtual.ip4fourtupen = |
| ((word & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F) != 0); |
| config->basicvirtual.ip4twotupen = |
| ((word & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F) != 0); |
| config->basicvirtual.udpen = |
| ((word & FW_RSS_VI_CONFIG_CMD_UDPEN_F) != 0); |
| config->basicvirtual.defaultq = |
| FW_RSS_VI_CONFIG_CMD_DEFAULTQ_G(word); |
| break; |
| } |
| |
| default: |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * t4vf_write_rss_vi_config - write a VI's RSS configuration |
| * @adapter: the adapter |
| * @viid: Virtual Interface ID |
| * @config: pointer to host-native VI RSS Configuration buffer |
| * |
| * Write the Virtual Interface's RSS configuration information |
| * (translating it into firmware-native format before writing). |
| */ |
| int t4vf_write_rss_vi_config(struct adapter *adapter, unsigned int viid, |
| union rss_vi_config *config) |
| { |
| struct fw_rss_vi_config_cmd cmd, rpl; |
| |
| memset(&cmd, 0, sizeof(cmd)); |
| cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) | |
| FW_CMD_REQUEST_F | |
| FW_CMD_WRITE_F | |
| FW_RSS_VI_CONFIG_CMD_VIID(viid)); |
| cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); |
| switch (adapter->params.rss.mode) { |
| case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: { |
| u32 word = 0; |
| |
| if (config->basicvirtual.ip6fourtupen) |
| word |= FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F; |
| if (config->basicvirtual.ip6twotupen) |
| word |= FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F; |
| if (config->basicvirtual.ip4fourtupen) |
| word |= FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F; |
| if (config->basicvirtual.ip4twotupen) |
| word |= FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F; |
| if (config->basicvirtual.udpen) |
| word |= FW_RSS_VI_CONFIG_CMD_UDPEN_F; |
| word |= FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V( |
| config->basicvirtual.defaultq); |
| cmd.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(word); |
| break; |
| } |
| |
| default: |
| return -EINVAL; |
| } |
| |
| return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl); |
| } |
| |
| /** |
| * t4vf_config_rss_range - configure a portion of the RSS mapping table |
| * @adapter: the adapter |
| * @viid: Virtual Interface of RSS Table Slice |
| * @start: starting entry in the table to write |
| * @n: how many table entries to write |
| * @rspq: values for the "Response Queue" (Ingress Queue) lookup table |
| * @nrspq: number of values in @rspq |
| * |
| * Programs the selected part of the VI's RSS mapping table with the |
| * provided values. If @nrspq < @n the supplied values are used repeatedly |
| * until the full table range is populated. |
| * |
| * The caller must ensure the values in @rspq are in the range 0..1023. |
| */ |
| int t4vf_config_rss_range(struct adapter *adapter, unsigned int viid, |
| int start, int n, const u16 *rspq, int nrspq) |
| { |
| const u16 *rsp = rspq; |
| const u16 *rsp_end = rspq+nrspq; |
| struct fw_rss_ind_tbl_cmd cmd; |
| |
| /* |
| * Initialize firmware command template to write the RSS table. |
| */ |
| memset(&cmd, 0, sizeof(cmd)); |
| cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) | |
| FW_CMD_REQUEST_F | |
| FW_CMD_WRITE_F | |
| FW_RSS_IND_TBL_CMD_VIID_V(viid)); |
| cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); |
| |
| /* |
| * Each firmware RSS command can accommodate up to 32 RSS Ingress |
