| /* |
| * Timer device implementation for SGI SN platforms. |
| * |
| * This file is subject to the terms and conditions of the GNU General Public |
| * License. See the file "COPYING" in the main directory of this archive |
| * for more details. |
| * |
| * Copyright (c) 2001-2006 Silicon Graphics, Inc. All rights reserved. |
| * |
| * This driver exports an API that should be supportable by any HPET or IA-PC |
| * multimedia timer. The code below is currently specific to the SGI Altix |
| * SHub RTC, however. |
| * |
| * 11/01/01 - jbarnes - initial revision |
| * 9/10/04 - Christoph Lameter - remove interrupt support for kernel inclusion |
| * 10/1/04 - Christoph Lameter - provide posix clock CLOCK_SGI_CYCLE |
| * 10/13/04 - Christoph Lameter, Dimitri Sivanich - provide timer interrupt |
| * support via the posix timer interface |
| */ |
| |
| #include <linux/types.h> |
| #include <linux/kernel.h> |
| #include <linux/ioctl.h> |
| #include <linux/module.h> |
| #include <linux/init.h> |
| #include <linux/errno.h> |
| #include <linux/mm.h> |
| #include <linux/fs.h> |
| #include <linux/mmtimer.h> |
| #include <linux/miscdevice.h> |
| #include <linux/posix-timers.h> |
| #include <linux/interrupt.h> |
| |
| #include <asm/uaccess.h> |
| #include <asm/sn/addrs.h> |
| #include <asm/sn/intr.h> |
| #include <asm/sn/shub_mmr.h> |
| #include <asm/sn/nodepda.h> |
| #include <asm/sn/shubio.h> |
| |
| MODULE_AUTHOR("Jesse Barnes <jbarnes@sgi.com>"); |
| MODULE_DESCRIPTION("SGI Altix RTC Timer"); |
| MODULE_LICENSE("GPL"); |
| |
| /* name of the device, usually in /dev */ |
| #define MMTIMER_NAME "mmtimer" |
| #define MMTIMER_DESC "SGI Altix RTC Timer" |
| #define MMTIMER_VERSION "2.1" |
| |
| #define RTC_BITS 55 /* 55 bits for this implementation */ |
| |
| extern unsigned long sn_rtc_cycles_per_second; |
| |
| #define RTC_COUNTER_ADDR ((long *)LOCAL_MMR_ADDR(SH_RTC)) |
| |
| #define rtc_time() (*RTC_COUNTER_ADDR) |
| |
| static int mmtimer_ioctl(struct inode *inode, struct file *file, |
| unsigned int cmd, unsigned long arg); |
| static int mmtimer_mmap(struct file *file, struct vm_area_struct *vma); |
| |
| /* |
| * Period in femtoseconds (10^-15 s) |
| */ |
| static unsigned long mmtimer_femtoperiod = 0; |
| |
| static const struct file_operations mmtimer_fops = { |
| .owner = THIS_MODULE, |
| .mmap = mmtimer_mmap, |
| .ioctl = mmtimer_ioctl, |
| }; |
| |
| /* |
| * We only have comparison registers RTC1-4 currently available per |
| * node. RTC0 is used by SAL. |
| */ |
| /* Check for an RTC interrupt pending */ |
| static int mmtimer_int_pending(int comparator) |
| { |
| if (HUB_L((unsigned long *)LOCAL_MMR_ADDR(SH_EVENT_OCCURRED)) & |
| SH_EVENT_OCCURRED_RTC1_INT_MASK << comparator) |
| return 1; |
| else |
| return 0; |
| } |
| |
| /* Clear the RTC interrupt pending bit */ |
| static void mmtimer_clr_int_pending(int comparator) |
| { |
| HUB_S((u64 *)LOCAL_MMR_ADDR(SH_EVENT_OCCURRED_ALIAS), |
| SH_EVENT_OCCURRED_RTC1_INT_MASK << comparator); |
| } |
| |
| /* Setup timer on comparator RTC1 */ |
| static void mmtimer_setup_int_0(int cpu, u64 expires) |
| { |
| u64 val; |
| |
| /* Disable interrupt */ |
| HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC1_INT_ENABLE), 0UL); |
| |
| /* Initialize comparator value */ |
| HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPB), -1L); |
| |
| /* Clear pending bit */ |
