| /* |
| * Macros for manipulating and testing page->flags |
| */ |
| |
| #ifndef PAGE_FLAGS_H |
| #define PAGE_FLAGS_H |
| |
| #include <linux/types.h> |
| #include <linux/bug.h> |
| #include <linux/mmdebug.h> |
| #ifndef __GENERATING_BOUNDS_H |
| #include <linux/mm_types.h> |
| #include <generated/bounds.h> |
| #endif /* !__GENERATING_BOUNDS_H */ |
| |
| /* |
| * Various page->flags bits: |
| * |
| * PG_reserved is set for special pages, which can never be swapped out. Some |
| * of them might not even exist (eg empty_bad_page)... |
| * |
| * The PG_private bitflag is set on pagecache pages if they contain filesystem |
| * specific data (which is normally at page->private). It can be used by |
| * private allocations for its own usage. |
| * |
| * During initiation of disk I/O, PG_locked is set. This bit is set before I/O |
| * and cleared when writeback _starts_ or when read _completes_. PG_writeback |
| * is set before writeback starts and cleared when it finishes. |
| * |
| * PG_locked also pins a page in pagecache, and blocks truncation of the file |
| * while it is held. |
| * |
| * page_waitqueue(page) is a wait queue of all tasks waiting for the page |
| * to become unlocked. |
| * |
| * PG_uptodate tells whether the page's contents is valid. When a read |
| * completes, the page becomes uptodate, unless a disk I/O error happened. |
| * |
| * PG_referenced, PG_reclaim are used for page reclaim for anonymous and |
| * file-backed pagecache (see mm/vmscan.c). |
| * |
| * PG_error is set to indicate that an I/O error occurred on this page. |
| * |
| * PG_arch_1 is an architecture specific page state bit. The generic code |
| * guarantees that this bit is cleared for a page when it first is entered into |
| * the page cache. |
| * |
| * PG_highmem pages are not permanently mapped into the kernel virtual address |
| * space, they need to be kmapped separately for doing IO on the pages. The |
| * struct page (these bits with information) are always mapped into kernel |
| * address space... |
| * |
| * PG_hwpoison indicates that a page got corrupted in hardware and contains |
| * data with incorrect ECC bits that triggered a machine check. Accessing is |
| * not safe since it may cause another machine check. Don't touch! |
| */ |
| |
| /* |
| * Don't use the *_dontuse flags. Use the macros. Otherwise you'll break |
| * locked- and dirty-page accounting. |
| * |
| * The page flags field is split into two parts, the main flags area |
| * which extends from the low bits upwards, and the fields area which |
| * extends from the high bits downwards. |
| * |
| * | FIELD | ... | FLAGS | |
| * N-1 ^ 0 |
| * (NR_PAGEFLAGS) |
| * |
| * The fields area is reserved for fields mapping zone, node (for NUMA) and |
| * SPARSEMEM section (for variants of SPARSEMEM that require section ids like |
| * SPARSEMEM_EXTREME with !SPARSEMEM_VMEMMAP). |
| */ |
| enum pageflags { |
| PG_locked, /* Page is locked. Don't touch. */ |
| PG_error, |
| PG_referenced, |
| PG_uptodate, |
| PG_dirty, |
| PG_lru, |
| PG_active, |
| PG_slab, |
| PG_owner_priv_1, /* Owner use. If pagecache, fs may use*/ |
| PG_arch_1, |
| PG_reserved, |
| PG_private, /* If pagecache, has fs-private data */ |
| PG_private_2, /* If pagecache, has fs aux data */ |
| PG_writeback, /* Page is under writeback */ |
| #ifdef CONFIG_PAGEFLAGS_EXTENDED |
| PG_head, /* A head page */ |
| PG_tail, /* A tail page */ |
| #else |
| PG_compound, /* A compound page */ |
| #endif |
| PG_swapcache, /* Swap page: swp_entry_t in private */ |
| PG_mappedtodisk, /* Has blocks allocated on-disk */ |
| PG_reclaim, /* To be reclaimed asap */ |
| PG_swapbacked, /* Page is backed by RAM/swap */ |
