| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * Copyright (c) 2001-2004 by David Brownell |
| * Copyright (c) 2003 Michal Sojka, for high-speed iso transfers |
| */ |
| |
| /* this file is part of ehci-hcd.c */ |
| |
| /*-------------------------------------------------------------------------*/ |
| |
| /* |
| * EHCI scheduled transaction support: interrupt, iso, split iso |
| * These are called "periodic" transactions in the EHCI spec. |
| * |
| * Note that for interrupt transfers, the QH/QTD manipulation is shared |
| * with the "asynchronous" transaction support (control/bulk transfers). |
| * The only real difference is in how interrupt transfers are scheduled. |
| * |
| * For ISO, we make an "iso_stream" head to serve the same role as a QH. |
| * It keeps track of every ITD (or SITD) that's linked, and holds enough |
| * pre-calculated schedule data to make appending to the queue be quick. |
| */ |
| |
| static int ehci_get_frame(struct usb_hcd *hcd); |
| |
| /* |
| * periodic_next_shadow - return "next" pointer on shadow list |
| * @periodic: host pointer to qh/itd/sitd |
| * @tag: hardware tag for type of this record |
| */ |
| static union ehci_shadow * |
| periodic_next_shadow(struct ehci_hcd *ehci, union ehci_shadow *periodic, |
| __hc32 tag) |
| { |
| switch (hc32_to_cpu(ehci, tag)) { |
| case Q_TYPE_QH: |
| return &periodic->qh->qh_next; |
| case Q_TYPE_FSTN: |
| return &periodic->fstn->fstn_next; |
| case Q_TYPE_ITD: |
| return &periodic->itd->itd_next; |
| /* case Q_TYPE_SITD: */ |
| default: |
| return &periodic->sitd->sitd_next; |
| } |
| } |
| |
| static __hc32 * |
| shadow_next_periodic(struct ehci_hcd *ehci, union ehci_shadow *periodic, |
| __hc32 tag) |
| { |
| switch (hc32_to_cpu(ehci, tag)) { |
| /* our ehci_shadow.qh is actually software part */ |
| case Q_TYPE_QH: |
| return &periodic->qh->hw->hw_next; |
| /* others are hw parts */ |
| default: |
| return periodic->hw_next; |
| } |
| } |
| |
| /* caller must hold ehci->lock */ |
| static void periodic_unlink(struct ehci_hcd *ehci, unsigned frame, void *ptr) |
| { |
| union ehci_shadow *prev_p = &ehci->pshadow[frame]; |
| __hc32 *hw_p = &ehci->periodic[frame]; |
| union ehci_shadow here = *prev_p; |
| |
| /* find predecessor of "ptr"; hw and shadow lists are in sync */ |
| while (here.ptr && here.ptr != ptr) { |
| prev_p = periodic_next_shadow(ehci, prev_p, |
| Q_NEXT_TYPE(ehci, *hw_p)); |
| hw_p = shadow_next_periodic(ehci, &here, |
| Q_NEXT_TYPE(ehci, *hw_p)); |
| here = *prev_p; |
| } |
| /* an interrupt entry (at list end) could have been shared */ |
| if (!here.ptr) |
| return; |
| |
| /* update shadow and hardware lists ... the old "next" pointers |
| * from ptr may still be in use, the caller updates them. |
| */ |
| *prev_p = *periodic_next_shadow(ehci, &here, |
| Q_NEXT_TYPE(ehci, *hw_p)); |
| |
| if (!ehci->use_dummy_qh || |
| *shadow_next_periodic(ehci, &here, Q_NEXT_TYPE(ehci, *hw_p)) |
| != EHCI_LIST_END(ehci)) |
| *hw_p = *shadow_next_periodic(ehci, &here, |
| Q_NEXT_TYPE(ehci, *hw_p)); |
| else |
| *hw_p = cpu_to_hc32(ehci, ehci->dummy->qh_dma); |
| } |
| |
| /*-------------------------------------------------------------------------*/ |
| |
| /* Bandwidth and TT management */ |
| |
| /* Find the TT data structure for this device; create it if necessary */ |
| static struct ehci_tt *find_tt(struct usb_device *udev) |
| { |
| struct usb_tt *utt = udev->tt; |
| struct ehci_tt *tt, **tt_index, **ptt; |
| unsigned port; |
| bool allocated_index = false; |
| |
| if (!utt) |
| return NULL; /* Not below a TT */ |
| |
| /* |
| * Find/create our data structure. |
| * For hubs with a single TT, we get it directly. |
| * For hubs with multiple TTs, there's an extra level of pointers. |
| */ |
| tt_index = NULL; |
| if (utt->multi) { |
| tt_index = utt->hcpriv; |
| if (!tt_index) { /* Create the index array */ |
| tt_index = kzalloc(utt->hub->maxchild * |
| sizeof(*tt_index), GFP_ATOMIC); |
| if (!tt_index) |
| return ERR_PTR(-ENOMEM); |
| utt->hcpriv = tt_index; |
| allocated_index = true; |
| } |
| port = udev->ttport - 1; |
| ptt = &tt_index[port]; |
| } else { |
| port = 0; |
| ptt = (struct ehci_tt **) &utt->hcpriv; |
| } |
| |
| tt = *ptt; |
| if (!tt) { /* Create the ehci_tt */ |
| struct ehci_hcd *ehci = |
| hcd_to_ehci(bus_to_hcd(udev->bus)); |
| |
| tt = kzalloc(sizeof(*tt), GFP_ATOMIC); |
| if (!tt) { |
| if (allocated_index) { |
| utt->hcpriv = NULL; |
| kfree(tt_index); |
| } |
| return ERR_PTR(-ENOMEM); |
| } |
| list_add_tail(&tt->tt_list, &ehci->tt_list); |
| INIT_LIST_HEAD(&tt->ps_list); |
| tt->usb_tt = utt; |
| tt->tt_port = port; |
| *ptt = tt; |
| } |
| |
| return tt; |
| } |
| |
| /* Release the TT above udev, if it's not in use */ |
| static void drop_tt(struct usb_device *udev) |
| { |
| struct usb_tt *utt = udev->tt; |
| struct ehci_tt *tt, **tt_index, **ptt; |
| int cnt, i; |
| |
| if (!utt || !utt->hcpriv) |
| return; /* Not below a TT, or never allocated */ |
| |
| cnt = 0; |
| if (utt->multi) { |
| tt_index = utt->hcpriv; |
| ptt = &tt_index[udev->ttport - 1]; |
| |
| /* How many entries are left in tt_index? */ |
| for (i = 0; i < utt->hub->maxchild; ++i) |
| cnt += !!tt_index[i]; |
| } else { |
| tt_index = NULL; |
| ptt = (struct ehci_tt **) &utt->hcpriv; |
| } |
| |
| tt = *ptt; |
| if (!tt || !list_empty(&tt->ps_list)) |
| return; /* never allocated, or still in use */ |
| |
| list_del(&tt->tt_list); |
| *ptt = NULL; |
| kfree(tt); |
| if (cnt == 1) { |
| utt->hcpriv = NULL; |
| kfree(tt_index); |
| } |
| } |
| |
| static void bandwidth_dbg(struct ehci_hcd *ehci, int sign, char *type, |
| struct ehci_per_sched *ps) |
| { |
| dev_dbg(&ps->udev->dev, |
| "ep %02x: %s %s @ %u+%u (%u.%u+%u) [%u/%u us] mask %04x\n", |
| ps->ep->desc.bEndpointAddress, |
| (sign >= 0 ? "reserve" : "release"), type, |
| (ps->bw_phase << 3) + ps->phase_uf, ps->bw_uperiod, |
| ps->phase, ps->phase_uf, ps->period, |
| ps->usecs, ps->c_usecs, ps->cs_mask); |
| } |
| |
| static void reserve_release_intr_bandwidth(struct ehci_hcd *ehci, |
| struct ehci_qh *qh, int sign) |
| { |
| unsigned start_uf; |
| unsigned i, j, m; |
| int usecs = qh->ps.usecs; |
| int c_usecs = qh->ps.c_usecs; |
| int tt_usecs = qh->ps.tt_usecs; |
| struct ehci_tt *tt; |
| |
| if (qh->ps.phase == NO_FRAME) /* Bandwidth wasn't reserved */ |
| return; |
| start_uf = qh->ps.bw_phase << 3; |
| |
| bandwidth_dbg(ehci, sign, "intr", &qh->ps); |
| |
| if (sign < 0) { /* Release bandwidth */ |
| usecs = -usecs; |
| c_usecs = -c_usecs; |
| tt_usecs = -tt_usecs; |
| } |
| |
| /* Entire transaction (high speed) or start-split (full/low speed) */ |
| for (i = start_uf + qh->ps.phase_uf; i < EHCI_BANDWIDTH_SIZE; |
| i += qh->ps.bw_uperiod) |
| ehci->bandwidth[i] += usecs; |
| |
| /* Complete-split (full/low speed) */ |
| if (qh->ps.c_usecs) { |
| /* NOTE: adjustments needed for FSTN */ |
| for (i = start_uf; i < EHCI_BANDWIDTH_SIZE; |
| i += qh->ps.bw_uperiod) { |
| for ((j = 2, m = 1 << (j+8)); j < 8; (++j, m <<= 1)) { |
| if (qh->ps.cs_mask & m) |
| ehci->bandwidth[i+j] += c_usecs; |
| } |
| } |
| } |
| |
| /* FS/LS bus bandwidth */ |
| if (tt_usecs) { |
| tt = find_tt(qh->ps.udev); |
| if (sign > 0) |
| list_add_tail(&qh->ps.ps_list, &tt->ps_list); |
| else |
| list_del(&qh->ps.ps_list); |
| |
| for (i = start_uf >> 3; i < EHCI_BANDWIDTH_FRAMES; |
| i += qh->ps.bw_period) |
| tt->bandwidth[i] += tt_usecs; |
| } |
| } |
| |
| /*-------------------------------------------------------------------------*/ |
| |
| static void compute_tt_budget(u8 budget_table[EHCI_BANDWIDTH_SIZE], |
| struct ehci_tt *tt) |
| { |
| struct ehci_per_sched *ps; |
| unsigned uframe, uf, x; |
| u8 *budget_line; |
| |
| if (!tt) |
| return; |
| memset(budget_table, 0, EHCI_BANDWIDTH_SIZE); |
| |
| /* Add up the contributions from all the endpoints using this TT */ |
| list_for_each_entry(ps, &tt->ps_list, ps_list) { |
| for (uframe = ps->bw_phase << 3; uframe < EHCI_BANDWIDTH_SIZE; |
| uframe += ps->bw_uperiod) { |
| budget_line = &budget_table[uframe]; |
| x = ps->tt_usecs; |
| |
| /* propagate the time forward */ |
| for (uf = ps->phase_uf; uf < 8; ++uf) { |
| x += budget_line[uf]; |
| |
| /* Each microframe lasts 125 us */ |
| if (x <= 125) { |
| budget_line[uf] = x; |
| break; |
| } |
| budget_line[uf] = 125; |
| x -= 125; |
| } |
| } |
| } |
| } |
| |
| static int __maybe_unused same_tt(struct usb_device *dev1, |
| struct usb_device *dev2) |
| { |
| if (!dev1->tt || !dev2->tt) |
| return 0; |
| if (dev1->tt != dev2->tt) |
| return 0; |
| if (dev1->tt->multi) |
| return dev1->ttport == dev2->ttport; |
| else |
| return 1; |
| } |
| |
| #ifdef CONFIG_USB_EHCI_TT_NEWSCHED |
| |
| /* Which uframe does the low/fullspeed transfer start in? |
| * |
| * The parameter is the mask of ssplits in "H-frame" terms |
| * and this returns the transfer start uframe in "B-frame" terms, |
| * which allows both to match, e.g. a ssplit in "H-frame" uframe 0 |
