| /* |
| * Copyright(c) 2016 Intel Corporation. |
| * |
| * This file is provided under a dual BSD/GPLv2 license. When using or |
| * redistributing this file, you may do so under either license. |
| * |
| * GPL LICENSE SUMMARY |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of version 2 of the GNU General Public License as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License for more details. |
| * |
| * BSD LICENSE |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * - Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * - Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * - Neither the name of Intel Corporation nor the names of its |
| * contributors may be used to endorse or promote products derived |
| * from this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| * |
| */ |
| |
| #include <linux/slab.h> |
| #include <linux/vmalloc.h> |
| #include <rdma/ib_umem.h> |
| #include <rdma/rdma_vt.h> |
| #include "vt.h" |
| #include "mr.h" |
| |
| /* |
| * Do any intilization needed when a driver registers with rdmavt. |
| */ |
| int rvt_driver_mr_init(struct rvt_dev_info *rdi) |
| { |
| unsigned int lkey_table_size = rdi->dparms.lkey_table_size; |
| unsigned lk_tab_size; |
| int i; |
| |
| if (rdi->flags & RVT_FLAG_MR_INIT_DRIVER) { |
| rvt_pr_info(rdi, "Driver is doing MR init.\n"); |
| return 0; |
| } |
| |
| /* |
| * The top hfi1_lkey_table_size bits are used to index the |
| * table. The lower 8 bits can be owned by the user (copied from |
| * the LKEY). The remaining bits act as a generation number or tag. |
| */ |
| if (!lkey_table_size) |
| return -EINVAL; |
| |
| spin_lock_init(&rdi->lkey_table.lock); |
| |
| rdi->lkey_table.max = 1 << lkey_table_size; |
| |
| /* ensure generation is at least 4 bits */ |
| if (lkey_table_size > RVT_MAX_LKEY_TABLE_BITS) { |
| rvt_pr_warn(rdi, "lkey bits %u too large, reduced to %u\n", |
| lkey_table_size, RVT_MAX_LKEY_TABLE_BITS); |
| rdi->dparms.lkey_table_size = RVT_MAX_LKEY_TABLE_BITS; |
| lkey_table_size = rdi->dparms.lkey_table_size; |
| } |
| lk_tab_size = rdi->lkey_table.max * sizeof(*rdi->lkey_table.table); |
| rdi->lkey_table.table = (struct rvt_mregion __rcu **) |
| vmalloc_node(lk_tab_size, rdi->dparms.node); |
| if (!rdi->lkey_table.table) |
| return -ENOMEM; |
| |
| RCU_INIT_POINTER(rdi->dma_mr, NULL); |
| for (i = 0; i < rdi->lkey_table.max; i++) |
| RCU_INIT_POINTER(rdi->lkey_table.table[i], NULL); |
| |
| return 0; |
| } |
| |
| /* |
| * called when drivers have unregistered or perhaps failed to register with us |
| */ |
| void rvt_mr_exit(struct rvt_dev_info *rdi) |
| { |
| if (rdi->dma_mr) |
| rvt_pr_err(rdi, "DMA MR not null!\n"); |
| |
| vfree(rdi->lkey_table.table); |
| } |
| |
| static void rvt_deinit_mregion(struct rvt_mregion *mr) |
| { |
| int i = mr->mapsz; |
| |
| mr->mapsz = 0; |
| while (i) |
| kfree(mr->map[--i]); |
| } |
| |
| static int rvt_init_mregion(struct rvt_mregion *mr, struct ib_pd *pd, |