| * Queue Identifiers. These Ingress Queue IDs are packed three to |
| * a 32-bit word as 10-bit values with the upper remaining 2 bits |
| * reserved. |
| */ |
| while (n > 0) { |
| __be32 *qp = &cmd.iq0_to_iq2; |
| int nq = min(n, 32); |
| int ret; |
| |
| /* |
| * Set up the firmware RSS command header to send the next |
| * "nq" Ingress Queue IDs to the firmware. |
| */ |
| cmd.niqid = cpu_to_be16(nq); |
| cmd.startidx = cpu_to_be16(start); |
| |
| /* |
| * "nq" more done for the start of the next loop. |
| */ |
| start += nq; |
| n -= nq; |
| |
| /* |
| * While there are still Ingress Queue IDs to stuff into the |
| * current firmware RSS command, retrieve them from the |
| * Ingress Queue ID array and insert them into the command. |
| */ |
| while (nq > 0) { |
| /* |
| * Grab up to the next 3 Ingress Queue IDs (wrapping |
| * around the Ingress Queue ID array if necessary) and |
| * insert them into the firmware RSS command at the |
| * current 3-tuple position within the commad. |
| */ |
| u16 qbuf[3]; |
| u16 *qbp = qbuf; |
| int nqbuf = min(3, nq); |
| |
| nq -= nqbuf; |
| qbuf[0] = qbuf[1] = qbuf[2] = 0; |
| while (nqbuf) { |
| nqbuf--; |
| *qbp++ = *rsp++; |
| if (rsp >= rsp_end) |
| rsp = rspq; |
| } |
| *qp++ = cpu_to_be32(FW_RSS_IND_TBL_CMD_IQ0_V(qbuf[0]) | |
| FW_RSS_IND_TBL_CMD_IQ1_V(qbuf[1]) | |
| FW_RSS_IND_TBL_CMD_IQ2_V(qbuf[2])); |
| } |
| |
| /* |
| * Send this portion of the RRS table update to the firmware; |
| * bail out on any errors. |
| */ |
| ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL); |
| if (ret) |
| return ret; |
| } |
| return 0; |
| } |
| |
| /** |
| * t4vf_alloc_vi - allocate a virtual interface on a port |
| * @adapter: the adapter |
| * @port_id: physical port associated with the VI |
| * |
| * Allocate a new Virtual Interface and bind it to the indicated |
| * physical port. Return the new Virtual Interface Identifier on |
| * success, or a [negative] error number on failure. |
| */ |
| int t4vf_alloc_vi(struct adapter *adapter, int port_id) |
| { |
| struct fw_vi_cmd cmd, rpl; |
| int v; |
| |
| /* |
| * Execute a VI command to allocate Virtual Interface and return its |
| * VIID. |
| */ |
| memset(&cmd, 0, sizeof(cmd)); |
| cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | |
| FW_CMD_REQUEST_F | |
| FW_CMD_WRITE_F | |
| FW_CMD_EXEC_F); |
| cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) | |
| FW_VI_CMD_ALLOC_F); |
| cmd.portid_pkd = FW_VI_CMD_PORTID_V(port_id); |
| v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl); |
| if (v) |
| return v; |
| |
| return FW_VI_CMD_VIID_G(be16_to_cpu(rpl.type_viid)); |
| } |
| |
| /** |
| * t4vf_free_vi -- free a virtual interface |
| * @adapter: the adapter |
| * @viid: the virtual interface identifier |
| * |
| * Free a previously allocated Virtual Interface. Return an error on |
| * failure. |
| */ |
| int t4vf_free_vi(struct adapter *adapter, int viid) |
| { |
| struct fw_vi_cmd cmd; |
| |
| /* |
| * Execute a VI command to free the Virtual Interface. |
| */ |
| memset(&cmd, 0, sizeof(cmd)); |
| cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | |
| FW_CMD_REQUEST_F | |
| FW_CMD_EXEC_F); |
| cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) | |
| FW_VI_CMD_FREE_F); |
| cmd.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid)); |
| return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL); |
| } |
| |
| /** |
| * t4vf_enable_vi - enable/disable a virtual interface |
| * @adapter: the adapter |
| * @viid: the Virtual Interface ID |