| mmtimer_clr_int_pending(0); |
| |
| val = ((u64)SGI_MMTIMER_VECTOR << SH_RTC1_INT_CONFIG_IDX_SHFT) | |
| ((u64)cpu_physical_id(cpu) << |
| SH_RTC1_INT_CONFIG_PID_SHFT); |
| |
| /* Set configuration */ |
| HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC1_INT_CONFIG), val); |
| |
| /* Enable RTC interrupts */ |
| HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC1_INT_ENABLE), 1UL); |
| |
| /* Initialize comparator value */ |
| HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPB), expires); |
| |
| |
| } |
| |
| /* Setup timer on comparator RTC2 */ |
| static void mmtimer_setup_int_1(int cpu, u64 expires) |
| { |
| u64 val; |
| |
| HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC2_INT_ENABLE), 0UL); |
| |
| HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPC), -1L); |
| |
| mmtimer_clr_int_pending(1); |
| |
| val = ((u64)SGI_MMTIMER_VECTOR << SH_RTC2_INT_CONFIG_IDX_SHFT) | |
| ((u64)cpu_physical_id(cpu) << |
| SH_RTC2_INT_CONFIG_PID_SHFT); |
| |
| HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC2_INT_CONFIG), val); |
| |
| HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC2_INT_ENABLE), 1UL); |
| |
| HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPC), expires); |
| } |
| |
| /* Setup timer on comparator RTC3 */ |
| static void mmtimer_setup_int_2(int cpu, u64 expires) |
| { |
| u64 val; |
| |
| HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC3_INT_ENABLE), 0UL); |
| |
| HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPD), -1L); |
| |
| mmtimer_clr_int_pending(2); |
| |
| val = ((u64)SGI_MMTIMER_VECTOR << SH_RTC3_INT_CONFIG_IDX_SHFT) | |
| ((u64)cpu_physical_id(cpu) << |
| SH_RTC3_INT_CONFIG_PID_SHFT); |
| |
| HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC3_INT_CONFIG), val); |
| |
| HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC3_INT_ENABLE), 1UL); |
| |
| HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPD), expires); |
| } |
| |
| /* |
| * This function must be called with interrupts disabled and preemption off |
| * in order to insure that the setup succeeds in a deterministic time frame. |
| * It will check if the interrupt setup succeeded. |
| */ |
| static int mmtimer_setup(int cpu, int comparator, unsigned long expires) |
| { |
| |
| switch (comparator) { |
| case 0: |
| mmtimer_setup_int_0(cpu, expires); |
| break; |
| case 1: |
| mmtimer_setup_int_1(cpu, expires); |
| break; |
| case 2: |
| mmtimer_setup_int_2(cpu, expires); |
| break; |
| } |
| /* We might've missed our expiration time */ |
| if (rtc_time() <= expires) |
| return 1; |
| |
| /* |
| * If an interrupt is already pending then its okay |
| * if not then we failed |
| */ |
| return mmtimer_int_pending(comparator); |
| } |
| |
| static int mmtimer_disable_int(long nasid, int comparator) |
| { |
| switch (comparator) { |
| case 0: |
| nasid == -1 ? HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC1_INT_ENABLE), |
| 0UL) : REMOTE_HUB_S(nasid, SH_RTC1_INT_ENABLE, 0UL); |
| break; |
| case 1: |
| nasid == -1 ? HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC2_INT_ENABLE), |
| 0UL) : REMOTE_HUB_S(nasid, SH_RTC2_INT_ENABLE, 0UL); |
| break; |
| case 2: |
| nasid == -1 ? HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC3_INT_ENABLE), |
| 0UL) : REMOTE_HUB_S(nasid, SH_RTC3_INT_ENABLE, 0UL); |
| break; |
| default: |
| return -EFAULT; |
| } |
| return 0; |
