| /* |
| * zsmalloc memory allocator |
| * |
| * Copyright (C) 2011 Nitin Gupta |
| * Copyright (C) 2012, 2013 Minchan Kim |
| * |
| * This code is released using a dual license strategy: BSD/GPL |
| * You can choose the license that better fits your requirements. |
| * |
| * Released under the terms of 3-clause BSD License |
| * Released under the terms of GNU General Public License Version 2.0 |
| */ |
| |
| /* |
| * Following is how we use various fields and flags of underlying |
| * struct page(s) to form a zspage. |
| * |
| * Usage of struct page fields: |
| * page->first_page: points to the first component (0-order) page |
| * page->index (union with page->freelist): offset of the first object |
| * starting in this page. For the first page, this is |
| * always 0, so we use this field (aka freelist) to point |
| * to the first free object in zspage. |
| * page->lru: links together all component pages (except the first page) |
| * of a zspage |
| * |
| * For _first_ page only: |
| * |
| * page->private (union with page->first_page): refers to the |
| * component page after the first page |
| * If the page is first_page for huge object, it stores handle. |
| * Look at size_class->huge. |
| * page->freelist: points to the first free object in zspage. |
| * Free objects are linked together using in-place |
| * metadata. |
| * page->objects: maximum number of objects we can store in this |
| * zspage (class->zspage_order * PAGE_SIZE / class->size) |
| * page->lru: links together first pages of various zspages. |
| * Basically forming list of zspages in a fullness group. |
| * page->mapping: class index and fullness group of the zspage |
| * |
| * Usage of struct page flags: |
| * PG_private: identifies the first component page |
| * PG_private2: identifies the last component page |
| * |
| */ |
| |
| #ifdef CONFIG_ZSMALLOC_DEBUG |
| #define DEBUG |
| #endif |
| |
| #include <linux/module.h> |
| #include <linux/kernel.h> |
| #include <linux/sched.h> |
| #include <linux/bitops.h> |
| #include <linux/errno.h> |
| #include <linux/highmem.h> |
| #include <linux/string.h> |
| #include <linux/slab.h> |
| #include <asm/tlbflush.h> |
| #include <asm/pgtable.h> |
| #include <linux/cpumask.h> |
| #include <linux/cpu.h> |
| #include <linux/vmalloc.h> |
| #include <linux/hardirq.h> |
| #include <linux/spinlock.h> |
| #include <linux/types.h> |
| #include <linux/debugfs.h> |
| #include <linux/zsmalloc.h> |
| #include <linux/zpool.h> |
| |
| /* |
| * This must be power of 2 and greater than of equal to sizeof(link_free). |
| * These two conditions ensure that any 'struct link_free' itself doesn't |
| * span more than 1 page which avoids complex case of mapping 2 pages simply |
| * to restore link_free pointer values. |
| */ |
| #define ZS_ALIGN 8 |
| |
| /* |
| * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single) |
| * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N. |
| */ |
| #define ZS_MAX_ZSPAGE_ORDER 2 |
| #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER) |
| |
| #define ZS_HANDLE_SIZE (sizeof(unsigned long)) |
| |
| /* |
| * Object location (<PFN>, <obj_idx>) is encoded as |
| * as single (unsigned long) handle value. |
| * |
| * Note that object index <obj_idx> is relative to system |
| * page <PFN> it is stored in, so for each sub-page belonging |
| * to a zspage, obj_idx starts with 0. |
| * |
| * This is made more complicated by various memory models and PAE. |
| */ |
| |
| #ifndef MAX_PHYSMEM_BITS |
| #ifdef CONFIG_HIGHMEM64G |
| #define MAX_PHYSMEM_BITS 36 |
| #else /* !CONFIG_HIGHMEM64G */ |
| /* |
| * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just |
| * be PAGE_SHIFT |
| */ |
| #define MAX_PHYSMEM_BITS BITS_PER_LONG |
| #endif |
| #endif |
| #define _PFN_BITS (MAX_PHYSMEM_BITS - PAGE_SHIFT) |
| |
| /* |
| * Memory for allocating for handle keeps object position by |
| * encoding <page, obj_idx> and the encoded value has a room |
| * in least bit(ie, look at obj_to_location). |
| * We use the bit to synchronize between object access by |
| * user and migration. |
| */ |
| #define HANDLE_PIN_BIT 0 |
| |
| /* |
| * Head in allocated object should have OBJ_ALLOCATED_TAG |
| * to identify the object was allocated or not. |
| * It's okay to add the status bit in the least bit because |
| * header keeps handle which is 4byte-aligned address so we |
| * have room for two bit at least. |
| */ |
| #define OBJ_ALLOCATED_TAG 1 |
| #define OBJ_TAG_BITS 1 |
| #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS) |
| #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1) |
| |
| #define MAX(a, b) ((a) >= (b) ? (a) : (b)) |
| /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */ |
| #define ZS_MIN_ALLOC_SIZE \ |
| MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS)) |
| /* each chunk includes extra space to keep handle */ |
| #define ZS_MAX_ALLOC_SIZE PAGE_SIZE |
| |
| /* |
| * On systems with 4K page size, this gives 255 size classes! There is a |
| * trader-off here: |
| * - Large number of size classes is potentially wasteful as free page are |
| * spread across these classes |
| * - Small number of size classes causes large internal fragmentation |
| * - Probably its better to use specific size classes (empirically |
| * determined). NOTE: all those class sizes must be set as multiple of |
| * ZS_ALIGN to make sure link_free itself never has to span 2 pages. |
| * |
| * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN |
| * (reason above) |
| */ |
| #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> 8) |
| |
| /* |
| * We do not maintain any list for completely empty or full pages |
| */ |
| enum fullness_group { |
| ZS_ALMOST_FULL, |
| ZS_ALMOST_EMPTY, |
| _ZS_NR_FULLNESS_GROUPS, |
| |
| ZS_EMPTY, |
| ZS_FULL |
| }; |
| |
| enum zs_stat_type { |
| OBJ_ALLOCATED, |
| OBJ_USED, |
| CLASS_ALMOST_FULL, |
| CLASS_ALMOST_EMPTY, |
| NR_ZS_STAT_TYPE, |
| }; |
| |
| #ifdef CONFIG_ZSMALLOC_STAT |
| |
| static struct dentry *zs_stat_root; |
| |
| struct zs_size_stat { |
| unsigned long objs[NR_ZS_STAT_TYPE]; |
| }; |
| |
| #endif |
| |
| /* |
| * number of size_classes |
| */ |
| static int zs_size_classes; |
| |
| /* |
| * We assign a page to ZS_ALMOST_EMPTY fullness group when: |
| * n <= N / f, where |
| * n = number of allocated objects |
| * N = total number of objects zspage can store |
| * f = fullness_threshold_frac |
| * |
| * Similarly, we assign zspage to: |
| * ZS_ALMOST_FULL when n > N / f |
| * ZS_EMPTY when n == 0 |
| * ZS_FULL when n == N |
| * |
| * (see: fix_fullness_group()) |
