| /* |
| * Copyright (C) 2007-2010 Advanced Micro Devices, Inc. |
| * Author: Joerg Roedel <jroedel@suse.de> |
| * Leo Duran <leo.duran@amd.com> |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms of the GNU General Public License version 2 as published |
| * by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| */ |
| |
| #include <linux/ratelimit.h> |
| #include <linux/pci.h> |
| #include <linux/acpi.h> |
| #include <linux/amba/bus.h> |
| #include <linux/platform_device.h> |
| #include <linux/pci-ats.h> |
| #include <linux/bitmap.h> |
| #include <linux/slab.h> |
| #include <linux/debugfs.h> |
| #include <linux/scatterlist.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/iommu-helper.h> |
| #include <linux/iommu.h> |
| #include <linux/delay.h> |
| #include <linux/amd-iommu.h> |
| #include <linux/notifier.h> |
| #include <linux/export.h> |
| #include <linux/irq.h> |
| #include <linux/msi.h> |
| #include <linux/dma-contiguous.h> |
| #include <linux/irqdomain.h> |
| #include <linux/percpu.h> |
| #include <linux/iova.h> |
| #include <asm/irq_remapping.h> |
| #include <asm/io_apic.h> |
| #include <asm/apic.h> |
| #include <asm/hw_irq.h> |
| #include <asm/msidef.h> |
| #include <asm/proto.h> |
| #include <asm/iommu.h> |
| #include <asm/gart.h> |
| #include <asm/dma.h> |
| |
| #include "amd_iommu_proto.h" |
| #include "amd_iommu_types.h" |
| #include "irq_remapping.h" |
| |
| #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28)) |
| |
| #define LOOP_TIMEOUT 100000 |
| |
| /* IO virtual address start page frame number */ |
| #define IOVA_START_PFN (1) |
| #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT) |
| #define DMA_32BIT_PFN IOVA_PFN(DMA_BIT_MASK(32)) |
| |
| /* Reserved IOVA ranges */ |
| #define MSI_RANGE_START (0xfee00000) |
| #define MSI_RANGE_END (0xfeefffff) |
| #define HT_RANGE_START (0xfd00000000ULL) |
| #define HT_RANGE_END (0xffffffffffULL) |
| |
| /* |
| * This bitmap is used to advertise the page sizes our hardware support |
| * to the IOMMU core, which will then use this information to split |
| * physically contiguous memory regions it is mapping into page sizes |
| * that we support. |
| * |
| * 512GB Pages are not supported due to a hardware bug |
| */ |
| #define AMD_IOMMU_PGSIZES ((~0xFFFUL) & ~(2ULL << 38)) |
| |
| static DEFINE_RWLOCK(amd_iommu_devtable_lock); |
| |
| /* List of all available dev_data structures */ |
| static LIST_HEAD(dev_data_list); |
| static DEFINE_SPINLOCK(dev_data_list_lock); |
| |
| LIST_HEAD(ioapic_map); |
| LIST_HEAD(hpet_map); |
| LIST_HEAD(acpihid_map); |
| |
| #define FLUSH_QUEUE_SIZE 256 |
| |
| struct flush_queue_entry { |
| unsigned long iova_pfn; |
| unsigned long pages; |
| struct dma_ops_domain *dma_dom; |
| }; |
| |
| struct flush_queue { |
| spinlock_t lock; |
| unsigned next; |
| struct flush_queue_entry *entries; |
| }; |
| |
| static DEFINE_PER_CPU(struct flush_queue, flush_queue); |
| |
| static atomic_t queue_timer_on; |
| static struct timer_list queue_timer; |
| |
| /* |
| * Domain for untranslated devices - only allocated |
| * if iommu=pt passed on kernel cmd line. |
| */ |
| const struct iommu_ops amd_iommu_ops; |
| |
| static ATOMIC_NOTIFIER_HEAD(ppr_notifier); |
| int amd_iommu_max_glx_val = -1; |
| |
| static const struct dma_map_ops amd_iommu_dma_ops; |
| |
| /* |
| * This struct contains device specific data for the IOMMU |
| */ |
| struct iommu_dev_data { |
| struct list_head list; /* For domain->dev_list */ |
| struct list_head dev_data_list; /* For global dev_data_list */ |
| struct protection_domain *domain; /* Domain the device is bound to */ |
| u16 devid; /* PCI Device ID */ |
| u16 alias; /* Alias Device ID */ |
| bool iommu_v2; /* Device can make use of IOMMUv2 */ |
| bool passthrough; /* Device is identity mapped */ |
| struct { |
| bool enabled; |
| int qdep; |
| } ats; /* ATS state */ |
| bool pri_tlp; /* PASID TLB required for |
| PPR completions */ |
| u32 errata; /* Bitmap for errata to apply */ |
| bool use_vapic; /* Enable device to use vapic mode */ |
| }; |
| |
| /* |
| * general struct to manage commands send to an IOMMU |
| */ |
| struct iommu_cmd { |
| u32 data[4]; |
| }; |
| |
| struct kmem_cache *amd_iommu_irq_cache; |
| |
| static void update_domain(struct protection_domain *domain); |
| static int protection_domain_init(struct protection_domain *domain); |
| static void detach_device(struct device *dev); |
| |
| /* |
| * Data container for a dma_ops specific protection domain |
| */ |
| struct dma_ops_domain { |
| /* generic protection domain information */ |
| struct protection_domain domain; |
| |
| /* IOVA RB-Tree */ |
| struct iova_domain iovad; |
| }; |
| |
| static struct iova_domain reserved_iova_ranges; |
| static struct lock_class_key reserved_rbtree_key; |
| |
| /**************************************************************************** |
| * |
| * Helper functions |
| * |
| ****************************************************************************/ |
| |
| static inline int match_hid_uid(struct device *dev, |
| struct acpihid_map_entry *entry) |
| { |
| const char *hid, *uid; |
| |
| hid = acpi_device_hid(ACPI_COMPANION(dev)); |
| uid = acpi_device_uid(ACPI_COMPANION(dev)); |
| |
| if (!hid || !(*hid)) |
| return -ENODEV; |
| |
| if (!uid || !(*uid)) |
| return strcmp(hid, entry->hid); |
| |
| if (!(*entry->uid)) |
| return strcmp(hid, entry->hid); |
| |
| return (strcmp(hid, entry->hid) || strcmp(uid, entry->uid)); |
| } |
| |
| static inline u16 get_pci_device_id(struct device *dev) |
| { |
| struct pci_dev *pdev = to_pci_dev(dev); |
| |
| return PCI_DEVID(pdev->bus->number, pdev->devfn); |
| } |
| |
| static inline int get_acpihid_device_id(struct device *dev, |
| struct acpihid_map_entry **entry) |
| { |
| struct acpihid_map_entry *p; |
| |
| list_for_each_entry(p, &acpihid_map, list) { |
| if (!match_hid_uid(dev, p)) { |
| if (entry) |
| *entry = p; |
| return p->devid; |
| } |
| } |
| return -EINVAL; |
| } |
| |
| static inline int get_device_id(struct device *dev) |
| { |
| int devid; |
| |
| if (dev_is_pci(dev)) |
| devid = get_pci_device_id(dev); |
| else |
| devid = get_acpihid_device_id(dev, NULL); |
| |
| return devid; |
| } |
| |
| static struct protection_domain *to_pdomain(struct iommu_domain *dom) |
| { |
| return container_of(dom, struct protection_domain, domain); |
| } |
| |
| static struct dma_ops_domain* to_dma_ops_domain(struct protection_domain *domain) |
| { |
| BUG_ON(domain->flags != PD_DMA_OPS_MASK); |
| return container_of(domain, struct dma_ops_domain, domain); |
| } |
| |
| static struct iommu_dev_data *alloc_dev_data(u16 devid) |
| { |
| struct iommu_dev_data *dev_data; |
| unsigned long flags; |
| |
| dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL); |
| if (!dev_data) |
| return NULL; |
| |
| dev_data->devid = devid; |
| |
| spin_lock_irqsave(&dev_data_list_lock, flags); |
| list_add_tail(&dev_data->dev_data_list, &dev_data_list); |
| spin_unlock_irqrestore(&dev_data_list_lock, flags); |
| |
| return dev_data; |
| } |
| |
| static struct iommu_dev_data *search_dev_data(u16 devid) |
| { |
| struct iommu_dev_data *dev_data; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&dev_data_list_lock, flags); |
| list_for_each_entry(dev_data, &dev_data_list, dev_data_list) { |
| if (dev_data->devid == devid) |
| goto out_unlock; |
| } |
| |
| dev_data = NULL; |
| |
| out_unlock: |
| spin_unlock_irqrestore(&dev_data_list_lock, flags); |
| |
| return dev_data; |
| } |
| |
| static int __last_alias(struct pci_dev *pdev, u16 alias, void *data) |
| { |
| *(u16 *)data = alias; |
| return 0; |
| } |
| |
| static u16 get_alias(struct device *dev) |
| { |
| struct pci_dev *pdev = to_pci_dev(dev); |
| u16 devid, ivrs_alias, pci_alias; |
| |
| /* The callers make sure that get_device_id() does not fail here */ |
| devid = get_device_id(dev); |
| ivrs_alias = amd_iommu_alias_table[devid]; |
| pci_for_each_dma_alias(pdev, __last_alias, &pci_alias); |
| |
| if (ivrs_alias == pci_alias) |
| return ivrs_alias; |
| |
| /* |
| * DMA alias showdown |
| * |
| * The IVRS is fairly reliable in telling us about aliases, but it |
| * can't know about every screwy device. If we don't have an IVRS |
| * reported alias, use the PCI reported alias. In that case we may |
| * still need to initialize the rlookup and dev_table entries if the |
| * alias is to a non-existent device. |
| */ |
| if (ivrs_alias == devid) { |
| if (!amd_iommu_rlookup_table[pci_alias]) { |
| amd_iommu_rlookup_table[pci_alias] = |
| amd_iommu_rlookup_table[devid]; |
| memcpy(amd_iommu_dev_table[pci_alias].data, |
| amd_iommu_dev_table[devid].data, |
| sizeof(amd_iommu_dev_table[pci_alias].data)); |
| } |
| |
| return pci_alias; |
| } |
| |
| pr_info("AMD-Vi: Using IVRS reported alias %02x:%02x.%d " |
| "for device %s[%04x:%04x], kernel reported alias " |
| "%02x:%02x.%d\n", PCI_BUS_NUM(ivrs_alias), PCI_SLOT(ivrs_alias), |
| PCI_FUNC(ivrs_alias), dev_name(dev), pdev->vendor, pdev->device, |
| PCI_BUS_NUM(pci_alias), PCI_SLOT(pci_alias), |
| PCI_FUNC(pci_alias)); |
| |
| /* |
| * If we don't have a PCI DMA alias and the IVRS alias is on the same |
| * bus, then the IVRS table may know about a quirk that we don't. |
| */ |
| if (pci_alias == devid && |
| PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) { |
| pci_add_dma_alias(pdev, ivrs_alias & 0xff); |
| pr_info("AMD-Vi: Added PCI DMA alias %02x.%d for %s\n", |
| PCI_SLOT(ivrs_alias), PCI_FUNC(ivrs_alias), |
| dev_name(dev)); |
| } |
| |
| return ivrs_alias; |
| } |
| |
| static struct iommu_dev_data *find_dev_data(u16 devid) |
| { |
| struct iommu_dev_data *dev_data; |
| |
| dev_data = search_dev_data(devid); |
| |
| if (dev_data == NULL) |
| dev_data = alloc_dev_data(devid); |
| |
| return dev_data; |
| } |
| |
| static struct iommu_dev_data *get_dev_data(struct device *dev) |
| { |
| return dev->archdata.iommu; |
| } |
| |
| /* |
| * Find or create an IOMMU group for a acpihid device. |
| */ |
| static struct iommu_group *acpihid_device_group(struct device *dev) |
| { |
| struct acpihid_map_entry *p, *entry = NULL; |
| int devid; |
| |
| devid = get_acpihid_device_id(dev, &entry); |
| if (devid < 0) |
| return ERR_PTR(devid); |
| |
| list_for_each_entry(p, &acpihid_map, list) { |
| if ((devid == p->devid) && p->group) |
| entry->group = p->group; |
| } |
| |
| if (!entry->group) |
| entry->group = generic_device_group(dev); |
| else |
| iommu_group_ref_get(entry->group); |
| |
| return entry->group; |
| } |
| |
| static bool pci_iommuv2_capable(struct pci_dev *pdev) |
| { |
| static const int caps[] = { |
| PCI_EXT_CAP_ID_ATS, |
| PCI_EXT_CAP_ID_PRI, |
| PCI_EXT_CAP_ID_PASID, |
| }; |
| int i, pos; |
| |
| for (i = 0; i < 3; ++i) { |
| pos = pci_find_ext_capability(pdev, caps[i]); |
| if (pos == 0) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum) |
| { |
| struct iommu_dev_data *dev_data; |
| |
| dev_data = get_dev_data(&pdev->dev); |
| |
| return dev_data->errata & (1 << erratum) ? true : false; |
| } |
| |
| /* |
| * This function checks if the driver got a valid device from the caller to |
| * avoid dereferencing invalid pointers. |
| */ |
| static bool check_device(struct device *dev) |
| { |
| int devid; |
| |
| if (!dev || !dev->dma_mask) |
| return false; |
| |
| devid = get_device_id(dev); |
| if (devid < 0) |
| return false; |
| |
| /* Out of our scope? */ |
| if (devid > amd_iommu_last_bdf) |
| return false; |
| |
| if (amd_iommu_rlookup_table[devid] == NULL) |
| return false; |
| |
| return true; |
| } |
| |
| static void init_iommu_group(struct device *dev) |
| { |
| struct iommu_group *group; |
| |
| group = iommu_group_get_for_dev(dev); |
| if (IS_ERR(group)) |
| return; |
| |
| iommu_group_put(group); |
| } |
| |
| static int iommu_init_device(struct device *dev) |
| { |
| struct iommu_dev_data *dev_data; |
| struct amd_iommu *iommu; |
| int devid; |
| |
| if (dev->archdata.iommu) |
| return 0; |
| |
| devid = get_device_id(dev); |
| if (devid < 0) |
| return devid; |
| |
| iommu = amd_iommu_rlookup_table[devid]; |
| |
| dev_data = find_dev_data(devid); |
| if (!dev_data) |
| return -ENOMEM; |
| |
| dev_data->alias = get_alias(dev); |
| |
| if (dev_is_pci(dev) && pci_iommuv2_capable(to_pci_dev(dev))) { |
| struct amd_iommu *iommu; |
| |
| iommu = amd_iommu_rlookup_table[dev_data->devid]; |
| dev_data->iommu_v2 = iommu->is_iommu_v2; |
| } |
| |
| dev->archdata.iommu = dev_data; |
| |
| iommu_device_link(&iommu->iommu, dev); |
| |
| return 0; |
| } |
| |
| static void iommu_ignore_device(struct device *dev) |
| { |
| u16 alias; |
| int devid; |
| |
| devid = get_device_id(dev); |
| if (devid < 0) |
| return; |
| |
| alias = get_alias(dev); |
| |
| memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry)); |
| memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry)); |
| |
| amd_iommu_rlookup_table[devid] = NULL; |
| amd_iommu_rlookup_table[alias] = NULL; |
| } |
| |
| static void iommu_uninit_device(struct device *dev) |
| { |
| struct iommu_dev_data *dev_data; |
| struct amd_iommu *iommu; |
| int devid; |
| |
| devid = get_device_id(dev); |
| if (devid < 0) |
| return; |
| |
| iommu = amd_iommu_rlookup_table[devid]; |
| |
| dev_data = search_dev_data(devid); |
| if (!dev_data) |
| return; |
| |
| if (dev_data->domain) |
| detach_device(dev); |
| |
| iommu_device_unlink(&iommu->iommu, dev); |
| |
| iommu_group_remove_device(dev); |
| |
| /* Remove dma-ops */ |
| dev->dma_ops = NULL; |
| |
| /* |
| * We keep dev_data around for unplugged devices and reuse it when the |
| * device is re-plugged - not doing so would introduce a ton of races. |
| */ |
| } |
| |
| /**************************************************************************** |
| * |
| * Interrupt handling functions |
| * |
| ****************************************************************************/ |
| |
| static void dump_dte_entry(u16 devid) |
| { |
| int i; |
| |
| for (i = 0; i < 4; ++i) |
| pr_err("AMD-Vi: DTE[%d]: %016llx\n", i, |
| amd_iommu_dev_table[devid].data[i]); |
| } |
| |
| static void dump_command(unsigned long phys_addr) |
| { |
| struct iommu_cmd *cmd = phys_to_virt(phys_addr); |
| int i; |
| |
| for (i = 0; i < 4; ++i) |
| pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]); |
| } |
| |
| static void iommu_print_event(struct amd_iommu *iommu, void *__evt) |
| { |
| int type, devid, domid, flags; |
| volatile u32 *event = __evt; |
| int count = 0; |
| u64 address; |
| |
| retry: |