| * @rx_en: 1=enable Rx, 0=disable Rx |
| * @tx_en: 1=enable Tx, 0=disable Tx |
| * |
| * Enables/disables a virtual interface. |
| */ |
| int t4vf_enable_vi(struct adapter *adapter, unsigned int viid, |
| bool rx_en, bool tx_en) |
| { |
| struct fw_vi_enable_cmd cmd; |
| |
| memset(&cmd, 0, sizeof(cmd)); |
| cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) | |
| FW_CMD_REQUEST_F | |
| FW_CMD_EXEC_F | |
| FW_VI_ENABLE_CMD_VIID_V(viid)); |
| cmd.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) | |
| FW_VI_ENABLE_CMD_EEN_V(tx_en) | |
| FW_LEN16(cmd)); |
| return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL); |
| } |
| |
| /** |
| * t4vf_identify_port - identify a VI's port by blinking its LED |
| * @adapter: the adapter |
| * @viid: the Virtual Interface ID |
| * @nblinks: how many times to blink LED at 2.5 Hz |
| * |
| * Identifies a VI's port by blinking its LED. |
| */ |
| int t4vf_identify_port(struct adapter *adapter, unsigned int viid, |
| unsigned int nblinks) |
| { |
| struct fw_vi_enable_cmd cmd; |
| |
| memset(&cmd, 0, sizeof(cmd)); |
| cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) | |
| FW_CMD_REQUEST_F | |
| FW_CMD_EXEC_F | |
| FW_VI_ENABLE_CMD_VIID_V(viid)); |
| cmd.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F | |
| FW_LEN16(cmd)); |
| cmd.blinkdur = cpu_to_be16(nblinks); |
| return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL); |
| } |
| |
| /** |
| * t4vf_set_rxmode - set Rx properties of a virtual interface |
| * @adapter: the adapter |
| * @viid: the VI id |
| * @mtu: the new MTU or -1 for no change |
| * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change |
| * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change |
| * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change |
| * @vlanex: 1 to enable hardware VLAN Tag extraction, 0 to disable it, |
| * -1 no change |
| * |
| * Sets Rx properties of a virtual interface. |
| */ |
| int t4vf_set_rxmode(struct adapter *adapter, unsigned int viid, |
| int mtu, int promisc, int all_multi, int bcast, int vlanex, |
| bool sleep_ok) |
| { |
| struct fw_vi_rxmode_cmd cmd; |
| |
| /* convert to FW values */ |
| if (mtu < 0) |
| mtu = FW_VI_RXMODE_CMD_MTU_M; |
| if (promisc < 0) |
| promisc = FW_VI_RXMODE_CMD_PROMISCEN_M; |
| if (all_multi < 0) |
| all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M; |
| if (bcast < 0) |
| bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M; |
| if (vlanex < 0) |
| vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M; |
| |
| memset(&cmd, 0, sizeof(cmd)); |
| cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) | |
| FW_CMD_REQUEST_F | |
| FW_CMD_WRITE_F | |
| FW_VI_RXMODE_CMD_VIID_V(viid)); |
| cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); |
| cmd.mtu_to_vlanexen = |
| cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) | |
| FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) | |
| FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) | |
| FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) | |
| FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex)); |
| return t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), NULL, sleep_ok); |
| } |
| |
| /** |
| * t4vf_alloc_mac_filt - allocates exact-match filters for MAC addresses |
| * @adapter: the adapter |
| * @viid: the Virtual Interface Identifier |
| * @free: if true any existing filters for this VI id are first removed |