| } |
| |
| #define COMPARATOR 1 /* The comparator to use */ |
| |
| #define TIMER_OFF 0xbadcabLL /* Timer is not setup */ |
| #define TIMER_SET 0 /* Comparator is set for this timer */ |
| |
| /* There is one of these for each timer */ |
| struct mmtimer { |
| struct rb_node list; |
| struct k_itimer *timer; |
| int cpu; |
| }; |
| |
| struct mmtimer_node { |
| spinlock_t lock ____cacheline_aligned; |
| struct rb_root timer_head; |
| struct rb_node *next; |
| struct tasklet_struct tasklet; |
| }; |
| static struct mmtimer_node *timers; |
| |
| |
| /* |
| * Add a new mmtimer struct to the node's mmtimer list. |
| * This function assumes the struct mmtimer_node is locked. |
| */ |
| static void mmtimer_add_list(struct mmtimer *n) |
| { |
| int nodeid = n->timer->it.mmtimer.node; |
| unsigned long expires = n->timer->it.mmtimer.expires; |
| struct rb_node **link = &timers[nodeid].timer_head.rb_node; |
| struct rb_node *parent = NULL; |
| struct mmtimer *x; |
| |
| /* |
| * Find the right place in the rbtree: |
| */ |
| while (*link) { |
| parent = *link; |
| x = rb_entry(parent, struct mmtimer, list); |
| |
| if (expires < x->timer->it.mmtimer.expires) |
| link = &(*link)->rb_left; |
| else |
| link = &(*link)->rb_right; |
| } |
| |
| /* |
| * Insert the timer to the rbtree and check whether it |
| * replaces the first pending timer |
| */ |
| rb_link_node(&n->list, parent, link); |
| rb_insert_color(&n->list, &timers[nodeid].timer_head); |
| |
| if (!timers[nodeid].next || expires < rb_entry(timers[nodeid].next, |
| struct mmtimer, list)->timer->it.mmtimer.expires) |
| timers[nodeid].next = &n->list; |
| } |
| |
| /* |
| * Set the comparator for the next timer. |
| * This function assumes the struct mmtimer_node is locked. |
| */ |
| static void mmtimer_set_next_timer(int nodeid) |
| { |
| struct mmtimer_node *n = &timers[nodeid]; |
| struct mmtimer *x; |
| struct k_itimer *t; |
| int o; |
| |
| restart: |
| if (n->next == NULL) |
| return; |
| |
| x = rb_entry(n->next, struct mmtimer, list); |
| t = x->timer; |
| if (!t->it.mmtimer.incr) { |
| /* Not an interval timer */ |
| if (!mmtimer_setup(x->cpu, COMPARATOR, |
| t->it.mmtimer.expires)) { |
| /* Late setup, fire now */ |
| tasklet_schedule(&n->tasklet); |
| } |
| return; |
| } |
| |
| /* Interval timer */ |
| o = 0; |
| while (!mmtimer_setup(x->cpu, COMPARATOR, t->it.mmtimer.expires)) { |
| unsigned long e, e1; |
| struct rb_node *next; |
| t->it.mmtimer.expires += t->it.mmtimer.incr << o; |
| t->it_overrun += 1 << o; |
| o++; |
| if (o > 20) { |
| printk(KERN_ALERT "mmtimer: cannot reschedule timer\n"); |
| t->it.mmtimer.clock = TIMER_OFF; |
| n->next = rb_next(&x->list); |
| rb_erase(&x->list, &n->timer_head); |
| kfree(x); |
| goto restart; |
| } |
| |
| e = t->it.mmtimer.expires; |
| next = rb_next(&x->list); |
| |
| if (next == NULL) |
| continue; |
| |
| e1 = rb_entry(next, struct mmtimer, list)-> |
| timer->it.mmtimer.expires; |
| if (e > e1) { |
| n->next = next; |
| rb_erase(&x->list, &n->timer_head); |
| mmtimer_add_list(x); |
| goto restart; |
| } |
| } |
| } |
| |
| /** |
| * mmtimer_ioctl - ioctl interface for /dev/mmtimer |
| * @inode: inode of the device |
| * @file: file structure for the device |
| * @cmd: command to execute |
| * @arg: optional argument to command |
| * |
| * Executes the command specified by @cmd. Returns 0 for success, < 0 for |