| type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK; |
| devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK; |
| domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK; |
| flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK; |
| address = (u64)(((u64)event[3]) << 32) | event[2]; |
| |
| if (type == 0) { |
| /* Did we hit the erratum? */ |
| if (++count == LOOP_TIMEOUT) { |
| pr_err("AMD-Vi: No event written to event log\n"); |
| return; |
| } |
| udelay(1); |
| goto retry; |
| } |
| |
| printk(KERN_ERR "AMD-Vi: Event logged ["); |
| |
| switch (type) { |
| case EVENT_TYPE_ILL_DEV: |
| printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x " |
| "address=0x%016llx flags=0x%04x]\n", |
| PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), |
| address, flags); |
| dump_dte_entry(devid); |
| break; |
| case EVENT_TYPE_IO_FAULT: |
| printk("IO_PAGE_FAULT device=%02x:%02x.%x " |
| "domain=0x%04x address=0x%016llx flags=0x%04x]\n", |
| PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), |
| domid, address, flags); |
| break; |
| case EVENT_TYPE_DEV_TAB_ERR: |
| printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x " |
| "address=0x%016llx flags=0x%04x]\n", |
| PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), |
| address, flags); |
| break; |
| case EVENT_TYPE_PAGE_TAB_ERR: |
| printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x " |
| "domain=0x%04x address=0x%016llx flags=0x%04x]\n", |
| PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), |
| domid, address, flags); |
| break; |
| case EVENT_TYPE_ILL_CMD: |
| printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address); |
| dump_command(address); |
| break; |
| case EVENT_TYPE_CMD_HARD_ERR: |
| printk("COMMAND_HARDWARE_ERROR address=0x%016llx " |
| "flags=0x%04x]\n", address, flags); |
| break; |
| case EVENT_TYPE_IOTLB_INV_TO: |
| printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x " |
| "address=0x%016llx]\n", |
| PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), |
| address); |
| break; |
| case EVENT_TYPE_INV_DEV_REQ: |
| printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x " |
| "address=0x%016llx flags=0x%04x]\n", |
| PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), |
| address, flags); |
| break; |
| default: |
| printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type); |
| } |
| |
| memset(__evt, 0, 4 * sizeof(u32)); |
| } |
| |
| static void iommu_poll_events(struct amd_iommu *iommu) |
| { |
| u32 head, tail; |
| |
| head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET); |
| tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET); |
| |
| while (head != tail) { |
| iommu_print_event(iommu, iommu->evt_buf + head); |
| head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE; |
| } |
| |
| writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET); |
| } |
| |
| static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw) |
| { |
| struct amd_iommu_fault fault; |
| |
| if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) { |
| pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n"); |
| return; |
| } |
| |
| fault.address = raw[1]; |
| fault.pasid = PPR_PASID(raw[0]); |
| fault.device_id = PPR_DEVID(raw[0]); |
| fault.tag = PPR_TAG(raw[0]); |
| fault.flags = PPR_FLAGS(raw[0]); |
| |
| atomic_notifier_call_chain(&ppr_notifier, 0, &fault); |
| } |
| |
| static void iommu_poll_ppr_log(struct amd_iommu *iommu) |
| { |
| u32 head, tail; |
| |
| if (iommu->ppr_log == NULL) |
| return; |
| |
| head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET); |
| tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET); |
| |
| while (head != tail) { |
| volatile u64 *raw; |
| u64 entry[2]; |
| int i; |
| |
| raw = (u64 *)(iommu->ppr_log + head); |
| |
| /* |
| * Hardware bug: Interrupt may arrive before the entry is |
| * written to memory. If this happens we need to wait for the |
| * entry to arrive. |
| */ |
| for (i = 0; i < LOOP_TIMEOUT; ++i) { |
| if (PPR_REQ_TYPE(raw[0]) != 0) |
| break; |
| udelay(1); |
| } |
| |
| /* Avoid memcpy function-call overhead */ |
| entry[0] = raw[0]; |
| entry[1] = raw[1]; |
| |
| /* |
| * To detect the hardware bug we need to clear the entry |
| * back to zero. |
| */ |
| raw[0] = raw[1] = 0UL; |
| |
| /* Update head pointer of hardware ring-buffer */ |
| head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE; |
| writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET); |
| |
| /* Handle PPR entry */ |
| iommu_handle_ppr_entry(iommu, entry); |
| |
| /* Refresh ring-buffer information */ |
| head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET); |
| tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET); |
| } |
| } |
| |
| #ifdef CONFIG_IRQ_REMAP |
| static int (*iommu_ga_log_notifier)(u32); |
| |
| int amd_iommu_register_ga_log_notifier(int (*notifier)(u32)) |
| { |
| iommu_ga_log_notifier = notifier; |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier); |
| |
| static void iommu_poll_ga_log(struct amd_iommu *iommu) |
| { |
| u32 head, tail, cnt = 0; |
| |
| if (iommu->ga_log == NULL) |
| return; |
| |
| head = readl(iommu->mmio_base + MMIO_GA_HEAD_OFFSET); |
| tail = readl(iommu->mmio_base + MMIO_GA_TAIL_OFFSET); |
| |
| while (head != tail) { |
| volatile u64 *raw; |
| u64 log_entry; |
| |
| raw = (u64 *)(iommu->ga_log + head); |
| cnt++; |
| |
| /* Avoid memcpy function-call overhead */ |
| log_entry = *raw; |
| |
| /* Update head pointer of hardware ring-buffer */ |
| head = (head + GA_ENTRY_SIZE) % GA_LOG_SIZE; |
| writel(head, iommu->mmio_base + MMIO_GA_HEAD_OFFSET); |
| |
| /* Handle GA entry */ |
| switch (GA_REQ_TYPE(log_entry)) { |
| case GA_GUEST_NR: |
| if (!iommu_ga_log_notifier) |
| break; |
| |
| pr_debug("AMD-Vi: %s: devid=%#x, ga_tag=%#x\n", |
| __func__, GA_DEVID(log_entry), |
| GA_TAG(log_entry)); |
| |
| if (iommu_ga_log_notifier(GA_TAG(log_entry)) != 0) |
| pr_err("AMD-Vi: GA log notifier failed.\n"); |
| break; |
| default: |
| break; |
| } |
| } |
| } |
| #endif /* CONFIG_IRQ_REMAP */ |
| |
| #define AMD_IOMMU_INT_MASK \ |
| (MMIO_STATUS_EVT_INT_MASK | \ |
| MMIO_STATUS_PPR_INT_MASK | \ |
| MMIO_STATUS_GALOG_INT_MASK) |
| |
| irqreturn_t amd_iommu_int_thread(int irq, void *data) |
| { |
| struct amd_iommu *iommu = (struct amd_iommu *) data; |
| u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET); |
| |
| while (status & AMD_IOMMU_INT_MASK) { |
| /* Enable EVT and PPR and GA interrupts again */ |
| writel(AMD_IOMMU_INT_MASK, |
| iommu->mmio_base + MMIO_STATUS_OFFSET); |
| |
| if (status & MMIO_STATUS_EVT_INT_MASK) { |
| pr_devel("AMD-Vi: Processing IOMMU Event Log\n"); |
| iommu_poll_events(iommu); |
| } |
| |
| if (status & MMIO_STATUS_PPR_INT_MASK) { |
| pr_devel("AMD-Vi: Processing IOMMU PPR Log\n"); |
| iommu_poll_ppr_log(iommu); |
| } |
| |
| #ifdef CONFIG_IRQ_REMAP |
| if (status & MMIO_STATUS_GALOG_INT_MASK) { |
| pr_devel("AMD-Vi: Processing IOMMU GA Log\n"); |
| iommu_poll_ga_log(iommu); |
| } |
| #endif |
| |
| /* |
| * Hardware bug: ERBT1312 |
| * When re-enabling interrupt (by writing 1 |
| * to clear the bit), the hardware might also try to set |
| * the interrupt bit in the event status register. |
| * In this scenario, the bit will be set, and disable |
| * subsequent interrupts. |
| * |
| * Workaround: The IOMMU driver should read back the |
| * status register and check if the interrupt bits are cleared. |
| * If not, driver will need to go through the interrupt handler |
| * again and re-clear the bits |
| */ |
| status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET); |
| } |
| return IRQ_HANDLED; |
| } |
| |
| irqreturn_t amd_iommu_int_handler(int irq, void *data) |
| { |
| return IRQ_WAKE_THREAD; |
| } |
| |
| /**************************************************************************** |
| * |
| * IOMMU command queuing functions |
| * |
| ****************************************************************************/ |
| |
| static int wait_on_sem(volatile u64 *sem) |
| { |
| int i = 0; |
| |
| while (*sem == 0 && i < LOOP_TIMEOUT) { |
| udelay(1); |
| i += 1; |
| } |
| |
| if (i == LOOP_TIMEOUT) { |
| pr_alert("AMD-Vi: Completion-Wait loop timed out\n"); |
| return -EIO; |
| } |
| |
| return 0; |
| } |
| |
| static void copy_cmd_to_buffer(struct amd_iommu *iommu, |
| struct iommu_cmd *cmd, |
| u32 tail) |
| { |
| u8 *target; |
| |
| target = iommu->cmd_buf + tail; |
| tail = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE; |
| |
| /* Copy command to buffer */ |
| memcpy(target, cmd, sizeof(*cmd)); |
| |
| /* Tell the IOMMU about it */ |
| writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET); |
| } |
| |
| static void build_completion_wait(struct iommu_cmd *cmd, u64 address) |
| { |
| WARN_ON(address & 0x7ULL); |
| |
| memset(cmd, 0, sizeof(*cmd)); |
| cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK; |
| cmd->data[1] = upper_32_bits(__pa(address)); |
| cmd->data[2] = 1; |
| CMD_SET_TYPE(cmd, CMD_COMPL_WAIT); |
| } |
| |
| static void build_inv_dte(struct iommu_cmd *cmd, u16 devid) |
| { |
| memset(cmd, 0, sizeof(*cmd)); |
| cmd->data[0] = devid; |
| CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY); |
| } |
| |
| static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address, |
| size_t size, u16 domid, int pde) |
| { |
| u64 pages; |
| bool s; |
| |
| pages = iommu_num_pages(address, size, PAGE_SIZE); |
| s = false; |
| |
| if (pages > 1) { |
| /* |
| * If we have to flush more than one page, flush all |
| * TLB entries for this domain |
| */ |
| address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS; |
| s = true; |
| } |
| |
| address &= PAGE_MASK; |
| |
| memset(cmd, 0, sizeof(*cmd)); |
| cmd->data[1] |= domid; |
| cmd->data[2] = lower_32_bits(address); |
| cmd->data[3] = upper_32_bits(address); |
| CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES); |
| if (s) /* size bit - we flush more than one 4kb page */ |
| cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK; |
| if (pde) /* PDE bit - we want to flush everything, not only the PTEs */ |
| cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK; |
| } |
| |
| static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep, |
| u64 address, size_t size) |
| { |
| u64 pages; |
| bool s; |
| |
| pages = iommu_num_pages(address, size, PAGE_SIZE); |
| s = false; |
| |
| if (pages > 1) { |
| /* |
| * If we have to flush more than one page, flush all |
| * TLB entries for this domain |
| */ |
| address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS; |
| s = true; |
| } |
| |
| address &= PAGE_MASK; |
| |
| memset(cmd, 0, sizeof(*cmd)); |
| cmd->data[0] = devid; |
| cmd->data[0] |= (qdep & 0xff) << 24; |
| cmd->data[1] = devid; |
| cmd->data[2] = lower_32_bits(address); |
| cmd->data[3] = upper_32_bits(address); |
| CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES); |
| if (s) |
| cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK; |
| } |
| |
| static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid, |
| u64 address, bool size) |
| { |
| memset(cmd, 0, sizeof(*cmd)); |
| |
| address &= ~(0xfffULL); |
| |
| cmd->data[0] = pasid; |
| cmd->data[1] = domid; |
| cmd->data[2] = lower_32_bits(address); |
| cmd->data[3] = upper_32_bits(address); |
| cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK; |
| cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK; |
| if (size) |
| cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK; |
| CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES); |
| } |
| |
| static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid, |
| int qdep, u64 address, bool size) |
| { |
| memset(cmd, 0, sizeof(*cmd)); |
| |
| address &= ~(0xfffULL); |
| |
| cmd->data[0] = devid; |
| cmd->data[0] |= ((pasid >> 8) & 0xff) << 16; |
| cmd->data[0] |= (qdep & 0xff) << 24; |
| cmd->data[1] = devid; |
| cmd->data[1] |= (pasid & 0xff) << 16; |
| cmd->data[2] = lower_32_bits(address); |
| cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK; |
| cmd->data[3] = upper_32_bits(address); |
| if (size) |
| cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK; |
| CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES); |
| } |
| |
| static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid, |
| int status, int tag, bool gn) |
| { |
| memset(cmd, 0, sizeof(*cmd)); |
| |
| cmd->data[0] = devid; |
| if (gn) { |
| cmd->data[1] = pasid; |
| cmd->data[2] = CMD_INV_IOMMU_PAGES_GN_MASK; |
| } |
| cmd->data[3] = tag & 0x1ff; |
| cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT; |
| |
| CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR); |
| } |
| |
| static void build_inv_all(struct iommu_cmd *cmd) |
| { |
| memset(cmd, 0, sizeof(*cmd)); |
| CMD_SET_TYPE(cmd, CMD_INV_ALL); |
| } |
| |
| static void build_inv_irt(struct iommu_cmd *cmd, u16 devid) |
| { |
| memset(cmd, 0, sizeof(*cmd)); |
| cmd->data[0] = devid; |
| CMD_SET_TYPE(cmd, CMD_INV_IRT); |
| } |
| |
| /* |
| * Writes the command to the IOMMUs command buffer and informs the |
| * hardware about the new command. |
| */ |
| static int __iommu_queue_command_sync(struct amd_iommu *iommu, |
| struct iommu_cmd *cmd, |
| bool sync) |
| { |
| u32 left, tail, head, next_tail; |
| |
| again: |
| |
| head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET); |
| tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET); |
| next_tail = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE; |
| left = (head - next_tail) % CMD_BUFFER_SIZE; |
| |
| if (left <= 0x20) { |
| struct iommu_cmd sync_cmd; |
| int ret; |
| |
| iommu->cmd_sem = 0; |
| |
| build_completion_wait(&sync_cmd, (u64)&iommu->cmd_sem); |
| copy_cmd_to_buffer(iommu, &sync_cmd, tail); |
| |
| if ((ret = wait_on_sem(&iommu->cmd_sem)) != 0) |
| return ret; |
| |
| goto again; |
| } |
| |
| copy_cmd_to_buffer(iommu, cmd, tail); |
| |
| /* We need to sync now to make sure all commands are processed */ |
| iommu->need_sync = sync; |
| |
| return 0; |
| } |
| |
| static int iommu_queue_command_sync(struct amd_iommu *iommu, |
| struct iommu_cmd *cmd, |
| bool sync) |
| { |
| unsigned long flags; |
| int ret; |
| |
| spin_lock_irqsave(&iommu->lock, flags); |
| ret = __iommu_queue_command_sync(iommu, cmd, sync); |
| spin_unlock_irqrestore(&iommu->lock, flags); |
| |
| return ret; |
| } |
| |
| static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd) |
| { |
| return iommu_queue_command_sync(iommu, cmd, true); |
| } |
| |
| /* |
| * This function queues a completion wait command into the command |