| * @naddr: the number of MAC addresses to allocate filters for (up to 7) |
| * @addr: the MAC address(es) |
| * @idx: where to store the index of each allocated filter |
| * @hash: pointer to hash address filter bitmap |
| * @sleep_ok: call is allowed to sleep |
| * |
| * Allocates an exact-match filter for each of the supplied addresses and |
| * sets it to the corresponding address. If @idx is not %NULL it should |
| * have at least @naddr entries, each of which will be set to the index of |
| * the filter allocated for the corresponding MAC address. If a filter |
| * could not be allocated for an address its index is set to 0xffff. |
| * If @hash is not %NULL addresses that fail to allocate an exact filter |
| * are hashed and update the hash filter bitmap pointed at by @hash. |
| * |
| * Returns a negative error number or the number of filters allocated. |
| */ |
| int t4vf_alloc_mac_filt(struct adapter *adapter, unsigned int viid, bool free, |
| unsigned int naddr, const u8 **addr, u16 *idx, |
| u64 *hash, bool sleep_ok) |
| { |
| int offset, ret = 0; |
| unsigned nfilters = 0; |
| unsigned int rem = naddr; |
| struct fw_vi_mac_cmd cmd, rpl; |
| unsigned int max_naddr = is_t4(adapter->params.chip) ? |
| NUM_MPS_CLS_SRAM_L_INSTANCES : |
| NUM_MPS_T5_CLS_SRAM_L_INSTANCES; |
| |
| if (naddr > max_naddr) |
| return -EINVAL; |
| |
| for (offset = 0; offset < naddr; /**/) { |
| unsigned int fw_naddr = (rem < ARRAY_SIZE(cmd.u.exact) |
| ? rem |
| : ARRAY_SIZE(cmd.u.exact)); |
| size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd, |
| u.exact[fw_naddr]), 16); |
| struct fw_vi_mac_exact *p; |
| int i; |
| |
| memset(&cmd, 0, sizeof(cmd)); |
| cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | |
| FW_CMD_REQUEST_F | |
| FW_CMD_WRITE_F | |
| (free ? FW_CMD_EXEC_F : 0) | |
| FW_VI_MAC_CMD_VIID_V(viid)); |
| cmd.freemacs_to_len16 = |
| cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) | |
| FW_CMD_LEN16_V(len16)); |
| |
| for (i = 0, p = cmd.u.exact; i < fw_naddr; i++, p++) { |
| p->valid_to_idx = cpu_to_be16( |
| FW_VI_MAC_CMD_VALID_F | |
| FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_ADD_MAC)); |
| memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr)); |
| } |
| |
| |
| ret = t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), &rpl, |
| sleep_ok); |
| if (ret && ret != -ENOMEM) |
| break; |
| |
| for (i = 0, p = rpl.u.exact; i < fw_naddr; i++, p++) { |
| u16 index = FW_VI_MAC_CMD_IDX_G( |
| be16_to_cpu(p->valid_to_idx)); |
| |
| if (idx) |
| idx[offset+i] = |
| (index >= max_naddr |
| ? 0xffff |
| : index); |
| if (index < max_naddr) |
| nfilters++; |
| else if (hash) |
| *hash |= (1ULL << hash_mac_addr(addr[offset+i])); |
| } |
| |
| free = false; |
| offset += fw_naddr; |
| rem -= fw_naddr; |
| } |
| |
| /* |
| * If there were no errors or we merely ran out of room in our MAC |
| * address arena, return the number of filters actually written. |
| */ |
| if (ret == 0 || ret == -ENOMEM) |
| ret = nfilters; |
| return ret; |
| } |
| |
| /** |
| * t4vf_change_mac - modifies the exact-match filter for a MAC address |
| * @adapter: the adapter |
| * @viid: the Virtual Interface ID |
| * @idx: index of existing filter for old value of MAC address, or -1 |
| * @addr: the new MAC address value |
| * @persist: if idx < 0, the new MAC allocation should be persistent |
| * |
| * Modifies an exact-match filter and sets it to the new MAC address. |
| * Note that in general it is not possible to modify the value of a given |