| * failure. |
| * |
| * Valid commands: |
| * |
| * %MMTIMER_GETOFFSET - Should return the offset (relative to the start |
| * of the page where the registers are mapped) for the counter in question. |
| * |
| * %MMTIMER_GETRES - Returns the resolution of the clock in femto (10^-15) |
| * seconds |
| * |
| * %MMTIMER_GETFREQ - Copies the frequency of the clock in Hz to the address |
| * specified by @arg |
| * |
| * %MMTIMER_GETBITS - Returns the number of bits in the clock's counter |
| * |
| * %MMTIMER_MMAPAVAIL - Returns 1 if the registers can be mmap'd into userspace |
| * |
| * %MMTIMER_GETCOUNTER - Gets the current value in the counter and places it |
| * in the address specified by @arg. |
| */ |
| static int mmtimer_ioctl(struct inode *inode, struct file *file, |
| unsigned int cmd, unsigned long arg) |
| { |
| int ret = 0; |
| |
| switch (cmd) { |
| case MMTIMER_GETOFFSET: /* offset of the counter */ |
| /* |
| * SN RTC registers are on their own 64k page |
| */ |
| if(PAGE_SIZE <= (1 << 16)) |
| ret = (((long)RTC_COUNTER_ADDR) & (PAGE_SIZE-1)) / 8; |
| else |
| ret = -ENOSYS; |
| break; |
| |
| case MMTIMER_GETRES: /* resolution of the clock in 10^-15 s */ |
| if(copy_to_user((unsigned long __user *)arg, |
| &mmtimer_femtoperiod, sizeof(unsigned long))) |
| return -EFAULT; |
| break; |
| |
| case MMTIMER_GETFREQ: /* frequency in Hz */ |
| if(copy_to_user((unsigned long __user *)arg, |
| &sn_rtc_cycles_per_second, |
| sizeof(unsigned long))) |
| return -EFAULT; |
| ret = 0; |
| break; |
| |
| case MMTIMER_GETBITS: /* number of bits in the clock */ |
| ret = RTC_BITS; |
| break; |
| |
| case MMTIMER_MMAPAVAIL: /* can we mmap the clock into userspace? */ |
| ret = (PAGE_SIZE <= (1 << 16)) ? 1 : 0; |
| break; |
| |
| case MMTIMER_GETCOUNTER: |
| if(copy_to_user((unsigned long __user *)arg, |
| RTC_COUNTER_ADDR, sizeof(unsigned long))) |
| return -EFAULT; |
| break; |
| default: |
| ret = -ENOSYS; |
| break; |
| } |
| |
| return ret; |
| } |
| |
| /** |
| * mmtimer_mmap - maps the clock's registers into userspace |
| * @file: file structure for the device |
| * @vma: VMA to map the registers into |
| * |
| * Calls remap_pfn_range() to map the clock's registers into |
| * the calling process' address space. |
| */ |
| static int mmtimer_mmap(struct file *file, struct vm_area_struct *vma) |
| { |
| unsigned long mmtimer_addr; |
| |
| if (vma->vm_end - vma->vm_start != PAGE_SIZE) |
| return -EINVAL; |
| |
| if (vma->vm_flags & VM_WRITE) |
| return -EPERM; |
| |
| if (PAGE_SIZE > (1 << 16)) |
| return -ENOSYS; |
| |
| vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); |
| |
| mmtimer_addr = __pa(RTC_COUNTER_ADDR); |
| mmtimer_addr &= ~(PAGE_SIZE - 1); |
| mmtimer_addr &= 0xfffffffffffffffUL; |
| |
| if (remap_pfn_range(vma, vma->vm_start, mmtimer_addr >> PAGE_SHIFT, |
| PAGE_SIZE, vma->vm_page_prot)) { |
| printk(KERN_ERR "remap_pfn_range failed in mmtimer.c\n"); |
| return -EAGAIN; |
| } |
| |
| return 0; |
| } |
| |
| static struct miscdevice mmtimer_miscdev = { |
| SGI_MMTIMER, |
| MMTIMER_NAME, |
| &mmtimer_fops |
| }; |
| |
| static struct timespec sgi_clock_offset; |
| static int sgi_clock_period; |
| |
| /* |
| * Posix Timer Interface |
| */ |
| |
| static struct timespec sgi_clock_offset; |
| static int sgi_clock_period; |
| |
| static int sgi_clock_get(clockid_t clockid, struct timespec *tp) |