| * buffer of an IOMMU |
| */ |
| static int iommu_completion_wait(struct amd_iommu *iommu) |
| { |
| struct iommu_cmd cmd; |
| unsigned long flags; |
| int ret; |
| |
| if (!iommu->need_sync) |
| return 0; |
| |
| |
| build_completion_wait(&cmd, (u64)&iommu->cmd_sem); |
| |
| spin_lock_irqsave(&iommu->lock, flags); |
| |
| iommu->cmd_sem = 0; |
| |
| ret = __iommu_queue_command_sync(iommu, &cmd, false); |
| if (ret) |
| goto out_unlock; |
| |
| ret = wait_on_sem(&iommu->cmd_sem); |
| |
| out_unlock: |
| spin_unlock_irqrestore(&iommu->lock, flags); |
| |
| return ret; |
| } |
| |
| static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid) |
| { |
| struct iommu_cmd cmd; |
| |
| build_inv_dte(&cmd, devid); |
| |
| return iommu_queue_command(iommu, &cmd); |
| } |
| |
| static void iommu_flush_dte_all(struct amd_iommu *iommu) |
| { |
| u32 devid; |
| |
| for (devid = 0; devid <= 0xffff; ++devid) |
| iommu_flush_dte(iommu, devid); |
| |
| iommu_completion_wait(iommu); |
| } |
| |
| /* |
| * This function uses heavy locking and may disable irqs for some time. But |
| * this is no issue because it is only called during resume. |
| */ |
| static void iommu_flush_tlb_all(struct amd_iommu *iommu) |
| { |
| u32 dom_id; |
| |
| for (dom_id = 0; dom_id <= 0xffff; ++dom_id) { |
| struct iommu_cmd cmd; |
| build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, |
| dom_id, 1); |
| iommu_queue_command(iommu, &cmd); |
| } |
| |
| iommu_completion_wait(iommu); |
| } |
| |
| static void iommu_flush_all(struct amd_iommu *iommu) |
| { |
| struct iommu_cmd cmd; |
| |
| build_inv_all(&cmd); |
| |
| iommu_queue_command(iommu, &cmd); |
| iommu_completion_wait(iommu); |
| } |
| |
| static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid) |
| { |
| struct iommu_cmd cmd; |
| |
| build_inv_irt(&cmd, devid); |
| |
| iommu_queue_command(iommu, &cmd); |
| } |
| |
| static void iommu_flush_irt_all(struct amd_iommu *iommu) |
| { |
| u32 devid; |
| |
| for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++) |
| iommu_flush_irt(iommu, devid); |
| |
| iommu_completion_wait(iommu); |
| } |
| |
| void iommu_flush_all_caches(struct amd_iommu *iommu) |
| { |
| if (iommu_feature(iommu, FEATURE_IA)) { |
| iommu_flush_all(iommu); |
| } else { |
| iommu_flush_dte_all(iommu); |
| iommu_flush_irt_all(iommu); |
| iommu_flush_tlb_all(iommu); |
| } |
| } |
| |
| /* |
| * Command send function for flushing on-device TLB |
| */ |
| static int device_flush_iotlb(struct iommu_dev_data *dev_data, |
| u64 address, size_t size) |
| { |
| struct amd_iommu *iommu; |
| struct iommu_cmd cmd; |
| int qdep; |
| |
| qdep = dev_data->ats.qdep; |
| iommu = amd_iommu_rlookup_table[dev_data->devid]; |
| |
| build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size); |
| |
| return iommu_queue_command(iommu, &cmd); |
| } |
| |
| /* |
| * Command send function for invalidating a device table entry |
| */ |
| static int device_flush_dte(struct iommu_dev_data *dev_data) |
| { |
| struct amd_iommu *iommu; |
| u16 alias; |
| int ret; |
| |
| iommu = amd_iommu_rlookup_table[dev_data->devid]; |
| alias = dev_data->alias; |
| |
| ret = iommu_flush_dte(iommu, dev_data->devid); |
| if (!ret && alias != dev_data->devid) |
| ret = iommu_flush_dte(iommu, alias); |
| if (ret) |
| return ret; |
| |
| if (dev_data->ats.enabled) |
| ret = device_flush_iotlb(dev_data, 0, ~0UL); |
| |
| return ret; |
| } |
| |
| /* |
| * TLB invalidation function which is called from the mapping functions. |
| * It invalidates a single PTE if the range to flush is within a single |
| * page. Otherwise it flushes the whole TLB of the IOMMU. |
| */ |
| static void __domain_flush_pages(struct protection_domain *domain, |
| u64 address, size_t size, int pde) |
| { |
| struct iommu_dev_data *dev_data; |
| struct iommu_cmd cmd; |
| int ret = 0, i; |
| |
| build_inv_iommu_pages(&cmd, address, size, domain->id, pde); |
| |
| for (i = 0; i < amd_iommu_get_num_iommus(); ++i) { |
| if (!domain->dev_iommu[i]) |
| continue; |
| |
| /* |
| * Devices of this domain are behind this IOMMU |
| * We need a TLB flush |
| */ |
| ret |= iommu_queue_command(amd_iommus[i], &cmd); |
| } |
| |
| list_for_each_entry(dev_data, &domain->dev_list, list) { |
| |
| if (!dev_data->ats.enabled) |
| continue; |
| |
| ret |= device_flush_iotlb(dev_data, address, size); |
| } |
| |
| WARN_ON(ret); |
| } |
| |
| static void domain_flush_pages(struct protection_domain *domain, |
| u64 address, size_t size) |
| { |
| __domain_flush_pages(domain, address, size, 0); |
| } |
| |
| /* Flush the whole IO/TLB for a given protection domain */ |
| static void domain_flush_tlb(struct protection_domain *domain) |
| { |
| __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0); |
| } |
| |
| /* Flush the whole IO/TLB for a given protection domain - including PDE */ |
| static void domain_flush_tlb_pde(struct protection_domain *domain) |
| { |
| __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1); |
| } |
| |
| static void domain_flush_complete(struct protection_domain *domain) |
| { |
| int i; |
| |
| for (i = 0; i < amd_iommu_get_num_iommus(); ++i) { |
| if (domain && !domain->dev_iommu[i]) |
| continue; |
| |
| /* |
| * Devices of this domain are behind this IOMMU |
| * We need to wait for completion of all commands. |
| */ |
| iommu_completion_wait(amd_iommus[i]); |
| } |
| } |
| |
| |
| /* |
| * This function flushes the DTEs for all devices in domain |
| */ |
| static void domain_flush_devices(struct protection_domain *domain) |
| { |
| struct iommu_dev_data *dev_data; |
| |
| list_for_each_entry(dev_data, &domain->dev_list, list) |
| device_flush_dte(dev_data); |
| } |
| |
| /**************************************************************************** |
| * |
| * The functions below are used the create the page table mappings for |
| * unity mapped regions. |
| * |
| ****************************************************************************/ |
| |
| /* |
| * This function is used to add another level to an IO page table. Adding |
| * another level increases the size of the address space by 9 bits to a size up |
| * to 64 bits. |
| */ |
| static bool increase_address_space(struct protection_domain *domain, |
| gfp_t gfp) |
| { |
| u64 *pte; |
| |
| if (domain->mode == PAGE_MODE_6_LEVEL) |
| /* address space already 64 bit large */ |
| return false; |
| |
| pte = (void *)get_zeroed_page(gfp); |
| if (!pte) |
| return false; |
| |
| *pte = PM_LEVEL_PDE(domain->mode, |
| virt_to_phys(domain->pt_root)); |
| domain->pt_root = pte; |
| domain->mode += 1; |
| domain->updated = true; |
| |
| return true; |
| } |
| |
| static u64 *alloc_pte(struct protection_domain *domain, |
| unsigned long address, |
| unsigned long page_size, |
| u64 **pte_page, |
| gfp_t gfp) |
| { |
| int level, end_lvl; |
| u64 *pte, *page; |
| |
| BUG_ON(!is_power_of_2(page_size)); |
| |
| while (address > PM_LEVEL_SIZE(domain->mode)) |
| increase_address_space(domain, gfp); |
| |
| level = domain->mode - 1; |
| pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)]; |
| address = PAGE_SIZE_ALIGN(address, page_size); |
| end_lvl = PAGE_SIZE_LEVEL(page_size); |
| |
| while (level > end_lvl) { |
| u64 __pte, __npte; |
| |
| __pte = *pte; |
| |
| if (!IOMMU_PTE_PRESENT(__pte)) { |
| page = (u64 *)get_zeroed_page(gfp); |
| if (!page) |
| return NULL; |
| |
| __npte = PM_LEVEL_PDE(level, virt_to_phys(page)); |
| |
| /* pte could have been changed somewhere. */ |
| if (cmpxchg64(pte, __pte, __npte) != __pte) { |
| free_page((unsigned long)page); |
| continue; |
| } |
| } |
| |
| /* No level skipping support yet */ |
| if (PM_PTE_LEVEL(*pte) != level) |
| return NULL; |
| |
| level -= 1; |
| |
| pte = IOMMU_PTE_PAGE(*pte); |
| |
| if (pte_page && level == end_lvl) |
| *pte_page = pte; |
| |
| pte = &pte[PM_LEVEL_INDEX(level, address)]; |
| } |
| |
| return pte; |
| } |
| |
| /* |
| * This function checks if there is a PTE for a given dma address. If |
| * there is one, it returns the pointer to it. |
| */ |
| static u64 *fetch_pte(struct protection_domain *domain, |
| unsigned long address, |
| unsigned long *page_size) |
| { |
| int level; |
| u64 *pte; |
| |
| if (address > PM_LEVEL_SIZE(domain->mode)) |
| return NULL; |
| |
| level = domain->mode - 1; |
| pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)]; |
| *page_size = PTE_LEVEL_PAGE_SIZE(level); |
| |
| while (level > 0) { |
| |
| /* Not Present */ |
| if (!IOMMU_PTE_PRESENT(*pte)) |
| return NULL; |
| |
| /* Large PTE */ |
| if (PM_PTE_LEVEL(*pte) == 7 || |
| PM_PTE_LEVEL(*pte) == 0) |
| break; |
| |
| /* No level skipping support yet */ |
| if (PM_PTE_LEVEL(*pte) != level) |
| return NULL; |
| |
| level -= 1; |
| |
| /* Walk to the next level */ |
| pte = IOMMU_PTE_PAGE(*pte); |
| pte = &pte[PM_LEVEL_INDEX(level, address)]; |
| *page_size = PTE_LEVEL_PAGE_SIZE(level); |
| } |
| |
| if (PM_PTE_LEVEL(*pte) == 0x07) { |
| unsigned long pte_mask; |
| |
| /* |
| * If we have a series of large PTEs, make |
| * sure to return a pointer to the first one. |
| */ |
| *page_size = pte_mask = PTE_PAGE_SIZE(*pte); |
| pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1); |
| pte = (u64 *)(((unsigned long)pte) & pte_mask); |
| } |
| |
| return pte; |
| } |
| |
| /* |
| * Generic mapping functions. It maps a physical address into a DMA |
| * address space. It allocates the page table pages if necessary. |
| * In the future it can be extended to a generic mapping function |
| * supporting all features of AMD IOMMU page tables like level skipping |
| * and full 64 bit address spaces. |
| */ |
| static int iommu_map_page(struct protection_domain *dom, |
| unsigned long bus_addr, |
| unsigned long phys_addr, |
| unsigned long page_size, |
| int prot, |
| gfp_t gfp) |
| { |
| u64 __pte, *pte; |
| int i, count; |
| |
| BUG_ON(!IS_ALIGNED(bus_addr, page_size)); |
| BUG_ON(!IS_ALIGNED(phys_addr, page_size)); |
| |
| if (!(prot & IOMMU_PROT_MASK)) |
| return -EINVAL; |
| |
| count = PAGE_SIZE_PTE_COUNT(page_size); |
| pte = alloc_pte(dom, bus_addr, page_size, NULL, gfp); |
| |
| if (!pte) |
| return -ENOMEM; |
| |
| for (i = 0; i < count; ++i) |
| if (IOMMU_PTE_PRESENT(pte[i])) |
| return -EBUSY; |
| |
| if (count > 1) { |
| __pte = PAGE_SIZE_PTE(phys_addr, page_size); |
| __pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC; |
| } else |
| __pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC; |
| |
| if (prot & IOMMU_PROT_IR) |
| __pte |= IOMMU_PTE_IR; |
| if (prot & IOMMU_PROT_IW) |
| __pte |= IOMMU_PTE_IW; |
| |
| for (i = 0; i < count; ++i) |
| pte[i] = __pte; |
| |
| update_domain(dom); |
| |
| return 0; |
| } |
| |
| static unsigned long iommu_unmap_page(struct protection_domain *dom, |
| unsigned long bus_addr, |
| unsigned long page_size) |
| { |
| unsigned long long unmapped; |
| unsigned long unmap_size; |
| u64 *pte; |
| |
| BUG_ON(!is_power_of_2(page_size)); |
| |
| unmapped = 0; |
| |
| while (unmapped < page_size) { |
| |
| pte = fetch_pte(dom, bus_addr, &unmap_size); |
| |
| if (pte) { |
| int i, count; |
| |
| count = PAGE_SIZE_PTE_COUNT(unmap_size); |
| for (i = 0; i < count; i++) |
| pte[i] = 0ULL; |
| } |
| |
| bus_addr = (bus_addr & ~(unmap_size - 1)) + unmap_size; |
| unmapped += unmap_size; |
| } |
| |
| BUG_ON(unmapped && !is_power_of_2(unmapped)); |
| |
| return unmapped; |
| } |
| |
| /**************************************************************************** |
| * |
| * The next functions belong to the address allocator for the dma_ops |
| * interface functions. |
| * |
| ****************************************************************************/ |
| |
| |
| static unsigned long dma_ops_alloc_iova(struct device *dev, |
| struct dma_ops_domain *dma_dom, |
| unsigned int pages, u64 dma_mask) |
| { |
| unsigned long pfn = 0; |
| |
| pages = __roundup_pow_of_two(pages); |
| |
| if (dma_mask > DMA_BIT_MASK(32)) |
| pfn = alloc_iova_fast(&dma_dom->iovad, pages, |
| IOVA_PFN(DMA_BIT_MASK(32))); |
| |
| if (!pfn) |
| pfn = alloc_iova_fast(&dma_dom->iovad, pages, IOVA_PFN(dma_mask)); |
| |
| return (pfn << PAGE_SHIFT); |
| } |
| |
| static void dma_ops_free_iova(struct dma_ops_domain *dma_dom, |
| unsigned long address, |
| unsigned int pages) |
| { |
| pages = __roundup_pow_of_two(pages); |
| address >>= PAGE_SHIFT; |
| |
| free_iova_fast(&dma_dom->iovad, address, pages); |
| } |
| |
| /**************************************************************************** |
| * |
| * The next functions belong to the domain allocation. A domain is |
| * allocated for every IOMMU as the default domain. If device isolation |
| * is enabled, every device get its own domain. The most important thing |
| * about domains is the page table mapping the DMA address space they |
| * contain. |
| * |
| ****************************************************************************/ |
| |
| /* |
| * This function adds a protection domain to the global protection domain list |
| */ |
| static void add_domain_to_list(struct protection_domain *domain) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&amd_iommu_pd_lock, flags); |
| list_add(&domain->list, &amd_iommu_pd_list); |
| spin_unlock_irqrestore(&amd_iommu_pd_lock, flags); |
| } |
| |
| /* |
| * This function removes a protection domain to the global |
| * protection domain list |
| */ |
| static void del_domain_from_list(struct protection_domain *domain) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&amd_iommu_pd_lock, flags); |
| list_del(&domain->list); |
| spin_unlock_irqrestore(&amd_iommu_pd_lock, flags); |
| } |
| |
| static u16 domain_id_alloc(void) |
| { |
| unsigned long flags; |
| int id; |
| |
| write_lock_irqsave(&amd_iommu_devtable_lock, flags); |
| id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID); |
| BUG_ON(id == 0); |
| if (id > 0 && id < MAX_DOMAIN_ID) |
| __set_bit(id, amd_iommu_pd_alloc_bitmap); |
| else |
| id = 0; |
| write_unlock_irqrestore(&amd_iommu_devtable_lock, flags); |
| |
| return id; |
| } |
| |
| static void domain_id_free(int id) |
| { |
| unsigned long flags; |
| |
| write_lock_irqsave(&amd_iommu_devtable_lock, flags); |
| if (id > 0 && id < MAX_DOMAIN_ID) |
| __clear_bit(id, amd_iommu_pd_alloc_bitmap); |
| write_unlock_irqrestore(&amd_iommu_devtable_lock, flags); |
| } |
| |
| #define DEFINE_FREE_PT_FN(LVL, FN) \ |
| static void free_pt_##LVL (unsigned long __pt) \ |
| { \ |
| unsigned long p; \ |
| u64 *pt; \ |
| int i; \ |
| \ |
| pt = (u64 *)__pt; \ |