| * will cause a transfer in "B-frame" uframe 0. "B-frames" lag |
| * "H-frames" by 1 uframe. See the EHCI spec sec 4.5 and figure 4.7. |
| */ |
| static inline unsigned char tt_start_uframe(struct ehci_hcd *ehci, __hc32 mask) |
| { |
| unsigned char smask = hc32_to_cpu(ehci, mask) & QH_SMASK; |
| |
| if (!smask) { |
| ehci_err(ehci, "invalid empty smask!\n"); |
| /* uframe 7 can't have bw so this will indicate failure */ |
| return 7; |
| } |
| return ffs(smask) - 1; |
| } |
| |
| static const unsigned char |
| max_tt_usecs[] = { 125, 125, 125, 125, 125, 125, 30, 0 }; |
| |
| /* carryover low/fullspeed bandwidth that crosses uframe boundries */ |
| static inline void carryover_tt_bandwidth(unsigned short tt_usecs[8]) |
| { |
| int i; |
| |
| for (i = 0; i < 7; i++) { |
| if (max_tt_usecs[i] < tt_usecs[i]) { |
| tt_usecs[i+1] += tt_usecs[i] - max_tt_usecs[i]; |
| tt_usecs[i] = max_tt_usecs[i]; |
| } |
| } |
| } |
| |
| /* |
| * Return true if the device's tt's downstream bus is available for a |
| * periodic transfer of the specified length (usecs), starting at the |
| * specified frame/uframe. Note that (as summarized in section 11.19 |
| * of the usb 2.0 spec) TTs can buffer multiple transactions for each |
| * uframe. |
| * |
| * The uframe parameter is when the fullspeed/lowspeed transfer |
| * should be executed in "B-frame" terms, which is the same as the |
| * highspeed ssplit's uframe (which is in "H-frame" terms). For example |
| * a ssplit in "H-frame" 0 causes a transfer in "B-frame" 0. |
| * See the EHCI spec sec 4.5 and fig 4.7. |
| * |
| * This checks if the full/lowspeed bus, at the specified starting uframe, |
| * has the specified bandwidth available, according to rules listed |
| * in USB 2.0 spec section 11.18.1 fig 11-60. |
| * |
| * This does not check if the transfer would exceed the max ssplit |
| * limit of 16, specified in USB 2.0 spec section 11.18.4 requirement #4, |
| * since proper scheduling limits ssplits to less than 16 per uframe. |
| */ |
| static int tt_available( |
| struct ehci_hcd *ehci, |
| struct ehci_per_sched *ps, |
| struct ehci_tt *tt, |
| unsigned frame, |
| unsigned uframe |
| ) |
| { |
| unsigned period = ps->bw_period; |
| unsigned usecs = ps->tt_usecs; |
| |
| if ((period == 0) || (uframe >= 7)) /* error */ |
| return 0; |
| |
| for (frame &= period - 1; frame < EHCI_BANDWIDTH_FRAMES; |
| frame += period) { |
| unsigned i, uf; |
| unsigned short tt_usecs[8]; |
| |
| if (tt->bandwidth[frame] + usecs > 900) |
| return 0; |
| |
| uf = frame << 3; |
| for (i = 0; i < 8; (++i, ++uf)) |
| tt_usecs[i] = ehci->tt_budget[uf]; |
| |
| if (max_tt_usecs[uframe] <= tt_usecs[uframe]) |
| return 0; |
| |
| /* special case for isoc transfers larger than 125us: |
| * the first and each subsequent fully used uframe |
| * must be empty, so as to not illegally delay |
| * already scheduled transactions |
| */ |
| if (usecs > 125) { |
| int ufs = (usecs / 125); |
| |
| for (i = uframe; i < (uframe + ufs) && i < 8; i++) |
| if (tt_usecs[i] > 0) |
| return 0; |
| } |
| |
| tt_usecs[uframe] += usecs; |
| |
| carryover_tt_bandwidth(tt_usecs); |
| |
| /* fail if the carryover pushed bw past the last uframe's limit */ |
| if (max_tt_usecs[7] < tt_usecs[7]) |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| #else |
| |
| /* return true iff the device's transaction translator is available |
| * for a periodic transfer starting at the specified frame, using |
| * all the uframes in the mask. |
| */ |
| static int tt_no_collision( |
| struct ehci_hcd *ehci, |
| unsigned period, |
| struct usb_device *dev, |
| unsigned frame, |
| u32 uf_mask |
| ) |
| { |
| if (period == 0) /* error */ |
| return 0; |
| |
| /* note bandwidth wastage: split never follows csplit |
| * (different dev or endpoint) until the next uframe. |
| * calling convention doesn't make that distinction. |
| */ |
| for (; frame < ehci->periodic_size; frame += period) { |
| union ehci_shadow here; |
| __hc32 type; |
| struct ehci_qh_hw *hw; |
| |
| here = ehci->pshadow[frame]; |
| type = Q_NEXT_TYPE(ehci, ehci->periodic[frame]); |
| while (here.ptr) { |
| switch (hc32_to_cpu(ehci, type)) { |
| case Q_TYPE_ITD: |
| type = Q_NEXT_TYPE(ehci, here.itd->hw_next); |
| here = here.itd->itd_next; |
| continue; |
| case Q_TYPE_QH: |
| hw = here.qh->hw; |
| if (same_tt(dev, here.qh->ps.udev)) { |
| u32 mask; |
| |
| mask = hc32_to_cpu(ehci, |
| hw->hw_info2); |
| /* "knows" no gap is needed */ |
| mask |= mask >> 8; |
| if (mask & uf_mask) |
| break; |
| } |
| type = Q_NEXT_TYPE(ehci, hw->hw_next); |
| here = here.qh->qh_next; |
| continue; |
| case Q_TYPE_SITD: |
| if (same_tt(dev, here.sitd->urb->dev)) { |
| u16 mask; |
| |
| mask = hc32_to_cpu(ehci, here.sitd |
| ->hw_uframe); |
| /* FIXME assumes no gap for IN! */ |
| mask |= mask >> 8; |
| if (mask & uf_mask) |
| break; |
| } |
| type = Q_NEXT_TYPE(ehci, here.sitd->hw_next); |
| here = here.sitd->sitd_next; |
| continue; |
| /* case Q_TYPE_FSTN: */ |
| default: |
| ehci_dbg(ehci, |
| "periodic frame %d bogus type %d\n", |
| frame, type); |
| } |
| |
| /* collision or error */ |
| return 0; |
| } |
| } |
| |
| /* no collision */ |
| return 1; |
| } |
| |
| #endif /* CONFIG_USB_EHCI_TT_NEWSCHED */ |
| |
| /*-------------------------------------------------------------------------*/ |
| |
| static void enable_periodic(struct ehci_hcd *ehci) |
| { |
| if (ehci->periodic_count++) |
| return; |
| |
| /* Stop waiting to turn off the periodic schedule */ |
| ehci->enabled_hrtimer_events &= ~BIT(EHCI_HRTIMER_DISABLE_PERIODIC); |
| |
| /* Don't start the schedule until PSS is 0 */ |
| ehci_poll_PSS(ehci); |
| turn_on_io_watchdog(ehci); |
| } |
| |
| static void disable_periodic(struct ehci_hcd *ehci) |
| { |
| if (--ehci->periodic_count) |
| return; |
| |
| /* Don't turn off the schedule until PSS is 1 */ |
| ehci_poll_PSS(ehci); |
| } |
| |
| /*-------------------------------------------------------------------------*/ |
| |
| /* periodic schedule slots have iso tds (normal or split) first, then a |
| * sparse tree for active interrupt transfers. |
| * |
| * this just links in a qh; caller guarantees uframe masks are set right. |
| * no FSTN support (yet; ehci 0.96+) |
| */ |
| static void qh_link_periodic(struct ehci_hcd *ehci, struct ehci_qh *qh) |
| { |
| unsigned i; |
| unsigned period = qh->ps.period; |
| |
| dev_dbg(&qh->ps.udev->dev, |
| "link qh%d-%04x/%p start %d [%d/%d us]\n", |
| period, hc32_to_cpup(ehci, &qh->hw->hw_info2) |
| & (QH_CMASK | QH_SMASK), |
| qh, qh->ps.phase, qh->ps.usecs, qh->ps.c_usecs); |
| |
| /* high bandwidth, or otherwise every microframe */ |
| if (period == 0) |
| period = 1; |
| |
| for (i = qh->ps.phase; i < ehci->periodic_size; i += period) { |
| union ehci_shadow *prev = &ehci->pshadow[i]; |
| __hc32 *hw_p = &ehci->periodic[i]; |
| union ehci_shadow here = *prev; |
| __hc32 type = 0; |
| |
| /* skip the iso nodes at list head */ |
| while (here.ptr) { |
| type = Q_NEXT_TYPE(ehci, *hw_p); |
| if (type == cpu_to_hc32(ehci, Q_TYPE_QH)) |
| break; |
| prev = periodic_next_shadow(ehci, prev, type); |
| hw_p = shadow_next_periodic(ehci, &here, type); |
| here = *prev; |
| } |
| |
| /* sorting each branch by period (slow-->fast) |
| * enables sharing interior tree nodes |
| */ |
| while (here.ptr && qh != here.qh) { |
| if (qh->ps.period > here.qh->ps.period) |
| break; |
| prev = &here.qh->qh_next; |
| hw_p = &here.qh->hw->hw_next; |
| here = *prev; |
| } |
| /* link in this qh, unless some earlier pass did that */ |
| if (qh != here.qh) { |
| qh->qh_next = here; |
| if (here.qh) |
| qh->hw->hw_next = *hw_p; |
| wmb(); |
| prev->qh = qh; |
| *hw_p = QH_NEXT(ehci, qh->qh_dma); |
| } |
| } |
| qh->qh_state = QH_STATE_LINKED; |
| qh->xacterrs = 0; |
| qh->unlink_reason = 0; |
| |
| /* update per-qh bandwidth for debugfs */ |
| ehci_to_hcd(ehci)->self.bandwidth_allocated += qh->ps.bw_period |
| ? ((qh->ps.usecs + qh->ps.c_usecs) / qh->ps.bw_period) |
| : (qh->ps.usecs * 8); |
| |
| list_add(&qh->intr_node, &ehci->intr_qh_list); |
| |
| /* maybe enable periodic schedule processing */ |
| ++ehci->intr_count; |
| enable_periodic(ehci); |
| } |
| |
| static void qh_unlink_periodic(struct ehci_hcd *ehci, struct ehci_qh *qh) |
| { |
| unsigned i; |
| unsigned period; |
| |
| /* |
| * If qh is for a low/full-speed device, simply unlinking it |
| * could interfere with an ongoing split transaction. To unlink |
| * it safely would require setting the QH_INACTIVATE bit and |
| * waiting at least one frame, as described in EHCI 4.12.2.5. |
| * |
| * We won't bother with any of this. Instead, we assume that the |
| * only reason for unlinking an interrupt QH while the current URB |
| * is still active is to dequeue all the URBs (flush the whole |
| * endpoint queue). |
| * |
| * If rebalancing the periodic schedule is ever implemented, this |
| * approach will no longer be valid. |
| */ |
| |