| { |
| u64 nsec; |
| |
| nsec = rtc_time() * sgi_clock_period |
| + sgi_clock_offset.tv_nsec; |
| tp->tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &tp->tv_nsec) |
| + sgi_clock_offset.tv_sec; |
| return 0; |
| }; |
| |
| static int sgi_clock_set(clockid_t clockid, struct timespec *tp) |
| { |
| |
| u64 nsec; |
| u64 rem; |
| |
| nsec = rtc_time() * sgi_clock_period; |
| |
| sgi_clock_offset.tv_sec = tp->tv_sec - div_long_long_rem(nsec, NSEC_PER_SEC, &rem); |
| |
| if (rem <= tp->tv_nsec) |
| sgi_clock_offset.tv_nsec = tp->tv_sec - rem; |
| else { |
| sgi_clock_offset.tv_nsec = tp->tv_sec + NSEC_PER_SEC - rem; |
| sgi_clock_offset.tv_sec--; |
| } |
| return 0; |
| } |
| |
| /** |
| * mmtimer_interrupt - timer interrupt handler |
| * @irq: irq received |
| * @dev_id: device the irq came from |
| * |
| * Called when one of the comarators matches the counter, This |
| * routine will send signals to processes that have requested |
| * them. |
| * |
| * This interrupt is run in an interrupt context |
| * by the SHUB. It is therefore safe to locally access SHub |
| * registers. |
| */ |
| static irqreturn_t |
| mmtimer_interrupt(int irq, void *dev_id) |
| { |
| unsigned long expires = 0; |
| int result = IRQ_NONE; |
| unsigned indx = cpu_to_node(smp_processor_id()); |
| struct mmtimer *base; |
| |
| spin_lock(&timers[indx].lock); |
| base = rb_entry(timers[indx].next, struct mmtimer, list); |
| if (base == NULL) { |
| spin_unlock(&timers[indx].lock); |
| return result; |
| } |
| |
| if (base->cpu == smp_processor_id()) { |
| if (base->timer) |
| expires = base->timer->it.mmtimer.expires; |
| /* expires test won't work with shared irqs */ |
| if ((mmtimer_int_pending(COMPARATOR) > 0) || |
| (expires && (expires <= rtc_time()))) { |
| mmtimer_clr_int_pending(COMPARATOR); |
| tasklet_schedule(&timers[indx].tasklet); |
| result = IRQ_HANDLED; |
| } |
| } |
| spin_unlock(&timers[indx].lock); |
| return result; |
| } |
| |
| static void mmtimer_tasklet(unsigned long data) |
| { |
| int nodeid = data; |
| struct mmtimer_node *mn = &timers[nodeid]; |
| struct mmtimer *x = rb_entry(mn->next, struct mmtimer, list); |
| struct k_itimer *t; |
| unsigned long flags; |
| |
| /* Send signal and deal with periodic signals */ |
| spin_lock_irqsave(&mn->lock, flags); |
| if (!mn->next) |
| goto out; |
| |
| x = rb_entry(mn->next, struct mmtimer, list); |
| t = x->timer; |
| |
| if (t->it.mmtimer.clock == TIMER_OFF) |
| goto out; |
| |
| t->it_overrun = 0; |
| |
| mn->next = rb_next(&x->list); |
| rb_erase(&x->list, &mn->timer_head); |
| |
| if (posix_timer_event(t, 0) != 0) |
| t->it_overrun++; |
| |
| if(t->it.mmtimer.incr) { |
| t->it.mmtimer.expires += t->it.mmtimer.incr; |
| mmtimer_add_list(x); |
| } else { |
| /* Ensure we don't false trigger in mmtimer_interrupt */ |
| t->it.mmtimer.clock = TIMER_OFF; |
| t->it.mmtimer.expires = 0; |
| kfree(x); |
| } |
| /* Set comparator for next timer, if there is one */ |
| mmtimer_set_next_timer(nodeid); |
| |
| t->it_overrun_last = t->it_overrun; |
| out: |
| spin_unlock_irqrestore(&mn->lock, flags); |
| } |
| |
| static int sgi_timer_create(struct k_itimer *timer) |
| { |
| /* Insure that a newly created timer is off */ |
| timer->it.mmtimer.clock = TIMER_OFF; |
| return 0; |
| } |
| |
| /* This does not really delete a timer. It just insures |
| * that the timer is not active |
| * |