| */ |
| static const int fullness_threshold_frac = 4; |
| |
| struct size_class { |
| /* |
| * Size of objects stored in this class. Must be multiple |
| * of ZS_ALIGN. |
| */ |
| int size; |
| unsigned int index; |
| |
| /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */ |
| int pages_per_zspage; |
| /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */ |
| bool huge; |
| |
| #ifdef CONFIG_ZSMALLOC_STAT |
| struct zs_size_stat stats; |
| #endif |
| |
| spinlock_t lock; |
| |
| struct page *fullness_list[_ZS_NR_FULLNESS_GROUPS]; |
| }; |
| |
| /* |
| * Placed within free objects to form a singly linked list. |
| * For every zspage, first_page->freelist gives head of this list. |
| * |
| * This must be power of 2 and less than or equal to ZS_ALIGN |
| */ |
| struct link_free { |
| union { |
| /* |
| * Position of next free chunk (encodes <PFN, obj_idx>) |
| * It's valid for non-allocated object |
| */ |
| void *next; |
| /* |
| * Handle of allocated object. |
| */ |
| unsigned long handle; |
| }; |
| }; |
| |
| struct zs_pool { |
| char *name; |
| |
| struct size_class **size_class; |
| struct kmem_cache *handle_cachep; |
| |
| gfp_t flags; /* allocation flags used when growing pool */ |
| atomic_long_t pages_allocated; |
| |
| #ifdef CONFIG_ZSMALLOC_STAT |
| struct dentry *stat_dentry; |
| #endif |
| }; |
| |
| /* |
| * A zspage's class index and fullness group |
| * are encoded in its (first)page->mapping |
| */ |
| #define CLASS_IDX_BITS 28 |
| #define FULLNESS_BITS 4 |
| #define CLASS_IDX_MASK ((1 << CLASS_IDX_BITS) - 1) |
| #define FULLNESS_MASK ((1 << FULLNESS_BITS) - 1) |
| |
| struct mapping_area { |
| #ifdef CONFIG_PGTABLE_MAPPING |
| struct vm_struct *vm; /* vm area for mapping object that span pages */ |
| #else |
| char *vm_buf; /* copy buffer for objects that span pages */ |
| #endif |
| char *vm_addr; /* address of kmap_atomic()'ed pages */ |
| enum zs_mapmode vm_mm; /* mapping mode */ |
| bool huge; |
| }; |
| |
| static int create_handle_cache(struct zs_pool *pool) |
| { |
| pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE, |
| 0, 0, NULL); |
| return pool->handle_cachep ? 0 : 1; |
| } |
| |
| static void destroy_handle_cache(struct zs_pool *pool) |
| { |
| kmem_cache_destroy(pool->handle_cachep); |
| } |
| |
| static unsigned long alloc_handle(struct zs_pool *pool) |
| { |
| return (unsigned long)kmem_cache_alloc(pool->handle_cachep, |
| pool->flags & ~__GFP_HIGHMEM); |
| } |
| |
| static void free_handle(struct zs_pool *pool, unsigned long handle) |
| { |
| kmem_cache_free(pool->handle_cachep, (void *)handle); |
| } |
| |
| static void record_obj(unsigned long handle, unsigned long obj) |
| { |
| *(unsigned long *)handle = obj; |
| } |
| |
| /* zpool driver */ |
| |
| #ifdef CONFIG_ZPOOL |
| |
| static void *zs_zpool_create(char *name, gfp_t gfp, struct zpool_ops *zpool_ops) |
| { |
| return zs_create_pool(name, gfp); |
| } |
| |
| static void zs_zpool_destroy(void *pool) |
| { |
| zs_destroy_pool(pool); |
| } |
| |
| static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp, |
| unsigned long *handle) |
| { |
| *handle = zs_malloc(pool, size); |
| return *handle ? 0 : -1; |
| } |
| static void zs_zpool_free(void *pool, unsigned long handle) |
| { |
| zs_free(pool, handle); |
| } |
| |
| static int zs_zpool_shrink(void *pool, unsigned int pages, |
| unsigned int *reclaimed) |
| { |
| return -EINVAL; |
| } |
| |
| static void *zs_zpool_map(void *pool, unsigned long handle, |
| enum zpool_mapmode mm) |
| { |
| enum zs_mapmode zs_mm; |
| |
| switch (mm) { |
| case ZPOOL_MM_RO: |
| zs_mm = ZS_MM_RO; |
| break; |
| case ZPOOL_MM_WO: |
| zs_mm = ZS_MM_WO; |
| break; |
| case ZPOOL_MM_RW: /* fallthru */ |
| default: |
| zs_mm = ZS_MM_RW; |
| break; |
| } |
| |
| return zs_map_object(pool, handle, zs_mm); |
| } |
| static void zs_zpool_unmap(void *pool, unsigned long handle) |
| { |
| zs_unmap_object(pool, handle); |
| } |
| |
| static u64 zs_zpool_total_size(void *pool) |
| { |
| return zs_get_total_pages(pool) << PAGE_SHIFT; |
| } |
| |
| static struct zpool_driver zs_zpool_driver = { |
| .type = "zsmalloc", |
| .owner = THIS_MODULE, |
| .create = zs_zpool_create, |
| .destroy = zs_zpool_destroy, |
| .malloc = zs_zpool_malloc, |
| .free = zs_zpool_free, |
| .shrink = zs_zpool_shrink, |
| .map = zs_zpool_map, |
| .unmap = zs_zpool_unmap, |
| .total_size = zs_zpool_total_size, |
| }; |
| |
| MODULE_ALIAS("zpool-zsmalloc"); |
| #endif /* CONFIG_ZPOOL */ |
| |
| static unsigned int get_maxobj_per_zspage(int size, int pages_per_zspage) |
| { |
| return pages_per_zspage * PAGE_SIZE / size; |
| } |
| |
| /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */ |
| static DEFINE_PER_CPU(struct mapping_area, zs_map_area); |
| |
| static int is_first_page(struct page *page) |
| { |
| return PagePrivate(page); |
| } |
| |
| static int is_last_page(struct page *page) |
| { |
| return PagePrivate2(page); |
| } |
| |
| static void get_zspage_mapping(struct page *page, unsigned int *class_idx, |
| enum fullness_group *fullness) |
| { |
| unsigned long m; |
| BUG_ON(!is_first_page(page)); |
| |
| m = (unsigned long)page->mapping; |
| *fullness = m & FULLNESS_MASK; |
| *class_idx = (m >> FULLNESS_BITS) & CLASS_IDX_MASK; |
| } |
| |
| static void set_zspage_mapping(struct page *page, unsigned int class_idx, |
| enum fullness_group fullness) |
| { |
| unsigned long m; |
| BUG_ON(!is_first_page(page)); |
| |
| m = ((class_idx & CLASS_IDX_MASK) << FULLNESS_BITS) | |
| (fullness & FULLNESS_MASK); |
| page->mapping = (struct address_space *)m; |
| } |
| |
| /* |
| * zsmalloc divides the pool into various size classes where each |
| * class maintains a list of zspages where each zspage is divided |
| * into equal sized chunks. Each allocation falls into one of these |
| * classes depending on its size. This function returns index of the |
| * size class which has chunk size big enough to hold the give size. |
| */ |
| static int get_size_class_index(int size) |
| { |
| int idx = 0; |
| |
| if (likely(size > ZS_MIN_ALLOC_SIZE)) |
| idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE, |
| ZS_SIZE_CLASS_DELTA); |
| |
| return min(zs_size_classes - 1, idx); |
| } |
| |
| #ifdef CONFIG_ZSMALLOC_STAT |
| |
| static inline void zs_stat_inc(struct size_class *class, |
| enum zs_stat_type type, unsigned long cnt) |
| { |
| class->stats.objs[type] += cnt; |
| } |
| |
| static inline void zs_stat_dec(struct size_class *class, |
| enum zs_stat_type type, unsigned long cnt) |
| { |
| class->stats.objs[type] -= cnt; |