| /* high bandwidth, or otherwise part of every microframe */ |
| period = qh->ps.period ? : 1; |
| |
| for (i = qh->ps.phase; i < ehci->periodic_size; i += period) |
| periodic_unlink(ehci, i, qh); |
| |
| /* update per-qh bandwidth for debugfs */ |
| ehci_to_hcd(ehci)->self.bandwidth_allocated -= qh->ps.bw_period |
| ? ((qh->ps.usecs + qh->ps.c_usecs) / qh->ps.bw_period) |
| : (qh->ps.usecs * 8); |
| |
| dev_dbg(&qh->ps.udev->dev, |
| "unlink qh%d-%04x/%p start %d [%d/%d us]\n", |
| qh->ps.period, |
| hc32_to_cpup(ehci, &qh->hw->hw_info2) & (QH_CMASK | QH_SMASK), |
| qh, qh->ps.phase, qh->ps.usecs, qh->ps.c_usecs); |
| |
| /* qh->qh_next still "live" to HC */ |
| qh->qh_state = QH_STATE_UNLINK; |
| qh->qh_next.ptr = NULL; |
| |
| if (ehci->qh_scan_next == qh) |
| ehci->qh_scan_next = list_entry(qh->intr_node.next, |
| struct ehci_qh, intr_node); |
| list_del(&qh->intr_node); |
| } |
| |
| static void cancel_unlink_wait_intr(struct ehci_hcd *ehci, struct ehci_qh *qh) |
| { |
| if (qh->qh_state != QH_STATE_LINKED || |
| list_empty(&qh->unlink_node)) |
| return; |
| |
| list_del_init(&qh->unlink_node); |
| |
| /* |
| * TODO: disable the event of EHCI_HRTIMER_START_UNLINK_INTR for |
| * avoiding unnecessary CPU wakeup |
| */ |
| } |
| |
| static void start_unlink_intr(struct ehci_hcd *ehci, struct ehci_qh *qh) |
| { |
| /* If the QH isn't linked then there's nothing we can do. */ |
| if (qh->qh_state != QH_STATE_LINKED) |
| return; |
| |
| /* if the qh is waiting for unlink, cancel it now */ |
| cancel_unlink_wait_intr(ehci, qh); |
| |
| qh_unlink_periodic(ehci, qh); |
| |
| /* Make sure the unlinks are visible before starting the timer */ |
| wmb(); |
| |
| /* |
| * The EHCI spec doesn't say how long it takes the controller to |
| * stop accessing an unlinked interrupt QH. The timer delay is |
| * 9 uframes; presumably that will be long enough. |
| */ |
| qh->unlink_cycle = ehci->intr_unlink_cycle; |
| |
| /* New entries go at the end of the intr_unlink list */ |
| list_add_tail(&qh->unlink_node, &ehci->intr_unlink); |
| |
| if (ehci->intr_unlinking) |
| ; /* Avoid recursive calls */ |
| else if (ehci->rh_state < EHCI_RH_RUNNING) |
| ehci_handle_intr_unlinks(ehci); |
| else if (ehci->intr_unlink.next == &qh->unlink_node) { |
| ehci_enable_event(ehci, EHCI_HRTIMER_UNLINK_INTR, true); |
| ++ehci->intr_unlink_cycle; |
| } |
| } |
| |
| /* |
| * It is common only one intr URB is scheduled on one qh, and |
| * given complete() is run in tasklet context, introduce a bit |
| * delay to avoid unlink qh too early. |
| */ |
| static void start_unlink_intr_wait(struct ehci_hcd *ehci, |
| struct ehci_qh *qh) |
| { |
| qh->unlink_cycle = ehci->intr_unlink_wait_cycle; |
| |
| /* New entries go at the end of the intr_unlink_wait list */ |
| list_add_tail(&qh->unlink_node, &ehci->intr_unlink_wait); |
| |
| if (ehci->rh_state < EHCI_RH_RUNNING) |
| ehci_handle_start_intr_unlinks(ehci); |
| else if (ehci->intr_unlink_wait.next == &qh->unlink_node) { |
| ehci_enable_event(ehci, EHCI_HRTIMER_START_UNLINK_INTR, true); |
| ++ehci->intr_unlink_wait_cycle; |
| } |
| } |
| |
| static void end_unlink_intr(struct ehci_hcd *ehci, struct ehci_qh *qh) |
| { |
| struct ehci_qh_hw *hw = qh->hw; |
| int rc; |
| |
| qh->qh_state = QH_STATE_IDLE; |
| hw->hw_next = EHCI_LIST_END(ehci); |
| |
| if (!list_empty(&qh->qtd_list)) |
| qh_completions(ehci, qh); |
| |
| /* reschedule QH iff another request is queued */ |
| if (!list_empty(&qh->qtd_list) && ehci->rh_state == EHCI_RH_RUNNING) { |
| rc = qh_schedule(ehci, qh); |
| if (rc == 0) { |
| qh_refresh(ehci, qh); |
| qh_link_periodic(ehci, qh); |
| } |
| |
| /* An error here likely indicates handshake failure |
| * or no space left in the schedule. Neither fault |
| * should happen often ... |
| * |
| * FIXME kill the now-dysfunctional queued urbs |
| */ |
| else { |
| ehci_err(ehci, "can't reschedule qh %p, err %d\n", |
| qh, rc); |
| } |
| } |
| |
| /* maybe turn off periodic schedule */ |
| --ehci->intr_count; |
| disable_periodic(ehci); |
| } |
| |
| /*-------------------------------------------------------------------------*/ |
| |
| static int check_period( |
| struct ehci_hcd *ehci, |
| unsigned frame, |
| unsigned uframe, |
| unsigned uperiod, |
| unsigned usecs |
| ) { |
| /* complete split running into next frame? |
| * given FSTN support, we could sometimes check... |
| */ |
| if (uframe >= 8) |
| return 0; |
| |
| /* convert "usecs we need" to "max already claimed" */ |
| usecs = ehci->uframe_periodic_max - usecs; |
| |
| for (uframe += frame << 3; uframe < EHCI_BANDWIDTH_SIZE; |
| uframe += uperiod) { |
| if (ehci->bandwidth[uframe] > usecs) |
| return 0; |
| } |
| |
| /* success! */ |
| return 1; |
| } |
| |
| static int check_intr_schedule( |
| struct ehci_hcd *ehci, |
| unsigned frame, |
| unsigned uframe, |
| struct ehci_qh *qh, |
| unsigned *c_maskp, |
| struct ehci_tt *tt |
| ) |
| { |
| int retval = -ENOSPC; |
| u8 mask = 0; |
| |
| if (qh->ps.c_usecs && uframe >= 6) /* FSTN territory? */ |
| goto done; |
| |
| if (!check_period(ehci, frame, uframe, qh->ps.bw_uperiod, qh->ps.usecs)) |
| goto done; |
| if (!qh->ps.c_usecs) { |
| retval = 0; |
| *c_maskp = 0; |
| goto done; |
| } |
| |
| #ifdef CONFIG_USB_EHCI_TT_NEWSCHED |
| if (tt_available(ehci, &qh->ps, tt, frame, uframe)) { |
| unsigned i; |
| |
| /* TODO : this may need FSTN for SSPLIT in uframe 5. */ |
| for (i = uframe+2; i < 8 && i <= uframe+4; i++) |
| if (!check_period(ehci, frame, i, |
| qh->ps.bw_uperiod, qh->ps.c_usecs)) |
| goto done; |
| else |
| mask |= 1 << i; |
| |
| retval = 0; |
| |
| *c_maskp = mask; |
| } |
| #else |
| /* Make sure this tt's buffer is also available for CSPLITs. |
| * We pessimize a bit; probably the typical full speed case |
| * doesn't need the second CSPLIT. |
| * |
| * NOTE: both SPLIT and CSPLIT could be checked in just |
| * one smart pass... |
| */ |
| mask = 0x03 << (uframe + qh->gap_uf); |
| *c_maskp = mask; |
| |
| mask |= 1 << uframe; |
| if (tt_no_collision(ehci, qh->ps.bw_period, qh->ps.udev, frame, mask)) { |
| if (!check_period(ehci, frame, uframe + qh->gap_uf + 1, |
| qh->ps.bw_uperiod, qh->ps.c_usecs)) |
| goto done; |
| if (!check_period(ehci, frame, uframe + qh->gap_uf, |
| qh->ps.bw_uperiod, qh->ps.c_usecs)) |
| goto done; |
| retval = 0; |
| } |
| #endif |
| done: |
| return retval; |
| } |
| |
| /* "first fit" scheduling policy used the first time through, |
| * or when the previous schedule slot can't be re-used. |
| */ |
| static int qh_schedule(struct ehci_hcd *ehci, struct ehci_qh *qh) |
| { |
| int status = 0; |
| unsigned uframe; |
| unsigned c_mask; |
| struct ehci_qh_hw *hw = qh->hw; |
| struct ehci_tt *tt; |
| |
| hw->hw_next = EHCI_LIST_END(ehci); |
| |
| /* reuse the previous schedule slots, if we can */ |
| if (qh->ps.phase != NO_FRAME) { |
| ehci_dbg(ehci, "reused qh %p schedule\n", qh); |
| return 0; |
| } |
| |
| uframe = 0; |
| c_mask = 0; |
| tt = find_tt(qh->ps.udev); |
| if (IS_ERR(tt)) { |
| status = PTR_ERR(tt); |
| goto done; |
| } |
| compute_tt_budget(ehci->tt_budget, tt); |
| |
| /* else scan the schedule to find a group of slots such that all |
| * uframes have enough periodic bandwidth available. |
| */ |
| /* "normal" case, uframing flexible except with splits */ |
| if (qh->ps.bw_period) { |
| int i; |
| unsigned frame; |
| |
| for (i = qh->ps.bw_period; i > 0; --i) { |
| frame = ++ehci->random_frame & (qh->ps.bw_period - 1); |
| for (uframe = 0; uframe < 8; uframe++) { |
| status = check_intr_schedule(ehci, |
| frame, uframe, qh, &c_mask, tt); |
| if (status == 0) |
| goto got_it; |
| } |
| } |
| |
| /* qh->ps.bw_period == 0 means every uframe */ |
| } else { |
| status = check_intr_schedule(ehci, 0, 0, qh, &c_mask, tt); |
| } |
| if (status) |
| goto done; |
| |
| got_it: |
| qh->ps.phase = (qh->ps.period ? ehci->random_frame & |
| (qh->ps.period - 1) : 0); |
| qh->ps.bw_phase = qh->ps.phase & (qh->ps.bw_period - 1); |
| qh->ps.phase_uf = uframe; |
| qh->ps.cs_mask = qh->ps.period ? |
| (c_mask << 8) | (1 << uframe) : |
| QH_SMASK; |
| |
| /* reset S-frame and (maybe) C-frame masks */ |
| hw->hw_info2 &= cpu_to_hc32(ehci, ~(QH_CMASK | QH_SMASK)); |
| hw->hw_info2 |= cpu_to_hc32(ehci, qh->ps.cs_mask); |
| reserve_release_intr_bandwidth(ehci, qh, 1); |
| |
| done: |
| return status; |
| } |
| |
| static int intr_submit( |
| struct ehci_hcd *ehci, |
| struct urb *urb, |
| struct list_head *qtd_list, |
| gfp_t mem_flags |
| ) { |
| unsigned epnum; |
| unsigned long flags; |
| struct ehci_qh *qh; |
| int status; |
| struct list_head empty; |
| |
| /* get endpoint and transfer/schedule data */ |
| epnum = urb->ep->desc.bEndpointAddress; |
| |
| spin_lock_irqsave(&ehci->lock, flags); |
| |
| if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) { |
| status = -ESHUTDOWN; |
| goto done_not_linked; |
| } |
| status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb); |
| if (unlikely(status)) |
| goto done_not_linked; |