| int count) |
| { |
| int m, i = 0; |
| |
| mr->mapsz = 0; |
| m = (count + RVT_SEGSZ - 1) / RVT_SEGSZ; |
| for (; i < m; i++) { |
| mr->map[i] = kzalloc(sizeof(*mr->map[0]), GFP_KERNEL); |
| if (!mr->map[i]) { |
| rvt_deinit_mregion(mr); |
| return -ENOMEM; |
| } |
| mr->mapsz++; |
| } |
| init_completion(&mr->comp); |
| /* count returning the ptr to user */ |
| atomic_set(&mr->refcount, 1); |
| mr->pd = pd; |
| mr->max_segs = count; |
| return 0; |
| } |
| |
| /** |
| * rvt_alloc_lkey - allocate an lkey |
| * @mr: memory region that this lkey protects |
| * @dma_region: 0->normal key, 1->restricted DMA key |
| * |
| * Returns 0 if successful, otherwise returns -errno. |
| * |
| * Increments mr reference count as required. |
| * |
| * Sets the lkey field mr for non-dma regions. |
| * |
| */ |
| static int rvt_alloc_lkey(struct rvt_mregion *mr, int dma_region) |
| { |
| unsigned long flags; |
| u32 r; |
| u32 n; |
| int ret = 0; |
| struct rvt_dev_info *dev = ib_to_rvt(mr->pd->device); |
| struct rvt_lkey_table *rkt = &dev->lkey_table; |
| |
| rvt_get_mr(mr); |
| spin_lock_irqsave(&rkt->lock, flags); |
| |
| /* special case for dma_mr lkey == 0 */ |
| if (dma_region) { |
| struct rvt_mregion *tmr; |
| |
| tmr = rcu_access_pointer(dev->dma_mr); |
| if (!tmr) { |
| rcu_assign_pointer(dev->dma_mr, mr); |
| mr->lkey_published = 1; |
| } else { |
| rvt_put_mr(mr); |
| } |
| goto success; |
| } |
| |
| /* Find the next available LKEY */ |
| r = rkt->next; |
| n = r; |
| for (;;) { |
| if (!rcu_access_pointer(rkt->table[r])) |
| break; |
| r = (r + 1) & (rkt->max - 1); |
| if (r == n) |
| goto bail; |
| } |
| rkt->next = (r + 1) & (rkt->max - 1); |
| /* |
| * Make sure lkey is never zero which is reserved to indicate an |
| * unrestricted LKEY. |
| */ |
| rkt->gen++; |
| /* |
| * bits are capped to ensure enough bits for generation number |
| */ |
| mr->lkey = (r << (32 - dev->dparms.lkey_table_size)) | |
| ((((1 << (24 - dev->dparms.lkey_table_size)) - 1) & rkt->gen) |
| << 8); |
| if (mr->lkey == 0) { |
| mr->lkey |= 1 << 8; |
| rkt->gen++; |
| } |
| rcu_assign_pointer(rkt->table[r], mr); |
| mr->lkey_published = 1; |
| success: |
| spin_unlock_irqrestore(&rkt->lock, flags); |
| out: |
| return ret; |
| bail: |
| rvt_put_mr(mr); |
| spin_unlock_irqrestore(&rkt->lock, flags); |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| /** |
| * rvt_free_lkey - free an lkey |
| * @mr: mr to free from tables |
| */ |
| static void rvt_free_lkey(struct rvt_mregion *mr) |
| { |
| unsigned long flags; |
| u32 lkey = mr->lkey; |
| u32 r; |
| struct rvt_dev_info *dev = ib_to_rvt(mr->pd->device); |
| struct rvt_lkey_table *rkt = &dev->lkey_table; |
| int freed = 0; |
| |
| spin_lock_irqsave(&rkt->lock, flags); |
| if (!mr->lkey_published) |
| goto out; |
| if (lkey == 0) { |
| RCU_INIT_POINTER(dev->dma_mr, NULL); |
| } else { |
| r = lkey >> (32 - dev->dparms.lkey_table_size); |
| RCU_INIT_POINTER(rkt->table[r], NULL); |