| PG_unevictable, /* Page is "unevictable" */ |
| #ifdef CONFIG_MMU |
| PG_mlocked, /* Page is vma mlocked */ |
| #endif |
| #ifdef CONFIG_ARCH_USES_PG_UNCACHED |
| PG_uncached, /* Page has been mapped as uncached */ |
| #endif |
| #ifdef CONFIG_MEMORY_FAILURE |
| PG_hwpoison, /* hardware poisoned page. Don't touch */ |
| #endif |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| PG_compound_lock, |
| #endif |
| __NR_PAGEFLAGS, |
| |
| /* Filesystems */ |
| PG_checked = PG_owner_priv_1, |
| |
| /* Two page bits are conscripted by FS-Cache to maintain local caching |
| * state. These bits are set on pages belonging to the netfs's inodes |
| * when those inodes are being locally cached. |
| */ |
| PG_fscache = PG_private_2, /* page backed by cache */ |
| |
| /* XEN */ |
| /* Pinned in Xen as a read-only pagetable page. */ |
| PG_pinned = PG_owner_priv_1, |
| /* Pinned as part of domain save (see xen_mm_pin_all()). */ |
| PG_savepinned = PG_dirty, |
| /* Has a grant mapping of another (foreign) domain's page. */ |
| PG_foreign = PG_owner_priv_1, |
| |
| /* SLOB */ |
| PG_slob_free = PG_private, |
| }; |
| |
| #ifndef __GENERATING_BOUNDS_H |
| |
| /* |
| * Macros to create function definitions for page flags |
| */ |
| #define TESTPAGEFLAG(uname, lname) \ |
| static inline int Page##uname(const struct page *page) \ |
| { return test_bit(PG_##lname, &page->flags); } |
| |
| #define SETPAGEFLAG(uname, lname) \ |
| static inline void SetPage##uname(struct page *page) \ |
| { set_bit(PG_##lname, &page->flags); } |
| |
| #define CLEARPAGEFLAG(uname, lname) \ |
| static inline void ClearPage##uname(struct page *page) \ |
| { clear_bit(PG_##lname, &page->flags); } |
| |
| #define __SETPAGEFLAG(uname, lname) \ |
| static inline void __SetPage##uname(struct page *page) \ |
| { __set_bit(PG_##lname, &page->flags); } |
| |
| #define __CLEARPAGEFLAG(uname, lname) \ |
| static inline void __ClearPage##uname(struct page *page) \ |
| { __clear_bit(PG_##lname, &page->flags); } |
| |
| #define TESTSETFLAG(uname, lname) \ |
| static inline int TestSetPage##uname(struct page *page) \ |
| { return test_and_set_bit(PG_##lname, &page->flags); } |
| |
| #define TESTCLEARFLAG(uname, lname) \ |
| static inline int TestClearPage##uname(struct page *page) \ |
| { return test_and_clear_bit(PG_##lname, &page->flags); } |
| |
| #define __TESTCLEARFLAG(uname, lname) \ |
| static inline int __TestClearPage##uname(struct page *page) \ |
| { return __test_and_clear_bit(PG_##lname, &page->flags); } |
| |
| #define PAGEFLAG(uname, lname) TESTPAGEFLAG(uname, lname) \ |
| SETPAGEFLAG(uname, lname) CLEARPAGEFLAG(uname, lname) |
| |
| #define __PAGEFLAG(uname, lname) TESTPAGEFLAG(uname, lname) \ |
| __SETPAGEFLAG(uname, lname) __CLEARPAGEFLAG(uname, lname) |
| |
| #define TESTSCFLAG(uname, lname) \ |
| TESTSETFLAG(uname, lname) TESTCLEARFLAG(uname, lname) |
| |
| #define TESTPAGEFLAG_FALSE(uname) \ |
| static inline int Page##uname(const struct page *page) { return 0; } |
| |
| #define SETPAGEFLAG_NOOP(uname) \ |
| static inline void SetPage##uname(struct page *page) { } |
| |
| #define CLEARPAGEFLAG_NOOP(uname) \ |
| static inline void ClearPage##uname(struct page *page) { } |
| |
| #define __CLEARPAGEFLAG_NOOP(uname) \ |
| static inline void __ClearPage##uname(struct page *page) { } |
| |
| #define TESTSETFLAG_FALSE(uname) \ |
| static inline int TestSetPage##uname(struct page *page) { return 0; } |
| |
| #define TESTCLEARFLAG_FALSE(uname) \ |
| static inline int TestClearPage##uname(struct page *page) { return 0; } |
| |
| #define __TESTCLEARFLAG_FALSE(uname) \ |
| static inline int __TestClearPage##uname(struct page *page) { return 0; } |
| |