| |
| /* get qh and force any scheduling errors */ |
| INIT_LIST_HEAD(&empty); |
| qh = qh_append_tds(ehci, urb, &empty, epnum, &urb->ep->hcpriv); |
| if (qh == NULL) { |
| status = -ENOMEM; |
| goto done; |
| } |
| if (qh->qh_state == QH_STATE_IDLE) { |
| status = qh_schedule(ehci, qh); |
| if (status) |
| goto done; |
| } |
| |
| /* then queue the urb's tds to the qh */ |
| qh = qh_append_tds(ehci, urb, qtd_list, epnum, &urb->ep->hcpriv); |
| BUG_ON(qh == NULL); |
| |
| /* stuff into the periodic schedule */ |
| if (qh->qh_state == QH_STATE_IDLE) { |
| qh_refresh(ehci, qh); |
| qh_link_periodic(ehci, qh); |
| } else { |
| /* cancel unlink wait for the qh */ |
| cancel_unlink_wait_intr(ehci, qh); |
| } |
| |
| /* ... update usbfs periodic stats */ |
| ehci_to_hcd(ehci)->self.bandwidth_int_reqs++; |
| |
| done: |
| if (unlikely(status)) |
| usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb); |
| done_not_linked: |
| spin_unlock_irqrestore(&ehci->lock, flags); |
| if (status) |
| qtd_list_free(ehci, urb, qtd_list); |
| |
| return status; |
| } |
| |
| static void scan_intr(struct ehci_hcd *ehci) |
| { |
| struct ehci_qh *qh; |
| |
| list_for_each_entry_safe(qh, ehci->qh_scan_next, &ehci->intr_qh_list, |
| intr_node) { |
| |
| /* clean any finished work for this qh */ |
| if (!list_empty(&qh->qtd_list)) { |
| int temp; |
| |
| /* |
| * Unlinks could happen here; completion reporting |
| * drops the lock. That's why ehci->qh_scan_next |
| * always holds the next qh to scan; if the next qh |
| * gets unlinked then ehci->qh_scan_next is adjusted |
| * in qh_unlink_periodic(). |
| */ |
| temp = qh_completions(ehci, qh); |
| if (unlikely(temp)) |
| start_unlink_intr(ehci, qh); |
| else if (unlikely(list_empty(&qh->qtd_list) && |
| qh->qh_state == QH_STATE_LINKED)) |
| start_unlink_intr_wait(ehci, qh); |
| } |
| } |
| } |
| |
| /*-------------------------------------------------------------------------*/ |
| |
| /* ehci_iso_stream ops work with both ITD and SITD */ |
| |
| static struct ehci_iso_stream * |
| iso_stream_alloc(gfp_t mem_flags) |
| { |
| struct ehci_iso_stream *stream; |
| |
| stream = kzalloc(sizeof(*stream), mem_flags); |
| if (likely(stream != NULL)) { |
| INIT_LIST_HEAD(&stream->td_list); |
| INIT_LIST_HEAD(&stream->free_list); |
| stream->next_uframe = NO_FRAME; |
| stream->ps.phase = NO_FRAME; |
| } |
| return stream; |
| } |
| |
| static void |
| iso_stream_init( |
| struct ehci_hcd *ehci, |
| struct ehci_iso_stream *stream, |
| struct urb *urb |
| ) |
| { |
| static const u8 smask_out[] = { 0x01, 0x03, 0x07, 0x0f, 0x1f, 0x3f }; |
| |
| struct usb_device *dev = urb->dev; |
| u32 buf1; |
| unsigned epnum, maxp; |
| int is_input; |
| unsigned tmp; |
| |
| /* |
| * this might be a "high bandwidth" highspeed endpoint, |
| * as encoded in the ep descriptor's wMaxPacket field |
| */ |
| epnum = usb_pipeendpoint(urb->pipe); |
| is_input = usb_pipein(urb->pipe) ? USB_DIR_IN : 0; |
| maxp = usb_endpoint_maxp(&urb->ep->desc); |
| buf1 = is_input ? 1 << 11 : 0; |
| |
| /* knows about ITD vs SITD */ |
| if (dev->speed == USB_SPEED_HIGH) { |
| unsigned multi = usb_endpoint_maxp_mult(&urb->ep->desc); |
| |
| stream->highspeed = 1; |
| |
| buf1 |= maxp; |
| maxp *= multi; |
| |
| stream->buf0 = cpu_to_hc32(ehci, (epnum << 8) | dev->devnum); |
| stream->buf1 = cpu_to_hc32(ehci, buf1); |
| stream->buf2 = cpu_to_hc32(ehci, multi); |
| |
| /* usbfs wants to report the average usecs per frame tied up |
| * when transfers on this endpoint are scheduled ... |
| */ |
| stream->ps.usecs = HS_USECS_ISO(maxp); |
| |
| /* period for bandwidth allocation */ |
| tmp = min_t(unsigned, EHCI_BANDWIDTH_SIZE, |
| 1 << (urb->ep->desc.bInterval - 1)); |
| |
| /* Allow urb->interval to override */ |
| stream->ps.bw_uperiod = min_t(unsigned, tmp, urb->interval); |
| |
| stream->uperiod = urb->interval; |
| stream->ps.period = urb->interval >> 3; |
| stream->bandwidth = stream->ps.usecs * 8 / |
| stream->ps.bw_uperiod; |
| |
| } else { |
| u32 addr; |
| int think_time; |
| int hs_transfers; |
| |
| addr = dev->ttport << 24; |
| if (!ehci_is_TDI(ehci) |
| || (dev->tt->hub != |
| ehci_to_hcd(ehci)->self.root_hub)) |
| addr |= dev->tt->hub->devnum << 16; |
| addr |= epnum << 8; |
| addr |= dev->devnum; |
| stream->ps.usecs = HS_USECS_ISO(maxp); |
| think_time = dev->tt->think_time; |
| stream->ps.tt_usecs = NS_TO_US(think_time + usb_calc_bus_time( |
| dev->speed, is_input, 1, maxp)); |
| hs_transfers = max(1u, (maxp + 187) / 188); |
| if (is_input) { |
| u32 tmp; |
| |
| addr |= 1 << 31; |
| stream->ps.c_usecs = stream->ps.usecs; |
| stream->ps.usecs = HS_USECS_ISO(1); |
| stream->ps.cs_mask = 1; |
| |
| /* c-mask as specified in USB 2.0 11.18.4 3.c */ |
| tmp = (1 << (hs_transfers + 2)) - 1; |
| stream->ps.cs_mask |= tmp << (8 + 2); |
| } else |
| stream->ps.cs_mask = smask_out[hs_transfers - 1]; |
| |
| /* period for bandwidth allocation */ |
| tmp = min_t(unsigned, EHCI_BANDWIDTH_FRAMES, |
| 1 << (urb->ep->desc.bInterval - 1)); |
| |
| /* Allow urb->interval to override */ |
| stream->ps.bw_period = min_t(unsigned, tmp, urb->interval); |
| stream->ps.bw_uperiod = stream->ps.bw_period << 3; |
| |
| stream->ps.period = urb->interval; |
| stream->uperiod = urb->interval << 3; |
| stream->bandwidth = (stream->ps.usecs + stream->ps.c_usecs) / |
| stream->ps.bw_period; |
| |
| /* stream->splits gets created from cs_mask later */ |
| stream->address = cpu_to_hc32(ehci, addr); |
| } |
| |
| stream->ps.udev = dev; |
| stream->ps.ep = urb->ep; |
| |
| stream->bEndpointAddress = is_input | epnum; |
| stream->maxp = maxp; |
| } |
| |
| static struct ehci_iso_stream * |
| iso_stream_find(struct ehci_hcd *ehci, struct urb *urb) |
| { |
| unsigned epnum; |
| struct ehci_iso_stream *stream; |
| struct usb_host_endpoint *ep; |
| unsigned long flags; |
| |
| epnum = usb_pipeendpoint (urb->pipe); |
| if (usb_pipein(urb->pipe)) |
| ep = urb->dev->ep_in[epnum]; |
| else |
| ep = urb->dev->ep_out[epnum]; |
| |
| spin_lock_irqsave(&ehci->lock, flags); |
| stream = ep->hcpriv; |
| |
| if (unlikely(stream == NULL)) { |
| stream = iso_stream_alloc(GFP_ATOMIC); |
| if (likely(stream != NULL)) { |
| ep->hcpriv = stream; |
| iso_stream_init(ehci, stream, urb); |
| } |
| |
| /* if dev->ep [epnum] is a QH, hw is set */ |
| } else if (unlikely(stream->hw != NULL)) { |
| ehci_dbg(ehci, "dev %s ep%d%s, not iso??\n", |
| urb->dev->devpath, epnum, |
| usb_pipein(urb->pipe) ? "in" : "out"); |
| stream = NULL; |
| } |
| |
| spin_unlock_irqrestore(&ehci->lock, flags); |
| return stream; |
| } |
| |
| /*-------------------------------------------------------------------------*/ |
| |
| /* ehci_iso_sched ops can be ITD-only or SITD-only */ |
| |
| static struct ehci_iso_sched * |
| iso_sched_alloc(unsigned packets, gfp_t mem_flags) |
| { |
| struct ehci_iso_sched *iso_sched; |
| int size = sizeof(*iso_sched); |
| |
| size += packets * sizeof(struct ehci_iso_packet); |
| iso_sched = kzalloc(size, mem_flags); |
| if (likely(iso_sched != NULL)) |
| INIT_LIST_HEAD(&iso_sched->td_list); |
| |
| return iso_sched; |
| } |
| |
| static inline void |
| itd_sched_init( |
| struct ehci_hcd *ehci, |
| struct ehci_iso_sched *iso_sched, |
| struct ehci_iso_stream *stream, |
| struct urb *urb |
| ) |
| { |
| unsigned i; |
| dma_addr_t dma = urb->transfer_dma; |
| |
| /* how many uframes are needed for these transfers */ |
| iso_sched->span = urb->number_of_packets * stream->uperiod; |
| |
| /* figure out per-uframe itd fields that we'll need later |
| * when we fit new itds into the schedule. |
| */ |
| for (i = 0; i < urb->number_of_packets; i++) { |
| struct ehci_iso_packet *uframe = &iso_sched->packet[i]; |
| unsigned length; |
| dma_addr_t buf; |
| u32 trans; |
| |
| length = urb->iso_frame_desc[i].length; |
| buf = dma + urb->iso_frame_desc[i].offset; |
| |
| trans = EHCI_ISOC_ACTIVE; |
| trans |= buf & 0x0fff; |
| if (unlikely(((i + 1) == urb->number_of_packets)) |
| && !(urb->transfer_flags & URB_NO_INTERRUPT)) |
| trans |= EHCI_ITD_IOC; |
| trans |= length << 16; |
| uframe->transaction = cpu_to_hc32(ehci, trans); |
| |
| /* might need to cross a buffer page within a uframe */ |
| uframe->bufp = (buf & ~(u64)0x0fff); |
| buf += length; |
| if (unlikely((uframe->bufp != (buf & ~(u64)0x0fff)))) |
| uframe->cross = 1; |
| } |
| } |
| |
| static void |
| iso_sched_free( |
| struct ehci_iso_stream *stream, |
| struct ehci_iso_sched *iso_sched |
| ) |
| { |
| if (!iso_sched) |
| return; |
| /* caller must hold ehci->lock! */ |
| list_splice(&iso_sched->td_list, &stream->free_list); |
| kfree(iso_sched); |
| } |
| |
| static int |
| itd_urb_transaction( |
| struct ehci_iso_stream *stream, |
| struct ehci_hcd *ehci, |
| struct urb *urb, |
| gfp_t mem_flags |
| ) |
| { |
| struct ehci_itd *itd; |
| dma_addr_t itd_dma; |
| int i; |
| unsigned num_itds; |
| struct ehci_iso_sched *sched; |
| unsigned long flags; |
| |