| } |
| |
| static inline unsigned long zs_stat_get(struct size_class *class, |
| enum zs_stat_type type) |
| { |
| return class->stats.objs[type]; |
| } |
| |
| static int __init zs_stat_init(void) |
| { |
| if (!debugfs_initialized()) |
| return -ENODEV; |
| |
| zs_stat_root = debugfs_create_dir("zsmalloc", NULL); |
| if (!zs_stat_root) |
| return -ENOMEM; |
| |
| return 0; |
| } |
| |
| static void __exit zs_stat_exit(void) |
| { |
| debugfs_remove_recursive(zs_stat_root); |
| } |
| |
| static int zs_stats_size_show(struct seq_file *s, void *v) |
| { |
| int i; |
| struct zs_pool *pool = s->private; |
| struct size_class *class; |
| int objs_per_zspage; |
| unsigned long class_almost_full, class_almost_empty; |
| unsigned long obj_allocated, obj_used, pages_used; |
| unsigned long total_class_almost_full = 0, total_class_almost_empty = 0; |
| unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0; |
| |
| seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s\n", |
| "class", "size", "almost_full", "almost_empty", |
| "obj_allocated", "obj_used", "pages_used", |
| "pages_per_zspage"); |
| |
| for (i = 0; i < zs_size_classes; i++) { |
| class = pool->size_class[i]; |
| |
| if (class->index != i) |
| continue; |
| |
| spin_lock(&class->lock); |
| class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL); |
| class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY); |
| obj_allocated = zs_stat_get(class, OBJ_ALLOCATED); |
| obj_used = zs_stat_get(class, OBJ_USED); |
| spin_unlock(&class->lock); |
| |
| objs_per_zspage = get_maxobj_per_zspage(class->size, |
| class->pages_per_zspage); |
| pages_used = obj_allocated / objs_per_zspage * |
| class->pages_per_zspage; |
| |
| seq_printf(s, " %5u %5u %11lu %12lu %13lu %10lu %10lu %16d\n", |
| i, class->size, class_almost_full, class_almost_empty, |
| obj_allocated, obj_used, pages_used, |
| class->pages_per_zspage); |
| |
| total_class_almost_full += class_almost_full; |
| total_class_almost_empty += class_almost_empty; |
| total_objs += obj_allocated; |
| total_used_objs += obj_used; |
| total_pages += pages_used; |
| } |
| |
| seq_puts(s, "\n"); |
| seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu\n", |
| "Total", "", total_class_almost_full, |
| total_class_almost_empty, total_objs, |
| total_used_objs, total_pages); |
| |
| return 0; |
| } |
| |
| static int zs_stats_size_open(struct inode *inode, struct file *file) |
| { |
| return single_open(file, zs_stats_size_show, inode->i_private); |
| } |
| |
| static const struct file_operations zs_stat_size_ops = { |
| .open = zs_stats_size_open, |
| .read = seq_read, |
| .llseek = seq_lseek, |
| .release = single_release, |
| }; |
| |
| static int zs_pool_stat_create(char *name, struct zs_pool *pool) |
| { |
| struct dentry *entry; |
| |
| if (!zs_stat_root) |
| return -ENODEV; |
| |
| entry = debugfs_create_dir(name, zs_stat_root); |
| if (!entry) { |
| pr_warn("debugfs dir <%s> creation failed\n", name); |
| return -ENOMEM; |
| } |
| pool->stat_dentry = entry; |
| |
| entry = debugfs_create_file("classes", S_IFREG | S_IRUGO, |
| pool->stat_dentry, pool, &zs_stat_size_ops); |
| if (!entry) { |
| pr_warn("%s: debugfs file entry <%s> creation failed\n", |
| name, "classes"); |
| return -ENOMEM; |
| } |
| |
| return 0; |
| } |
| |
| static void zs_pool_stat_destroy(struct zs_pool *pool) |
| { |
| debugfs_remove_recursive(pool->stat_dentry); |
| } |
| |
| #else /* CONFIG_ZSMALLOC_STAT */ |
| |
| static inline void zs_stat_inc(struct size_class *class, |
| enum zs_stat_type type, unsigned long cnt) |
| { |
| } |
| |
| static inline void zs_stat_dec(struct size_class *class, |
| enum zs_stat_type type, unsigned long cnt) |
| { |
| } |
| |
| static inline unsigned long zs_stat_get(struct size_class *class, |
| enum zs_stat_type type) |
| { |
| return 0; |
| } |
| |
| static int __init zs_stat_init(void) |
| { |
| return 0; |
| } |
| |
| static void __exit zs_stat_exit(void) |
| { |
| } |
| |
| static inline int zs_pool_stat_create(char *name, struct zs_pool *pool) |
| { |
| return 0; |
| } |
| |
| static inline void zs_pool_stat_destroy(struct zs_pool *pool) |
| { |
| } |
| |
| #endif |
| |
| |
| /* |
| * For each size class, zspages are divided into different groups |
| * depending on how "full" they are. This was done so that we could |
| * easily find empty or nearly empty zspages when we try to shrink |
| * the pool (not yet implemented). This function returns fullness |
| * status of the given page. |
| */ |
| static enum fullness_group get_fullness_group(struct page *page) |
| { |
| int inuse, max_objects; |
| enum fullness_group fg; |
| BUG_ON(!is_first_page(page)); |
| |
| inuse = page->inuse; |
| max_objects = page->objects; |
| |
| if (inuse == 0) |
| fg = ZS_EMPTY; |
| else if (inuse == max_objects) |
| fg = ZS_FULL; |
| else if (inuse <= 3 * max_objects / fullness_threshold_frac) |
| fg = ZS_ALMOST_EMPTY; |
| else |
| fg = ZS_ALMOST_FULL; |
| |
| return fg; |
| } |
| |
| /* |
| * Each size class maintains various freelists and zspages are assigned |
| * to one of these freelists based on the number of live objects they |
| * have. This functions inserts the given zspage into the freelist |
| * identified by <class, fullness_group>. |
| */ |
| static void insert_zspage(struct page *page, struct size_class *class, |
| enum fullness_group fullness) |
| { |
| struct page **head; |
| |
| BUG_ON(!is_first_page(page)); |
| |
| if (fullness >= _ZS_NR_FULLNESS_GROUPS) |
| return; |
| |
| head = &class->fullness_list[fullness]; |
| if (*head) |
| list_add_tail(&page->lru, &(*head)->lru); |
| |
| *head = page; |
| zs_stat_inc(class, fullness == ZS_ALMOST_EMPTY ? |
| CLASS_ALMOST_EMPTY : CLASS_ALMOST_FULL, 1); |
| } |
| |
| /* |
| * This function removes the given zspage from the freelist identified |
| * by <class, fullness_group>. |
| */ |
| static void remove_zspage(struct page *page, struct size_class *class, |
| enum fullness_group fullness) |
| { |
| struct page **head; |
| |
| BUG_ON(!is_first_page(page)); |
| |
| if (fullness >= _ZS_NR_FULLNESS_GROUPS) |
| return; |
| |
| head = &class->fullness_list[fullness]; |
| BUG_ON(!*head); |
| if (list_empty(&(*head)->lru)) |
| *head = NULL; |
| else if (*head == page) |
| *head = (struct page *)list_entry((*head)->lru.next, |
| struct page, lru); |
| |
| list_del_init(&page->lru); |
| zs_stat_dec(class, fullness == ZS_ALMOST_EMPTY ? |
| CLASS_ALMOST_EMPTY : CLASS_ALMOST_FULL, 1); |
| } |
| |
| /* |
| * Each size class maintains zspages in different fullness groups depending |