| * filter so the generic way to modify an address filter is to free the |
| * one being used by the old address value and allocate a new filter for |
| * the new address value. @idx can be -1 if the address is a new |
| * addition. |
| * |
| * Returns a negative error number or the index of the filter with the new |
| * MAC value. |
| */ |
| int t4vf_change_mac(struct adapter *adapter, unsigned int viid, |
| int idx, const u8 *addr, bool persist) |
| { |
| int ret; |
| struct fw_vi_mac_cmd cmd, rpl; |
| struct fw_vi_mac_exact *p = &cmd.u.exact[0]; |
| size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd, |
| u.exact[1]), 16); |
| unsigned int max_naddr = is_t4(adapter->params.chip) ? |
| NUM_MPS_CLS_SRAM_L_INSTANCES : |
| NUM_MPS_T5_CLS_SRAM_L_INSTANCES; |
| |
| /* |
| * If this is a new allocation, determine whether it should be |
| * persistent (across a "freemacs" operation) or not. |
| */ |
| if (idx < 0) |
| idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC; |
| |
| memset(&cmd, 0, sizeof(cmd)); |
| cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | |
| FW_CMD_REQUEST_F | |
| FW_CMD_WRITE_F | |
| FW_VI_MAC_CMD_VIID_V(viid)); |
| cmd.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16)); |
| p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F | |
| FW_VI_MAC_CMD_IDX_V(idx)); |
| memcpy(p->macaddr, addr, sizeof(p->macaddr)); |
| |
| ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl); |
| if (ret == 0) { |
| p = &rpl.u.exact[0]; |
| ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx)); |
| if (ret >= max_naddr) |
| ret = -ENOMEM; |
| } |
| return ret; |
| } |
| |
| /** |
| * t4vf_set_addr_hash - program the MAC inexact-match hash filter |
| * @adapter: the adapter |
| * @viid: the Virtual Interface Identifier |
| * @ucast: whether the hash filter should also match unicast addresses |
| * @vec: the value to be written to the hash filter |
| * @sleep_ok: call is allowed to sleep |
| * |
| * Sets the 64-bit inexact-match hash filter for a virtual interface. |
| */ |
| int t4vf_set_addr_hash(struct adapter *adapter, unsigned int viid, |
| bool ucast, u64 vec, bool sleep_ok) |
| { |
| struct fw_vi_mac_cmd cmd; |
| size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd, |
| u.exact[0]), 16); |
| |
| memset(&cmd, 0, sizeof(cmd)); |
| cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | |
| FW_CMD_REQUEST_F | |
| FW_CMD_WRITE_F | |
| FW_VI_ENABLE_CMD_VIID_V(viid)); |
| cmd.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F | |
| FW_VI_MAC_CMD_HASHUNIEN_V(ucast) | |
| FW_CMD_LEN16_V(len16)); |
| cmd.u.hash.hashvec = cpu_to_be64(vec); |
| return t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), NULL, sleep_ok); |
| } |
| |
| /** |
| * t4vf_get_port_stats - collect "port" statistics |
| * @adapter: the adapter |
| * @pidx: the port index |
| * @s: the stats structure to fill |
| * |
| * Collect statistics for the "port"'s Virtual Interface. |
| */ |
| int t4vf_get_port_stats(struct adapter *adapter, int pidx, |
| struct t4vf_port_stats *s) |
| { |
| struct port_info *pi = adap2pinfo(adapter, pidx); |
| struct fw_vi_stats_vf fwstats; |
| unsigned int rem = VI_VF_NUM_STATS; |
| __be64 *fwsp = (__be64 *)&fwstats; |
| |
| /* |
| * Grab the Virtual Interface statistics a chunk at a time via mailbox |
| * commands. We could use a Work Request and get all of them at once |
| * but that's an asynchronous interface which is awkward to use. |
| */ |
| while (rem) { |
| unsigned int ix = VI_VF_NUM_STATS - rem; |