| sched = iso_sched_alloc(urb->number_of_packets, mem_flags); |
| if (unlikely(sched == NULL)) |
| return -ENOMEM; |
| |
| itd_sched_init(ehci, sched, stream, urb); |
| |
| if (urb->interval < 8) |
| num_itds = 1 + (sched->span + 7) / 8; |
| else |
| num_itds = urb->number_of_packets; |
| |
| /* allocate/init ITDs */ |
| spin_lock_irqsave(&ehci->lock, flags); |
| for (i = 0; i < num_itds; i++) { |
| |
| /* |
| * Use iTDs from the free list, but not iTDs that may |
| * still be in use by the hardware. |
| */ |
| if (likely(!list_empty(&stream->free_list))) { |
| itd = list_first_entry(&stream->free_list, |
| struct ehci_itd, itd_list); |
| if (itd->frame == ehci->now_frame) |
| goto alloc_itd; |
| list_del(&itd->itd_list); |
| itd_dma = itd->itd_dma; |
| } else { |
| alloc_itd: |
| spin_unlock_irqrestore(&ehci->lock, flags); |
| itd = dma_pool_alloc(ehci->itd_pool, mem_flags, |
| &itd_dma); |
| spin_lock_irqsave(&ehci->lock, flags); |
| if (!itd) { |
| iso_sched_free(stream, sched); |
| spin_unlock_irqrestore(&ehci->lock, flags); |
| return -ENOMEM; |
| } |
| } |
| |
| memset(itd, 0, sizeof(*itd)); |
| itd->itd_dma = itd_dma; |
| itd->frame = NO_FRAME; |
| list_add(&itd->itd_list, &sched->td_list); |
| } |
| spin_unlock_irqrestore(&ehci->lock, flags); |
| |
| /* temporarily store schedule info in hcpriv */ |
| urb->hcpriv = sched; |
| urb->error_count = 0; |
| return 0; |
| } |
| |
| /*-------------------------------------------------------------------------*/ |
| |
| static void reserve_release_iso_bandwidth(struct ehci_hcd *ehci, |
| struct ehci_iso_stream *stream, int sign) |
| { |
| unsigned uframe; |
| unsigned i, j; |
| unsigned s_mask, c_mask, m; |
| int usecs = stream->ps.usecs; |
| int c_usecs = stream->ps.c_usecs; |
| int tt_usecs = stream->ps.tt_usecs; |
| struct ehci_tt *tt; |
| |
| if (stream->ps.phase == NO_FRAME) /* Bandwidth wasn't reserved */ |
| return; |
| uframe = stream->ps.bw_phase << 3; |
| |
| bandwidth_dbg(ehci, sign, "iso", &stream->ps); |
| |
| if (sign < 0) { /* Release bandwidth */ |
| usecs = -usecs; |
| c_usecs = -c_usecs; |
| tt_usecs = -tt_usecs; |
| } |
| |
| if (!stream->splits) { /* High speed */ |
| for (i = uframe + stream->ps.phase_uf; i < EHCI_BANDWIDTH_SIZE; |
| i += stream->ps.bw_uperiod) |
| ehci->bandwidth[i] += usecs; |
| |
| } else { /* Full speed */ |
| s_mask = stream->ps.cs_mask; |
| c_mask = s_mask >> 8; |
| |
| /* NOTE: adjustment needed for frame overflow */ |
| for (i = uframe; i < EHCI_BANDWIDTH_SIZE; |
| i += stream->ps.bw_uperiod) { |
| for ((j = stream->ps.phase_uf, m = 1 << j); j < 8; |
| (++j, m <<= 1)) { |
| if (s_mask & m) |
| ehci->bandwidth[i+j] += usecs; |
| else if (c_mask & m) |
| ehci->bandwidth[i+j] += c_usecs; |
| } |
| } |
| |
| tt = find_tt(stream->ps.udev); |
| if (sign > 0) |
| list_add_tail(&stream->ps.ps_list, &tt->ps_list); |
| else |
| list_del(&stream->ps.ps_list); |
| |
| for (i = uframe >> 3; i < EHCI_BANDWIDTH_FRAMES; |
| i += stream->ps.bw_period) |
| tt->bandwidth[i] += tt_usecs; |
| } |
| } |
| |
| static inline int |
| itd_slot_ok( |
| struct ehci_hcd *ehci, |
| struct ehci_iso_stream *stream, |
| unsigned uframe |
| ) |
| { |
| unsigned usecs; |
| |
| /* convert "usecs we need" to "max already claimed" */ |
| usecs = ehci->uframe_periodic_max - stream->ps.usecs; |
| |
| for (uframe &= stream->ps.bw_uperiod - 1; uframe < EHCI_BANDWIDTH_SIZE; |
| uframe += stream->ps.bw_uperiod) { |
| if (ehci->bandwidth[uframe] > usecs) |
| return 0; |
| } |
| return 1; |
| } |
| |
| static inline int |
| sitd_slot_ok( |
| struct ehci_hcd *ehci, |
| struct ehci_iso_stream *stream, |
| unsigned uframe, |
| struct ehci_iso_sched *sched, |
| struct ehci_tt *tt |
| ) |
| { |
| unsigned mask, tmp; |
| unsigned frame, uf; |
| |
| mask = stream->ps.cs_mask << (uframe & 7); |
| |
| /* for OUT, don't wrap SSPLIT into H-microframe 7 */ |
| if (((stream->ps.cs_mask & 0xff) << (uframe & 7)) >= (1 << 7)) |
| return 0; |
| |
| /* for IN, don't wrap CSPLIT into the next frame */ |
| if (mask & ~0xffff) |
| return 0; |
| |
| /* check bandwidth */ |
| uframe &= stream->ps.bw_uperiod - 1; |
| frame = uframe >> 3; |
| |
| #ifdef CONFIG_USB_EHCI_TT_NEWSCHED |
| /* The tt's fullspeed bus bandwidth must be available. |
| * tt_available scheduling guarantees 10+% for control/bulk. |
| */ |
| uf = uframe & 7; |
| if (!tt_available(ehci, &stream->ps, tt, frame, uf)) |
| return 0; |
| #else |
| /* tt must be idle for start(s), any gap, and csplit. |
| * assume scheduling slop leaves 10+% for control/bulk. |
| */ |
| if (!tt_no_collision(ehci, stream->ps.bw_period, |
| stream->ps.udev, frame, mask)) |
| return 0; |
| #endif |
| |
| do { |
| unsigned max_used; |
| unsigned i; |
| |
| /* check starts (OUT uses more than one) */ |
| uf = uframe; |
| max_used = ehci->uframe_periodic_max - stream->ps.usecs; |
| for (tmp = stream->ps.cs_mask & 0xff; tmp; tmp >>= 1, uf++) { |
| if (ehci->bandwidth[uf] > max_used) |
| return 0; |
| } |
| |
| /* for IN, check CSPLIT */ |
| if (stream->ps.c_usecs) { |
| max_used = ehci->uframe_periodic_max - |
| stream->ps.c_usecs; |
| uf = uframe & ~7; |
| tmp = 1 << (2+8); |
| for (i = (uframe & 7) + 2; i < 8; (++i, tmp <<= 1)) { |
| if ((stream->ps.cs_mask & tmp) == 0) |
| continue; |
| if (ehci->bandwidth[uf+i] > max_used) |
| return 0; |
| } |
| } |
| |
| uframe += stream->ps.bw_uperiod; |
| } while (uframe < EHCI_BANDWIDTH_SIZE); |
| |
| stream->ps.cs_mask <<= uframe & 7; |
| stream->splits = cpu_to_hc32(ehci, stream->ps.cs_mask); |
| return 1; |
| } |
| |
| /* |
| * This scheduler plans almost as far into the future as it has actual |
| * periodic schedule slots. (Affected by TUNE_FLS, which defaults to |
| * "as small as possible" to be cache-friendlier.) That limits the size |
| * transfers you can stream reliably; avoid more than 64 msec per urb. |
| * Also avoid queue depths of less than ehci's worst irq latency (affected |
| * by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter, |
| * and other factors); or more than about 230 msec total (for portability, |
| * given EHCI_TUNE_FLS and the slop). Or, write a smarter scheduler! |
| */ |
| |
| static int |
| iso_stream_schedule( |
| struct ehci_hcd *ehci, |
| struct urb *urb, |
| struct ehci_iso_stream *stream |
| ) |
| { |
| u32 now, base, next, start, period, span, now2; |
| u32 wrap = 0, skip = 0; |
| int status = 0; |
| unsigned mod = ehci->periodic_size << 3; |
| struct ehci_iso_sched *sched = urb->hcpriv; |
| bool empty = list_empty(&stream->td_list); |
| bool new_stream = false; |
| |
| period = stream->uperiod; |
| span = sched->span; |
| if (!stream->highspeed) |
| span <<= 3; |
| |
| /* Start a new isochronous stream? */ |
| if (unlikely(empty && !hcd_periodic_completion_in_progress( |
| ehci_to_hcd(ehci), urb->ep))) { |
| |
| /* Schedule the endpoint */ |
| if (stream->ps.phase == NO_FRAME) { |
| int done = 0; |
| struct ehci_tt *tt = find_tt(stream->ps.udev); |
| |
| if (IS_ERR(tt)) { |
| status = PTR_ERR(tt); |
| goto fail; |
| } |
| compute_tt_budget(ehci->tt_budget, tt); |
| |
| start = ((-(++ehci->random_frame)) << 3) & (period - 1); |
| |
| /* find a uframe slot with enough bandwidth. |
| * Early uframes are more precious because full-speed |
| * iso IN transfers can't use late uframes, |
| * and therefore they should be allocated last. |
| */ |
| next = start; |
| start += period; |
| do { |
| start--; |
| /* check schedule: enough space? */ |
| if (stream->highspeed) { |
| if (itd_slot_ok(ehci, stream, start)) |
| done = 1; |
| } else { |
| if ((start % 8) >= 6) |
| continue; |
| if (sitd_slot_ok(ehci, stream, start, |
| sched, tt)) |
| done = 1; |
| } |
| } while (start > next && !done); |
| |
| /* no room in the schedule */ |
| if (!done) { |
| ehci_dbg(ehci, "iso sched full %p", urb); |
| status = -ENOSPC; |
| goto fail; |
| } |
| stream->ps.phase = (start >> 3) & |
| (stream->ps.period - 1); |
| stream->ps.bw_phase = stream->ps.phase & |
| (stream->ps.bw_period - 1); |
| stream->ps.phase_uf = start & 7; |
| reserve_release_iso_bandwidth(ehci, stream, 1); |
| } |
| |
| /* New stream is already scheduled; use the upcoming slot */ |
| else { |
| start = (stream->ps.phase << 3) + stream->ps.phase_uf; |
| } |
| |
| stream->next_uframe = start; |
| new_stream = true; |
| } |
| |
| now = ehci_read_frame_index(ehci) & (mod - 1); |
| |
| /* Take the isochronous scheduling threshold into account */ |
| if (ehci->i_thresh) |
| next = now + ehci->i_thresh; /* uframe cache */ |
| else |
| next = (now + 2 + 7) & ~0x07; /* full frame cache */ |
| |
| /* If needed, initialize last_iso_frame so that this URB will be seen */ |
| if (ehci->isoc_count == 0) |
| ehci->last_iso_frame = now >> 3; |
| |
| /* |
| * Use ehci->last_iso_frame as the base. There can't be any |
| * TDs scheduled for earlier than that. |
| */ |
| base = ehci->last_iso_frame << 3; |
| next = (next - base) & (mod - 1); |
| start = (stream->next_uframe - base) & (mod - 1); |