| * Assumption: it_lock is already held with irq's disabled |
| */ |
| static int sgi_timer_del(struct k_itimer *timr) |
| { |
| cnodeid_t nodeid = timr->it.mmtimer.node; |
| unsigned long irqflags; |
| |
| spin_lock_irqsave(&timers[nodeid].lock, irqflags); |
| if (timr->it.mmtimer.clock != TIMER_OFF) { |
| unsigned long expires = timr->it.mmtimer.expires; |
| struct rb_node *n = timers[nodeid].timer_head.rb_node; |
| struct mmtimer *uninitialized_var(t); |
| int r = 0; |
| |
| timr->it.mmtimer.clock = TIMER_OFF; |
| timr->it.mmtimer.expires = 0; |
| |
| while (n) { |
| t = rb_entry(n, struct mmtimer, list); |
| if (t->timer == timr) |
| break; |
| |
| if (expires < t->timer->it.mmtimer.expires) |
| n = n->rb_left; |
| else |
| n = n->rb_right; |
| } |
| |
| if (!n) { |
| spin_unlock_irqrestore(&timers[nodeid].lock, irqflags); |
| return 0; |
| } |
| |
| if (timers[nodeid].next == n) { |
| timers[nodeid].next = rb_next(n); |
| r = 1; |
| } |
| |
| rb_erase(n, &timers[nodeid].timer_head); |
| kfree(t); |
| |
| if (r) { |
| mmtimer_disable_int(cnodeid_to_nasid(nodeid), |
| COMPARATOR); |
| mmtimer_set_next_timer(nodeid); |
| } |
| } |
| spin_unlock_irqrestore(&timers[nodeid].lock, irqflags); |
| return 0; |
| } |
| |
| #define timespec_to_ns(x) ((x).tv_nsec + (x).tv_sec * NSEC_PER_SEC) |
| #define ns_to_timespec(ts, nsec) (ts).tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &(ts).tv_nsec) |
| |
| /* Assumption: it_lock is already held with irq's disabled */ |
| static void sgi_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting) |
| { |
| |
| if (timr->it.mmtimer.clock == TIMER_OFF) { |
| cur_setting->it_interval.tv_nsec = 0; |
| cur_setting->it_interval.tv_sec = 0; |
| cur_setting->it_value.tv_nsec = 0; |
| cur_setting->it_value.tv_sec =0; |
| return; |
| } |
| |
| ns_to_timespec(cur_setting->it_interval, timr->it.mmtimer.incr * sgi_clock_period); |
| ns_to_timespec(cur_setting->it_value, (timr->it.mmtimer.expires - rtc_time())* sgi_clock_period); |
| return; |
| } |
| |
| |
| static int sgi_timer_set(struct k_itimer *timr, int flags, |
| struct itimerspec * new_setting, |
| struct itimerspec * old_setting) |
| { |
| unsigned long when, period, irqflags; |
| int err = 0; |
| cnodeid_t nodeid; |
| struct mmtimer *base; |
| struct rb_node *n; |
| |
| if (old_setting) |
| sgi_timer_get(timr, old_setting); |
| |
| sgi_timer_del(timr); |
| when = timespec_to_ns(new_setting->it_value); |
| period = timespec_to_ns(new_setting->it_interval); |
| |
| if (when == 0) |
| /* Clear timer */ |
| return 0; |
| |
| base = kmalloc(sizeof(struct mmtimer), GFP_KERNEL); |
| if (base == NULL) |
| return -ENOMEM; |
| |
| if (flags & TIMER_ABSTIME) { |
| struct timespec n; |
| unsigned long now; |
| |
| getnstimeofday(&n); |
| now = timespec_to_ns(n); |
| if (when > now) |
| when -= now; |
| else |
| /* Fire the timer immediately */ |
| when = 0; |
| } |
| |
| /* |
| * Convert to sgi clock period. Need to keep rtc_time() as near as possible |
| * to getnstimeofday() in order to be as faithful as possible to the time |
| * specified. |
| */ |
| when = (when + sgi_clock_period - 1) / sgi_clock_period + rtc_time(); |
| period = (period + sgi_clock_period - 1) / sgi_clock_period; |
| |
| /* |
| * We are allocating a local SHub comparator. If we would be moved to another |
| * cpu then another SHub may be local to us. Prohibit that by switching off |