| } |
| mr->lkey_published = 0; |
| freed++; |
| out: |
| spin_unlock_irqrestore(&rkt->lock, flags); |
| if (freed) { |
| synchronize_rcu(); |
| rvt_put_mr(mr); |
| } |
| } |
| |
| static struct rvt_mr *__rvt_alloc_mr(int count, struct ib_pd *pd) |
| { |
| struct rvt_mr *mr; |
| int rval = -ENOMEM; |
| int m; |
| |
| /* Allocate struct plus pointers to first level page tables. */ |
| m = (count + RVT_SEGSZ - 1) / RVT_SEGSZ; |
| mr = kzalloc(sizeof(*mr) + m * sizeof(mr->mr.map[0]), GFP_KERNEL); |
| if (!mr) |
| goto bail; |
| |
| rval = rvt_init_mregion(&mr->mr, pd, count); |
| if (rval) |
| goto bail; |
| /* |
| * ib_reg_phys_mr() will initialize mr->ibmr except for |
| * lkey and rkey. |
| */ |
| rval = rvt_alloc_lkey(&mr->mr, 0); |
| if (rval) |
| goto bail_mregion; |
| mr->ibmr.lkey = mr->mr.lkey; |
| mr->ibmr.rkey = mr->mr.lkey; |
| done: |
| return mr; |
| |
| bail_mregion: |
| rvt_deinit_mregion(&mr->mr); |
| bail: |
| kfree(mr); |
| mr = ERR_PTR(rval); |
| goto done; |
| } |
| |
| static void __rvt_free_mr(struct rvt_mr *mr) |
| { |
| rvt_deinit_mregion(&mr->mr); |
| rvt_free_lkey(&mr->mr); |
| vfree(mr); |
| } |
| |
| /** |
| * rvt_get_dma_mr - get a DMA memory region |
| * @pd: protection domain for this memory region |
| * @acc: access flags |
| * |
| * Returns the memory region on success, otherwise returns an errno. |
| * Note that all DMA addresses should be created via the |
| * struct ib_dma_mapping_ops functions (see dma.c). |
| */ |
| struct ib_mr *rvt_get_dma_mr(struct ib_pd *pd, int acc) |
| { |
| struct rvt_mr *mr; |
| struct ib_mr *ret; |
| int rval; |
| |
| if (ibpd_to_rvtpd(pd)->user) |
| return ERR_PTR(-EPERM); |
| |
| mr = kzalloc(sizeof(*mr), GFP_KERNEL); |
| if (!mr) { |
| ret = ERR_PTR(-ENOMEM); |
| goto bail; |
| } |
| |
| rval = rvt_init_mregion(&mr->mr, pd, 0); |
| if (rval) { |
| ret = ERR_PTR(rval); |
| goto bail; |
| } |
| |
| rval = rvt_alloc_lkey(&mr->mr, 1); |
| if (rval) { |
| ret = ERR_PTR(rval); |
| goto bail_mregion; |
| } |
| |
| mr->mr.access_flags = acc; |
| ret = &mr->ibmr; |
| done: |
| return ret; |
| |
| bail_mregion: |
| rvt_deinit_mregion(&mr->mr); |
| bail: |
| kfree(mr); |
| goto done; |
| } |
| |
| /** |
| * rvt_reg_user_mr - register a userspace memory region |
| * @pd: protection domain for this memory region |
| * @start: starting userspace address |
| * @length: length of region to register |
| * @mr_access_flags: access flags for this memory region |
| * @udata: unused by the driver |
| * |
| * Returns the memory region on success, otherwise returns an errno. |
| */ |
| struct ib_mr *rvt_reg_user_mr(struct ib_pd *pd, u64 start, u64 length, |
| u64 virt_addr, int mr_access_flags, |
| struct ib_udata *udata) |
| { |
| struct rvt_mr *mr; |
| struct ib_umem *umem; |
| struct scatterlist *sg; |
| int n, m, entry; |
| struct ib_mr *ret; |
| |
| if (length == 0) |
| return ERR_PTR(-EINVAL); |
| |
| umem = ib_umem_get(pd->uobject->context, start, length, |