| \ |
| for (i = 0; i < 512; ++i) { \ |
| /* PTE present? */ \ |
| if (!IOMMU_PTE_PRESENT(pt[i])) \ |
| continue; \ |
| \ |
| /* Large PTE? */ \ |
| if (PM_PTE_LEVEL(pt[i]) == 0 || \ |
| PM_PTE_LEVEL(pt[i]) == 7) \ |
| continue; \ |
| \ |
| p = (unsigned long)IOMMU_PTE_PAGE(pt[i]); \ |
| FN(p); \ |
| } \ |
| free_page((unsigned long)pt); \ |
| } |
| |
| DEFINE_FREE_PT_FN(l2, free_page) |
| DEFINE_FREE_PT_FN(l3, free_pt_l2) |
| DEFINE_FREE_PT_FN(l4, free_pt_l3) |
| DEFINE_FREE_PT_FN(l5, free_pt_l4) |
| DEFINE_FREE_PT_FN(l6, free_pt_l5) |
| |
| static void free_pagetable(struct protection_domain *domain) |
| { |
| unsigned long root = (unsigned long)domain->pt_root; |
| |
| switch (domain->mode) { |
| case PAGE_MODE_NONE: |
| break; |
| case PAGE_MODE_1_LEVEL: |
| free_page(root); |
| break; |
| case PAGE_MODE_2_LEVEL: |
| free_pt_l2(root); |
| break; |
| case PAGE_MODE_3_LEVEL: |
| free_pt_l3(root); |
| break; |
| case PAGE_MODE_4_LEVEL: |
| free_pt_l4(root); |
| break; |
| case PAGE_MODE_5_LEVEL: |
| free_pt_l5(root); |
| break; |
| case PAGE_MODE_6_LEVEL: |
| free_pt_l6(root); |
| break; |
| default: |
| BUG(); |
| } |
| } |
| |
| static void free_gcr3_tbl_level1(u64 *tbl) |
| { |
| u64 *ptr; |
| int i; |
| |
| for (i = 0; i < 512; ++i) { |
| if (!(tbl[i] & GCR3_VALID)) |
| continue; |
| |
| ptr = __va(tbl[i] & PAGE_MASK); |
| |
| free_page((unsigned long)ptr); |
| } |
| } |
| |
| static void free_gcr3_tbl_level2(u64 *tbl) |
| { |
| u64 *ptr; |
| int i; |
| |
| for (i = 0; i < 512; ++i) { |
| if (!(tbl[i] & GCR3_VALID)) |
| continue; |
| |
| ptr = __va(tbl[i] & PAGE_MASK); |
| |
| free_gcr3_tbl_level1(ptr); |
| } |
| } |
| |
| static void free_gcr3_table(struct protection_domain *domain) |
| { |
| if (domain->glx == 2) |
| free_gcr3_tbl_level2(domain->gcr3_tbl); |
| else if (domain->glx == 1) |
| free_gcr3_tbl_level1(domain->gcr3_tbl); |
| else |
| BUG_ON(domain->glx != 0); |
| |
| free_page((unsigned long)domain->gcr3_tbl); |
| } |
| |
| /* |
| * Free a domain, only used if something went wrong in the |
| * allocation path and we need to free an already allocated page table |
| */ |
| static void dma_ops_domain_free(struct dma_ops_domain *dom) |
| { |
| if (!dom) |
| return; |
| |
| del_domain_from_list(&dom->domain); |
| |
| put_iova_domain(&dom->iovad); |
| |
| free_pagetable(&dom->domain); |
| |
| if (dom->domain.id) |
| domain_id_free(dom->domain.id); |
| |
| kfree(dom); |
| } |
| |
| /* |
| * Allocates a new protection domain usable for the dma_ops functions. |
| * It also initializes the page table and the address allocator data |
| * structures required for the dma_ops interface |
| */ |
| static struct dma_ops_domain *dma_ops_domain_alloc(void) |
| { |
| struct dma_ops_domain *dma_dom; |
| |
| dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL); |
| if (!dma_dom) |
| return NULL; |
| |
| if (protection_domain_init(&dma_dom->domain)) |
| goto free_dma_dom; |
| |
| dma_dom->domain.mode = PAGE_MODE_3_LEVEL; |
| dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL); |
| dma_dom->domain.flags = PD_DMA_OPS_MASK; |
| if (!dma_dom->domain.pt_root) |
| goto free_dma_dom; |
| |
| init_iova_domain(&dma_dom->iovad, PAGE_SIZE, |
| IOVA_START_PFN, DMA_32BIT_PFN); |
| |
| /* Initialize reserved ranges */ |
| copy_reserved_iova(&reserved_iova_ranges, &dma_dom->iovad); |
| |
| add_domain_to_list(&dma_dom->domain); |
| |
| return dma_dom; |
| |
| free_dma_dom: |
| dma_ops_domain_free(dma_dom); |
| |
| return NULL; |
| } |
| |
| /* |
| * little helper function to check whether a given protection domain is a |
| * dma_ops domain |
| */ |
| static bool dma_ops_domain(struct protection_domain *domain) |
| { |
| return domain->flags & PD_DMA_OPS_MASK; |
| } |
| |
| static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats) |
| { |
| u64 pte_root = 0; |
| u64 flags = 0; |
| |
| if (domain->mode != PAGE_MODE_NONE) |
| pte_root = virt_to_phys(domain->pt_root); |
| |
| pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK) |
| << DEV_ENTRY_MODE_SHIFT; |
| pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV; |
| |
| flags = amd_iommu_dev_table[devid].data[1]; |
| |
| if (ats) |
| flags |= DTE_FLAG_IOTLB; |
| |
| if (domain->flags & PD_IOMMUV2_MASK) { |
| u64 gcr3 = __pa(domain->gcr3_tbl); |
| u64 glx = domain->glx; |
| u64 tmp; |
| |
| pte_root |= DTE_FLAG_GV; |
| pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT; |
| |
| /* First mask out possible old values for GCR3 table */ |
| tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B; |
| flags &= ~tmp; |
| |
| tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C; |
| flags &= ~tmp; |
| |
| /* Encode GCR3 table into DTE */ |
| tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A; |
| pte_root |= tmp; |
| |
| tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B; |
| flags |= tmp; |
| |
| tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C; |
| flags |= tmp; |
| } |
| |
| flags &= ~(0xffffUL); |
| flags |= domain->id; |
| |
| amd_iommu_dev_table[devid].data[1] = flags; |
| amd_iommu_dev_table[devid].data[0] = pte_root; |
| } |
| |
| static void clear_dte_entry(u16 devid) |
| { |
| /* remove entry from the device table seen by the hardware */ |
| amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV; |
| amd_iommu_dev_table[devid].data[1] &= DTE_FLAG_MASK; |
| |
| amd_iommu_apply_erratum_63(devid); |
| } |
| |
| static void do_attach(struct iommu_dev_data *dev_data, |
| struct protection_domain *domain) |
| { |
| struct amd_iommu *iommu; |
| u16 alias; |
| bool ats; |
| |
| iommu = amd_iommu_rlookup_table[dev_data->devid]; |
| alias = dev_data->alias; |
| ats = dev_data->ats.enabled; |
| |
| /* Update data structures */ |
| dev_data->domain = domain; |
| list_add(&dev_data->list, &domain->dev_list); |
| |
| /* Do reference counting */ |
| domain->dev_iommu[iommu->index] += 1; |
| domain->dev_cnt += 1; |
| |
| /* Update device table */ |
| set_dte_entry(dev_data->devid, domain, ats); |
| if (alias != dev_data->devid) |
| set_dte_entry(alias, domain, ats); |
| |
| device_flush_dte(dev_data); |
| } |
| |
| static void do_detach(struct iommu_dev_data *dev_data) |
| { |
| struct amd_iommu *iommu; |
| u16 alias; |
| |
| /* |
| * First check if the device is still attached. It might already |
| * be detached from its domain because the generic |
| * iommu_detach_group code detached it and we try again here in |
| * our alias handling. |
| */ |
| if (!dev_data->domain) |
| return; |
| |
| iommu = amd_iommu_rlookup_table[dev_data->devid]; |
| alias = dev_data->alias; |
| |
| /* decrease reference counters */ |
| dev_data->domain->dev_iommu[iommu->index] -= 1; |
| dev_data->domain->dev_cnt -= 1; |
| |
| /* Update data structures */ |
| dev_data->domain = NULL; |
| list_del(&dev_data->list); |
| clear_dte_entry(dev_data->devid); |
| if (alias != dev_data->devid) |
| clear_dte_entry(alias); |
| |
| /* Flush the DTE entry */ |
| device_flush_dte(dev_data); |
| } |
| |
| /* |
| * If a device is not yet associated with a domain, this function does |
| * assigns it visible for the hardware |
| */ |
| static int __attach_device(struct iommu_dev_data *dev_data, |
| struct protection_domain *domain) |
| { |
| int ret; |
| |
| /* |
| * Must be called with IRQs disabled. Warn here to detect early |
| * when its not. |
| */ |
| WARN_ON(!irqs_disabled()); |
| |
| /* lock domain */ |
| spin_lock(&domain->lock); |
| |
| ret = -EBUSY; |
| if (dev_data->domain != NULL) |
| goto out_unlock; |
| |
| /* Attach alias group root */ |
| do_attach(dev_data, domain); |
| |
| ret = 0; |
| |
| out_unlock: |
| |
| /* ready */ |
| spin_unlock(&domain->lock); |
| |
| return ret; |
| } |
| |
| |
| static void pdev_iommuv2_disable(struct pci_dev *pdev) |
| { |
| pci_disable_ats(pdev); |
| pci_disable_pri(pdev); |
| pci_disable_pasid(pdev); |
| } |
| |
| /* FIXME: Change generic reset-function to do the same */ |
| static int pri_reset_while_enabled(struct pci_dev *pdev) |
| { |
| u16 control; |
| int pos; |
| |
| pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI); |
| if (!pos) |
| return -EINVAL; |
| |
| pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control); |
| control |= PCI_PRI_CTRL_RESET; |
| pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control); |
| |
| return 0; |
| } |
| |
| static int pdev_iommuv2_enable(struct pci_dev *pdev) |
| { |
| bool reset_enable; |
| int reqs, ret; |
| |
| /* FIXME: Hardcode number of outstanding requests for now */ |
| reqs = 32; |
| if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE)) |
| reqs = 1; |
| reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET); |
| |
| /* Only allow access to user-accessible pages */ |
| ret = pci_enable_pasid(pdev, 0); |
| if (ret) |
| goto out_err; |
| |
| /* First reset the PRI state of the device */ |
| ret = pci_reset_pri(pdev); |
| if (ret) |
| goto out_err; |
| |
| /* Enable PRI */ |
| ret = pci_enable_pri(pdev, reqs); |
| if (ret) |
| goto out_err; |
| |
| if (reset_enable) { |
| ret = pri_reset_while_enabled(pdev); |
| if (ret) |
| goto out_err; |
| } |
| |
| ret = pci_enable_ats(pdev, PAGE_SHIFT); |
| if (ret) |
| goto out_err; |
| |
| return 0; |
| |
| out_err: |
| pci_disable_pri(pdev); |
| pci_disable_pasid(pdev); |
| |
| return ret; |
| } |
| |
| /* FIXME: Move this to PCI code */ |
| #define PCI_PRI_TLP_OFF (1 << 15) |
| |
| static bool pci_pri_tlp_required(struct pci_dev *pdev) |
| { |
| u16 status; |
| int pos; |
| |
| pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI); |
| if (!pos) |
| return false; |
| |
| pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status); |
| |
| return (status & PCI_PRI_TLP_OFF) ? true : false; |
| } |
| |
| /* |
| * If a device is not yet associated with a domain, this function |
| * assigns it visible for the hardware |
| */ |
| static int attach_device(struct device *dev, |
| struct protection_domain *domain) |
| { |
| struct pci_dev *pdev; |
| struct iommu_dev_data *dev_data; |
| unsigned long flags; |
| int ret; |
| |
| dev_data = get_dev_data(dev); |
| |
| if (!dev_is_pci(dev)) |
| goto skip_ats_check; |
| |
| pdev = to_pci_dev(dev); |
| if (domain->flags & PD_IOMMUV2_MASK) { |
| if (!dev_data->passthrough) |
| return -EINVAL; |
| |
| if (dev_data->iommu_v2) { |
| if (pdev_iommuv2_enable(pdev) != 0) |
| return -EINVAL; |
| |
| dev_data->ats.enabled = true; |
| dev_data->ats.qdep = pci_ats_queue_depth(pdev); |
| dev_data->pri_tlp = pci_pri_tlp_required(pdev); |
| } |
| } else if (amd_iommu_iotlb_sup && |
| pci_enable_ats(pdev, PAGE_SHIFT) == 0) { |
| dev_data->ats.enabled = true; |
| dev_data->ats.qdep = pci_ats_queue_depth(pdev); |
| } |
| |
| skip_ats_check: |
| write_lock_irqsave(&amd_iommu_devtable_lock, flags); |
| ret = __attach_device(dev_data, domain); |
| write_unlock_irqrestore(&amd_iommu_devtable_lock, flags); |
| |
| /* |
| * We might boot into a crash-kernel here. The crashed kernel |
| * left the caches in the IOMMU dirty. So we have to flush |
| * here to evict all dirty stuff. |
| */ |
| domain_flush_tlb_pde(domain); |
| |
| return ret; |
| } |
| |
| /* |
| * Removes a device from a protection domain (unlocked) |
| */ |
| static void __detach_device(struct iommu_dev_data *dev_data) |
| { |
| struct protection_domain *domain; |
| |
| /* |
| * Must be called with IRQs disabled. Warn here to detect early |
| * when its not. |
| */ |
| WARN_ON(!irqs_disabled()); |
| |
| if (WARN_ON(!dev_data->domain)) |
| return; |
| |
| domain = dev_data->domain; |
| |
| spin_lock(&domain->lock); |
| |
| do_detach(dev_data); |
| |
| spin_unlock(&domain->lock); |
| } |
| |
| /* |
| * Removes a device from a protection domain (with devtable_lock held) |
| */ |
| static void detach_device(struct device *dev) |
| { |
| struct protection_domain *domain; |
| struct iommu_dev_data *dev_data; |
| unsigned long flags; |
| |
| dev_data = get_dev_data(dev); |
| domain = dev_data->domain; |
| |
| /* lock device table */ |
| write_lock_irqsave(&amd_iommu_devtable_lock, flags); |
| __detach_device(dev_data); |
| write_unlock_irqrestore(&amd_iommu_devtable_lock, flags); |
| |
| if (!dev_is_pci(dev)) |
| return; |
| |
| if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2) |
| pdev_iommuv2_disable(to_pci_dev(dev)); |
| else if (dev_data->ats.enabled) |
| pci_disable_ats(to_pci_dev(dev)); |
| |
| dev_data->ats.enabled = false; |
| } |
| |
| static int amd_iommu_add_device(struct device *dev) |
| { |
| struct iommu_dev_data *dev_data; |
| struct iommu_domain *domain; |
| struct amd_iommu *iommu; |
| int ret, devid; |
| |
| if (!check_device(dev) || get_dev_data(dev)) |
| return 0; |
| |
| devid = get_device_id(dev); |
| if (devid < 0) |
| return devid; |
| |
| iommu = amd_iommu_rlookup_table[devid]; |
| |
| ret = iommu_init_device(dev); |
| if (ret) { |
| if (ret != -ENOTSUPP) |
| pr_err("Failed to initialize device %s - trying to proceed anyway\n", |
| dev_name(dev)); |
| |
| iommu_ignore_device(dev); |
| dev->dma_ops = &nommu_dma_ops; |
| goto out; |
| } |
| init_iommu_group(dev); |
| |
| dev_data = get_dev_data(dev); |
| |
| BUG_ON(!dev_data); |
| |
| if (iommu_pass_through || dev_data->iommu_v2) |
| iommu_request_dm_for_dev(dev); |
| |
| /* Domains are initialized for this device - have a look what we ended up with */ |
| domain = iommu_get_domain_for_dev(dev); |
| if (domain->type == IOMMU_DOMAIN_IDENTITY) |
| dev_data->passthrough = true; |
| else |
| dev->dma_ops = &amd_iommu_dma_ops; |
| |
| out: |
| iommu_completion_wait(iommu); |
| |
| return 0; |
| } |
| |
| static void amd_iommu_remove_device(struct device *dev) |
| { |
| struct amd_iommu *iommu; |
| int devid; |
| |
| if (!check_device(dev)) |
| return; |
| |
| devid = get_device_id(dev); |
| if (devid < 0) |
| return; |
| |
| iommu = amd_iommu_rlookup_table[devid]; |
| |
| iommu_uninit_device(dev); |
| iommu_completion_wait(iommu); |
| } |
| |
| static struct iommu_group *amd_iommu_device_group(struct device *dev) |
| { |
| if (dev_is_pci(dev)) |
| return pci_device_group(dev); |
| |
| return acpihid_device_group(dev); |
| } |
| |
| /***************************************************************************** |
| * |
| * The next functions belong to the dma_ops mapping/unmapping code. |
| * |
| *****************************************************************************/ |
| |
| static void __queue_flush(struct flush_queue *queue) |
| { |
| struct protection_domain *domain; |
| unsigned long flags; |
| int idx; |
| |
| /* First flush TLB of all known domains */ |