| #define PAGEFLAG_FALSE(uname) TESTPAGEFLAG_FALSE(uname) \ |
| SETPAGEFLAG_NOOP(uname) CLEARPAGEFLAG_NOOP(uname) |
| |
| #define TESTSCFLAG_FALSE(uname) \ |
| TESTSETFLAG_FALSE(uname) TESTCLEARFLAG_FALSE(uname) |
| |
| struct page; /* forward declaration */ |
| |
| TESTPAGEFLAG(Locked, locked) |
| PAGEFLAG(Error, error) TESTCLEARFLAG(Error, error) |
| PAGEFLAG(Referenced, referenced) TESTCLEARFLAG(Referenced, referenced) |
| __SETPAGEFLAG(Referenced, referenced) |
| PAGEFLAG(Dirty, dirty) TESTSCFLAG(Dirty, dirty) __CLEARPAGEFLAG(Dirty, dirty) |
| PAGEFLAG(LRU, lru) __CLEARPAGEFLAG(LRU, lru) |
| PAGEFLAG(Active, active) __CLEARPAGEFLAG(Active, active) |
| TESTCLEARFLAG(Active, active) |
| __PAGEFLAG(Slab, slab) |
| PAGEFLAG(Checked, checked) /* Used by some filesystems */ |
| PAGEFLAG(Pinned, pinned) TESTSCFLAG(Pinned, pinned) /* Xen */ |
| PAGEFLAG(SavePinned, savepinned); /* Xen */ |
| PAGEFLAG(Foreign, foreign); /* Xen */ |
| PAGEFLAG(Reserved, reserved) __CLEARPAGEFLAG(Reserved, reserved) |
| PAGEFLAG(SwapBacked, swapbacked) __CLEARPAGEFLAG(SwapBacked, swapbacked) |
| __SETPAGEFLAG(SwapBacked, swapbacked) |
| |
| __PAGEFLAG(SlobFree, slob_free) |
| |
| /* |
| * Private page markings that may be used by the filesystem that owns the page |
| * for its own purposes. |
| * - PG_private and PG_private_2 cause releasepage() and co to be invoked |
| */ |
| PAGEFLAG(Private, private) __SETPAGEFLAG(Private, private) |
| __CLEARPAGEFLAG(Private, private) |
| PAGEFLAG(Private2, private_2) TESTSCFLAG(Private2, private_2) |
| PAGEFLAG(OwnerPriv1, owner_priv_1) TESTCLEARFLAG(OwnerPriv1, owner_priv_1) |
| |
| /* |
| * Only test-and-set exist for PG_writeback. The unconditional operators are |
| * risky: they bypass page accounting. |
| */ |
| TESTPAGEFLAG(Writeback, writeback) TESTSCFLAG(Writeback, writeback) |
| PAGEFLAG(MappedToDisk, mappedtodisk) |
| |
| /* PG_readahead is only used for reads; PG_reclaim is only for writes */ |
| PAGEFLAG(Reclaim, reclaim) TESTCLEARFLAG(Reclaim, reclaim) |
| PAGEFLAG(Readahead, reclaim) TESTCLEARFLAG(Readahead, reclaim) |
| |
| #ifdef CONFIG_HIGHMEM |
| /* |
| * Must use a macro here due to header dependency issues. page_zone() is not |
| * available at this point. |
| */ |
| #define PageHighMem(__p) is_highmem(page_zone(__p)) |
| #else |
| PAGEFLAG_FALSE(HighMem) |
| #endif |
| |
| #ifdef CONFIG_SWAP |
| PAGEFLAG(SwapCache, swapcache) |
| #else |
| PAGEFLAG_FALSE(SwapCache) |
| #endif |
| |
| PAGEFLAG(Unevictable, unevictable) __CLEARPAGEFLAG(Unevictable, unevictable) |
| TESTCLEARFLAG(Unevictable, unevictable) |
| |
| #ifdef CONFIG_MMU |
| PAGEFLAG(Mlocked, mlocked) __CLEARPAGEFLAG(Mlocked, mlocked) |
| TESTSCFLAG(Mlocked, mlocked) __TESTCLEARFLAG(Mlocked, mlocked) |
| #else |
| PAGEFLAG_FALSE(Mlocked) __CLEARPAGEFLAG_NOOP(Mlocked) |
| TESTSCFLAG_FALSE(Mlocked) __TESTCLEARFLAG_FALSE(Mlocked) |
| #endif |
| |
| #ifdef CONFIG_ARCH_USES_PG_UNCACHED |
| PAGEFLAG(Uncached, uncached) |
| #else |
| PAGEFLAG_FALSE(Uncached) |
| #endif |
| |
| #ifdef CONFIG_MEMORY_FAILURE |
| PAGEFLAG(HWPoison, hwpoison) |
| TESTSCFLAG(HWPoison, hwpoison) |
| #define __PG_HWPOISON (1UL << PG_hwpoison) |
| #else |
| PAGEFLAG_FALSE(HWPoison) |
| #define __PG_HWPOISON 0 |
| #endif |
| |
| /* |
| * On an anonymous page mapped into a user virtual memory area, |
| * page->mapping points to its anon_vma, not to a struct address_space; |
| * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h. |
| * |
| * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled, |
| * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit; |
| * and then page->mapping points, not to an anon_vma, but to a private |
| * structure which KSM associates with that merged page. See ksm.h. |