| * on the number of live objects they contain. When allocating or freeing |
| * objects, the fullness status of the page can change, say, from ALMOST_FULL |
| * to ALMOST_EMPTY when freeing an object. This function checks if such |
| * a status change has occurred for the given page and accordingly moves the |
| * page from the freelist of the old fullness group to that of the new |
| * fullness group. |
| */ |
| static enum fullness_group fix_fullness_group(struct size_class *class, |
| struct page *page) |
| { |
| int class_idx; |
| enum fullness_group currfg, newfg; |
| |
| BUG_ON(!is_first_page(page)); |
| |
| get_zspage_mapping(page, &class_idx, &currfg); |
| newfg = get_fullness_group(page); |
| if (newfg == currfg) |
| goto out; |
| |
| remove_zspage(page, class, currfg); |
| insert_zspage(page, class, newfg); |
| set_zspage_mapping(page, class_idx, newfg); |
| |
| out: |
| return newfg; |
| } |
| |
| /* |
| * We have to decide on how many pages to link together |
| * to form a zspage for each size class. This is important |
| * to reduce wastage due to unusable space left at end of |
| * each zspage which is given as: |
| * wastage = Zp - Zp % size_class |
| * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ... |
| * |
| * For example, for size class of 3/8 * PAGE_SIZE, we should |
| * link together 3 PAGE_SIZE sized pages to form a zspage |
| * since then we can perfectly fit in 8 such objects. |
| */ |
| static int get_pages_per_zspage(int class_size) |
| { |
| int i, max_usedpc = 0; |
| /* zspage order which gives maximum used size per KB */ |
| int max_usedpc_order = 1; |
| |
| for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) { |
| int zspage_size; |
| int waste, usedpc; |
| |
| zspage_size = i * PAGE_SIZE; |
| waste = zspage_size % class_size; |
| usedpc = (zspage_size - waste) * 100 / zspage_size; |
| |
| if (usedpc > max_usedpc) { |
| max_usedpc = usedpc; |
| max_usedpc_order = i; |
| } |
| } |
| |
| return max_usedpc_order; |
| } |
| |
| /* |
| * A single 'zspage' is composed of many system pages which are |
| * linked together using fields in struct page. This function finds |
| * the first/head page, given any component page of a zspage. |
| */ |
| static struct page *get_first_page(struct page *page) |
| { |
| if (is_first_page(page)) |
| return page; |
| else |
| return page->first_page; |
| } |
| |
| static struct page *get_next_page(struct page *page) |
| { |
| struct page *next; |
| |
| if (is_last_page(page)) |
| next = NULL; |
| else if (is_first_page(page)) |
| next = (struct page *)page_private(page); |
| else |
| next = list_entry(page->lru.next, struct page, lru); |
| |
| return next; |
| } |
| |
| /* |
| * Encode <page, obj_idx> as a single handle value. |
| * We use the least bit of handle for tagging. |
| */ |
| static void *location_to_obj(struct page *page, unsigned long obj_idx) |
| { |
| unsigned long obj; |
| |
| if (!page) { |
| BUG_ON(obj_idx); |
| return NULL; |
| } |
| |
| obj = page_to_pfn(page) << OBJ_INDEX_BITS; |
| obj |= ((obj_idx) & OBJ_INDEX_MASK); |
| obj <<= OBJ_TAG_BITS; |
| |
| return (void *)obj; |
| } |
| |
| /* |
| * Decode <page, obj_idx> pair from the given object handle. We adjust the |
| * decoded obj_idx back to its original value since it was adjusted in |
| * location_to_obj(). |
| */ |
| static void obj_to_location(unsigned long obj, struct page **page, |
| unsigned long *obj_idx) |
| { |
| obj >>= OBJ_TAG_BITS; |
| *page = pfn_to_page(obj >> OBJ_INDEX_BITS); |
| *obj_idx = (obj & OBJ_INDEX_MASK); |
| } |
| |
| static unsigned long handle_to_obj(unsigned long handle) |
| { |
| return *(unsigned long *)handle; |
| } |
| |
| static unsigned long obj_to_head(struct size_class *class, struct page *page, |
| void *obj) |
| { |
| if (class->huge) { |
| VM_BUG_ON(!is_first_page(page)); |
| return *(unsigned long *)page_private(page); |
| } else |
| return *(unsigned long *)obj; |
| } |
| |
| static unsigned long obj_idx_to_offset(struct page *page, |
| unsigned long obj_idx, int class_size) |
| { |
| unsigned long off = 0; |
| |
| if (!is_first_page(page)) |
| off = page->index; |
| |
| return off + obj_idx * class_size; |
| } |
| |
| static inline int trypin_tag(unsigned long handle) |
| { |
| unsigned long *ptr = (unsigned long *)handle; |
| |
| return !test_and_set_bit_lock(HANDLE_PIN_BIT, ptr); |
| } |
| |
| static void pin_tag(unsigned long handle) |
| { |
| while (!trypin_tag(handle)); |
| } |
| |
| static void unpin_tag(unsigned long handle) |
| { |
| unsigned long *ptr = (unsigned long *)handle; |
| |
| clear_bit_unlock(HANDLE_PIN_BIT, ptr); |
| } |
| |
| static void reset_page(struct page *page) |
| { |
| clear_bit(PG_private, &page->flags); |
| clear_bit(PG_private_2, &page->flags); |
| set_page_private(page, 0); |
| page->mapping = NULL; |
| page->freelist = NULL; |
| page_mapcount_reset(page); |
| } |
| |
| static void free_zspage(struct page *first_page) |
| { |
| struct page *nextp, *tmp, *head_extra; |
| |
| BUG_ON(!is_first_page(first_page)); |
| BUG_ON(first_page->inuse); |
| |
| head_extra = (struct page *)page_private(first_page); |
| |
| reset_page(first_page); |
| __free_page(first_page); |
| |
| /* zspage with only 1 system page */ |
| if (!head_extra) |
| return; |
| |
| list_for_each_entry_safe(nextp, tmp, &head_extra->lru, lru) { |
| list_del(&nextp->lru); |
| reset_page(nextp); |
| __free_page(nextp); |
| } |
| reset_page(head_extra); |
| __free_page(head_extra); |
| } |
| |
| /* Initialize a newly allocated zspage */ |
| static void init_zspage(struct page *first_page, struct size_class *class) |
| { |
| unsigned long off = 0; |
| struct page *page = first_page; |
| |
| BUG_ON(!is_first_page(first_page)); |
| while (page) { |
| struct page *next_page; |
| struct link_free *link; |
| unsigned int i = 1; |
| void *vaddr; |
| |
| /* |
| * page->index stores offset of first object starting |
| * in the page. For the first page, this is always 0, |
| * so we use first_page->index (aka ->freelist) to store |
| * head of corresponding zspage's freelist. |
| */ |
| if (page != first_page) |
| page->index = off; |
| |
| vaddr = kmap_atomic(page); |
| link = (struct link_free *)vaddr + off / sizeof(*link); |
| |
| while ((off += class->size) < PAGE_SIZE) { |
| link->next = location_to_obj(page, i++); |
| link += class->size / sizeof(*link); |
| } |
| |
| /* |
| * We now come to the last (full or partial) object on this |
| * page, which must point to the first object on the next |
| * page (if present) |
| */ |