| mr_access_flags, 0); |
| if (IS_ERR(umem)) |
| return (void *)umem; |
| |
| n = umem->nmap; |
| |
| mr = __rvt_alloc_mr(n, pd); |
| if (IS_ERR(mr)) { |
| ret = (struct ib_mr *)mr; |
| goto bail_umem; |
| } |
| |
| mr->mr.user_base = start; |
| mr->mr.iova = virt_addr; |
| mr->mr.length = length; |
| mr->mr.offset = ib_umem_offset(umem); |
| mr->mr.access_flags = mr_access_flags; |
| mr->umem = umem; |
| |
| if (is_power_of_2(umem->page_size)) |
| mr->mr.page_shift = ilog2(umem->page_size); |
| m = 0; |
| n = 0; |
| for_each_sg(umem->sg_head.sgl, sg, umem->nmap, entry) { |
| void *vaddr; |
| |
| vaddr = page_address(sg_page(sg)); |
| if (!vaddr) { |
| ret = ERR_PTR(-EINVAL); |
| goto bail_inval; |
| } |
| mr->mr.map[m]->segs[n].vaddr = vaddr; |
| mr->mr.map[m]->segs[n].length = umem->page_size; |
| n++; |
| if (n == RVT_SEGSZ) { |
| m++; |
| n = 0; |
| } |
| } |
| return &mr->ibmr; |
| |
| bail_inval: |
| __rvt_free_mr(mr); |
| |
| bail_umem: |
| ib_umem_release(umem); |
| |
| return ret; |
| } |
| |
| /** |
| * rvt_dereg_mr - unregister and free a memory region |
| * @ibmr: the memory region to free |
| * |
| * Returns 0 on success. |
| * |
| * Note that this is called to free MRs created by rvt_get_dma_mr() |
| * or rvt_reg_user_mr(). |
| */ |
| int rvt_dereg_mr(struct ib_mr *ibmr) |
| { |
| struct rvt_mr *mr = to_imr(ibmr); |
| struct rvt_dev_info *rdi = ib_to_rvt(ibmr->pd->device); |
| int ret = 0; |
| unsigned long timeout; |
| |
| rvt_free_lkey(&mr->mr); |
| |
| rvt_put_mr(&mr->mr); /* will set completion if last */ |
| timeout = wait_for_completion_timeout(&mr->mr.comp, 5 * HZ); |
| if (!timeout) { |
| rvt_pr_err(rdi, |
| "rvt_dereg_mr timeout mr %p pd %p refcount %u\n", |
| mr, mr->mr.pd, atomic_read(&mr->mr.refcount)); |
| rvt_get_mr(&mr->mr); |
| ret = -EBUSY; |
| goto out; |
| } |
| rvt_deinit_mregion(&mr->mr); |
| if (mr->umem) |
| ib_umem_release(mr->umem); |
| kfree(mr); |
| out: |
| return ret; |
| } |
| |
| /** |
| * rvt_alloc_mr - Allocate a memory region usable with the |
| * @pd: protection domain for this memory region |
| * @mr_type: mem region type |
| * @max_num_sg: Max number of segments allowed |
| * |
| * Return the memory region on success, otherwise return an errno. |
| */ |
| struct ib_mr *rvt_alloc_mr(struct ib_pd *pd, |
| enum ib_mr_type mr_type, |
| u32 max_num_sg) |
| { |
| struct rvt_mr *mr; |
| |
| if (mr_type != IB_MR_TYPE_MEM_REG) |
| return ERR_PTR(-EINVAL); |
| |
| mr = __rvt_alloc_mr(max_num_sg, pd); |
| if (IS_ERR(mr)) |
| return (struct ib_mr *)mr; |
| |
| return &mr->ibmr; |
| } |
| |
| /** |
| * rvt_alloc_fmr - allocate a fast memory region |
| * @pd: the protection domain for this memory region |
| * @mr_access_flags: access flags for this memory region |
| * @fmr_attr: fast memory region attributes |
| * |
| * Returns the memory region on success, otherwise returns an errno. |
| */ |