| * |
| * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used. |
| * |
| * Please note that, confusingly, "page_mapping" refers to the inode |
| * address_space which maps the page from disk; whereas "page_mapped" |
| * refers to user virtual address space into which the page is mapped. |
| */ |
| #define PAGE_MAPPING_ANON 1 |
| #define PAGE_MAPPING_KSM 2 |
| #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM) |
| |
| static inline int PageAnon(struct page *page) |
| { |
| return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0; |
| } |
| |
| #ifdef CONFIG_KSM |
| /* |
| * A KSM page is one of those write-protected "shared pages" or "merged pages" |
| * which KSM maps into multiple mms, wherever identical anonymous page content |
| * is found in VM_MERGEABLE vmas. It's a PageAnon page, pointing not to any |
| * anon_vma, but to that page's node of the stable tree. |
| */ |
| static inline int PageKsm(struct page *page) |
| { |
| return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) == |
| (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM); |
| } |
| #else |
| TESTPAGEFLAG_FALSE(Ksm) |
| #endif |
| |
| u64 stable_page_flags(struct page *page); |
| |
| static inline int PageUptodate(struct page *page) |
| { |
| int ret = test_bit(PG_uptodate, &(page)->flags); |
| |
| /* |
| * Must ensure that the data we read out of the page is loaded |
| * _after_ we've loaded page->flags to check for PageUptodate. |
| * We can skip the barrier if the page is not uptodate, because |
| * we wouldn't be reading anything from it. |
| * |
| * See SetPageUptodate() for the other side of the story. |
| */ |
| if (ret) |
| smp_rmb(); |
| |
| return ret; |
| } |
| |
| static inline void __SetPageUptodate(struct page *page) |
| { |
| smp_wmb(); |
| __set_bit(PG_uptodate, &(page)->flags); |
| } |
| |
| static inline void SetPageUptodate(struct page *page) |
| { |
| /* |
| * Memory barrier must be issued before setting the PG_uptodate bit, |
| * so that all previous stores issued in order to bring the page |
| * uptodate are actually visible before PageUptodate becomes true. |
| */ |
| smp_wmb(); |
| set_bit(PG_uptodate, &(page)->flags); |
| } |
| |
| CLEARPAGEFLAG(Uptodate, uptodate) |
| |
| int test_clear_page_writeback(struct page *page); |
| int __test_set_page_writeback(struct page *page, bool keep_write); |
| |
| #define test_set_page_writeback(page) \ |
| __test_set_page_writeback(page, false) |
| #define test_set_page_writeback_keepwrite(page) \ |
| __test_set_page_writeback(page, true) |
| |
| static inline void set_page_writeback(struct page *page) |
| { |
| test_set_page_writeback(page); |
| } |
| |
| static inline void set_page_writeback_keepwrite(struct page *page) |
| { |
| test_set_page_writeback_keepwrite(page); |
| } |
| |
| #ifdef CONFIG_PAGEFLAGS_EXTENDED |
| /* |
| * System with lots of page flags available. This allows separate |
| * flags for PageHead() and PageTail() checks of compound pages so that bit |
| * tests can be used in performance sensitive paths. PageCompound is |
| * generally not used in hot code paths except arch/powerpc/mm/init_64.c |
| * and arch/powerpc/kvm/book3s_64_vio_hv.c which use it to detect huge pages |
| * and avoid handling those in real mode. |
| */ |
| __PAGEFLAG(Head, head) CLEARPAGEFLAG(Head, head) |
| __PAGEFLAG(Tail, tail) |
| |
| static inline int PageCompound(struct page *page) |
| { |
| return page->flags & ((1L << PG_head) | (1L << PG_tail)); |
| |
| } |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| static inline void ClearPageCompound(struct page *page) |
| { |
| BUG_ON(!PageHead(page)); |
| ClearPageHead(page); |
| } |
| #endif |
| |