| spin_lock_irqsave(&amd_iommu_pd_lock, flags); |
| list_for_each_entry(domain, &amd_iommu_pd_list, list) |
| domain_flush_tlb(domain); |
| spin_unlock_irqrestore(&amd_iommu_pd_lock, flags); |
| |
| /* Wait until flushes have completed */ |
| domain_flush_complete(NULL); |
| |
| for (idx = 0; idx < queue->next; ++idx) { |
| struct flush_queue_entry *entry; |
| |
| entry = queue->entries + idx; |
| |
| free_iova_fast(&entry->dma_dom->iovad, |
| entry->iova_pfn, |
| entry->pages); |
| |
| /* Not really necessary, just to make sure we catch any bugs */ |
| entry->dma_dom = NULL; |
| } |
| |
| queue->next = 0; |
| } |
| |
| static void queue_flush_all(void) |
| { |
| int cpu; |
| |
| for_each_possible_cpu(cpu) { |
| struct flush_queue *queue; |
| unsigned long flags; |
| |
| queue = per_cpu_ptr(&flush_queue, cpu); |
| spin_lock_irqsave(&queue->lock, flags); |
| if (queue->next > 0) |
| __queue_flush(queue); |
| spin_unlock_irqrestore(&queue->lock, flags); |
| } |
| } |
| |
| static void queue_flush_timeout(unsigned long unsused) |
| { |
| atomic_set(&queue_timer_on, 0); |
| queue_flush_all(); |
| } |
| |
| static void queue_add(struct dma_ops_domain *dma_dom, |
| unsigned long address, unsigned long pages) |
| { |
| struct flush_queue_entry *entry; |
| struct flush_queue *queue; |
| unsigned long flags; |
| int idx; |
| |
| pages = __roundup_pow_of_two(pages); |
| address >>= PAGE_SHIFT; |
| |
| queue = get_cpu_ptr(&flush_queue); |
| spin_lock_irqsave(&queue->lock, flags); |
| |
| if (queue->next == FLUSH_QUEUE_SIZE) |
| __queue_flush(queue); |
| |
| idx = queue->next++; |
| entry = queue->entries + idx; |
| |
| entry->iova_pfn = address; |
| entry->pages = pages; |
| entry->dma_dom = dma_dom; |
| |
| spin_unlock_irqrestore(&queue->lock, flags); |
| |
| if (atomic_cmpxchg(&queue_timer_on, 0, 1) == 0) |
| mod_timer(&queue_timer, jiffies + msecs_to_jiffies(10)); |
| |
| put_cpu_ptr(&flush_queue); |
| } |
| |
| |
| /* |
| * In the dma_ops path we only have the struct device. This function |
| * finds the corresponding IOMMU, the protection domain and the |
| * requestor id for a given device. |
| * If the device is not yet associated with a domain this is also done |
| * in this function. |
| */ |
| static struct protection_domain *get_domain(struct device *dev) |
| { |
| struct protection_domain *domain; |
| |
| if (!check_device(dev)) |
| return ERR_PTR(-EINVAL); |
| |
| domain = get_dev_data(dev)->domain; |
| if (!dma_ops_domain(domain)) |
| return ERR_PTR(-EBUSY); |
| |
| return domain; |
| } |
| |
| static void update_device_table(struct protection_domain *domain) |
| { |
| struct iommu_dev_data *dev_data; |
| |
| list_for_each_entry(dev_data, &domain->dev_list, list) { |
| set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled); |
| |
| if (dev_data->devid == dev_data->alias) |
| continue; |
| |
| /* There is an alias, update device table entry for it */ |
| set_dte_entry(dev_data->alias, domain, dev_data->ats.enabled); |
| } |
| } |
| |
| static void update_domain(struct protection_domain *domain) |
| { |
| if (!domain->updated) |
| return; |
| |
| update_device_table(domain); |
| |
| domain_flush_devices(domain); |
| domain_flush_tlb_pde(domain); |
| |
| domain->updated = false; |
| } |
| |
| static int dir2prot(enum dma_data_direction direction) |
| { |
| if (direction == DMA_TO_DEVICE) |
| return IOMMU_PROT_IR; |
| else if (direction == DMA_FROM_DEVICE) |
| return IOMMU_PROT_IW; |
| else if (direction == DMA_BIDIRECTIONAL) |
| return IOMMU_PROT_IW | IOMMU_PROT_IR; |
| else |
| return 0; |
| } |
| /* |
| * This function contains common code for mapping of a physically |
| * contiguous memory region into DMA address space. It is used by all |
| * mapping functions provided with this IOMMU driver. |
| * Must be called with the domain lock held. |
| */ |
| static dma_addr_t __map_single(struct device *dev, |
| struct dma_ops_domain *dma_dom, |
| phys_addr_t paddr, |
| size_t size, |
| enum dma_data_direction direction, |
| u64 dma_mask) |
| { |
| dma_addr_t offset = paddr & ~PAGE_MASK; |
| dma_addr_t address, start, ret; |
| unsigned int pages; |
| int prot = 0; |
| int i; |
| |
| pages = iommu_num_pages(paddr, size, PAGE_SIZE); |
| paddr &= PAGE_MASK; |
| |
| address = dma_ops_alloc_iova(dev, dma_dom, pages, dma_mask); |
| if (address == DMA_ERROR_CODE) |
| goto out; |
| |
| prot = dir2prot(direction); |
| |
| start = address; |
| for (i = 0; i < pages; ++i) { |
| ret = iommu_map_page(&dma_dom->domain, start, paddr, |
| PAGE_SIZE, prot, GFP_ATOMIC); |
| if (ret) |
| goto out_unmap; |
| |
| paddr += PAGE_SIZE; |
| start += PAGE_SIZE; |
| } |
| address += offset; |
| |
| if (unlikely(amd_iommu_np_cache)) { |
| domain_flush_pages(&dma_dom->domain, address, size); |
| domain_flush_complete(&dma_dom->domain); |
| } |
| |
| out: |
| return address; |
| |
| out_unmap: |
| |
| for (--i; i >= 0; --i) { |
| start -= PAGE_SIZE; |
| iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE); |
| } |
| |
| domain_flush_tlb(&dma_dom->domain); |
| domain_flush_complete(&dma_dom->domain); |
| |
| dma_ops_free_iova(dma_dom, address, pages); |
| |
| return DMA_ERROR_CODE; |
| } |
| |
| /* |
| * Does the reverse of the __map_single function. Must be called with |
| * the domain lock held too |
| */ |
| static void __unmap_single(struct dma_ops_domain *dma_dom, |
| dma_addr_t dma_addr, |
| size_t size, |
| int dir) |
| { |
| dma_addr_t flush_addr; |
| dma_addr_t i, start; |
| unsigned int pages; |
| |
| flush_addr = dma_addr; |
| pages = iommu_num_pages(dma_addr, size, PAGE_SIZE); |
| dma_addr &= PAGE_MASK; |
| start = dma_addr; |
| |
| for (i = 0; i < pages; ++i) { |
| iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE); |
| start += PAGE_SIZE; |
| } |
| |
| if (amd_iommu_unmap_flush) { |
| dma_ops_free_iova(dma_dom, dma_addr, pages); |
| domain_flush_tlb(&dma_dom->domain); |
| domain_flush_complete(&dma_dom->domain); |
| } else { |
| queue_add(dma_dom, dma_addr, pages); |
| } |
| } |
| |
| /* |
| * The exported map_single function for dma_ops. |
| */ |
| static dma_addr_t map_page(struct device *dev, struct page *page, |
| unsigned long offset, size_t size, |
| enum dma_data_direction dir, |
| unsigned long attrs) |
| { |
| phys_addr_t paddr = page_to_phys(page) + offset; |
| struct protection_domain *domain; |
| struct dma_ops_domain *dma_dom; |
| u64 dma_mask; |
| |
| domain = get_domain(dev); |
| if (PTR_ERR(domain) == -EINVAL) |
| return (dma_addr_t)paddr; |
| else if (IS_ERR(domain)) |
| return DMA_ERROR_CODE; |
| |
| dma_mask = *dev->dma_mask; |
| dma_dom = to_dma_ops_domain(domain); |
| |
| return __map_single(dev, dma_dom, paddr, size, dir, dma_mask); |
| } |
| |
| /* |
| * The exported unmap_single function for dma_ops. |
| */ |
| static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size, |
| enum dma_data_direction dir, unsigned long attrs) |
| { |
| struct protection_domain *domain; |
| struct dma_ops_domain *dma_dom; |
| |
| domain = get_domain(dev); |
| if (IS_ERR(domain)) |
| return; |
| |
| dma_dom = to_dma_ops_domain(domain); |
| |
| __unmap_single(dma_dom, dma_addr, size, dir); |
| } |
| |
| static int sg_num_pages(struct device *dev, |
| struct scatterlist *sglist, |
| int nelems) |
| { |
| unsigned long mask, boundary_size; |
| struct scatterlist *s; |
| int i, npages = 0; |
| |
| mask = dma_get_seg_boundary(dev); |
| boundary_size = mask + 1 ? ALIGN(mask + 1, PAGE_SIZE) >> PAGE_SHIFT : |
| 1UL << (BITS_PER_LONG - PAGE_SHIFT); |
| |
| for_each_sg(sglist, s, nelems, i) { |
| int p, n; |
| |
| s->dma_address = npages << PAGE_SHIFT; |
| p = npages % boundary_size; |
| n = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE); |
| if (p + n > boundary_size) |
| npages += boundary_size - p; |
| npages += n; |
| } |
| |
| return npages; |
| } |
| |
| /* |
| * The exported map_sg function for dma_ops (handles scatter-gather |
| * lists). |
| */ |
| static int map_sg(struct device *dev, struct scatterlist *sglist, |
| int nelems, enum dma_data_direction direction, |
| unsigned long attrs) |
| { |
| int mapped_pages = 0, npages = 0, prot = 0, i; |
| struct protection_domain *domain; |
| struct dma_ops_domain *dma_dom; |
| struct scatterlist *s; |
| unsigned long address; |
| u64 dma_mask; |
| |
| domain = get_domain(dev); |
| if (IS_ERR(domain)) |
| return 0; |
| |
| dma_dom = to_dma_ops_domain(domain); |
| dma_mask = *dev->dma_mask; |
| |
| npages = sg_num_pages(dev, sglist, nelems); |
| |
| address = dma_ops_alloc_iova(dev, dma_dom, npages, dma_mask); |
| if (address == DMA_ERROR_CODE) |
| goto out_err; |
| |
| prot = dir2prot(direction); |
| |
| /* Map all sg entries */ |
| for_each_sg(sglist, s, nelems, i) { |
| int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE); |
| |
| for (j = 0; j < pages; ++j) { |
| unsigned long bus_addr, phys_addr; |
| int ret; |
| |
| bus_addr = address + s->dma_address + (j << PAGE_SHIFT); |
| phys_addr = (sg_phys(s) & PAGE_MASK) + (j << PAGE_SHIFT); |
| ret = iommu_map_page(domain, bus_addr, phys_addr, PAGE_SIZE, prot, GFP_ATOMIC); |
| if (ret) |
| goto out_unmap; |
| |
| mapped_pages += 1; |
| } |
| } |
| |
| /* Everything is mapped - write the right values into s->dma_address */ |
| for_each_sg(sglist, s, nelems, i) { |
| s->dma_address += address + s->offset; |
| s->dma_length = s->length; |
| } |
| |
| return nelems; |
| |
| out_unmap: |
| pr_err("%s: IOMMU mapping error in map_sg (io-pages: %d)\n", |
| dev_name(dev), npages); |
| |
| for_each_sg(sglist, s, nelems, i) { |
| int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE); |
| |
| for (j = 0; j < pages; ++j) { |
| unsigned long bus_addr; |
| |
| bus_addr = address + s->dma_address + (j << PAGE_SHIFT); |
| iommu_unmap_page(domain, bus_addr, PAGE_SIZE); |
| |
| if (--mapped_pages) |
| goto out_free_iova; |
| } |
| } |
| |
| out_free_iova: |
| free_iova_fast(&dma_dom->iovad, address, npages); |
| |
| out_err: |
| return 0; |
| } |
| |
| /* |
| * The exported map_sg function for dma_ops (handles scatter-gather |
| * lists). |
| */ |
| static void unmap_sg(struct device *dev, struct scatterlist *sglist, |
| int nelems, enum dma_data_direction dir, |
| unsigned long attrs) |
| { |
| struct protection_domain *domain; |
| struct dma_ops_domain *dma_dom; |
| unsigned long startaddr; |
| int npages = 2; |
| |
| domain = get_domain(dev); |
| if (IS_ERR(domain)) |
| return; |
| |
| startaddr = sg_dma_address(sglist) & PAGE_MASK; |
| dma_dom = to_dma_ops_domain(domain); |
| npages = sg_num_pages(dev, sglist, nelems); |
| |
| __unmap_single(dma_dom, startaddr, npages << PAGE_SHIFT, dir); |
| } |
| |
| /* |
| * The exported alloc_coherent function for dma_ops. |
| */ |
| static void *alloc_coherent(struct device *dev, size_t size, |
| dma_addr_t *dma_addr, gfp_t flag, |
| unsigned long attrs) |
| { |
| u64 dma_mask = dev->coherent_dma_mask; |
| struct protection_domain *domain; |
| struct dma_ops_domain *dma_dom; |
| struct page *page; |
| |
| domain = get_domain(dev); |
| if (PTR_ERR(domain) == -EINVAL) { |
| page = alloc_pages(flag, get_order(size)); |
| *dma_addr = page_to_phys(page); |
| return page_address(page); |
| } else if (IS_ERR(domain)) |
| return NULL; |
| |
| dma_dom = to_dma_ops_domain(domain); |
| size = PAGE_ALIGN(size); |
| dma_mask = dev->coherent_dma_mask; |
| flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32); |
| flag |= __GFP_ZERO; |
| |
| page = alloc_pages(flag | __GFP_NOWARN, get_order(size)); |
| if (!page) { |
| if (!gfpflags_allow_blocking(flag)) |
| return NULL; |
| |
| page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT, |
| get_order(size), flag); |
| if (!page) |
| return NULL; |
| } |
| |
| if (!dma_mask) |
| dma_mask = *dev->dma_mask; |
| |
| *dma_addr = __map_single(dev, dma_dom, page_to_phys(page), |
| size, DMA_BIDIRECTIONAL, dma_mask); |
| |
| if (*dma_addr == DMA_ERROR_CODE) |
| goto out_free; |
| |
| return page_address(page); |
| |
| out_free: |
| |
| if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT)) |
| __free_pages(page, get_order(size)); |
| |
| return NULL; |
| } |
| |
| /* |
| * The exported free_coherent function for dma_ops. |
| */ |
| static void free_coherent(struct device *dev, size_t size, |
| void *virt_addr, dma_addr_t dma_addr, |
| unsigned long attrs) |
| { |
| struct protection_domain *domain; |
| struct dma_ops_domain *dma_dom; |
| struct page *page; |
| |
| page = virt_to_page(virt_addr); |
| size = PAGE_ALIGN(size); |
| |
| domain = get_domain(dev); |
| if (IS_ERR(domain)) |
| goto free_mem; |
| |
| dma_dom = to_dma_ops_domain(domain); |
| |
| __unmap_single(dma_dom, dma_addr, size, DMA_BIDIRECTIONAL); |
| |
| free_mem: |
| if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT)) |
| __free_pages(page, get_order(size)); |
| } |
| |
| /* |
| * This function is called by the DMA layer to find out if we can handle a |
| * particular device. It is part of the dma_ops. |
| */ |
| static int amd_iommu_dma_supported(struct device *dev, u64 mask) |
| { |
| return check_device(dev); |
| } |
| |
| static const struct dma_map_ops amd_iommu_dma_ops = { |
| .alloc = alloc_coherent, |
| .free = free_coherent, |
| .map_page = map_page, |
| .unmap_page = unmap_page, |
| .map_sg = map_sg, |
| .unmap_sg = unmap_sg, |
| .dma_supported = amd_iommu_dma_supported, |
| }; |
| |
| static int init_reserved_iova_ranges(void) |
| { |
| struct pci_dev *pdev = NULL; |
| struct iova *val; |
| |
| init_iova_domain(&reserved_iova_ranges, PAGE_SIZE, |
| IOVA_START_PFN, DMA_32BIT_PFN); |
| |
| lockdep_set_class(&reserved_iova_ranges.iova_rbtree_lock, |
| &reserved_rbtree_key); |
| |
| /* MSI memory range */ |
| val = reserve_iova(&reserved_iova_ranges, |
| IOVA_PFN(MSI_RANGE_START), IOVA_PFN(MSI_RANGE_END)); |
| if (!val) { |
| pr_err("Reserving MSI range failed\n"); |
| return -ENOMEM; |
| } |
| |
| /* HT memory range */ |
| val = reserve_iova(&reserved_iova_ranges, |
| IOVA_PFN(HT_RANGE_START), IOVA_PFN(HT_RANGE_END)); |
| if (!val) { |
| pr_err("Reserving HT range failed\n"); |
| return -ENOMEM; |
| } |
| |
| /* |
| * Memory used for PCI resources |
| * FIXME: Check whether we can reserve the PCI-hole completly |
| */ |
| for_each_pci_dev(pdev) { |
| int i; |
| |
| for (i = 0; i < PCI_NUM_RESOURCES; ++i) { |
| struct resource *r = &pdev->resource[i]; |
| |
| if (!(r->flags & IORESOURCE_MEM)) |
| continue; |
| |
| val = reserve_iova(&reserved_iova_ranges, |
| IOVA_PFN(r->start), |
| IOVA_PFN(r->end)); |
| if (!val) { |