| struct ib_fmr *rvt_alloc_fmr(struct ib_pd *pd, int mr_access_flags, |
| struct ib_fmr_attr *fmr_attr) |
| { |
| struct rvt_fmr *fmr; |
| int m; |
| struct ib_fmr *ret; |
| int rval = -ENOMEM; |
| |
| /* Allocate struct plus pointers to first level page tables. */ |
| m = (fmr_attr->max_pages + RVT_SEGSZ - 1) / RVT_SEGSZ; |
| fmr = kzalloc(sizeof(*fmr) + m * sizeof(fmr->mr.map[0]), GFP_KERNEL); |
| if (!fmr) |
| goto bail; |
| |
| rval = rvt_init_mregion(&fmr->mr, pd, fmr_attr->max_pages); |
| if (rval) |
| goto bail; |
| |
| /* |
| * ib_alloc_fmr() will initialize fmr->ibfmr except for lkey & |
| * rkey. |
| */ |
| rval = rvt_alloc_lkey(&fmr->mr, 0); |
| if (rval) |
| goto bail_mregion; |
| fmr->ibfmr.rkey = fmr->mr.lkey; |
| fmr->ibfmr.lkey = fmr->mr.lkey; |
| /* |
| * Resources are allocated but no valid mapping (RKEY can't be |
| * used). |
| */ |
| fmr->mr.access_flags = mr_access_flags; |
| fmr->mr.max_segs = fmr_attr->max_pages; |
| fmr->mr.page_shift = fmr_attr->page_shift; |
| |
| ret = &fmr->ibfmr; |
| done: |
| return ret; |
| |
| bail_mregion: |
| rvt_deinit_mregion(&fmr->mr); |
| bail: |
| kfree(fmr); |
| ret = ERR_PTR(rval); |
| goto done; |
| } |
| |
| /** |
| * rvt_map_phys_fmr - set up a fast memory region |
| * @ibmfr: the fast memory region to set up |
| * @page_list: the list of pages to associate with the fast memory region |
| * @list_len: the number of pages to associate with the fast memory region |
| * @iova: the virtual address of the start of the fast memory region |
| * |
| * This may be called from interrupt context. |
| */ |
| |
| int rvt_map_phys_fmr(struct ib_fmr *ibfmr, u64 *page_list, |
| int list_len, u64 iova) |
| { |
| struct rvt_fmr *fmr = to_ifmr(ibfmr); |
| struct rvt_lkey_table *rkt; |
| unsigned long flags; |
| int m, n, i; |
| u32 ps; |
| struct rvt_dev_info *rdi = ib_to_rvt(ibfmr->device); |
| |
| i = atomic_read(&fmr->mr.refcount); |
| if (i > 2) |
| return -EBUSY; |
| |
| if (list_len > fmr->mr.max_segs) |
| return -EINVAL; |
| |
| rkt = &rdi->lkey_table; |
| spin_lock_irqsave(&rkt->lock, flags); |
| fmr->mr.user_base = iova; |
| fmr->mr.iova = iova; |
| ps = 1 << fmr->mr.page_shift; |
| fmr->mr.length = list_len * ps; |
| m = 0; |
| n = 0; |
| for (i = 0; i < list_len; i++) { |
| fmr->mr.map[m]->segs[n].vaddr = (void *)page_list[i]; |
| fmr->mr.map[m]->segs[n].length = ps; |
| if (++n == RVT_SEGSZ) { |
| m++; |
| n = 0; |
| } |
| } |
| spin_unlock_irqrestore(&rkt->lock, flags); |
| return 0; |
| } |
| |
| /** |
| * rvt_unmap_fmr - unmap fast memory regions |
| * @fmr_list: the list of fast memory regions to unmap |
| * |
| * Returns 0 on success. |
| */ |
| int rvt_unmap_fmr(struct list_head *fmr_list) |
| { |
| struct rvt_fmr *fmr; |
| struct rvt_lkey_table *rkt; |
| unsigned long flags; |
| struct rvt_dev_info *rdi; |
| |
| list_for_each_entry(fmr, fmr_list, ibfmr.list) { |
| rdi = ib_to_rvt(fmr->ibfmr.device); |
| rkt = &rdi->lkey_table; |
| spin_lock_irqsave(&rkt->lock, flags); |