| #define PG_head_mask ((1L << PG_head)) |
| |
| #else |
| /* |
| * Reduce page flag use as much as possible by overlapping |
| * compound page flags with the flags used for page cache pages. Possible |
| * because PageCompound is always set for compound pages and not for |
| * pages on the LRU and/or pagecache. |
| */ |
| TESTPAGEFLAG(Compound, compound) |
| __SETPAGEFLAG(Head, compound) __CLEARPAGEFLAG(Head, compound) |
| |
| /* |
| * PG_reclaim is used in combination with PG_compound to mark the |
| * head and tail of a compound page. This saves one page flag |
| * but makes it impossible to use compound pages for the page cache. |
| * The PG_reclaim bit would have to be used for reclaim or readahead |
| * if compound pages enter the page cache. |
| * |
| * PG_compound & PG_reclaim => Tail page |
| * PG_compound & ~PG_reclaim => Head page |
| */ |
| #define PG_head_mask ((1L << PG_compound)) |
| #define PG_head_tail_mask ((1L << PG_compound) | (1L << PG_reclaim)) |
| |
| static inline int PageHead(struct page *page) |
| { |
| return ((page->flags & PG_head_tail_mask) == PG_head_mask); |
| } |
| |
| static inline int PageTail(struct page *page) |
| { |
| return ((page->flags & PG_head_tail_mask) == PG_head_tail_mask); |
| } |
| |
| static inline void __SetPageTail(struct page *page) |
| { |
| page->flags |= PG_head_tail_mask; |
| } |
| |
| static inline void __ClearPageTail(struct page *page) |
| { |
| page->flags &= ~PG_head_tail_mask; |
| } |
| |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| static inline void ClearPageCompound(struct page *page) |
| { |
| BUG_ON((page->flags & PG_head_tail_mask) != (1 << PG_compound)); |
| clear_bit(PG_compound, &page->flags); |
| } |
| #endif |
| |
| #endif /* !PAGEFLAGS_EXTENDED */ |
| |
| #ifdef CONFIG_HUGETLB_PAGE |
| int PageHuge(struct page *page); |
| int PageHeadHuge(struct page *page); |
| bool page_huge_active(struct page *page); |
| #else |
| TESTPAGEFLAG_FALSE(Huge) |
| TESTPAGEFLAG_FALSE(HeadHuge) |
| |
| static inline bool page_huge_active(struct page *page) |
| { |
| return 0; |
| } |
| #endif |
| |
| |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| /* |
| * PageHuge() only returns true for hugetlbfs pages, but not for |
| * normal or transparent huge pages. |
| * |
| * PageTransHuge() returns true for both transparent huge and |
| * hugetlbfs pages, but not normal pages. PageTransHuge() can only be |
| * called only in the core VM paths where hugetlbfs pages can't exist. |
| */ |
| static inline int PageTransHuge(struct page *page) |
| { |
| VM_BUG_ON_PAGE(PageTail(page), page); |
| return PageHead(page); |
| } |
| |
| /* |
| * PageTransCompound returns true for both transparent huge pages |
| * and hugetlbfs pages, so it should only be called when it's known |
| * that hugetlbfs pages aren't involved. |
| */ |
| static inline int PageTransCompound(struct page *page) |
| { |
| return PageCompound(page); |
| } |
| |
| /* |
| * PageTransTail returns true for both transparent huge pages |
| * and hugetlbfs pages, so it should only be called when it's known |
| * that hugetlbfs pages aren't involved. |
| */ |
| static inline int PageTransTail(struct page *page) |
| { |
| return PageTail(page); |
| } |
| |
| #else |
| |
| static inline int PageTransHuge(struct page *page) |
| { |
| return 0; |
| } |
| |
| static inline int PageTransCompound(struct page *page) |
| { |
| return 0; |
| } |
| |
| static inline int PageTransTail(struct page *page) |
| { |
| return 0; |
| } |
| #endif |
| |
| /* |
| * PageBuddy() indicate that the page is free and in the buddy system |
| * (see mm/page_alloc.c). |
| * |
| * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to |