| |
| if (unlikely(new_stream)) |
| goto do_ASAP; |
| |
| /* |
| * Typical case: reuse current schedule, stream may still be active. |
| * Hopefully there are no gaps from the host falling behind |
| * (irq delays etc). If there are, the behavior depends on |
| * whether URB_ISO_ASAP is set. |
| */ |
| now2 = (now - base) & (mod - 1); |
| |
| /* Is the schedule about to wrap around? */ |
| if (unlikely(!empty && start < period)) { |
| ehci_dbg(ehci, "request %p would overflow (%u-%u < %u mod %u)\n", |
| urb, stream->next_uframe, base, period, mod); |
| status = -EFBIG; |
| goto fail; |
| } |
| |
| /* Is the next packet scheduled after the base time? */ |
| if (likely(!empty || start <= now2 + period)) { |
| |
| /* URB_ISO_ASAP: make sure that start >= next */ |
| if (unlikely(start < next && |
| (urb->transfer_flags & URB_ISO_ASAP))) |
| goto do_ASAP; |
| |
| /* Otherwise use start, if it's not in the past */ |
| if (likely(start >= now2)) |
| goto use_start; |
| |
| /* Otherwise we got an underrun while the queue was empty */ |
| } else { |
| if (urb->transfer_flags & URB_ISO_ASAP) |
| goto do_ASAP; |
| wrap = mod; |
| now2 += mod; |
| } |
| |
| /* How many uframes and packets do we need to skip? */ |
| skip = (now2 - start + period - 1) & -period; |
| if (skip >= span) { /* Entirely in the past? */ |
| ehci_dbg(ehci, "iso underrun %p (%u+%u < %u) [%u]\n", |
| urb, start + base, span - period, now2 + base, |
| base); |
| |
| /* Try to keep the last TD intact for scanning later */ |
| skip = span - period; |
| |
| /* Will it come before the current scan position? */ |
| if (empty) { |
| skip = span; /* Skip the entire URB */ |
| status = 1; /* and give it back immediately */ |
| iso_sched_free(stream, sched); |
| sched = NULL; |
| } |
| } |
| urb->error_count = skip / period; |
| if (sched) |
| sched->first_packet = urb->error_count; |
| goto use_start; |
| |
| do_ASAP: |
| /* Use the first slot after "next" */ |
| start = next + ((start - next) & (period - 1)); |
| |
| use_start: |
| /* Tried to schedule too far into the future? */ |
| if (unlikely(start + span - period >= mod + wrap)) { |
| ehci_dbg(ehci, "request %p would overflow (%u+%u >= %u)\n", |
| urb, start, span - period, mod + wrap); |
| status = -EFBIG; |
| goto fail; |
| } |
| |
| start += base; |
| stream->next_uframe = (start + skip) & (mod - 1); |
| |
| /* report high speed start in uframes; full speed, in frames */ |
| urb->start_frame = start & (mod - 1); |
| if (!stream->highspeed) |
| urb->start_frame >>= 3; |
| return status; |
| |
| fail: |
| iso_sched_free(stream, sched); |
| urb->hcpriv = NULL; |
| return status; |
| } |
| |
| /*-------------------------------------------------------------------------*/ |
| |
| static inline void |
| itd_init(struct ehci_hcd *ehci, struct ehci_iso_stream *stream, |
| struct ehci_itd *itd) |
| { |
| int i; |
| |
| /* it's been recently zeroed */ |
| itd->hw_next = EHCI_LIST_END(ehci); |
| itd->hw_bufp[0] = stream->buf0; |
| itd->hw_bufp[1] = stream->buf1; |
| itd->hw_bufp[2] = stream->buf2; |
| |
| for (i = 0; i < 8; i++) |
| itd->index[i] = -1; |
| |
| /* All other fields are filled when scheduling */ |
| } |
| |
| static inline void |
| itd_patch( |
| struct ehci_hcd *ehci, |
| struct ehci_itd *itd, |
| struct ehci_iso_sched *iso_sched, |
| unsigned index, |
| u16 uframe |
| ) |
| { |
| struct ehci_iso_packet *uf = &iso_sched->packet[index]; |
| unsigned pg = itd->pg; |
| |
| /* BUG_ON(pg == 6 && uf->cross); */ |
| |
| uframe &= 0x07; |
| itd->index[uframe] = index; |
| |
| itd->hw_transaction[uframe] = uf->transaction; |
| itd->hw_transaction[uframe] |= cpu_to_hc32(ehci, pg << 12); |
| itd->hw_bufp[pg] |= cpu_to_hc32(ehci, uf->bufp & ~(u32)0); |
| itd->hw_bufp_hi[pg] |= cpu_to_hc32(ehci, (u32)(uf->bufp >> 32)); |
| |
| /* iso_frame_desc[].offset must be strictly increasing */ |
| if (unlikely(uf->cross)) { |
| u64 bufp = uf->bufp + 4096; |
| |
| itd->pg = ++pg; |
| itd->hw_bufp[pg] |= cpu_to_hc32(ehci, bufp & ~(u32)0); |
| itd->hw_bufp_hi[pg] |= cpu_to_hc32(ehci, (u32)(bufp >> 32)); |
| } |
| } |
| |
| static inline void |
| itd_link(struct ehci_hcd *ehci, unsigned frame, struct ehci_itd *itd) |
| { |
| union ehci_shadow *prev = &ehci->pshadow[frame]; |
| __hc32 *hw_p = &ehci->periodic[frame]; |
| union ehci_shadow here = *prev; |
| __hc32 type = 0; |
| |
| /* skip any iso nodes which might belong to previous microframes */ |
| while (here.ptr) { |
| type = Q_NEXT_TYPE(ehci, *hw_p); |
| if (type == cpu_to_hc32(ehci, Q_TYPE_QH)) |
| break; |
| prev = periodic_next_shadow(ehci, prev, type); |
| hw_p = shadow_next_periodic(ehci, &here, type); |
| here = *prev; |
| } |
| |
| itd->itd_next = here; |
| itd->hw_next = *hw_p; |
| prev->itd = itd; |
| itd->frame = frame; |
| wmb(); |
| *hw_p = cpu_to_hc32(ehci, itd->itd_dma | Q_TYPE_ITD); |
| } |
| |
| /* fit urb's itds into the selected schedule slot; activate as needed */ |
| static void itd_link_urb( |
| struct ehci_hcd *ehci, |
| struct urb *urb, |
| unsigned mod, |
| struct ehci_iso_stream *stream |
| ) |
| { |
| int packet; |
| unsigned next_uframe, uframe, frame; |
| struct ehci_iso_sched *iso_sched = urb->hcpriv; |
| struct ehci_itd *itd; |
| |
| next_uframe = stream->next_uframe & (mod - 1); |
| |
| if (unlikely(list_empty(&stream->td_list))) |
| ehci_to_hcd(ehci)->self.bandwidth_allocated |
| += stream->bandwidth; |
| |
| if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) { |
| if (ehci->amd_pll_fix == 1) |
| usb_amd_quirk_pll_disable(); |
| } |
| |
| ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs++; |
| |
| /* fill iTDs uframe by uframe */ |
| for (packet = iso_sched->first_packet, itd = NULL; |
| packet < urb->number_of_packets;) { |
| if (itd == NULL) { |
| /* ASSERT: we have all necessary itds */ |
| /* BUG_ON(list_empty(&iso_sched->td_list)); */ |
| |
| /* ASSERT: no itds for this endpoint in this uframe */ |
| |
| itd = list_entry(iso_sched->td_list.next, |
| struct ehci_itd, itd_list); |
| list_move_tail(&itd->itd_list, &stream->td_list); |
| itd->stream = stream; |
| itd->urb = urb; |
| itd_init(ehci, stream, itd); |
| } |
| |
| uframe = next_uframe & 0x07; |
| frame = next_uframe >> 3; |
| |
| itd_patch(ehci, itd, iso_sched, packet, uframe); |
| |
| next_uframe += stream->uperiod; |
| next_uframe &= mod - 1; |
| packet++; |
| |
| /* link completed itds into the schedule */ |
| if (((next_uframe >> 3) != frame) |
| || packet == urb->number_of_packets) { |
| itd_link(ehci, frame & (ehci->periodic_size - 1), itd); |
| itd = NULL; |
| } |
| } |
| stream->next_uframe = next_uframe; |
| |
| /* don't need that schedule data any more */ |
| iso_sched_free(stream, iso_sched); |
| urb->hcpriv = stream; |
| |
| ++ehci->isoc_count; |
| enable_periodic(ehci); |
| } |
| |
| #define ISO_ERRS (EHCI_ISOC_BUF_ERR | EHCI_ISOC_BABBLE | EHCI_ISOC_XACTERR) |
| |
| /* Process and recycle a completed ITD. Return true iff its urb completed, |
| * and hence its completion callback probably added things to the hardware |
| * schedule. |
| * |
| * Note that we carefully avoid recycling this descriptor until after any |
| * completion callback runs, so that it won't be reused quickly. That is, |
| * assuming (a) no more than two urbs per frame on this endpoint, and also |
| * (b) only this endpoint's completions submit URBs. It seems some silicon |
| * corrupts things if you reuse completed descriptors very quickly... |
| */ |
| static bool itd_complete(struct ehci_hcd *ehci, struct ehci_itd *itd) |
| { |
| struct urb *urb = itd->urb; |
| struct usb_iso_packet_descriptor *desc; |
| u32 t; |
| unsigned uframe; |
| int urb_index = -1; |
| struct ehci_iso_stream *stream = itd->stream; |
| struct usb_device *dev; |
| bool retval = false; |
| |
| /* for each uframe with a packet */ |
| for (uframe = 0; uframe < 8; uframe++) { |
| if (likely(itd->index[uframe] == -1)) |
| continue; |
| urb_index = itd->index[uframe]; |
| desc = &urb->iso_frame_desc[urb_index]; |
| |
| t = hc32_to_cpup(ehci, &itd->hw_transaction[uframe]); |
| itd->hw_transaction[uframe] = 0; |
| |
| /* report transfer status */ |
| if (unlikely(t & ISO_ERRS)) { |
| urb->error_count++; |
| if (t & EHCI_ISOC_BUF_ERR) |
| desc->status = usb_pipein(urb->pipe) |
| ? -ENOSR /* hc couldn't read */ |
| : -ECOMM; /* hc couldn't write */ |
| else if (t & EHCI_ISOC_BABBLE) |
| desc->status = -EOVERFLOW; |
| else /* (t & EHCI_ISOC_XACTERR) */ |
| desc->status = -EPROTO; |
| |
| /* HC need not update length with this error */ |
| if (!(t & EHCI_ISOC_BABBLE)) { |
| desc->actual_length = EHCI_ITD_LENGTH(t); |
| urb->actual_length += desc->actual_length; |
| } |
| } else if (likely((t & EHCI_ISOC_ACTIVE) == 0)) { |
| desc->status = 0; |
| desc->actual_length = EHCI_ITD_LENGTH(t); |
| urb->actual_length += desc->actual_length; |
| } else { |
| /* URB was too late */ |
| urb->error_count++; |
| } |
| } |
| |
| /* handle completion now? */ |