| fmr->mr.user_base = 0; |
| fmr->mr.iova = 0; |
| fmr->mr.length = 0; |
| spin_unlock_irqrestore(&rkt->lock, flags); |
| } |
| return 0; |
| } |
| |
| /** |
| * rvt_dealloc_fmr - deallocate a fast memory region |
| * @ibfmr: the fast memory region to deallocate |
| * |
| * Returns 0 on success. |
| */ |
| int rvt_dealloc_fmr(struct ib_fmr *ibfmr) |
| { |
| struct rvt_fmr *fmr = to_ifmr(ibfmr); |
| int ret = 0; |
| unsigned long timeout; |
| |
| rvt_free_lkey(&fmr->mr); |
| rvt_put_mr(&fmr->mr); /* will set completion if last */ |
| timeout = wait_for_completion_timeout(&fmr->mr.comp, 5 * HZ); |
| if (!timeout) { |
| rvt_get_mr(&fmr->mr); |
| ret = -EBUSY; |
| goto out; |
| } |
| rvt_deinit_mregion(&fmr->mr); |
| kfree(fmr); |
| out: |
| return ret; |
| } |
| |
| /** |
| * rvt_lkey_ok - check IB SGE for validity and initialize |
| * @rkt: table containing lkey to check SGE against |
| * @pd: protection domain |
| * @isge: outgoing internal SGE |
| * @sge: SGE to check |
| * @acc: access flags |
| * |
| * Return 1 if valid and successful, otherwise returns 0. |
| * |
| * increments the reference count upon success |
| * |
| * Check the IB SGE for validity and initialize our internal version |
| * of it. |
| */ |
| int rvt_lkey_ok(struct rvt_lkey_table *rkt, struct rvt_pd *pd, |
| struct rvt_sge *isge, struct ib_sge *sge, int acc) |
| { |
| struct rvt_mregion *mr; |
| unsigned n, m; |
| size_t off; |
| struct rvt_dev_info *dev = ib_to_rvt(pd->ibpd.device); |
| |
| /* |
| * We use LKEY == zero for kernel virtual addresses |
| * (see rvt_get_dma_mr and dma.c). |
| */ |
| rcu_read_lock(); |
| if (sge->lkey == 0) { |
| if (pd->user) |
| goto bail; |
| mr = rcu_dereference(dev->dma_mr); |
| if (!mr) |
| goto bail; |
| atomic_inc(&mr->refcount); |
| rcu_read_unlock(); |
| |
| isge->mr = mr; |
| isge->vaddr = (void *)sge->addr; |
| isge->length = sge->length; |
| isge->sge_length = sge->length; |
| isge->m = 0; |
| isge->n = 0; |
| goto ok; |
| } |
| mr = rcu_dereference( |
| rkt->table[(sge->lkey >> (32 - dev->dparms.lkey_table_size))]); |
| if (unlikely(!mr || mr->lkey != sge->lkey || mr->pd != &pd->ibpd)) |
| goto bail; |
| |
| off = sge->addr - mr->user_base; |
| if (unlikely(sge->addr < mr->user_base || |
| off + sge->length > mr->length || |
| (mr->access_flags & acc) != acc)) |
| goto bail; |
| atomic_inc(&mr->refcount); |
| rcu_read_unlock(); |
| |
| off += mr->offset; |
| if (mr->page_shift) { |
| /* |
| * page sizes are uniform power of 2 so no loop is necessary |
| * entries_spanned_by_off is the number of times the loop below |
| * would have executed. |
| */ |
| size_t entries_spanned_by_off; |
| |
| entries_spanned_by_off = off >> mr->page_shift; |
| off -= (entries_spanned_by_off << mr->page_shift); |
| m = entries_spanned_by_off / RVT_SEGSZ; |
| n = entries_spanned_by_off % RVT_SEGSZ; |
| } else { |
| m = 0; |
| n = 0; |
| while (off >= mr->map[m]->segs[n].length) { |