| next_page = get_next_page(page); |
| link->next = location_to_obj(next_page, 0); |
| kunmap_atomic(vaddr); |
| page = next_page; |
| off %= PAGE_SIZE; |
| } |
| } |
| |
| /* |
| * Allocate a zspage for the given size class |
| */ |
| static struct page *alloc_zspage(struct size_class *class, gfp_t flags) |
| { |
| int i, error; |
| struct page *first_page = NULL, *uninitialized_var(prev_page); |
| |
| /* |
| * Allocate individual pages and link them together as: |
| * 1. first page->private = first sub-page |
| * 2. all sub-pages are linked together using page->lru |
| * 3. each sub-page is linked to the first page using page->first_page |
| * |
| * For each size class, First/Head pages are linked together using |
| * page->lru. Also, we set PG_private to identify the first page |
| * (i.e. no other sub-page has this flag set) and PG_private_2 to |
| * identify the last page. |
| */ |
| error = -ENOMEM; |
| for (i = 0; i < class->pages_per_zspage; i++) { |
| struct page *page; |
| |
| page = alloc_page(flags); |
| if (!page) |
| goto cleanup; |
| |
| INIT_LIST_HEAD(&page->lru); |
| if (i == 0) { /* first page */ |
| SetPagePrivate(page); |
| set_page_private(page, 0); |
| first_page = page; |
| first_page->inuse = 0; |
| } |
| if (i == 1) |
| set_page_private(first_page, (unsigned long)page); |
| if (i >= 1) |
| page->first_page = first_page; |
| if (i >= 2) |
| list_add(&page->lru, &prev_page->lru); |
| if (i == class->pages_per_zspage - 1) /* last page */ |
| SetPagePrivate2(page); |
| prev_page = page; |
| } |
| |
| init_zspage(first_page, class); |
| |
| first_page->freelist = location_to_obj(first_page, 0); |
| /* Maximum number of objects we can store in this zspage */ |
| first_page->objects = class->pages_per_zspage * PAGE_SIZE / class->size; |
| |
| error = 0; /* Success */ |
| |
| cleanup: |
| if (unlikely(error) && first_page) { |
| free_zspage(first_page); |
| first_page = NULL; |
| } |
| |
| return first_page; |
| } |
| |
| static struct page *find_get_zspage(struct size_class *class) |
| { |
| int i; |
| struct page *page; |
| |
| for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) { |
| page = class->fullness_list[i]; |
| if (page) |
| break; |
| } |
| |
| return page; |
| } |
| |
| #ifdef CONFIG_PGTABLE_MAPPING |
| static inline int __zs_cpu_up(struct mapping_area *area) |
| { |
| /* |
| * Make sure we don't leak memory if a cpu UP notification |
| * and zs_init() race and both call zs_cpu_up() on the same cpu |
| */ |
| if (area->vm) |
| return 0; |
| area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL); |
| if (!area->vm) |
| return -ENOMEM; |
| return 0; |
| } |
| |
| static inline void __zs_cpu_down(struct mapping_area *area) |
| { |
| if (area->vm) |
| free_vm_area(area->vm); |
| area->vm = NULL; |
| } |
| |
| static inline void *__zs_map_object(struct mapping_area *area, |
| struct page *pages[2], int off, int size) |
| { |
| BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages)); |
| area->vm_addr = area->vm->addr; |
| return area->vm_addr + off; |
| } |
| |
| static inline void __zs_unmap_object(struct mapping_area *area, |
| struct page *pages[2], int off, int size) |
| { |
| unsigned long addr = (unsigned long)area->vm_addr; |
| |
| unmap_kernel_range(addr, PAGE_SIZE * 2); |
| } |
| |
| #else /* CONFIG_PGTABLE_MAPPING */ |
| |
| static inline int __zs_cpu_up(struct mapping_area *area) |
| { |
| /* |
| * Make sure we don't leak memory if a cpu UP notification |
| * and zs_init() race and both call zs_cpu_up() on the same cpu |
| */ |
| if (area->vm_buf) |
| return 0; |
| area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL); |
| if (!area->vm_buf) |
| return -ENOMEM; |
| return 0; |
| } |
| |
| static inline void __zs_cpu_down(struct mapping_area *area) |
| { |
| kfree(area->vm_buf); |
| area->vm_buf = NULL; |
| } |
| |
| static void *__zs_map_object(struct mapping_area *area, |
| struct page *pages[2], int off, int size) |
| { |
| int sizes[2]; |
| void *addr; |
| char *buf = area->vm_buf; |
| |
| /* disable page faults to match kmap_atomic() return conditions */ |
| pagefault_disable(); |
| |
| /* no read fastpath */ |
| if (area->vm_mm == ZS_MM_WO) |
| goto out; |
| |
| sizes[0] = PAGE_SIZE - off; |
| sizes[1] = size - sizes[0]; |
| |
| /* copy object to per-cpu buffer */ |
| addr = kmap_atomic(pages[0]); |
| memcpy(buf, addr + off, sizes[0]); |
| kunmap_atomic(addr); |
| addr = kmap_atomic(pages[1]); |
| memcpy(buf + sizes[0], addr, sizes[1]); |
| kunmap_atomic(addr); |
| out: |
| return area->vm_buf; |
| } |
| |
| static void __zs_unmap_object(struct mapping_area *area, |
| struct page *pages[2], int off, int size) |
| { |
| int sizes[2]; |
| void *addr; |
| char *buf; |
| |
| /* no write fastpath */ |
| if (area->vm_mm == ZS_MM_RO) |
| goto out; |
| |
| buf = area->vm_buf; |
| if (!area->huge) { |
| buf = buf + ZS_HANDLE_SIZE; |
| size -= ZS_HANDLE_SIZE; |
| off += ZS_HANDLE_SIZE; |
| } |
| |
| sizes[0] = PAGE_SIZE - off; |
| sizes[1] = size - sizes[0]; |
| |
| /* copy per-cpu buffer to object */ |
| addr = kmap_atomic(pages[0]); |
| memcpy(addr + off, buf, sizes[0]); |
| kunmap_atomic(addr); |
| addr = kmap_atomic(pages[1]); |
| memcpy(addr, buf + sizes[0], sizes[1]); |
| kunmap_atomic(addr); |
| |
| out: |
| /* enable page faults to match kunmap_atomic() return conditions */ |
| pagefault_enable(); |
| } |
| |
| #endif /* CONFIG_PGTABLE_MAPPING */ |
| |
| static int zs_cpu_notifier(struct notifier_block *nb, unsigned long action, |
| void *pcpu) |
| { |
| int ret, cpu = (long)pcpu; |
| struct mapping_area *area; |
| |
| switch (action) { |
| case CPU_UP_PREPARE: |
| area = &per_cpu(zs_map_area, cpu); |
| ret = __zs_cpu_up(area); |
| if (ret) |
| return notifier_from_errno(ret); |
| break; |
| case CPU_DEAD: |
| case CPU_UP_CANCELED: |
| area = &per_cpu(zs_map_area, cpu); |
| __zs_cpu_down(area); |
| break; |
| } |
| |
| return NOTIFY_OK; |
| } |
| |
| static struct notifier_block zs_cpu_nb = { |
| .notifier_call = zs_cpu_notifier |
| }; |
| |
| static int zs_register_cpu_notifier(void) |
| { |
| int cpu, uninitialized_var(ret); |
| |
| cpu_notifier_register_begin(); |
| |
| __register_cpu_notifier(&zs_cpu_nb); |
| for_each_online_cpu(cpu) { |
| ret = zs_cpu_notifier(NULL, CPU_UP_PREPARE, (void *)(long)cpu); |
| if (notifier_to_errno(ret)) |
| break; |
| } |
| |
| cpu_notifier_register_done(); |
| return notifier_to_errno(ret); |
| } |
| |
| static void zs_unregister_cpu_notifier(void) |
| { |
| int cpu; |
| |
| cpu_notifier_register_begin(); |
| |
| for_each_online_cpu(cpu) |