| unsigned int nstats = min(6U, rem); |
| struct fw_vi_stats_cmd cmd, rpl; |
| size_t len = (offsetof(struct fw_vi_stats_cmd, u) + |
| sizeof(struct fw_vi_stats_ctl)); |
| size_t len16 = DIV_ROUND_UP(len, 16); |
| int ret; |
| |
| memset(&cmd, 0, sizeof(cmd)); |
| cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_STATS_CMD) | |
| FW_VI_STATS_CMD_VIID_V(pi->viid) | |
| FW_CMD_REQUEST_F | |
| FW_CMD_READ_F); |
| cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16)); |
| cmd.u.ctl.nstats_ix = |
| cpu_to_be16(FW_VI_STATS_CMD_IX_V(ix) | |
| FW_VI_STATS_CMD_NSTATS_V(nstats)); |
| ret = t4vf_wr_mbox_ns(adapter, &cmd, len, &rpl); |
| if (ret) |
| return ret; |
| |
| memcpy(fwsp, &rpl.u.ctl.stat0, sizeof(__be64) * nstats); |
| |
| rem -= nstats; |
| fwsp += nstats; |
| } |
| |
| /* |
| * Translate firmware statistics into host native statistics. |
| */ |
| s->tx_bcast_bytes = be64_to_cpu(fwstats.tx_bcast_bytes); |
| s->tx_bcast_frames = be64_to_cpu(fwstats.tx_bcast_frames); |
| s->tx_mcast_bytes = be64_to_cpu(fwstats.tx_mcast_bytes); |
| s->tx_mcast_frames = be64_to_cpu(fwstats.tx_mcast_frames); |
| s->tx_ucast_bytes = be64_to_cpu(fwstats.tx_ucast_bytes); |
| s->tx_ucast_frames = be64_to_cpu(fwstats.tx_ucast_frames); |
| s->tx_drop_frames = be64_to_cpu(fwstats.tx_drop_frames); |
| s->tx_offload_bytes = be64_to_cpu(fwstats.tx_offload_bytes); |
| s->tx_offload_frames = be64_to_cpu(fwstats.tx_offload_frames); |
| |
| s->rx_bcast_bytes = be64_to_cpu(fwstats.rx_bcast_bytes); |
| s->rx_bcast_frames = be64_to_cpu(fwstats.rx_bcast_frames); |
| s->rx_mcast_bytes = be64_to_cpu(fwstats.rx_mcast_bytes); |
| s->rx_mcast_frames = be64_to_cpu(fwstats.rx_mcast_frames); |
| s->rx_ucast_bytes = be64_to_cpu(fwstats.rx_ucast_bytes); |
| s->rx_ucast_frames = be64_to_cpu(fwstats.rx_ucast_frames); |
| |
| s->rx_err_frames = be64_to_cpu(fwstats.rx_err_frames); |
| |
| return 0; |
| } |
| |
| /** |
| * t4vf_iq_free - free an ingress queue and its free lists |
| * @adapter: the adapter |
| * @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.) |
| * @iqid: ingress queue ID |
| * @fl0id: FL0 queue ID or 0xffff if no attached FL0 |
| * @fl1id: FL1 queue ID or 0xffff if no attached FL1 |
| * |
| * Frees an ingress queue and its associated free lists, if any. |
| */ |
| int t4vf_iq_free(struct adapter *adapter, unsigned int iqtype, |
| unsigned int iqid, unsigned int fl0id, unsigned int fl1id) |
| { |
| struct fw_iq_cmd cmd; |
| |
| memset(&cmd, 0, sizeof(cmd)); |
| cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | |
| FW_CMD_REQUEST_F | |
| FW_CMD_EXEC_F); |
| cmd.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F | |
| FW_LEN16(cmd)); |
| cmd.type_to_iqandstindex = |
| cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype)); |
| |
| cmd.iqid = cpu_to_be16(iqid); |
| cmd.fl0id = cpu_to_be16(fl0id); |
| cmd.fl1id = cpu_to_be16(fl1id); |
| return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL); |
| } |
| |
| /** |
| * t4vf_eth_eq_free - free an Ethernet egress queue |
| * @adapter: the adapter |
| * @eqid: egress queue ID |
| * |
| * Frees an Ethernet egress queue. |
| */ |
| int t4vf_eth_eq_free(struct adapter *adapter, unsigned int eqid) |
| { |
| struct fw_eq_eth_cmd cmd; |
| |
| memset(&cmd, 0, sizeof(cmd)); |
| cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) | |
| FW_CMD_REQUEST_F | |
| FW_CMD_EXEC_F); |
| cmd.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F | |
| FW_LEN16(cmd)); |