| if (likely((urb_index + 1) != urb->number_of_packets)) |
| goto done; |
| |
| /* |
| * ASSERT: it's really the last itd for this urb |
| * list_for_each_entry (itd, &stream->td_list, itd_list) |
| * BUG_ON(itd->urb == urb); |
| */ |
| |
| /* give urb back to the driver; completion often (re)submits */ |
| dev = urb->dev; |
| ehci_urb_done(ehci, urb, 0); |
| retval = true; |
| urb = NULL; |
| |
| --ehci->isoc_count; |
| disable_periodic(ehci); |
| |
| ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs--; |
| if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) { |
| if (ehci->amd_pll_fix == 1) |
| usb_amd_quirk_pll_enable(); |
| } |
| |
| if (unlikely(list_is_singular(&stream->td_list))) |
| ehci_to_hcd(ehci)->self.bandwidth_allocated |
| -= stream->bandwidth; |
| |
| done: |
| itd->urb = NULL; |
| |
| /* Add to the end of the free list for later reuse */ |
| list_move_tail(&itd->itd_list, &stream->free_list); |
| |
| /* Recycle the iTDs when the pipeline is empty (ep no longer in use) */ |
| if (list_empty(&stream->td_list)) { |
| list_splice_tail_init(&stream->free_list, |
| &ehci->cached_itd_list); |
| start_free_itds(ehci); |
| } |
| |
| return retval; |
| } |
| |
| /*-------------------------------------------------------------------------*/ |
| |
| static int itd_submit(struct ehci_hcd *ehci, struct urb *urb, |
| gfp_t mem_flags) |
| { |
| int status = -EINVAL; |
| unsigned long flags; |
| struct ehci_iso_stream *stream; |
| |
| /* Get iso_stream head */ |
| stream = iso_stream_find(ehci, urb); |
| if (unlikely(stream == NULL)) { |
| ehci_dbg(ehci, "can't get iso stream\n"); |
| return -ENOMEM; |
| } |
| if (unlikely(urb->interval != stream->uperiod)) { |
| ehci_dbg(ehci, "can't change iso interval %d --> %d\n", |
| stream->uperiod, urb->interval); |
| goto done; |
| } |
| |
| #ifdef EHCI_URB_TRACE |
| ehci_dbg(ehci, |
| "%s %s urb %p ep%d%s len %d, %d pkts %d uframes [%p]\n", |
| __func__, urb->dev->devpath, urb, |
| usb_pipeendpoint(urb->pipe), |
| usb_pipein(urb->pipe) ? "in" : "out", |
| urb->transfer_buffer_length, |
| urb->number_of_packets, urb->interval, |
| stream); |
| #endif |
| |
| /* allocate ITDs w/o locking anything */ |
| status = itd_urb_transaction(stream, ehci, urb, mem_flags); |
| if (unlikely(status < 0)) { |
| ehci_dbg(ehci, "can't init itds\n"); |
| goto done; |
| } |
| |
| /* schedule ... need to lock */ |
| spin_lock_irqsave(&ehci->lock, flags); |
| if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) { |
| status = -ESHUTDOWN; |
| goto done_not_linked; |
| } |
| status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb); |
| if (unlikely(status)) |
| goto done_not_linked; |
| status = iso_stream_schedule(ehci, urb, stream); |
| if (likely(status == 0)) { |
| itd_link_urb(ehci, urb, ehci->periodic_size << 3, stream); |
| } else if (status > 0) { |
| status = 0; |
| ehci_urb_done(ehci, urb, 0); |
| } else { |
| usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb); |
| } |
| done_not_linked: |
| spin_unlock_irqrestore(&ehci->lock, flags); |
| done: |
| return status; |
| } |
| |
| /*-------------------------------------------------------------------------*/ |
| |
| /* |
| * "Split ISO TDs" ... used for USB 1.1 devices going through the |
| * TTs in USB 2.0 hubs. These need microframe scheduling. |
| */ |
| |
| static inline void |
| sitd_sched_init( |
| struct ehci_hcd *ehci, |
| struct ehci_iso_sched *iso_sched, |
| struct ehci_iso_stream *stream, |
| struct urb *urb |
| ) |
| { |
| unsigned i; |
| dma_addr_t dma = urb->transfer_dma; |
| |
| /* how many frames are needed for these transfers */ |
| iso_sched->span = urb->number_of_packets * stream->ps.period; |
| |
| /* figure out per-frame sitd fields that we'll need later |
| * when we fit new sitds into the schedule. |
| */ |
| for (i = 0; i < urb->number_of_packets; i++) { |
| struct ehci_iso_packet *packet = &iso_sched->packet[i]; |
| unsigned length; |
| dma_addr_t buf; |
| u32 trans; |
| |
| length = urb->iso_frame_desc[i].length & 0x03ff; |
| buf = dma + urb->iso_frame_desc[i].offset; |
| |
| trans = SITD_STS_ACTIVE; |
| if (((i + 1) == urb->number_of_packets) |
| && !(urb->transfer_flags & URB_NO_INTERRUPT)) |
| trans |= SITD_IOC; |
| trans |= length << 16; |
| packet->transaction = cpu_to_hc32(ehci, trans); |
| |
| /* might need to cross a buffer page within a td */ |
| packet->bufp = buf; |
| packet->buf1 = (buf + length) & ~0x0fff; |
| if (packet->buf1 != (buf & ~(u64)0x0fff)) |
| packet->cross = 1; |
| |
| /* OUT uses multiple start-splits */ |
| if (stream->bEndpointAddress & USB_DIR_IN) |
| continue; |
| length = (length + 187) / 188; |
| if (length > 1) /* BEGIN vs ALL */ |
| length |= 1 << 3; |
| packet->buf1 |= length; |
| } |
| } |
| |
| static int |
| sitd_urb_transaction( |
| struct ehci_iso_stream *stream, |
| struct ehci_hcd *ehci, |
| struct urb *urb, |
| gfp_t mem_flags |
| ) |
| { |
| struct ehci_sitd *sitd; |
| dma_addr_t sitd_dma; |
| int i; |
| struct ehci_iso_sched *iso_sched; |
| unsigned long flags; |
| |
| iso_sched = iso_sched_alloc(urb->number_of_packets, mem_flags); |
| if (iso_sched == NULL) |
| return -ENOMEM; |
| |
| sitd_sched_init(ehci, iso_sched, stream, urb); |
| |
| /* allocate/init sITDs */ |
| spin_lock_irqsave(&ehci->lock, flags); |
| for (i = 0; i < urb->number_of_packets; i++) { |
| |
| /* NOTE: for now, we don't try to handle wraparound cases |
| * for IN (using sitd->hw_backpointer, like a FSTN), which |
| * means we never need two sitds for full speed packets. |
| */ |
| |
| /* |
| * Use siTDs from the free list, but not siTDs that may |
| * still be in use by the hardware. |
| */ |
| if (likely(!list_empty(&stream->free_list))) { |
| sitd = list_first_entry(&stream->free_list, |
| struct ehci_sitd, sitd_list); |
| if (sitd->frame == ehci->now_frame) |
| goto alloc_sitd; |
| list_del(&sitd->sitd_list); |
| sitd_dma = sitd->sitd_dma; |
| } else { |
| alloc_sitd: |
| spin_unlock_irqrestore(&ehci->lock, flags); |
| sitd = dma_pool_alloc(ehci->sitd_pool, mem_flags, |
| &sitd_dma); |
| spin_lock_irqsave(&ehci->lock, flags); |
| if (!sitd) { |
| iso_sched_free(stream, iso_sched); |
| spin_unlock_irqrestore(&ehci->lock, flags); |
| return -ENOMEM; |
| } |
| } |
| |
| memset(sitd, 0, sizeof(*sitd)); |
| sitd->sitd_dma = sitd_dma; |
| sitd->frame = NO_FRAME; |
| list_add(&sitd->sitd_list, &iso_sched->td_list); |
| } |
| |
| /* temporarily store schedule info in hcpriv */ |
| urb->hcpriv = iso_sched; |
| urb->error_count = 0; |
| |
| spin_unlock_irqrestore(&ehci->lock, flags); |
| return 0; |
| } |
| |
| /*-------------------------------------------------------------------------*/ |
| |
| static inline void |
| sitd_patch( |
| struct ehci_hcd *ehci, |
| struct ehci_iso_stream *stream, |
| struct ehci_sitd *sitd, |
| struct ehci_iso_sched *iso_sched, |
| unsigned index |
| ) |
| { |
| struct ehci_iso_packet *uf = &iso_sched->packet[index]; |
| u64 bufp; |
| |
| sitd->hw_next = EHCI_LIST_END(ehci); |
| sitd->hw_fullspeed_ep = stream->address; |
| sitd->hw_uframe = stream->splits; |
| sitd->hw_results = uf->transaction; |
| sitd->hw_backpointer = EHCI_LIST_END(ehci); |
| |
| bufp = uf->bufp; |
| sitd->hw_buf[0] = cpu_to_hc32(ehci, bufp); |
| sitd->hw_buf_hi[0] = cpu_to_hc32(ehci, bufp >> 32); |
| |
| sitd->hw_buf[1] = cpu_to_hc32(ehci, uf->buf1); |
| if (uf->cross) |
| bufp += 4096; |
| sitd->hw_buf_hi[1] = cpu_to_hc32(ehci, bufp >> 32); |
| sitd->index = index; |
| } |
| |
| static inline void |
| sitd_link(struct ehci_hcd *ehci, unsigned frame, struct ehci_sitd *sitd) |
| { |
| /* note: sitd ordering could matter (CSPLIT then SSPLIT) */ |
| sitd->sitd_next = ehci->pshadow[frame]; |
| sitd->hw_next = ehci->periodic[frame]; |
| ehci->pshadow[frame].sitd = sitd; |
| sitd->frame = frame; |
| wmb(); |
| ehci->periodic[frame] = cpu_to_hc32(ehci, sitd->sitd_dma | Q_TYPE_SITD); |
| } |
| |
| /* fit urb's sitds into the selected schedule slot; activate as needed */ |
| static void sitd_link_urb( |
| struct ehci_hcd *ehci, |
| struct urb *urb, |
| unsigned mod, |
| struct ehci_iso_stream *stream |
| ) |
| { |
| int packet; |
| unsigned next_uframe; |
| struct ehci_iso_sched *sched = urb->hcpriv; |
| struct ehci_sitd *sitd; |
| |
| next_uframe = stream->next_uframe; |
| |
| if (list_empty(&stream->td_list)) |
| /* usbfs ignores TT bandwidth */ |
| ehci_to_hcd(ehci)->self.bandwidth_allocated |
| += stream->bandwidth; |
| |
| if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) { |
| if (ehci->amd_pll_fix == 1) |
| usb_amd_quirk_pll_disable(); |
| } |
| |
| ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs++; |
| |
| /* fill sITDs frame by frame */ |
| for (packet = sched->first_packet, sitd = NULL; |
| packet < urb->number_of_packets; |
| packet++) { |
| |
| /* ASSERT: we have all necessary sitds */ |
| BUG_ON(list_empty(&sched->td_list)); |
| |
| /* ASSERT: no itds for this endpoint in this frame */ |
| |
| sitd = list_entry(sched->td_list.next, |