| off -= mr->map[m]->segs[n].length; |
| n++; |
| if (n >= RVT_SEGSZ) { |
| m++; |
| n = 0; |
| } |
| } |
| } |
| isge->mr = mr; |
| isge->vaddr = mr->map[m]->segs[n].vaddr + off; |
| isge->length = mr->map[m]->segs[n].length - off; |
| isge->sge_length = sge->length; |
| isge->m = m; |
| isge->n = n; |
| ok: |
| return 1; |
| bail: |
| rcu_read_unlock(); |
| return 0; |
| } |
| EXPORT_SYMBOL(rvt_lkey_ok); |
| |
| /** |
| * rvt_rkey_ok - check the IB virtual address, length, and RKEY |
| * @qp: qp for validation |
| * @sge: SGE state |
| * @len: length of data |
| * @vaddr: virtual address to place data |
| * @rkey: rkey to check |
| * @acc: access flags |
| * |
| * Return 1 if successful, otherwise 0. |
| * |
| * increments the reference count upon success |
| */ |
| int rvt_rkey_ok(struct rvt_qp *qp, struct rvt_sge *sge, |
| u32 len, u64 vaddr, u32 rkey, int acc) |
| { |
| struct rvt_dev_info *dev = ib_to_rvt(qp->ibqp.device); |
| struct rvt_lkey_table *rkt = &dev->lkey_table; |
| struct rvt_mregion *mr; |
| unsigned n, m; |
| size_t off; |
| |
| /* |
| * We use RKEY == zero for kernel virtual addresses |
| * (see rvt_get_dma_mr and dma.c). |
| */ |
| rcu_read_lock(); |
| if (rkey == 0) { |
| struct rvt_pd *pd = ibpd_to_rvtpd(qp->ibqp.pd); |
| struct rvt_dev_info *rdi = ib_to_rvt(pd->ibpd.device); |
| |
| if (pd->user) |
| goto bail; |
| mr = rcu_dereference(rdi->dma_mr); |
| if (!mr) |
| goto bail; |
| atomic_inc(&mr->refcount); |
| rcu_read_unlock(); |
| |
| sge->mr = mr; |
| sge->vaddr = (void *)vaddr; |
| sge->length = len; |
| sge->sge_length = len; |
| sge->m = 0; |
| sge->n = 0; |
| goto ok; |
| } |
| |
| mr = rcu_dereference( |
| rkt->table[(rkey >> (32 - dev->dparms.lkey_table_size))]); |
| if (unlikely(!mr || mr->lkey != rkey || qp->ibqp.pd != mr->pd)) |
| goto bail; |
| |
| off = vaddr - mr->iova; |
| if (unlikely(vaddr < mr->iova || off + len > mr->length || |
| (mr->access_flags & acc) == 0)) |
| goto bail; |
| atomic_inc(&mr->refcount); |
| rcu_read_unlock(); |
| |
| off += mr->offset; |
| if (mr->page_shift) { |
| /* |
| * page sizes are uniform power of 2 so no loop is necessary |
| * entries_spanned_by_off is the number of times the loop below |
| * would have executed. |
| */ |
| size_t entries_spanned_by_off; |
| |
| entries_spanned_by_off = off >> mr->page_shift; |
| off -= (entries_spanned_by_off << mr->page_shift); |
| m = entries_spanned_by_off / RVT_SEGSZ; |
| n = entries_spanned_by_off % RVT_SEGSZ; |
| } else { |
| m = 0; |
| n = 0; |
| while (off >= mr->map[m]->segs[n].length) { |
| off -= mr->map[m]->segs[n].length; |
| n++; |
| if (n >= RVT_SEGSZ) { |
| m++; |
| n = 0; |
| } |
| } |
| } |
| sge->mr = mr; |
| sge->vaddr = mr->map[m]->segs[n].vaddr + off; |
| sge->length = mr->map[m]->segs[n].length - off; |
| sge->sge_length = len; |
| sge->m = m; |
| sge->n = n; |
| ok: |
| return 1; |
| bail: |
| rcu_read_unlock(); |
| return 0; |
| } |
| EXPORT_SYMBOL(rvt_rkey_ok); |