| zs_cpu_notifier(NULL, CPU_DEAD, (void *)(long)cpu); |
| __unregister_cpu_notifier(&zs_cpu_nb); |
| |
| cpu_notifier_register_done(); |
| } |
| |
| static void init_zs_size_classes(void) |
| { |
| int nr; |
| |
| nr = (ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / ZS_SIZE_CLASS_DELTA + 1; |
| if ((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) % ZS_SIZE_CLASS_DELTA) |
| nr += 1; |
| |
| zs_size_classes = nr; |
| } |
| |
| static bool can_merge(struct size_class *prev, int size, int pages_per_zspage) |
| { |
| if (prev->pages_per_zspage != pages_per_zspage) |
| return false; |
| |
| if (get_maxobj_per_zspage(prev->size, prev->pages_per_zspage) |
| != get_maxobj_per_zspage(size, pages_per_zspage)) |
| return false; |
| |
| return true; |
| } |
| |
| static bool zspage_full(struct page *page) |
| { |
| BUG_ON(!is_first_page(page)); |
| |
| return page->inuse == page->objects; |
| } |
| |
| unsigned long zs_get_total_pages(struct zs_pool *pool) |
| { |
| return atomic_long_read(&pool->pages_allocated); |
| } |
| EXPORT_SYMBOL_GPL(zs_get_total_pages); |
| |
| /** |
| * zs_map_object - get address of allocated object from handle. |
| * @pool: pool from which the object was allocated |
| * @handle: handle returned from zs_malloc |
| * |
| * Before using an object allocated from zs_malloc, it must be mapped using |
| * this function. When done with the object, it must be unmapped using |
| * zs_unmap_object. |
| * |
| * Only one object can be mapped per cpu at a time. There is no protection |
| * against nested mappings. |
| * |
| * This function returns with preemption and page faults disabled. |
| */ |
| void *zs_map_object(struct zs_pool *pool, unsigned long handle, |
| enum zs_mapmode mm) |
| { |
| struct page *page; |
| unsigned long obj, obj_idx, off; |
| |
| unsigned int class_idx; |
| enum fullness_group fg; |
| struct size_class *class; |
| struct mapping_area *area; |
| struct page *pages[2]; |
| void *ret; |
| |
| BUG_ON(!handle); |
| |
| /* |
| * Because we use per-cpu mapping areas shared among the |
| * pools/users, we can't allow mapping in interrupt context |
| * because it can corrupt another users mappings. |
| */ |
| BUG_ON(in_interrupt()); |
| |
| /* From now on, migration cannot move the object */ |
| pin_tag(handle); |
| |
| obj = handle_to_obj(handle); |
| obj_to_location(obj, &page, &obj_idx); |
| get_zspage_mapping(get_first_page(page), &class_idx, &fg); |
| class = pool->size_class[class_idx]; |
| off = obj_idx_to_offset(page, obj_idx, class->size); |
| |
| area = &get_cpu_var(zs_map_area); |
| area->vm_mm = mm; |
| if (off + class->size <= PAGE_SIZE) { |
| /* this object is contained entirely within a page */ |
| area->vm_addr = kmap_atomic(page); |
| ret = area->vm_addr + off; |
| goto out; |
| } |
| |
| /* this object spans two pages */ |
| pages[0] = page; |
| pages[1] = get_next_page(page); |
| BUG_ON(!pages[1]); |
| |
| ret = __zs_map_object(area, pages, off, class->size); |
| out: |
| if (!class->huge) |
| ret += ZS_HANDLE_SIZE; |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(zs_map_object); |
| |
| void zs_unmap_object(struct zs_pool *pool, unsigned long handle) |
| { |
| struct page *page; |
| unsigned long obj, obj_idx, off; |
| |
| unsigned int class_idx; |
| enum fullness_group fg; |
| struct size_class *class; |
| struct mapping_area *area; |
| |
| BUG_ON(!handle); |
| |
| obj = handle_to_obj(handle); |
| obj_to_location(obj, &page, &obj_idx); |
| get_zspage_mapping(get_first_page(page), &class_idx, &fg); |
| class = pool->size_class[class_idx]; |
| off = obj_idx_to_offset(page, obj_idx, class->size); |
| |
| area = this_cpu_ptr(&zs_map_area); |
| if (off + class->size <= PAGE_SIZE) |
| kunmap_atomic(area->vm_addr); |
| else { |
| struct page *pages[2]; |
| |
| pages[0] = page; |
| pages[1] = get_next_page(page); |
| BUG_ON(!pages[1]); |
| |
| __zs_unmap_object(area, pages, off, class->size); |
| } |
| put_cpu_var(zs_map_area); |
| unpin_tag(handle); |
| } |
| EXPORT_SYMBOL_GPL(zs_unmap_object); |
| |
| static unsigned long obj_malloc(struct page *first_page, |
| struct size_class *class, unsigned long handle) |
| { |
| unsigned long obj; |
| struct link_free *link; |
| |
| struct page *m_page; |
| unsigned long m_objidx, m_offset; |
| void *vaddr; |
| |
| handle |= OBJ_ALLOCATED_TAG; |
| obj = (unsigned long)first_page->freelist; |
| obj_to_location(obj, &m_page, &m_objidx); |
| m_offset = obj_idx_to_offset(m_page, m_objidx, class->size); |
| |
| vaddr = kmap_atomic(m_page); |
| link = (struct link_free *)vaddr + m_offset / sizeof(*link); |
| first_page->freelist = link->next; |
| if (!class->huge) |
| /* record handle in the header of allocated chunk */ |
| link->handle = handle; |
| else |
| /* record handle in first_page->private */ |
| set_page_private(first_page, handle); |
| kunmap_atomic(vaddr); |
| first_page->inuse++; |
| zs_stat_inc(class, OBJ_USED, 1); |
| |
| return obj; |
| } |
| |
| |
| /** |
| * zs_malloc - Allocate block of given size from pool. |
| * @pool: pool to allocate from |
| * @size: size of block to allocate |
| * |
| * On success, handle to the allocated object is returned, |
| * otherwise 0. |
| * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail. |
| */ |
| unsigned long zs_malloc(struct zs_pool *pool, size_t size) |
| { |
| unsigned long handle, obj; |
| struct size_class *class; |
| struct page *first_page; |
| |
| if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE)) |
| return 0; |
| |
| handle = alloc_handle(pool); |
| if (!handle) |
| return 0; |
| |
| /* extra space in chunk to keep the handle */ |
| size += ZS_HANDLE_SIZE; |
| class = pool->size_class[get_size_class_index(size)]; |
| /* In huge class size, we store the handle into first_page->private */ |
| if (class->huge) { |
| size -= ZS_HANDLE_SIZE; |
| class = pool->size_class[get_size_class_index(size)]; |
| } |
| |
| spin_lock(&class->lock); |
| first_page = find_get_zspage(class); |
| |
| if (!first_page) { |
| spin_unlock(&class->lock); |
| first_page = alloc_zspage(class, pool->flags); |
| if (unlikely(!first_page)) { |
| free_handle(pool, handle); |
| return 0; |
| } |
| |
| set_zspage_mapping(first_page, class->index, ZS_EMPTY); |
| atomic_long_add(class->pages_per_zspage, |
| &pool->pages_allocated); |
| |
| spin_lock(&class->lock); |
| zs_stat_inc(class, OBJ_ALLOCATED, get_maxobj_per_zspage( |
| class->size, class->pages_per_zspage)); |
| } |
| |
| obj = obj_malloc(first_page, class, handle); |
| /* Now move the zspage to another fullness group, if required */ |