| struct ehci_sitd, sitd_list); |
| list_move_tail(&sitd->sitd_list, &stream->td_list); |
| sitd->stream = stream; |
| sitd->urb = urb; |
| |
| sitd_patch(ehci, stream, sitd, sched, packet); |
| sitd_link(ehci, (next_uframe >> 3) & (ehci->periodic_size - 1), |
| sitd); |
| |
| next_uframe += stream->uperiod; |
| } |
| stream->next_uframe = next_uframe & (mod - 1); |
| |
| /* don't need that schedule data any more */ |
| iso_sched_free(stream, sched); |
| urb->hcpriv = stream; |
| |
| ++ehci->isoc_count; |
| enable_periodic(ehci); |
| } |
| |
| /*-------------------------------------------------------------------------*/ |
| |
| #define SITD_ERRS (SITD_STS_ERR | SITD_STS_DBE | SITD_STS_BABBLE \ |
| | SITD_STS_XACT | SITD_STS_MMF) |
| |
| /* Process and recycle a completed SITD. Return true iff its urb completed, |
| * and hence its completion callback probably added things to the hardware |
| * schedule. |
| * |
| * Note that we carefully avoid recycling this descriptor until after any |
| * completion callback runs, so that it won't be reused quickly. That is, |
| * assuming (a) no more than two urbs per frame on this endpoint, and also |
| * (b) only this endpoint's completions submit URBs. It seems some silicon |
| * corrupts things if you reuse completed descriptors very quickly... |
| */ |
| static bool sitd_complete(struct ehci_hcd *ehci, struct ehci_sitd *sitd) |
| { |
| struct urb *urb = sitd->urb; |
| struct usb_iso_packet_descriptor *desc; |
| u32 t; |
| int urb_index; |
| struct ehci_iso_stream *stream = sitd->stream; |
| struct usb_device *dev; |
| bool retval = false; |
| |
| urb_index = sitd->index; |
| desc = &urb->iso_frame_desc[urb_index]; |
| t = hc32_to_cpup(ehci, &sitd->hw_results); |
| |
| /* report transfer status */ |
| if (unlikely(t & SITD_ERRS)) { |
| urb->error_count++; |
| if (t & SITD_STS_DBE) |
| desc->status = usb_pipein(urb->pipe) |
| ? -ENOSR /* hc couldn't read */ |
| : -ECOMM; /* hc couldn't write */ |
| else if (t & SITD_STS_BABBLE) |
| desc->status = -EOVERFLOW; |
| else /* XACT, MMF, etc */ |
| desc->status = -EPROTO; |
| } else if (unlikely(t & SITD_STS_ACTIVE)) { |
| /* URB was too late */ |
| urb->error_count++; |
| } else { |
| desc->status = 0; |
| desc->actual_length = desc->length - SITD_LENGTH(t); |
| urb->actual_length += desc->actual_length; |
| } |
| |
| /* handle completion now? */ |
| if ((urb_index + 1) != urb->number_of_packets) |
| goto done; |
| |
| /* |
| * ASSERT: it's really the last sitd for this urb |
| * list_for_each_entry (sitd, &stream->td_list, sitd_list) |
| * BUG_ON(sitd->urb == urb); |
| */ |
| |
| /* give urb back to the driver; completion often (re)submits */ |
| dev = urb->dev; |
| ehci_urb_done(ehci, urb, 0); |
| retval = true; |
| urb = NULL; |
| |
| --ehci->isoc_count; |
| disable_periodic(ehci); |
| |
| ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs--; |
| if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) { |
| if (ehci->amd_pll_fix == 1) |
| usb_amd_quirk_pll_enable(); |
| } |
| |
| if (list_is_singular(&stream->td_list)) |
| ehci_to_hcd(ehci)->self.bandwidth_allocated |
| -= stream->bandwidth; |
| |
| done: |
| sitd->urb = NULL; |
| |
| /* Add to the end of the free list for later reuse */ |
| list_move_tail(&sitd->sitd_list, &stream->free_list); |
| |
| /* Recycle the siTDs when the pipeline is empty (ep no longer in use) */ |
| if (list_empty(&stream->td_list)) { |
| list_splice_tail_init(&stream->free_list, |
| &ehci->cached_sitd_list); |
| start_free_itds(ehci); |
| } |
| |
| return retval; |
| } |
| |
| |
| static int sitd_submit(struct ehci_hcd *ehci, struct urb *urb, |
| gfp_t mem_flags) |
| { |
| int status = -EINVAL; |
| unsigned long flags; |
| struct ehci_iso_stream *stream; |
| |
| /* Get iso_stream head */ |
| stream = iso_stream_find(ehci, urb); |
| if (stream == NULL) { |
| ehci_dbg(ehci, "can't get iso stream\n"); |
| return -ENOMEM; |
| } |
| if (urb->interval != stream->ps.period) { |
| ehci_dbg(ehci, "can't change iso interval %d --> %d\n", |
| stream->ps.period, urb->interval); |
| goto done; |
| } |
| |
| #ifdef EHCI_URB_TRACE |
| ehci_dbg(ehci, |
| "submit %p dev%s ep%d%s-iso len %d\n", |
| urb, urb->dev->devpath, |
| usb_pipeendpoint(urb->pipe), |
| usb_pipein(urb->pipe) ? "in" : "out", |
| urb->transfer_buffer_length); |
| #endif |
| |
| /* allocate SITDs */ |
| status = sitd_urb_transaction(stream, ehci, urb, mem_flags); |
| if (status < 0) { |
| ehci_dbg(ehci, "can't init sitds\n"); |
| goto done; |
| } |
| |
| /* schedule ... need to lock */ |
| spin_lock_irqsave(&ehci->lock, flags); |
| if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) { |
| status = -ESHUTDOWN; |
| goto done_not_linked; |
| } |
| status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb); |
| if (unlikely(status)) |
| goto done_not_linked; |
| status = iso_stream_schedule(ehci, urb, stream); |
| if (likely(status == 0)) { |
| sitd_link_urb(ehci, urb, ehci->periodic_size << 3, stream); |
| } else if (status > 0) { |
| status = 0; |
| ehci_urb_done(ehci, urb, 0); |
| } else { |
| usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb); |
| } |
| done_not_linked: |
| spin_unlock_irqrestore(&ehci->lock, flags); |
| done: |
| return status; |
| } |
| |
| /*-------------------------------------------------------------------------*/ |
| |
| static void scan_isoc(struct ehci_hcd *ehci) |
| { |
| unsigned uf, now_frame, frame; |
| unsigned fmask = ehci->periodic_size - 1; |
| bool modified, live; |
| union ehci_shadow q, *q_p; |
| __hc32 type, *hw_p; |
| |
| /* |
| * When running, scan from last scan point up to "now" |
| * else clean up by scanning everything that's left. |
| * Touches as few pages as possible: cache-friendly. |
| */ |
| if (ehci->rh_state >= EHCI_RH_RUNNING) { |
| uf = ehci_read_frame_index(ehci); |
| now_frame = (uf >> 3) & fmask; |
| live = true; |
| } else { |
| now_frame = (ehci->last_iso_frame - 1) & fmask; |
| live = false; |
| } |
| ehci->now_frame = now_frame; |
| |
| frame = ehci->last_iso_frame; |
| |
| restart: |
| /* Scan each element in frame's queue for completions */ |
| q_p = &ehci->pshadow[frame]; |
| hw_p = &ehci->periodic[frame]; |
| q.ptr = q_p->ptr; |
| type = Q_NEXT_TYPE(ehci, *hw_p); |
| modified = false; |
| |
| while (q.ptr != NULL) { |
| switch (hc32_to_cpu(ehci, type)) { |
| case Q_TYPE_ITD: |
| /* |
| * If this ITD is still active, leave it for |
| * later processing ... check the next entry. |
| * No need to check for activity unless the |
| * frame is current. |
| */ |
| if (frame == now_frame && live) { |
| rmb(); |
| for (uf = 0; uf < 8; uf++) { |
| if (q.itd->hw_transaction[uf] & |
| ITD_ACTIVE(ehci)) |
| break; |
| } |
| if (uf < 8) { |
| q_p = &q.itd->itd_next; |
| hw_p = &q.itd->hw_next; |
| type = Q_NEXT_TYPE(ehci, |
| q.itd->hw_next); |
| q = *q_p; |
| break; |
| } |
| } |
| |
| /* |
| * Take finished ITDs out of the schedule |
| * and process them: recycle, maybe report |
| * URB completion. HC won't cache the |
| * pointer for much longer, if at all. |
| */ |
| *q_p = q.itd->itd_next; |
| if (!ehci->use_dummy_qh || |
| q.itd->hw_next != EHCI_LIST_END(ehci)) |
| *hw_p = q.itd->hw_next; |
| else |
| *hw_p = cpu_to_hc32(ehci, ehci->dummy->qh_dma); |
| type = Q_NEXT_TYPE(ehci, q.itd->hw_next); |
| wmb(); |
| modified = itd_complete(ehci, q.itd); |
| q = *q_p; |
| break; |
| case Q_TYPE_SITD: |
| /* |
| * If this SITD is still active, leave it for |
| * later processing ... check the next entry. |
| * No need to check for activity unless the |
| * frame is current. |
| */ |
| if (((frame == now_frame) || |
| (((frame + 1) & fmask) == now_frame)) |
| && live |
| && (q.sitd->hw_results & SITD_ACTIVE(ehci))) { |
| |
| q_p = &q.sitd->sitd_next; |
| hw_p = &q.sitd->hw_next; |
| type = Q_NEXT_TYPE(ehci, q.sitd->hw_next); |
| q = *q_p; |
| break; |
| } |
| |
| /* |
| * Take finished SITDs out of the schedule |
| * and process them: recycle, maybe report |
| * URB completion. |
| */ |
| *q_p = q.sitd->sitd_next; |
| if (!ehci->use_dummy_qh || |
| q.sitd->hw_next != EHCI_LIST_END(ehci)) |
| *hw_p = q.sitd->hw_next; |
| else |
| *hw_p = cpu_to_hc32(ehci, ehci->dummy->qh_dma); |
| type = Q_NEXT_TYPE(ehci, q.sitd->hw_next); |
| wmb(); |
| modified = sitd_complete(ehci, q.sitd); |
| q = *q_p; |
| break; |
| default: |
| ehci_dbg(ehci, "corrupt type %d frame %d shadow %p\n", |
| type, frame, q.ptr); |
| /* BUG(); */ |
| /* FALL THROUGH */ |
| case Q_TYPE_QH: |
| case Q_TYPE_FSTN: |
| /* End of the iTDs and siTDs */ |
| q.ptr = NULL; |
| break; |
| } |
| |
| /* Assume completion callbacks modify the queue */ |
| if (unlikely(modified && ehci->isoc_count > 0)) |
| goto restart; |
| } |
| |
| /* Stop when we have reached the current frame */ |
| if (frame == now_frame) |
| return; |
| |
| /* The last frame may still have active siTDs */ |
| ehci->last_iso_frame = frame; |
| frame = (frame + 1) & fmask; |
| |
| goto restart; |
| } |