| cmd.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid)); |
| return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL); |
| } |
| |
| /** |
| * t4vf_handle_fw_rpl - process a firmware reply message |
| * @adapter: the adapter |
| * @rpl: start of the firmware message |
| * |
| * Processes a firmware message, such as link state change messages. |
| */ |
| int t4vf_handle_fw_rpl(struct adapter *adapter, const __be64 *rpl) |
| { |
| const struct fw_cmd_hdr *cmd_hdr = (const struct fw_cmd_hdr *)rpl; |
| u8 opcode = FW_CMD_OP_G(be32_to_cpu(cmd_hdr->hi)); |
| |
| switch (opcode) { |
| case FW_PORT_CMD: { |
| /* |
| * Link/module state change message. |
| */ |
| const struct fw_port_cmd *port_cmd = |
| (const struct fw_port_cmd *)rpl; |
| u32 word; |
| int action, port_id, link_ok, speed, fc, pidx; |
| |
| /* |
| * Extract various fields from port status change message. |
| */ |
| action = FW_PORT_CMD_ACTION_G( |
| be32_to_cpu(port_cmd->action_to_len16)); |
| if (action != FW_PORT_ACTION_GET_PORT_INFO) { |
| dev_err(adapter->pdev_dev, |
| "Unknown firmware PORT reply action %x\n", |
| action); |
| break; |
| } |
| |
| port_id = FW_PORT_CMD_PORTID_G( |
| be32_to_cpu(port_cmd->op_to_portid)); |
| |
| word = be32_to_cpu(port_cmd->u.info.lstatus_to_modtype); |
| link_ok = (word & FW_PORT_CMD_LSTATUS_F) != 0; |
| speed = 0; |
| fc = 0; |
| if (word & FW_PORT_CMD_RXPAUSE_F) |
| fc |= PAUSE_RX; |
| if (word & FW_PORT_CMD_TXPAUSE_F) |
| fc |= PAUSE_TX; |
| if (word & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M)) |
| speed = 100; |
| else if (word & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G)) |
| speed = 1000; |
| else if (word & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G)) |
| speed = 10000; |
| else if (word & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G)) |
| speed = 40000; |
| |
| /* |
| * Scan all of our "ports" (Virtual Interfaces) looking for |
| * those bound to the physical port which has changed. If |
| * our recorded state doesn't match the current state, |
| * signal that change to the OS code. |
| */ |
| for_each_port(adapter, pidx) { |
| struct port_info *pi = adap2pinfo(adapter, pidx); |
| struct link_config *lc; |
| |
| if (pi->port_id != port_id) |
| continue; |
| |
| lc = &pi->link_cfg; |
| if (link_ok != lc->link_ok || speed != lc->speed || |
| fc != lc->fc) { |
| /* something changed */ |
| lc->link_ok = link_ok; |
| lc->speed = speed; |
| lc->fc = fc; |
| t4vf_os_link_changed(adapter, pidx, link_ok); |
| } |
| } |
| break; |
| } |
| |
| default: |
| dev_err(adapter->pdev_dev, "Unknown firmware reply %X\n", |
| opcode); |
| } |
| return 0; |
| } |
| |
| /** |
| */ |
| int t4vf_prep_adapter(struct adapter *adapter) |
| { |
| int err; |
| unsigned int chipid; |
| |
| /* Wait for the device to become ready before proceeding ... |
| */ |
| err = t4vf_wait_dev_ready(adapter); |
| if (err) |
| return err; |
| |
| /* Default port and clock for debugging in case we can't reach |
| * firmware. |
| */ |
| adapter->params.nports = 1; |
| adapter->params.vfres.pmask = 1; |
| adapter->params.vpd.cclk = 50000; |
| |
| adapter->params.chip = 0; |
| switch (CHELSIO_PCI_ID_VER(adapter->pdev->device)) { |
| case CHELSIO_T4: |
| adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, 0); |
| break; |
| |
| case CHELSIO_T5: |
| chipid = G_REV(t4_read_reg(adapter, A_PL_VF_REV)); |
| adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, chipid); |
| break; |
| } |
| |
| return 0; |
| } |