| pr_err("Reserve pci-resource range failed\n"); |
| return -ENOMEM; |
| } |
| } |
| } |
| |
| return 0; |
| } |
| |
| int __init amd_iommu_init_api(void) |
| { |
| int ret, cpu, err = 0; |
| |
| ret = iova_cache_get(); |
| if (ret) |
| return ret; |
| |
| ret = init_reserved_iova_ranges(); |
| if (ret) |
| return ret; |
| |
| for_each_possible_cpu(cpu) { |
| struct flush_queue *queue = per_cpu_ptr(&flush_queue, cpu); |
| |
| queue->entries = kzalloc(FLUSH_QUEUE_SIZE * |
| sizeof(*queue->entries), |
| GFP_KERNEL); |
| if (!queue->entries) |
| goto out_put_iova; |
| |
| spin_lock_init(&queue->lock); |
| } |
| |
| err = bus_set_iommu(&pci_bus_type, &amd_iommu_ops); |
| if (err) |
| return err; |
| #ifdef CONFIG_ARM_AMBA |
| err = bus_set_iommu(&amba_bustype, &amd_iommu_ops); |
| if (err) |
| return err; |
| #endif |
| err = bus_set_iommu(&platform_bus_type, &amd_iommu_ops); |
| if (err) |
| return err; |
| return 0; |
| |
| out_put_iova: |
| for_each_possible_cpu(cpu) { |
| struct flush_queue *queue = per_cpu_ptr(&flush_queue, cpu); |
| |
| kfree(queue->entries); |
| } |
| |
| return -ENOMEM; |
| } |
| |
| int __init amd_iommu_init_dma_ops(void) |
| { |
| setup_timer(&queue_timer, queue_flush_timeout, 0); |
| atomic_set(&queue_timer_on, 0); |
| |
| swiotlb = iommu_pass_through ? 1 : 0; |
| iommu_detected = 1; |
| |
| /* |
| * In case we don't initialize SWIOTLB (actually the common case |
| * when AMD IOMMU is enabled), make sure there are global |
| * dma_ops set as a fall-back for devices not handled by this |
| * driver (for example non-PCI devices). |
| */ |
| if (!swiotlb) |
| dma_ops = &nommu_dma_ops; |
| |
| if (amd_iommu_unmap_flush) |
| pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n"); |
| else |
| pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n"); |
| |
| return 0; |
| |
| } |
| |
| /***************************************************************************** |
| * |
| * The following functions belong to the exported interface of AMD IOMMU |
| * |
| * This interface allows access to lower level functions of the IOMMU |
| * like protection domain handling and assignement of devices to domains |
| * which is not possible with the dma_ops interface. |
| * |
| *****************************************************************************/ |
| |
| static void cleanup_domain(struct protection_domain *domain) |
| { |
| struct iommu_dev_data *entry; |
| unsigned long flags; |
| |
| write_lock_irqsave(&amd_iommu_devtable_lock, flags); |
| |
| while (!list_empty(&domain->dev_list)) { |
| entry = list_first_entry(&domain->dev_list, |
| struct iommu_dev_data, list); |
| __detach_device(entry); |
| } |
| |
| write_unlock_irqrestore(&amd_iommu_devtable_lock, flags); |
| } |
| |
| static void protection_domain_free(struct protection_domain *domain) |
| { |
| if (!domain) |
| return; |
| |
| del_domain_from_list(domain); |
| |
| if (domain->id) |
| domain_id_free(domain->id); |
| |
| kfree(domain); |
| } |
| |
| static int protection_domain_init(struct protection_domain *domain) |
| { |
| spin_lock_init(&domain->lock); |
| mutex_init(&domain->api_lock); |
| domain->id = domain_id_alloc(); |
| if (!domain->id) |
| return -ENOMEM; |
| INIT_LIST_HEAD(&domain->dev_list); |
| |
| return 0; |
| } |
| |
| static struct protection_domain *protection_domain_alloc(void) |
| { |
| struct protection_domain *domain; |
| |
| domain = kzalloc(sizeof(*domain), GFP_KERNEL); |
| if (!domain) |
| return NULL; |
| |
| if (protection_domain_init(domain)) |
| goto out_err; |
| |
| add_domain_to_list(domain); |
| |
| return domain; |
| |
| out_err: |
| kfree(domain); |
| |
| return NULL; |
| } |
| |
| static struct iommu_domain *amd_iommu_domain_alloc(unsigned type) |
| { |
| struct protection_domain *pdomain; |
| struct dma_ops_domain *dma_domain; |
| |
| switch (type) { |
| case IOMMU_DOMAIN_UNMANAGED: |
| pdomain = protection_domain_alloc(); |
| if (!pdomain) |
| return NULL; |
| |
| pdomain->mode = PAGE_MODE_3_LEVEL; |
| pdomain->pt_root = (void *)get_zeroed_page(GFP_KERNEL); |
| if (!pdomain->pt_root) { |
| protection_domain_free(pdomain); |
| return NULL; |
| } |
| |
| pdomain->domain.geometry.aperture_start = 0; |
| pdomain->domain.geometry.aperture_end = ~0ULL; |
| pdomain->domain.geometry.force_aperture = true; |
| |
| break; |
| case IOMMU_DOMAIN_DMA: |
| dma_domain = dma_ops_domain_alloc(); |
| if (!dma_domain) { |
| pr_err("AMD-Vi: Failed to allocate\n"); |
| return NULL; |
| } |
| pdomain = &dma_domain->domain; |
| break; |
| case IOMMU_DOMAIN_IDENTITY: |
| pdomain = protection_domain_alloc(); |
| if (!pdomain) |
| return NULL; |
| |
| pdomain->mode = PAGE_MODE_NONE; |
| break; |
| default: |
| return NULL; |
| } |
| |
| return &pdomain->domain; |
| } |
| |
| static void amd_iommu_domain_free(struct iommu_domain *dom) |
| { |
| struct protection_domain *domain; |
| struct dma_ops_domain *dma_dom; |
| |
| domain = to_pdomain(dom); |
| |
| if (domain->dev_cnt > 0) |
| cleanup_domain(domain); |
| |
| BUG_ON(domain->dev_cnt != 0); |
| |
| if (!dom) |
| return; |
| |
| switch (dom->type) { |
| case IOMMU_DOMAIN_DMA: |
| /* |
| * First make sure the domain is no longer referenced from the |
| * flush queue |
| */ |
| queue_flush_all(); |
| |
| /* Now release the domain */ |
| dma_dom = to_dma_ops_domain(domain); |
| dma_ops_domain_free(dma_dom); |
| break; |
| default: |
| if (domain->mode != PAGE_MODE_NONE) |
| free_pagetable(domain); |
| |
| if (domain->flags & PD_IOMMUV2_MASK) |
| free_gcr3_table(domain); |
| |
| protection_domain_free(domain); |
| break; |
| } |
| } |
| |
| static void amd_iommu_detach_device(struct iommu_domain *dom, |
| struct device *dev) |
| { |
| struct iommu_dev_data *dev_data = dev->archdata.iommu; |
| struct amd_iommu *iommu; |
| int devid; |
| |
| if (!check_device(dev)) |
| return; |
| |
| devid = get_device_id(dev); |
| if (devid < 0) |
| return; |
| |
| if (dev_data->domain != NULL) |
| detach_device(dev); |
| |
| iommu = amd_iommu_rlookup_table[devid]; |
| if (!iommu) |
| return; |
| |
| #ifdef CONFIG_IRQ_REMAP |
| if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) && |
| (dom->type == IOMMU_DOMAIN_UNMANAGED)) |
| dev_data->use_vapic = 0; |
| #endif |
| |
| iommu_completion_wait(iommu); |
| } |
| |
| static int amd_iommu_attach_device(struct iommu_domain *dom, |
| struct device *dev) |
| { |
| struct protection_domain *domain = to_pdomain(dom); |
| struct iommu_dev_data *dev_data; |
| struct amd_iommu *iommu; |
| int ret; |
| |
| if (!check_device(dev)) |
| return -EINVAL; |
| |
| dev_data = dev->archdata.iommu; |
| |
| iommu = amd_iommu_rlookup_table[dev_data->devid]; |
| if (!iommu) |
| return -EINVAL; |
| |
| if (dev_data->domain) |
| detach_device(dev); |
| |
| ret = attach_device(dev, domain); |
| |
| #ifdef CONFIG_IRQ_REMAP |
| if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) { |
| if (dom->type == IOMMU_DOMAIN_UNMANAGED) |
| dev_data->use_vapic = 1; |
| else |
| dev_data->use_vapic = 0; |
| } |
| #endif |
| |
| iommu_completion_wait(iommu); |
| |
| return ret; |
| } |
| |
| static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova, |
| phys_addr_t paddr, size_t page_size, int iommu_prot) |
| { |
| struct protection_domain *domain = to_pdomain(dom); |
| int prot = 0; |
| int ret; |
| |
| if (domain->mode == PAGE_MODE_NONE) |
| return -EINVAL; |
| |
| if (iommu_prot & IOMMU_READ) |
| prot |= IOMMU_PROT_IR; |
| if (iommu_prot & IOMMU_WRITE) |
| prot |= IOMMU_PROT_IW; |
| |
| mutex_lock(&domain->api_lock); |
| ret = iommu_map_page(domain, iova, paddr, page_size, prot, GFP_KERNEL); |
| mutex_unlock(&domain->api_lock); |
| |
| return ret; |
| } |
| |
| static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova, |
| size_t page_size) |
| { |
| struct protection_domain *domain = to_pdomain(dom); |
| size_t unmap_size; |
| |
| if (domain->mode == PAGE_MODE_NONE) |
| return -EINVAL; |
| |
| mutex_lock(&domain->api_lock); |
| unmap_size = iommu_unmap_page(domain, iova, page_size); |
| mutex_unlock(&domain->api_lock); |
| |
| domain_flush_tlb_pde(domain); |
| |
| return unmap_size; |
| } |
| |
| static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom, |
| dma_addr_t iova) |
| { |
| struct protection_domain *domain = to_pdomain(dom); |
| unsigned long offset_mask, pte_pgsize; |
| u64 *pte, __pte; |
| |
| if (domain->mode == PAGE_MODE_NONE) |
| return iova; |
| |
| pte = fetch_pte(domain, iova, &pte_pgsize); |
| |
| if (!pte || !IOMMU_PTE_PRESENT(*pte)) |
| return 0; |
| |
| offset_mask = pte_pgsize - 1; |
| __pte = *pte & PM_ADDR_MASK; |
| |
| return (__pte & ~offset_mask) | (iova & offset_mask); |
| } |
| |
| static bool amd_iommu_capable(enum iommu_cap cap) |
| { |
| switch (cap) { |
| case IOMMU_CAP_CACHE_COHERENCY: |
| return true; |
| case IOMMU_CAP_INTR_REMAP: |
| return (irq_remapping_enabled == 1); |
| case IOMMU_CAP_NOEXEC: |
| return false; |
| } |
| |
| return false; |
| } |
| |
| static void amd_iommu_get_resv_regions(struct device *dev, |
| struct list_head *head) |
| { |
| struct iommu_resv_region *region; |
| struct unity_map_entry *entry; |
| int devid; |
| |
| devid = get_device_id(dev); |
| if (devid < 0) |
| return; |
| |
| list_for_each_entry(entry, &amd_iommu_unity_map, list) { |
| size_t length; |
| int prot = 0; |
| |
| if (devid < entry->devid_start || devid > entry->devid_end) |
| continue; |
| |
| length = entry->address_end - entry->address_start; |
| if (entry->prot & IOMMU_PROT_IR) |
| prot |= IOMMU_READ; |
| if (entry->prot & IOMMU_PROT_IW) |
| prot |= IOMMU_WRITE; |
| |
| region = iommu_alloc_resv_region(entry->address_start, |
| length, prot, |
| IOMMU_RESV_DIRECT); |
| if (!region) { |
| pr_err("Out of memory allocating dm-regions for %s\n", |
| dev_name(dev)); |
| return; |
| } |
| list_add_tail(®ion->list, head); |
| } |
| |
| region = iommu_alloc_resv_region(MSI_RANGE_START, |
| MSI_RANGE_END - MSI_RANGE_START + 1, |
| 0, IOMMU_RESV_MSI); |
| if (!region) |
| return; |
| list_add_tail(®ion->list, head); |
| |
| region = iommu_alloc_resv_region(HT_RANGE_START, |
| HT_RANGE_END - HT_RANGE_START + 1, |
| 0, IOMMU_RESV_RESERVED); |
| if (!region) |
| return; |
| list_add_tail(®ion->list, head); |
| } |
| |
| static void amd_iommu_put_resv_regions(struct device *dev, |
| struct list_head *head) |
| { |
| struct iommu_resv_region *entry, *next; |
| |
| list_for_each_entry_safe(entry, next, head, list) |
| kfree(entry); |
| } |
| |
| static void amd_iommu_apply_resv_region(struct device *dev, |
| struct iommu_domain *domain, |
| struct iommu_resv_region *region) |
| { |
| struct dma_ops_domain *dma_dom = to_dma_ops_domain(to_pdomain(domain)); |
| unsigned long start, end; |
| |
| start = IOVA_PFN(region->start); |
| end = IOVA_PFN(region->start + region->length); |
| |
| WARN_ON_ONCE(reserve_iova(&dma_dom->iovad, start, end) == NULL); |
| } |
| |
| const struct iommu_ops amd_iommu_ops = { |
| .capable = amd_iommu_capable, |
| .domain_alloc = amd_iommu_domain_alloc, |
| .domain_free = amd_iommu_domain_free, |
| .attach_dev = amd_iommu_attach_device, |
| .detach_dev = amd_iommu_detach_device, |
| .map = amd_iommu_map, |
| .unmap = amd_iommu_unmap, |
| .map_sg = default_iommu_map_sg, |
| .iova_to_phys = amd_iommu_iova_to_phys, |
| .add_device = amd_iommu_add_device, |
| .remove_device = amd_iommu_remove_device, |
| .device_group = amd_iommu_device_group, |
| .get_resv_regions = amd_iommu_get_resv_regions, |
| .put_resv_regions = amd_iommu_put_resv_regions, |
| .apply_resv_region = amd_iommu_apply_resv_region, |
| .pgsize_bitmap = AMD_IOMMU_PGSIZES, |
| }; |
| |
| /***************************************************************************** |
| * |
| * The next functions do a basic initialization of IOMMU for pass through |
| * mode |
| * |
| * In passthrough mode the IOMMU is initialized and enabled but not used for |
| * DMA-API translation. |
| * |
| *****************************************************************************/ |
| |
| /* IOMMUv2 specific functions */ |
| int amd_iommu_register_ppr_notifier(struct notifier_block *nb) |
| { |
| return atomic_notifier_chain_register(&ppr_notifier, nb); |
| } |
| EXPORT_SYMBOL(amd_iommu_register_ppr_notifier); |
| |
| int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb) |
| { |
| return atomic_notifier_chain_unregister(&ppr_notifier, nb); |
| } |
| EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier); |
| |
| void amd_iommu_domain_direct_map(struct iommu_domain *dom) |
| { |
| struct protection_domain *domain = to_pdomain(dom); |
| unsigned long flags; |
| |
| spin_lock_irqsave(&domain->lock, flags); |
| |
| /* Update data structure */ |
| domain->mode = PAGE_MODE_NONE; |
| domain->updated = true; |
| |
| /* Make changes visible to IOMMUs */ |
| update_domain(domain); |
| |
| /* Page-table is not visible to IOMMU anymore, so free it */ |
| free_pagetable(domain); |
| |
| spin_unlock_irqrestore(&domain->lock, flags); |
| } |
| EXPORT_SYMBOL(amd_iommu_domain_direct_map); |
| |
| int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids) |
| { |
| struct protection_domain *domain = to_pdomain(dom); |
| unsigned long flags; |
| int levels, ret; |
| |
| if (pasids <= 0 || pasids > (PASID_MASK + 1)) |
| return -EINVAL; |
| |
| /* Number of GCR3 table levels required */ |
| for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9) |
| levels += 1; |
| |
| if (levels > amd_iommu_max_glx_val) |
| return -EINVAL; |
| |
| spin_lock_irqsave(&domain->lock, flags); |
| |
| /* |
| * Save us all sanity checks whether devices already in the |
| * domain support IOMMUv2. Just force that the domain has no |
| * devices attached when it is switched into IOMMUv2 mode. |
| */ |
| ret = -EBUSY; |
| if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK) |
| goto out; |
| |
| ret = -ENOMEM; |
| domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC); |
| if (domain->gcr3_tbl == NULL) |
| goto out; |
| |
| domain->glx = levels; |
| domain->flags |= PD_IOMMUV2_MASK; |
| domain->updated = true; |
| |
| update_domain(domain); |
| |
| ret = 0; |
| |
| out: |
| spin_unlock_irqrestore(&domain->lock, flags); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL(amd_iommu_domain_enable_v2); |
| |
| static int __flush_pasid(struct protection_domain *domain, int pasid, |
| u64 address, bool size) |
| { |
| struct iommu_dev_data *dev_data; |
| struct iommu_cmd cmd; |
| int i, ret; |
| |
| if (!(domain->flags & PD_IOMMUV2_MASK)) |
| return -EINVAL; |
| |