| fix_fullness_group(class, first_page); |
| record_obj(handle, obj); |
| spin_unlock(&class->lock); |
| |
| return handle; |
| } |
| EXPORT_SYMBOL_GPL(zs_malloc); |
| |
| static void obj_free(struct zs_pool *pool, struct size_class *class, |
| unsigned long obj) |
| { |
| struct link_free *link; |
| struct page *first_page, *f_page; |
| unsigned long f_objidx, f_offset; |
| void *vaddr; |
| int class_idx; |
| enum fullness_group fullness; |
| |
| BUG_ON(!obj); |
| |
| obj &= ~OBJ_ALLOCATED_TAG; |
| obj_to_location(obj, &f_page, &f_objidx); |
| first_page = get_first_page(f_page); |
| |
| get_zspage_mapping(first_page, &class_idx, &fullness); |
| f_offset = obj_idx_to_offset(f_page, f_objidx, class->size); |
| |
| vaddr = kmap_atomic(f_page); |
| |
| /* Insert this object in containing zspage's freelist */ |
| link = (struct link_free *)(vaddr + f_offset); |
| link->next = first_page->freelist; |
| if (class->huge) |
| set_page_private(first_page, 0); |
| kunmap_atomic(vaddr); |
| first_page->freelist = (void *)obj; |
| first_page->inuse--; |
| zs_stat_dec(class, OBJ_USED, 1); |
| } |
| |
| void zs_free(struct zs_pool *pool, unsigned long handle) |
| { |
| struct page *first_page, *f_page; |
| unsigned long obj, f_objidx; |
| int class_idx; |
| struct size_class *class; |
| enum fullness_group fullness; |
| |
| if (unlikely(!handle)) |
| return; |
| |
| pin_tag(handle); |
| obj = handle_to_obj(handle); |
| obj_to_location(obj, &f_page, &f_objidx); |
| first_page = get_first_page(f_page); |
| |
| get_zspage_mapping(first_page, &class_idx, &fullness); |
| class = pool->size_class[class_idx]; |
| |
| spin_lock(&class->lock); |
| obj_free(pool, class, obj); |
| fullness = fix_fullness_group(class, first_page); |
| if (fullness == ZS_EMPTY) { |
| zs_stat_dec(class, OBJ_ALLOCATED, get_maxobj_per_zspage( |
| class->size, class->pages_per_zspage)); |
| atomic_long_sub(class->pages_per_zspage, |
| &pool->pages_allocated); |
| free_zspage(first_page); |
| } |
| spin_unlock(&class->lock); |
| unpin_tag(handle); |
| |
| free_handle(pool, handle); |
| } |
| EXPORT_SYMBOL_GPL(zs_free); |
| |
| static void zs_object_copy(unsigned long src, unsigned long dst, |
| struct size_class *class) |
| { |
| struct page *s_page, *d_page; |
| unsigned long s_objidx, d_objidx; |
| unsigned long s_off, d_off; |
| void *s_addr, *d_addr; |
| int s_size, d_size, size; |
| int written = 0; |
| |
| s_size = d_size = class->size; |
| |
| obj_to_location(src, &s_page, &s_objidx); |
| obj_to_location(dst, &d_page, &d_objidx); |
| |
| s_off = obj_idx_to_offset(s_page, s_objidx, class->size); |
| d_off = obj_idx_to_offset(d_page, d_objidx, class->size); |
| |
| if (s_off + class->size > PAGE_SIZE) |
| s_size = PAGE_SIZE - s_off; |
| |
| if (d_off + class->size > PAGE_SIZE) |
| d_size = PAGE_SIZE - d_off; |
| |
| s_addr = kmap_atomic(s_page); |
| d_addr = kmap_atomic(d_page); |
| |
| while (1) { |
| size = min(s_size, d_size); |
| memcpy(d_addr + d_off, s_addr + s_off, size); |
| written += size; |
| |
| if (written == class->size) |
| break; |
| |
| if (s_off + size >= PAGE_SIZE) { |
| kunmap_atomic(d_addr); |
| kunmap_atomic(s_addr); |
| s_page = get_next_page(s_page); |
| BUG_ON(!s_page); |
| s_addr = kmap_atomic(s_page); |
| d_addr = kmap_atomic(d_page); |
| s_size = class->size - written; |
| s_off = 0; |
| } else { |
| s_off += size; |
| s_size -= size; |
| } |
| |
| if (d_off + size >= PAGE_SIZE) { |
| kunmap_atomic(d_addr); |
| d_page = get_next_page(d_page); |
| BUG_ON(!d_page); |
| d_addr = kmap_atomic(d_page); |
| d_size = class->size - written; |
| d_off = 0; |
| } else { |
| d_off += size; |
| d_size -= size; |
| } |
| } |
| |
| kunmap_atomic(d_addr); |
| kunmap_atomic(s_addr); |
| } |
| |
| /* |
| * Find alloced object in zspage from index object and |
| * return handle. |
| */ |
| static unsigned long find_alloced_obj(struct page *page, int index, |
| struct size_class *class) |
| { |
| unsigned long head; |
| int offset = 0; |
| unsigned long handle = 0; |
| void *addr = kmap_atomic(page); |
| |
| if (!is_first_page(page)) |
| offset = page->index; |
| offset += class->size * index; |
| |
| while (offset < PAGE_SIZE) { |
| head = obj_to_head(class, page, addr + offset); |
| if (head & OBJ_ALLOCATED_TAG) { |
| handle = head & ~OBJ_ALLOCATED_TAG; |
| if (trypin_tag(handle)) |
| break; |
| handle = 0; |
| } |
| |
| offset += class->size; |
| index++; |
| } |
| |
| kunmap_atomic(addr); |
| return handle; |
| } |
| |
| struct zs_compact_control { |
| /* Source page for migration which could be a subpage of zspage. */ |
| struct page *s_page; |
| /* Destination page for migration which should be a first page |
| * of zspage. */ |
| struct page *d_page; |
| /* Starting object index within @s_page which used for live object |
| * in the subpage. */ |
| int index; |
| /* how many of objects are migrated */ |
| int nr_migrated; |
| }; |
| |
| static int migrate_zspage(struct zs_pool *pool, struct size_class *class, |
| struct zs_compact_control *cc) |
| { |
| unsigned long used_obj, free_obj; |
| unsigned long handle; |
| struct page *s_page = cc->s_page; |
| struct page *d_page = cc->d_page; |
| unsigned long index = cc->index; |
| int nr_migrated = 0; |
| int ret = 0; |
| |
| while (1) { |
| handle = find_alloced_obj(s_page, index, class); |
| if (!handle) { |
| s_page = get_next_page(s_page); |
| if (!s_page) |
| break; |
| index = 0; |
| continue; |
| } |
| |
| /* Stop if there is no more space */ |
| if (zspage_full(d_page)) { |
| unpin_tag(handle); |
| ret = -ENOMEM; |
| break; |
| } |
| |
| used_obj = handle_to_obj(handle); |
| free_obj = obj_malloc(d_page, class, handle); |
| zs_object_copy(used_obj, free_obj, class); |
| index++; |
| record_obj(handle, free_obj); |
| unpin_tag(handle); |
| obj_free(pool, class, used_obj); |
| nr_migrated++; |
| } |
| |
| /* Remember last position in this iteration */ |
| cc->s_page = s_page; |
| cc->index = index; |
| cc->nr_migrated = nr_migrated; |
| |
| return ret; |
| } |
| |
| static struct page *alloc_target_page(struct size_class *class) |
| { |
| int i; |
| struct page *page; |
| |
| for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) { |
| page = class->fullness_list[i]; |
| if (page) { |
| remove_zspage(page, class, i); |
| break; |
| } |
| } |
| |
| return page; |
| } |
| |
| static void putback_zspage(struct zs_pool *pool, struct size_class *class, |
| struct page *first_page) |
| { |
| int class_idx; |
| enum fullness_group fullness; |
| |
| BUG_ON(!is_first_page(first_page)); |
| |