| * -2 so that an underflow of the page_mapcount() won't be mistaken |
| * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very |
| * efficiently by most CPU architectures. |
| */ |
| #define PAGE_BUDDY_MAPCOUNT_VALUE (-128) |
| |
| static inline int PageBuddy(struct page *page) |
| { |
| return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE; |
| } |
| |
| static inline void __SetPageBuddy(struct page *page) |
| { |
| VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page); |
| atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE); |
| } |
| |
| static inline void __ClearPageBuddy(struct page *page) |
| { |
| VM_BUG_ON_PAGE(!PageBuddy(page), page); |
| atomic_set(&page->_mapcount, -1); |
| } |
| |
| #define PAGE_BALLOON_MAPCOUNT_VALUE (-256) |
| |
| static inline int PageBalloon(struct page *page) |
| { |
| return atomic_read(&page->_mapcount) == PAGE_BALLOON_MAPCOUNT_VALUE; |
| } |
| |
| static inline void __SetPageBalloon(struct page *page) |
| { |
| VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page); |
| atomic_set(&page->_mapcount, PAGE_BALLOON_MAPCOUNT_VALUE); |
| } |
| |
| static inline void __ClearPageBalloon(struct page *page) |
| { |
| VM_BUG_ON_PAGE(!PageBalloon(page), page); |
| atomic_set(&page->_mapcount, -1); |
| } |
| |
| /* |
| * If network-based swap is enabled, sl*b must keep track of whether pages |
| * were allocated from pfmemalloc reserves. |
| */ |
| static inline int PageSlabPfmemalloc(struct page *page) |
| { |
| VM_BUG_ON_PAGE(!PageSlab(page), page); |
| return PageActive(page); |
| } |
| |
| static inline void SetPageSlabPfmemalloc(struct page *page) |
| { |
| VM_BUG_ON_PAGE(!PageSlab(page), page); |
| SetPageActive(page); |
| } |
| |
| static inline void __ClearPageSlabPfmemalloc(struct page *page) |
| { |
| VM_BUG_ON_PAGE(!PageSlab(page), page); |
| __ClearPageActive(page); |
| } |
| |
| static inline void ClearPageSlabPfmemalloc(struct page *page) |
| { |
| VM_BUG_ON_PAGE(!PageSlab(page), page); |
| ClearPageActive(page); |
| } |
| |
| #ifdef CONFIG_MMU |
| #define __PG_MLOCKED (1 << PG_mlocked) |
| #else |
| #define __PG_MLOCKED 0 |
| #endif |
| |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| #define __PG_COMPOUND_LOCK (1 << PG_compound_lock) |
| #else |
| #define __PG_COMPOUND_LOCK 0 |
| #endif |
| |
| /* |
| * Flags checked when a page is freed. Pages being freed should not have |
| * these flags set. It they are, there is a problem. |
| */ |
| #define PAGE_FLAGS_CHECK_AT_FREE \ |
| (1 << PG_lru | 1 << PG_locked | \ |
| 1 << PG_private | 1 << PG_private_2 | \ |
| 1 << PG_writeback | 1 << PG_reserved | \ |
| 1 << PG_slab | 1 << PG_swapcache | 1 << PG_active | \ |
| 1 << PG_unevictable | __PG_MLOCKED | \ |
| __PG_COMPOUND_LOCK) |
| |
| /* |
| * Flags checked when a page is prepped for return by the page allocator. |
| * Pages being prepped should not have these flags set. It they are set, |
| * there has been a kernel bug or struct page corruption. |
| * |
| * __PG_HWPOISON is exceptional because it needs to be kept beyond page's |
| * alloc-free cycle to prevent from reusing the page. |
| */ |
| #define PAGE_FLAGS_CHECK_AT_PREP \ |
| (((1 << NR_PAGEFLAGS) - 1) & ~__PG_HWPOISON) |
| |
| #define PAGE_FLAGS_PRIVATE \ |
| (1 << PG_private | 1 << PG_private_2) |
| /** |
| * page_has_private - Determine if page has private stuff |
| * @page: The page to be checked |
| * |
| * Determine if a page has private stuff, indicating that release routines |
| * should be invoked upon it. |
| */ |
| static inline int page_has_private(struct page *page) |
| { |
| return !!(page->flags & PAGE_FLAGS_PRIVATE); |
| } |
| |
| #endif /* !__GENERATING_BOUNDS_H */ |
| |
| #endif /* PAGE_FLAGS_H */ |