| build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size); |
| |
| /* |
| * IOMMU TLB needs to be flushed before Device TLB to |
| * prevent device TLB refill from IOMMU TLB |
| */ |
| for (i = 0; i < amd_iommu_get_num_iommus(); ++i) { |
| if (domain->dev_iommu[i] == 0) |
| continue; |
| |
| ret = iommu_queue_command(amd_iommus[i], &cmd); |
| if (ret != 0) |
| goto out; |
| } |
| |
| /* Wait until IOMMU TLB flushes are complete */ |
| domain_flush_complete(domain); |
| |
| /* Now flush device TLBs */ |
| list_for_each_entry(dev_data, &domain->dev_list, list) { |
| struct amd_iommu *iommu; |
| int qdep; |
| |
| /* |
| There might be non-IOMMUv2 capable devices in an IOMMUv2 |
| * domain. |
| */ |
| if (!dev_data->ats.enabled) |
| continue; |
| |
| qdep = dev_data->ats.qdep; |
| iommu = amd_iommu_rlookup_table[dev_data->devid]; |
| |
| build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid, |
| qdep, address, size); |
| |
| ret = iommu_queue_command(iommu, &cmd); |
| if (ret != 0) |
| goto out; |
| } |
| |
| /* Wait until all device TLBs are flushed */ |
| domain_flush_complete(domain); |
| |
| ret = 0; |
| |
| out: |
| |
| return ret; |
| } |
| |
| static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid, |
| u64 address) |
| { |
| return __flush_pasid(domain, pasid, address, false); |
| } |
| |
| int amd_iommu_flush_page(struct iommu_domain *dom, int pasid, |
| u64 address) |
| { |
| struct protection_domain *domain = to_pdomain(dom); |
| unsigned long flags; |
| int ret; |
| |
| spin_lock_irqsave(&domain->lock, flags); |
| ret = __amd_iommu_flush_page(domain, pasid, address); |
| spin_unlock_irqrestore(&domain->lock, flags); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL(amd_iommu_flush_page); |
| |
| static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid) |
| { |
| return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, |
| true); |
| } |
| |
| int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid) |
| { |
| struct protection_domain *domain = to_pdomain(dom); |
| unsigned long flags; |
| int ret; |
| |
| spin_lock_irqsave(&domain->lock, flags); |
| ret = __amd_iommu_flush_tlb(domain, pasid); |
| spin_unlock_irqrestore(&domain->lock, flags); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL(amd_iommu_flush_tlb); |
| |
| static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc) |
| { |
| int index; |
| u64 *pte; |
| |
| while (true) { |
| |
| index = (pasid >> (9 * level)) & 0x1ff; |
| pte = &root[index]; |
| |
| if (level == 0) |
| break; |
| |
| if (!(*pte & GCR3_VALID)) { |
| if (!alloc) |
| return NULL; |
| |
| root = (void *)get_zeroed_page(GFP_ATOMIC); |
| if (root == NULL) |
| return NULL; |
| |
| *pte = __pa(root) | GCR3_VALID; |
| } |
| |
| root = __va(*pte & PAGE_MASK); |
| |
| level -= 1; |
| } |
| |
| return pte; |
| } |
| |
| static int __set_gcr3(struct protection_domain *domain, int pasid, |
| unsigned long cr3) |
| { |
| u64 *pte; |
| |
| if (domain->mode != PAGE_MODE_NONE) |
| return -EINVAL; |
| |
| pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true); |
| if (pte == NULL) |
| return -ENOMEM; |
| |
| *pte = (cr3 & PAGE_MASK) | GCR3_VALID; |
| |
| return __amd_iommu_flush_tlb(domain, pasid); |
| } |
| |
| static int __clear_gcr3(struct protection_domain *domain, int pasid) |
| { |
| u64 *pte; |
| |
| if (domain->mode != PAGE_MODE_NONE) |
| return -EINVAL; |
| |
| pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false); |
| if (pte == NULL) |
| return 0; |
| |
| *pte = 0; |
| |
| return __amd_iommu_flush_tlb(domain, pasid); |
| } |
| |
| int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid, |
| unsigned long cr3) |
| { |
| struct protection_domain *domain = to_pdomain(dom); |
| unsigned long flags; |
| int ret; |
| |
| spin_lock_irqsave(&domain->lock, flags); |
| ret = __set_gcr3(domain, pasid, cr3); |
| spin_unlock_irqrestore(&domain->lock, flags); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL(amd_iommu_domain_set_gcr3); |
| |
| int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid) |
| { |
| struct protection_domain *domain = to_pdomain(dom); |
| unsigned long flags; |
| int ret; |
| |
| spin_lock_irqsave(&domain->lock, flags); |
| ret = __clear_gcr3(domain, pasid); |
| spin_unlock_irqrestore(&domain->lock, flags); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3); |
| |
| int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid, |
| int status, int tag) |
| { |
| struct iommu_dev_data *dev_data; |
| struct amd_iommu *iommu; |
| struct iommu_cmd cmd; |
| |
| dev_data = get_dev_data(&pdev->dev); |
| iommu = amd_iommu_rlookup_table[dev_data->devid]; |
| |
| build_complete_ppr(&cmd, dev_data->devid, pasid, status, |
| tag, dev_data->pri_tlp); |
| |
| return iommu_queue_command(iommu, &cmd); |
| } |
| EXPORT_SYMBOL(amd_iommu_complete_ppr); |
| |
| struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev) |
| { |
| struct protection_domain *pdomain; |
| |
| pdomain = get_domain(&pdev->dev); |
| if (IS_ERR(pdomain)) |
| return NULL; |
| |
| /* Only return IOMMUv2 domains */ |
| if (!(pdomain->flags & PD_IOMMUV2_MASK)) |
| return NULL; |
| |
| return &pdomain->domain; |
| } |
| EXPORT_SYMBOL(amd_iommu_get_v2_domain); |
| |
| void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum) |
| { |
| struct iommu_dev_data *dev_data; |
| |
| if (!amd_iommu_v2_supported()) |
| return; |
| |
| dev_data = get_dev_data(&pdev->dev); |
| dev_data->errata |= (1 << erratum); |
| } |
| EXPORT_SYMBOL(amd_iommu_enable_device_erratum); |
| |
| int amd_iommu_device_info(struct pci_dev *pdev, |
| struct amd_iommu_device_info *info) |
| { |
| int max_pasids; |
| int pos; |
| |
| if (pdev == NULL || info == NULL) |
| return -EINVAL; |
| |
| if (!amd_iommu_v2_supported()) |
| return -EINVAL; |
| |
| memset(info, 0, sizeof(*info)); |
| |
| pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS); |
| if (pos) |
| info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP; |
| |
| pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI); |
| if (pos) |
| info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP; |
| |
| pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID); |
| if (pos) { |
| int features; |
| |
| max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1)); |
| max_pasids = min(max_pasids, (1 << 20)); |
| |
| info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP; |
| info->max_pasids = min(pci_max_pasids(pdev), max_pasids); |
| |
| features = pci_pasid_features(pdev); |
| if (features & PCI_PASID_CAP_EXEC) |
| info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP; |
| if (features & PCI_PASID_CAP_PRIV) |
| info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP; |
| } |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(amd_iommu_device_info); |
| |
| #ifdef CONFIG_IRQ_REMAP |
| |
| /***************************************************************************** |
| * |
| * Interrupt Remapping Implementation |
| * |
| *****************************************************************************/ |
| |
| static struct irq_chip amd_ir_chip; |
| |
| #define DTE_IRQ_PHYS_ADDR_MASK (((1ULL << 45)-1) << 6) |
| #define DTE_IRQ_REMAP_INTCTL (2ULL << 60) |
| #define DTE_IRQ_TABLE_LEN (8ULL << 1) |
| #define DTE_IRQ_REMAP_ENABLE 1ULL |
| |
| static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table) |
| { |
| u64 dte; |
| |
| dte = amd_iommu_dev_table[devid].data[2]; |
| dte &= ~DTE_IRQ_PHYS_ADDR_MASK; |
| dte |= virt_to_phys(table->table); |
| dte |= DTE_IRQ_REMAP_INTCTL; |
| dte |= DTE_IRQ_TABLE_LEN; |
| dte |= DTE_IRQ_REMAP_ENABLE; |
| |
| amd_iommu_dev_table[devid].data[2] = dte; |
| } |
| |
| static struct irq_remap_table *get_irq_table(u16 devid, bool ioapic) |
| { |
| struct irq_remap_table *table = NULL; |
| struct amd_iommu *iommu; |
| unsigned long flags; |
| u16 alias; |
| |
| write_lock_irqsave(&amd_iommu_devtable_lock, flags); |
| |
| iommu = amd_iommu_rlookup_table[devid]; |
| if (!iommu) |
| goto out_unlock; |
| |
| table = irq_lookup_table[devid]; |
| if (table) |
| goto out_unlock; |
| |
| alias = amd_iommu_alias_table[devid]; |
| table = irq_lookup_table[alias]; |
| if (table) { |
| irq_lookup_table[devid] = table; |
| set_dte_irq_entry(devid, table); |
| iommu_flush_dte(iommu, devid); |
| goto out; |
| } |
| |
| /* Nothing there yet, allocate new irq remapping table */ |
| table = kzalloc(sizeof(*table), GFP_ATOMIC); |
| if (!table) |
| goto out_unlock; |
| |
| /* Initialize table spin-lock */ |
| spin_lock_init(&table->lock); |
| |
| if (ioapic) |
| /* Keep the first 32 indexes free for IOAPIC interrupts */ |
| table->min_index = 32; |
| |
| table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_ATOMIC); |
| if (!table->table) { |
| kfree(table); |
| table = NULL; |
| goto out_unlock; |
| } |
| |
| if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir)) |
| memset(table->table, 0, |
| MAX_IRQS_PER_TABLE * sizeof(u32)); |
| else |
| memset(table->table, 0, |
| (MAX_IRQS_PER_TABLE * (sizeof(u64) * 2))); |
| |
| if (ioapic) { |
| int i; |
| |
| for (i = 0; i < 32; ++i) |
| iommu->irte_ops->set_allocated(table, i); |
| } |
| |
| irq_lookup_table[devid] = table; |
| set_dte_irq_entry(devid, table); |
| iommu_flush_dte(iommu, devid); |
| if (devid != alias) { |
| irq_lookup_table[alias] = table; |
| set_dte_irq_entry(alias, table); |
| iommu_flush_dte(iommu, alias); |
| } |
| |
| out: |
| iommu_completion_wait(iommu); |
| |
| out_unlock: |
| write_unlock_irqrestore(&amd_iommu_devtable_lock, flags); |
| |
| return table; |
| } |
| |
| static int alloc_irq_index(u16 devid, int count) |
| { |
| struct irq_remap_table *table; |
| unsigned long flags; |
| int index, c; |
| struct amd_iommu *iommu = amd_iommu_rlookup_table[devid]; |
| |
| if (!iommu) |
| return -ENODEV; |
| |
| table = get_irq_table(devid, false); |
| if (!table) |
| return -ENODEV; |
| |
| spin_lock_irqsave(&table->lock, flags); |
| |
| /* Scan table for free entries */ |
| for (c = 0, index = table->min_index; |
| index < MAX_IRQS_PER_TABLE; |
| ++index) { |
| if (!iommu->irte_ops->is_allocated(table, index)) |
| c += 1; |
| else |
| c = 0; |
| |
| if (c == count) { |
| for (; c != 0; --c) |
| iommu->irte_ops->set_allocated(table, index - c + 1); |
| |
| index -= count - 1; |
| goto out; |
| } |
| } |
| |
| index = -ENOSPC; |
| |
| out: |
| spin_unlock_irqrestore(&table->lock, flags); |
| |
| return index; |
| } |
| |
| static int modify_irte_ga(u16 devid, int index, struct irte_ga *irte, |
| struct amd_ir_data *data) |
| { |
| struct irq_remap_table *table; |
| struct amd_iommu *iommu; |
| unsigned long flags; |
| struct irte_ga *entry; |
| |
| iommu = amd_iommu_rlookup_table[devid]; |
| if (iommu == NULL) |
| return -EINVAL; |
| |
| table = get_irq_table(devid, false); |
| if (!table) |
| return -ENOMEM; |
| |
| spin_lock_irqsave(&table->lock, flags); |
| |
| entry = (struct irte_ga *)table->table; |
| entry = &entry[index]; |
| entry->lo.fields_remap.valid = 0; |
| entry->hi.val = irte->hi.val; |
| entry->lo.val = irte->lo.val; |
| entry->lo.fields_remap.valid = 1; |
| if (data) |
| data->ref = entry; |
| |
| spin_unlock_irqrestore(&table->lock, flags); |
| |
| iommu_flush_irt(iommu, devid); |
| iommu_completion_wait(iommu); |
| |
| return 0; |
| } |
| |
| static int modify_irte(u16 devid, int index, union irte *irte) |
| { |
| struct irq_remap_table *table; |
| struct amd_iommu *iommu; |
| unsigned long flags; |
| |
| iommu = amd_iommu_rlookup_table[devid]; |
| if (iommu == NULL) |
| return -EINVAL; |
| |
| table = get_irq_table(devid, false); |
| if (!table) |
| return -ENOMEM; |
| |
| spin_lock_irqsave(&table->lock, flags); |
| table->table[index] = irte->val; |
| spin_unlock_irqrestore(&table->lock, flags); |
| |
| iommu_flush_irt(iommu, devid); |
| iommu_completion_wait(iommu); |
| |
| return 0; |
| } |
| |
| static void free_irte(u16 devid, int index) |
| { |
| struct irq_remap_table *table; |
| struct amd_iommu *iommu; |
| unsigned long flags; |
| |
| iommu = amd_iommu_rlookup_table[devid]; |
| if (iommu == NULL) |
| return; |
| |
| table = get_irq_table(devid, false); |
| if (!table) |
| return; |
| |
| spin_lock_irqsave(&table->lock, flags); |
| iommu->irte_ops->clear_allocated(table, index); |
| spin_unlock_irqrestore(&table->lock, flags); |
| |
| iommu_flush_irt(iommu, devid); |
| iommu_completion_wait(iommu); |
| } |
| |
| static void irte_prepare(void *entry, |
| u32 delivery_mode, u32 dest_mode, |
| u8 vector, u32 dest_apicid, int devid) |
| { |
| union irte *irte = (union irte *) entry; |
| |
| irte->val = 0; |
| irte->fields.vector = vector; |
| irte->fields.int_type = delivery_mode; |
| irte->fields.destination = dest_apicid; |
| irte->fields.dm = dest_mode; |
| irte->fields.valid = 1; |
| } |
| |
| static void irte_ga_prepare(void *entry, |
| u32 delivery_mode, u32 dest_mode, |
| u8 vector, u32 dest_apicid, int devid) |
| { |
| struct irte_ga *irte = (struct irte_ga *) entry; |
| struct iommu_dev_data *dev_data = search_dev_data(devid); |
| |
| irte->lo.val = 0; |
| irte->hi.val = 0; |
| irte->lo.fields_remap.guest_mode = dev_data ? dev_data->use_vapic : 0; |
| irte->lo.fields_remap.int_type = delivery_mode; |
| irte->lo.fields_remap.dm = dest_mode; |
| irte->hi.fields.vector = vector; |
| irte->lo.fields_remap.destination = dest_apicid; |
| irte->lo.fields_remap.valid = 1; |
| } |
| |
| static void irte_activate(void *entry, u16 devid, u16 index) |
| { |
| union irte *irte = (union irte *) entry; |
| |
| irte->fields.valid = 1; |
| modify_irte(devid, index, irte); |
| } |
| |
| static void irte_ga_activate(void *entry, u16 devid, u16 index) |
| { |
| struct irte_ga *irte = (struct irte_ga *) entry; |
| |
| irte->lo.fields_remap.valid = 1; |
| modify_irte_ga(devid, index, irte, NULL); |
| } |
| |
| static void irte_deactivate(void *entry, u16 devid, u16 index) |
| { |
| union irte *irte = (union irte *) entry; |
| |
| irte->fields.valid = 0; |
| modify_irte(devid, index, irte); |
| } |
| |
| static void irte_ga_deactivate(void *entry, u16 devid, u16 index) |
| { |
| struct irte_ga *irte = (struct irte_ga *) entry; |
| |
| irte->lo.fields_remap.valid = 0; |
| modify_irte_ga(devid, index, irte, NULL); |
| } |
| |
| static void irte_set_affinity(void *entry, u16 devid, u16 index, |
| u8 vector, u32 dest_apicid) |
| { |
| union irte *irte = (union irte *) entry; |
| |
| irte->fields.vector = vector; |
| irte->fields.destination = dest_apicid; |
| modify_irte(devid, index, irte); |
| } |
| |