| get_zspage_mapping(first_page, &class_idx, &fullness); |
| insert_zspage(first_page, class, fullness); |
| fullness = fix_fullness_group(class, first_page); |
| if (fullness == ZS_EMPTY) { |
| zs_stat_dec(class, OBJ_ALLOCATED, get_maxobj_per_zspage( |
| class->size, class->pages_per_zspage)); |
| atomic_long_sub(class->pages_per_zspage, |
| &pool->pages_allocated); |
| |
| free_zspage(first_page); |
| } |
| } |
| |
| static struct page *isolate_source_page(struct size_class *class) |
| { |
| struct page *page; |
| |
| page = class->fullness_list[ZS_ALMOST_EMPTY]; |
| if (page) |
| remove_zspage(page, class, ZS_ALMOST_EMPTY); |
| |
| return page; |
| } |
| |
| static unsigned long __zs_compact(struct zs_pool *pool, |
| struct size_class *class) |
| { |
| int nr_to_migrate; |
| struct zs_compact_control cc; |
| struct page *src_page; |
| struct page *dst_page = NULL; |
| unsigned long nr_total_migrated = 0; |
| |
| cond_resched(); |
| |
| spin_lock(&class->lock); |
| while ((src_page = isolate_source_page(class))) { |
| |
| BUG_ON(!is_first_page(src_page)); |
| |
| /* The goal is to migrate all live objects in source page */ |
| nr_to_migrate = src_page->inuse; |
| cc.index = 0; |
| cc.s_page = src_page; |
| |
| while ((dst_page = alloc_target_page(class))) { |
| cc.d_page = dst_page; |
| /* |
| * If there is no more space in dst_page, try to |
| * allocate another zspage. |
| */ |
| if (!migrate_zspage(pool, class, &cc)) |
| break; |
| |
| putback_zspage(pool, class, dst_page); |
| nr_total_migrated += cc.nr_migrated; |
| nr_to_migrate -= cc.nr_migrated; |
| } |
| |
| /* Stop if we couldn't find slot */ |
| if (dst_page == NULL) |
| break; |
| |
| putback_zspage(pool, class, dst_page); |
| putback_zspage(pool, class, src_page); |
| spin_unlock(&class->lock); |
| nr_total_migrated += cc.nr_migrated; |
| cond_resched(); |
| spin_lock(&class->lock); |
| } |
| |
| if (src_page) |
| putback_zspage(pool, class, src_page); |
| |
| spin_unlock(&class->lock); |
| |
| return nr_total_migrated; |
| } |
| |
| unsigned long zs_compact(struct zs_pool *pool) |
| { |
| int i; |
| unsigned long nr_migrated = 0; |
| struct size_class *class; |
| |
| for (i = zs_size_classes - 1; i >= 0; i--) { |
| class = pool->size_class[i]; |
| if (!class) |
| continue; |
| if (class->index != i) |
| continue; |
| nr_migrated += __zs_compact(pool, class); |
| } |
| |
| synchronize_rcu(); |
| |
| return nr_migrated; |
| } |
| EXPORT_SYMBOL_GPL(zs_compact); |
| |
| /** |
| * zs_create_pool - Creates an allocation pool to work from. |
| * @flags: allocation flags used to allocate pool metadata |
| * |
| * This function must be called before anything when using |
| * the zsmalloc allocator. |
| * |
| * On success, a pointer to the newly created pool is returned, |
| * otherwise NULL. |
| */ |
| struct zs_pool *zs_create_pool(char *name, gfp_t flags) |
| { |
| int i; |
| struct zs_pool *pool; |
| struct size_class *prev_class = NULL; |
| |
| pool = kzalloc(sizeof(*pool), GFP_KERNEL); |
| if (!pool) |
| return NULL; |
| |
| pool->size_class = kcalloc(zs_size_classes, sizeof(struct size_class *), |
| GFP_KERNEL); |
| if (!pool->size_class) { |
| kfree(pool); |
| return NULL; |
| } |
| |
| pool->name = kstrdup(name, GFP_KERNEL); |
| if (!pool->name) |
| goto err; |
| |
| if (create_handle_cache(pool)) |
| goto err; |
| |
| /* |
| * Iterate reversly, because, size of size_class that we want to use |
| * for merging should be larger or equal to current size. |
| */ |
| for (i = zs_size_classes - 1; i >= 0; i--) { |
| int size; |
| int pages_per_zspage; |
| struct size_class *class; |
| |
| size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA; |
| if (size > ZS_MAX_ALLOC_SIZE) |
| size = ZS_MAX_ALLOC_SIZE; |
| pages_per_zspage = get_pages_per_zspage(size); |
| |
| /* |
| * size_class is used for normal zsmalloc operation such |
| * as alloc/free for that size. Although it is natural that we |
| * have one size_class for each size, there is a chance that we |
| * can get more memory utilization if we use one size_class for |
| * many different sizes whose size_class have same |
| * characteristics. So, we makes size_class point to |
| * previous size_class if possible. |
| */ |
| if (prev_class) { |
| if (can_merge(prev_class, size, pages_per_zspage)) { |
| pool->size_class[i] = prev_class; |
| continue; |
| } |
| } |
| |
| class = kzalloc(sizeof(struct size_class), GFP_KERNEL); |
| if (!class) |
| goto err; |
| |
| class->size = size; |
| class->index = i; |
| class->pages_per_zspage = pages_per_zspage; |
| if (pages_per_zspage == 1 && |
| get_maxobj_per_zspage(size, pages_per_zspage) == 1) |
| class->huge = true; |
| spin_lock_init(&class->lock); |
| pool->size_class[i] = class; |
| |
| prev_class = class; |
| } |
| |
| pool->flags = flags; |
| |
| if (zs_pool_stat_create(name, pool)) |
| goto err; |
| |
| return pool; |
| |
| err: |
| zs_destroy_pool(pool); |
| return NULL; |
| } |
| EXPORT_SYMBOL_GPL(zs_create_pool); |
| |
| void zs_destroy_pool(struct zs_pool *pool) |
| { |
| int i; |
| |
| zs_pool_stat_destroy(pool); |
| |
| for (i = 0; i < zs_size_classes; i++) { |
| int fg; |
| struct size_class *class = pool->size_class[i]; |
| |
| if (!class) |
| continue; |
| |
| if (class->index != i) |
| continue; |
| |
| for (fg = 0; fg < _ZS_NR_FULLNESS_GROUPS; fg++) { |
| if (class->fullness_list[fg]) { |
| pr_info("Freeing non-empty class with size %db, fullness group %d\n", |
| class->size, fg); |
| } |
| } |
| kfree(class); |
| } |
| |
| destroy_handle_cache(pool); |
| kfree(pool->size_class); |
| kfree(pool->name); |
| kfree(pool); |
| } |
| EXPORT_SYMBOL_GPL(zs_destroy_pool); |
| |
| static int __init zs_init(void) |
| { |
| int ret = zs_register_cpu_notifier(); |
| |
| if (ret) |
| goto notifier_fail; |
| |
| init_zs_size_classes(); |
| |
| #ifdef CONFIG_ZPOOL |
| zpool_register_driver(&zs_zpool_driver); |
| #endif |
| |
| ret = zs_stat_init(); |
| if (ret) { |
| pr_err("zs stat initialization failed\n"); |
| goto stat_fail; |
| } |
| return 0; |
| |
| stat_fail: |
| #ifdef CONFIG_ZPOOL |
| zpool_unregister_driver(&zs_zpool_driver); |
| #endif |
| notifier_fail: |
| zs_unregister_cpu_notifier(); |
| |
| return ret; |
| } |
| |
| static void __exit zs_exit(void) |
| { |
| #ifdef CONFIG_ZPOOL |
| zpool_unregister_driver(&zs_zpool_driver); |
| #endif |
| zs_unregister_cpu_notifier(); |
| |
| zs_stat_exit(); |
| } |
| |
| module_init(zs_init); |
| module_exit(zs_exit); |
| |
| MODULE_LICENSE("Dual BSD/GPL"); |
| MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>"); |