| * preemption. |
| */ |
| preempt_disable(); |
| |
| nodeid = cpu_to_node(smp_processor_id()); |
| |
| /* Lock the node timer structure */ |
| spin_lock_irqsave(&timers[nodeid].lock, irqflags); |
| |
| base->timer = timr; |
| base->cpu = smp_processor_id(); |
| |
| timr->it.mmtimer.clock = TIMER_SET; |
| timr->it.mmtimer.node = nodeid; |
| timr->it.mmtimer.incr = period; |
| timr->it.mmtimer.expires = when; |
| |
| n = timers[nodeid].next; |
| |
| /* Add the new struct mmtimer to node's timer list */ |
| mmtimer_add_list(base); |
| |
| if (timers[nodeid].next == n) { |
| /* No need to reprogram comparator for now */ |
| spin_unlock_irqrestore(&timers[nodeid].lock, irqflags); |
| preempt_enable(); |
| return err; |
| } |
| |
| /* We need to reprogram the comparator */ |
| if (n) |
| mmtimer_disable_int(cnodeid_to_nasid(nodeid), COMPARATOR); |
| |
| mmtimer_set_next_timer(nodeid); |
| |
| /* Unlock the node timer structure */ |
| spin_unlock_irqrestore(&timers[nodeid].lock, irqflags); |
| |
| preempt_enable(); |
| |
| return err; |
| } |
| |
| static struct k_clock sgi_clock = { |
| .res = 0, |
| .clock_set = sgi_clock_set, |
| .clock_get = sgi_clock_get, |
| .timer_create = sgi_timer_create, |
| .nsleep = do_posix_clock_nonanosleep, |
| .timer_set = sgi_timer_set, |
| .timer_del = sgi_timer_del, |
| .timer_get = sgi_timer_get |
| }; |
| |
| /** |
| * mmtimer_init - device initialization routine |
| * |
| * Does initial setup for the mmtimer device. |
| */ |
| static int __init mmtimer_init(void) |
| { |
| cnodeid_t node, maxn = -1; |
| |
| if (!ia64_platform_is("sn2")) |
| return 0; |
| |
| /* |
| * Sanity check the cycles/sec variable |
| */ |
| if (sn_rtc_cycles_per_second < 100000) { |
| printk(KERN_ERR "%s: unable to determine clock frequency\n", |
| MMTIMER_NAME); |
| goto out1; |
| } |
| |
| mmtimer_femtoperiod = ((unsigned long)1E15 + sn_rtc_cycles_per_second / |
| 2) / sn_rtc_cycles_per_second; |
| |
| if (request_irq(SGI_MMTIMER_VECTOR, mmtimer_interrupt, IRQF_PERCPU, MMTIMER_NAME, NULL)) { |
| printk(KERN_WARNING "%s: unable to allocate interrupt.", |
| MMTIMER_NAME); |
| goto out1; |
| } |
| |
| if (misc_register(&mmtimer_miscdev)) { |
| printk(KERN_ERR "%s: failed to register device\n", |
| MMTIMER_NAME); |
| goto out2; |
| } |
| |
| /* Get max numbered node, calculate slots needed */ |
| for_each_online_node(node) { |
| maxn = node; |
| } |
| maxn++; |
| |
| /* Allocate list of node ptrs to mmtimer_t's */ |
| timers = kzalloc(sizeof(struct mmtimer_node)*maxn, GFP_KERNEL); |
| if (timers == NULL) { |
| printk(KERN_ERR "%s: failed to allocate memory for device\n", |
| MMTIMER_NAME); |
| goto out3; |
| } |
| |
| /* Initialize struct mmtimer's for each online node */ |
| for_each_online_node(node) { |
| spin_lock_init(&timers[node].lock); |
| tasklet_init(&timers[node].tasklet, mmtimer_tasklet, |
| (unsigned long) node); |
| } |
| |
| sgi_clock_period = sgi_clock.res = NSEC_PER_SEC / sn_rtc_cycles_per_second; |
| register_posix_clock(CLOCK_SGI_CYCLE, &sgi_clock); |
| |
| printk(KERN_INFO "%s: v%s, %ld MHz\n", MMTIMER_DESC, MMTIMER_VERSION, |
| sn_rtc_cycles_per_second/(unsigned long)1E6); |
| |
| return 0; |
| |
| out3: |
| kfree(timers); |
| misc_deregister(&mmtimer_miscdev); |
| out2: |
| free_irq(SGI_MMTIMER_VECTOR, NULL); |
| out1: |
| return -1; |
| } |
| |
| module_init(mmtimer_init); |