| static void irte_ga_set_affinity(void *entry, u16 devid, u16 index, |
| u8 vector, u32 dest_apicid) |
| { |
| struct irte_ga *irte = (struct irte_ga *) entry; |
| struct iommu_dev_data *dev_data = search_dev_data(devid); |
| |
| if (!dev_data || !dev_data->use_vapic) { |
| irte->hi.fields.vector = vector; |
| irte->lo.fields_remap.destination = dest_apicid; |
| irte->lo.fields_remap.guest_mode = 0; |
| modify_irte_ga(devid, index, irte, NULL); |
| } |
| } |
| |
| #define IRTE_ALLOCATED (~1U) |
| static void irte_set_allocated(struct irq_remap_table *table, int index) |
| { |
| table->table[index] = IRTE_ALLOCATED; |
| } |
| |
| static void irte_ga_set_allocated(struct irq_remap_table *table, int index) |
| { |
| struct irte_ga *ptr = (struct irte_ga *)table->table; |
| struct irte_ga *irte = &ptr[index]; |
| |
| memset(&irte->lo.val, 0, sizeof(u64)); |
| memset(&irte->hi.val, 0, sizeof(u64)); |
| irte->hi.fields.vector = 0xff; |
| } |
| |
| static bool irte_is_allocated(struct irq_remap_table *table, int index) |
| { |
| union irte *ptr = (union irte *)table->table; |
| union irte *irte = &ptr[index]; |
| |
| return irte->val != 0; |
| } |
| |
| static bool irte_ga_is_allocated(struct irq_remap_table *table, int index) |
| { |
| struct irte_ga *ptr = (struct irte_ga *)table->table; |
| struct irte_ga *irte = &ptr[index]; |
| |
| return irte->hi.fields.vector != 0; |
| } |
| |
| static void irte_clear_allocated(struct irq_remap_table *table, int index) |
| { |
| table->table[index] = 0; |
| } |
| |
| static void irte_ga_clear_allocated(struct irq_remap_table *table, int index) |
| { |
| struct irte_ga *ptr = (struct irte_ga *)table->table; |
| struct irte_ga *irte = &ptr[index]; |
| |
| memset(&irte->lo.val, 0, sizeof(u64)); |
| memset(&irte->hi.val, 0, sizeof(u64)); |
| } |
| |
| static int get_devid(struct irq_alloc_info *info) |
| { |
| int devid = -1; |
| |
| switch (info->type) { |
| case X86_IRQ_ALLOC_TYPE_IOAPIC: |
| devid = get_ioapic_devid(info->ioapic_id); |
| break; |
| case X86_IRQ_ALLOC_TYPE_HPET: |
| devid = get_hpet_devid(info->hpet_id); |
| break; |
| case X86_IRQ_ALLOC_TYPE_MSI: |
| case X86_IRQ_ALLOC_TYPE_MSIX: |
| devid = get_device_id(&info->msi_dev->dev); |
| break; |
| default: |
| BUG_ON(1); |
| break; |
| } |
| |
| return devid; |
| } |
| |
| static struct irq_domain *get_ir_irq_domain(struct irq_alloc_info *info) |
| { |
| struct amd_iommu *iommu; |
| int devid; |
| |
| if (!info) |
| return NULL; |
| |
| devid = get_devid(info); |
| if (devid >= 0) { |
| iommu = amd_iommu_rlookup_table[devid]; |
| if (iommu) |
| return iommu->ir_domain; |
| } |
| |
| return NULL; |
| } |
| |
| static struct irq_domain *get_irq_domain(struct irq_alloc_info *info) |
| { |
| struct amd_iommu *iommu; |
| int devid; |
| |
| if (!info) |
| return NULL; |
| |
| switch (info->type) { |
| case X86_IRQ_ALLOC_TYPE_MSI: |
| case X86_IRQ_ALLOC_TYPE_MSIX: |
| devid = get_device_id(&info->msi_dev->dev); |
| if (devid < 0) |
| return NULL; |
| |
| iommu = amd_iommu_rlookup_table[devid]; |
| if (iommu) |
| return iommu->msi_domain; |
| break; |
| default: |
| break; |
| } |
| |
| return NULL; |
| } |
| |
| struct irq_remap_ops amd_iommu_irq_ops = { |
| .prepare = amd_iommu_prepare, |
| .enable = amd_iommu_enable, |
| .disable = amd_iommu_disable, |
| .reenable = amd_iommu_reenable, |
| .enable_faulting = amd_iommu_enable_faulting, |
| .get_ir_irq_domain = get_ir_irq_domain, |
| .get_irq_domain = get_irq_domain, |
| }; |
| |
| static void irq_remapping_prepare_irte(struct amd_ir_data *data, |
| struct irq_cfg *irq_cfg, |
| struct irq_alloc_info *info, |
| int devid, int index, int sub_handle) |
| { |
| struct irq_2_irte *irte_info = &data->irq_2_irte; |
| struct msi_msg *msg = &data->msi_entry; |
| struct IO_APIC_route_entry *entry; |
| struct amd_iommu *iommu = amd_iommu_rlookup_table[devid]; |
| |
| if (!iommu) |
| return; |
| |
| data->irq_2_irte.devid = devid; |
| data->irq_2_irte.index = index + sub_handle; |
| iommu->irte_ops->prepare(data->entry, apic->irq_delivery_mode, |
| apic->irq_dest_mode, irq_cfg->vector, |
| irq_cfg->dest_apicid, devid); |
| |
| switch (info->type) { |
| case X86_IRQ_ALLOC_TYPE_IOAPIC: |
| /* Setup IOAPIC entry */ |
| entry = info->ioapic_entry; |
| info->ioapic_entry = NULL; |
| memset(entry, 0, sizeof(*entry)); |
| entry->vector = index; |
| entry->mask = 0; |
| entry->trigger = info->ioapic_trigger; |
| entry->polarity = info->ioapic_polarity; |
| /* Mask level triggered irqs. */ |
| if (info->ioapic_trigger) |
| entry->mask = 1; |
| break; |
| |
| case X86_IRQ_ALLOC_TYPE_HPET: |
| case X86_IRQ_ALLOC_TYPE_MSI: |
| case X86_IRQ_ALLOC_TYPE_MSIX: |
| msg->address_hi = MSI_ADDR_BASE_HI; |
| msg->address_lo = MSI_ADDR_BASE_LO; |
| msg->data = irte_info->index; |
| break; |
| |
| default: |
| BUG_ON(1); |
| break; |
| } |
| } |
| |
| struct amd_irte_ops irte_32_ops = { |
| .prepare = irte_prepare, |
| .activate = irte_activate, |
| .deactivate = irte_deactivate, |
| .set_affinity = irte_set_affinity, |
| .set_allocated = irte_set_allocated, |
| .is_allocated = irte_is_allocated, |
| .clear_allocated = irte_clear_allocated, |
| }; |
| |
| struct amd_irte_ops irte_128_ops = { |
| .prepare = irte_ga_prepare, |
| .activate = irte_ga_activate, |
| .deactivate = irte_ga_deactivate, |
| .set_affinity = irte_ga_set_affinity, |
| .set_allocated = irte_ga_set_allocated, |
| .is_allocated = irte_ga_is_allocated, |
| .clear_allocated = irte_ga_clear_allocated, |
| }; |
| |
| static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq, |
| unsigned int nr_irqs, void *arg) |
| { |
| struct irq_alloc_info *info = arg; |
| struct irq_data *irq_data; |
| struct amd_ir_data *data = NULL; |
| struct irq_cfg *cfg; |
| int i, ret, devid; |
| int index = -1; |
| |
| if (!info) |
| return -EINVAL; |
| if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_MSI && |
| info->type != X86_IRQ_ALLOC_TYPE_MSIX) |
| return -EINVAL; |
| |
| /* |
| * With IRQ remapping enabled, don't need contiguous CPU vectors |
| * to support multiple MSI interrupts. |
| */ |
| if (info->type == X86_IRQ_ALLOC_TYPE_MSI) |
| info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS; |
| |
| devid = get_devid(info); |
| if (devid < 0) |
| return -EINVAL; |
| |
| ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg); |
| if (ret < 0) |
| return ret; |
| |
| if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) { |
| if (get_irq_table(devid, true)) |
| index = info->ioapic_pin; |
| else |
| ret = -ENOMEM; |
| } else { |
| index = alloc_irq_index(devid, nr_irqs); |
| } |
| if (index < 0) { |
| pr_warn("Failed to allocate IRTE\n"); |
| ret = index; |
| goto out_free_parent; |
| } |
| |
| for (i = 0; i < nr_irqs; i++) { |
| irq_data = irq_domain_get_irq_data(domain, virq + i); |
| cfg = irqd_cfg(irq_data); |
| if (!irq_data || !cfg) { |
| ret = -EINVAL; |
| goto out_free_data; |
| } |
| |
| ret = -ENOMEM; |
| data = kzalloc(sizeof(*data), GFP_KERNEL); |
| if (!data) |
| goto out_free_data; |
| |
| if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir)) |
| data->entry = kzalloc(sizeof(union irte), GFP_KERNEL); |
| else |
| data->entry = kzalloc(sizeof(struct irte_ga), |
| GFP_KERNEL); |
| if (!data->entry) { |
| kfree(data); |
| goto out_free_data; |
| } |
| |
| irq_data->hwirq = (devid << 16) + i; |
| irq_data->chip_data = data; |
| irq_data->chip = &amd_ir_chip; |
| irq_remapping_prepare_irte(data, cfg, info, devid, index, i); |
| irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT); |
| } |
| |
| return 0; |
| |
| out_free_data: |
| for (i--; i >= 0; i--) { |
| irq_data = irq_domain_get_irq_data(domain, virq + i); |
| if (irq_data) |
| kfree(irq_data->chip_data); |
| } |
| for (i = 0; i < nr_irqs; i++) |
| free_irte(devid, index + i); |
| out_free_parent: |
| irq_domain_free_irqs_common(domain, virq, nr_irqs); |
| return ret; |
| } |
| |
| static void irq_remapping_free(struct irq_domain *domain, unsigned int virq, |
| unsigned int nr_irqs) |
| { |
| struct irq_2_irte *irte_info; |
| struct irq_data *irq_data; |
| struct amd_ir_data *data; |
| int i; |
| |
| for (i = 0; i < nr_irqs; i++) { |
| irq_data = irq_domain_get_irq_data(domain, virq + i); |
| if (irq_data && irq_data->chip_data) { |
| data = irq_data->chip_data; |
| irte_info = &data->irq_2_irte; |
| free_irte(irte_info->devid, irte_info->index); |
| kfree(data->entry); |
| kfree(data); |
| } |
| } |
| irq_domain_free_irqs_common(domain, virq, nr_irqs); |
| } |
| |
| static void irq_remapping_activate(struct irq_domain *domain, |
| struct irq_data *irq_data) |
| { |
| struct amd_ir_data *data = irq_data->chip_data; |
| struct irq_2_irte *irte_info = &data->irq_2_irte; |
| struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid]; |
| |
| if (iommu) |
| iommu->irte_ops->activate(data->entry, irte_info->devid, |
| irte_info->index); |
| } |
| |
| static void irq_remapping_deactivate(struct irq_domain *domain, |
| struct irq_data *irq_data) |
| { |
| struct amd_ir_data *data = irq_data->chip_data; |
| struct irq_2_irte *irte_info = &data->irq_2_irte; |
| struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid]; |
| |
| if (iommu) |
| iommu->irte_ops->deactivate(data->entry, irte_info->devid, |
| irte_info->index); |
| } |
| |
| static struct irq_domain_ops amd_ir_domain_ops = { |
| .alloc = irq_remapping_alloc, |
| .free = irq_remapping_free, |
| .activate = irq_remapping_activate, |
| .deactivate = irq_remapping_deactivate, |
| }; |
| |
| static int amd_ir_set_vcpu_affinity(struct irq_data *data, void *vcpu_info) |
| { |
| struct amd_iommu *iommu; |
| struct amd_iommu_pi_data *pi_data = vcpu_info; |
| struct vcpu_data *vcpu_pi_info = pi_data->vcpu_data; |
| struct amd_ir_data *ir_data = data->chip_data; |
| struct irte_ga *irte = (struct irte_ga *) ir_data->entry; |
| struct irq_2_irte *irte_info = &ir_data->irq_2_irte; |
| struct iommu_dev_data *dev_data = search_dev_data(irte_info->devid); |
| |
| /* Note: |
| * This device has never been set up for guest mode. |
| * we should not modify the IRTE |
| */ |
| if (!dev_data || !dev_data->use_vapic) |
| return 0; |
| |
| pi_data->ir_data = ir_data; |
| |
| /* Note: |
| * SVM tries to set up for VAPIC mode, but we are in |
| * legacy mode. So, we force legacy mode instead. |
| */ |
| if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) { |
| pr_debug("AMD-Vi: %s: Fall back to using intr legacy remap\n", |
| __func__); |
| pi_data->is_guest_mode = false; |
| } |
| |
| iommu = amd_iommu_rlookup_table[irte_info->devid]; |
| if (iommu == NULL) |
| return -EINVAL; |
| |
| pi_data->prev_ga_tag = ir_data->cached_ga_tag; |
| if (pi_data->is_guest_mode) { |
| /* Setting */ |
| irte->hi.fields.ga_root_ptr = (pi_data->base >> 12); |
| irte->hi.fields.vector = vcpu_pi_info->vector; |
| irte->lo.fields_vapic.guest_mode = 1; |
| irte->lo.fields_vapic.ga_tag = pi_data->ga_tag; |
| |
| ir_data->cached_ga_tag = pi_data->ga_tag; |
| } else { |
| /* Un-Setting */ |
| struct irq_cfg *cfg = irqd_cfg(data); |
| |
| irte->hi.val = 0; |
| irte->lo.val = 0; |
| irte->hi.fields.vector = cfg->vector; |
| irte->lo.fields_remap.guest_mode = 0; |
| irte->lo.fields_remap.destination = cfg->dest_apicid; |
| irte->lo.fields_remap.int_type = apic->irq_delivery_mode; |
| irte->lo.fields_remap.dm = apic->irq_dest_mode; |
| |
| /* |
| * This communicates the ga_tag back to the caller |
| * so that it can do all the necessary clean up. |
| */ |
| ir_data->cached_ga_tag = 0; |
| } |
| |
| return modify_irte_ga(irte_info->devid, irte_info->index, irte, ir_data); |
| } |
| |
| static int amd_ir_set_affinity(struct irq_data *data, |
| const struct cpumask *mask, bool force) |
| { |
| struct amd_ir_data *ir_data = data->chip_data; |
| struct irq_2_irte *irte_info = &ir_data->irq_2_irte; |
| struct irq_cfg *cfg = irqd_cfg(data); |
| struct irq_data *parent = data->parent_data; |
| struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid]; |
| int ret; |
| |
| if (!iommu) |
| return -ENODEV; |
| |
| ret = parent->chip->irq_set_affinity(parent, mask, force); |
| if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE) |
| return ret; |
| |
| /* |
| * Atomically updates the IRTE with the new destination, vector |
| * and flushes the interrupt entry cache. |
| */ |
| iommu->irte_ops->set_affinity(ir_data->entry, irte_info->devid, |
| irte_info->index, cfg->vector, cfg->dest_apicid); |
| |
| /* |
| * After this point, all the interrupts will start arriving |
| * at the new destination. So, time to cleanup the previous |
| * vector allocation. |
| */ |
| send_cleanup_vector(cfg); |
| |
| return IRQ_SET_MASK_OK_DONE; |
| } |
| |
| static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg) |
| { |
| struct amd_ir_data *ir_data = irq_data->chip_data; |
| |
| *msg = ir_data->msi_entry; |
| } |
| |
| static struct irq_chip amd_ir_chip = { |
| .irq_ack = ir_ack_apic_edge, |
| .irq_set_affinity = amd_ir_set_affinity, |
| .irq_set_vcpu_affinity = amd_ir_set_vcpu_affinity, |
| .irq_compose_msi_msg = ir_compose_msi_msg, |
| }; |
| |
| int amd_iommu_create_irq_domain(struct amd_iommu *iommu) |
| { |
| iommu->ir_domain = irq_domain_add_tree(NULL, &amd_ir_domain_ops, iommu); |
| if (!iommu->ir_domain) |
| return -ENOMEM; |
| |
| iommu->ir_domain->parent = arch_get_ir_parent_domain(); |
| iommu->msi_domain = arch_create_msi_irq_domain(iommu->ir_domain); |
| |
| return 0; |
| } |
| |
| int amd_iommu_update_ga(int cpu, bool is_run, void *data) |
| { |
| unsigned long flags; |
| struct amd_iommu *iommu; |
| struct irq_remap_table *irt; |
| struct amd_ir_data *ir_data = (struct amd_ir_data *)data; |
| int devid = ir_data->irq_2_irte.devid; |
| struct irte_ga *entry = (struct irte_ga *) ir_data->entry; |
| struct irte_ga *ref = (struct irte_ga *) ir_data->ref; |
| |
| if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) || |
| !ref || !entry || !entry->lo.fields_vapic.guest_mode) |
| return 0; |
| |
| iommu = amd_iommu_rlookup_table[devid]; |
| if (!iommu) |
| return -ENODEV; |
| |
| irt = get_irq_table(devid, false); |
| if (!irt) |
| return -ENODEV; |
| |
| spin_lock_irqsave(&irt->lock, flags); |
| |
| if (ref->lo.fields_vapic.guest_mode) { |
| if (cpu >= 0) |
| ref->lo.fields_vapic.destination = cpu; |
| ref->lo.fields_vapic.is_run = is_run; |
| barrier(); |
| } |
| |
| spin_unlock_irqrestore(&irt->lock, flags); |
| |
| iommu_flush_irt(iommu, devid); |
| iommu_completion_wait(iommu); |
| return 0; |
| } |
| EXPORT_SYMBOL(amd_iommu_update_ga); |
| #endif |