| /* |
| * Copyright (C) 2006-2009 DENX Software Engineering. |
| * |
| * Author: Yuri Tikhonov <yur@emcraft.com> |
| * |
| * Further porting to arch/powerpc by |
| * Anatolij Gustschin <agust@denx.de> |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms of the GNU General Public License as published by the Free |
| * Software Foundation; either version 2 of the License, or (at your option) |
| * any later version. |
| * |
| * This program is distributed in the hope that it will be useful, but WITHOUT |
| * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| * more details. |
| * |
| * You should have received a copy of the GNU General Public License along with |
| * this program; if not, write to the Free Software Foundation, Inc., 59 |
| * Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
| * |
| * The full GNU General Public License is included in this distribution in the |
| * file called COPYING. |
| */ |
| |
| /* |
| * This driver supports the asynchrounous DMA copy and RAID engines available |
| * on the AMCC PPC440SPe Processors. |
| * Based on the Intel Xscale(R) family of I/O Processors (IOP 32x, 33x, 134x) |
| * ADMA driver written by D.Williams. |
| */ |
| |
| #include <linux/init.h> |
| #include <linux/module.h> |
| #include <linux/async_tx.h> |
| #include <linux/delay.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/spinlock.h> |
| #include <linux/interrupt.h> |
| #include <linux/slab.h> |
| #include <linux/uaccess.h> |
| #include <linux/proc_fs.h> |
| #include <linux/of.h> |
| #include <linux/of_platform.h> |
| #include <asm/dcr.h> |
| #include <asm/dcr-regs.h> |
| #include "adma.h" |
| #include "../dmaengine.h" |
| |
| enum ppc_adma_init_code { |
| PPC_ADMA_INIT_OK = 0, |
| PPC_ADMA_INIT_MEMRES, |
| PPC_ADMA_INIT_MEMREG, |
| PPC_ADMA_INIT_ALLOC, |
| PPC_ADMA_INIT_COHERENT, |
| PPC_ADMA_INIT_CHANNEL, |
| PPC_ADMA_INIT_IRQ1, |
| PPC_ADMA_INIT_IRQ2, |
| PPC_ADMA_INIT_REGISTER |
| }; |
| |
| static char *ppc_adma_errors[] = { |
| [PPC_ADMA_INIT_OK] = "ok", |
| [PPC_ADMA_INIT_MEMRES] = "failed to get memory resource", |
| [PPC_ADMA_INIT_MEMREG] = "failed to request memory region", |
| [PPC_ADMA_INIT_ALLOC] = "failed to allocate memory for adev " |
| "structure", |
| [PPC_ADMA_INIT_COHERENT] = "failed to allocate coherent memory for " |
| "hardware descriptors", |
| [PPC_ADMA_INIT_CHANNEL] = "failed to allocate memory for channel", |
| [PPC_ADMA_INIT_IRQ1] = "failed to request first irq", |
| [PPC_ADMA_INIT_IRQ2] = "failed to request second irq", |
| [PPC_ADMA_INIT_REGISTER] = "failed to register dma async device", |
| }; |
| |
| static enum ppc_adma_init_code |
| ppc440spe_adma_devices[PPC440SPE_ADMA_ENGINES_NUM]; |
| |
| struct ppc_dma_chan_ref { |
| struct dma_chan *chan; |
| struct list_head node; |
| }; |
| |
| /* The list of channels exported by ppc440spe ADMA */ |
| struct list_head |
| ppc440spe_adma_chan_list = LIST_HEAD_INIT(ppc440spe_adma_chan_list); |
| |
| /* This flag is set when want to refetch the xor chain in the interrupt |
| * handler |
| */ |
| static u32 do_xor_refetch; |
| |
| /* Pointer to DMA0, DMA1 CP/CS FIFO */ |
| static void *ppc440spe_dma_fifo_buf; |
| |
| /* Pointers to last submitted to DMA0, DMA1 CDBs */ |
| static struct ppc440spe_adma_desc_slot *chan_last_sub[3]; |
| static struct ppc440spe_adma_desc_slot *chan_first_cdb[3]; |
| |
| /* Pointer to last linked and submitted xor CB */ |
| static struct ppc440spe_adma_desc_slot *xor_last_linked; |
| static struct ppc440spe_adma_desc_slot *xor_last_submit; |
| |
| /* This array is used in data-check operations for storing a pattern */ |
| static char ppc440spe_qword[16]; |
| |
| static atomic_t ppc440spe_adma_err_irq_ref; |
| static dcr_host_t ppc440spe_mq_dcr_host; |
| static unsigned int ppc440spe_mq_dcr_len; |
| |
| /* Since RXOR operations use the common register (MQ0_CF2H) for setting-up |
| * the block size in transactions, then we do not allow to activate more than |
| * only one RXOR transactions simultaneously. So use this var to store |
| * the information about is RXOR currently active (PPC440SPE_RXOR_RUN bit is |
| * set) or not (PPC440SPE_RXOR_RUN is clear). |
| */ |
| static unsigned long ppc440spe_rxor_state; |
| |
| /* These are used in enable & check routines |
| */ |
| static u32 ppc440spe_r6_enabled; |
| static struct ppc440spe_adma_chan *ppc440spe_r6_tchan; |
| static struct completion ppc440spe_r6_test_comp; |
| |
| static int ppc440spe_adma_dma2rxor_prep_src( |
| struct ppc440spe_adma_desc_slot *desc, |
| struct ppc440spe_rxor *cursor, int index, |
| int src_cnt, u32 addr); |
| static void ppc440spe_adma_dma2rxor_set_src( |
| struct ppc440spe_adma_desc_slot *desc, |
| int index, dma_addr_t addr); |
| static void ppc440spe_adma_dma2rxor_set_mult( |
| struct ppc440spe_adma_desc_slot *desc, |
| int index, u8 mult); |
| |
| #ifdef ADMA_LL_DEBUG |
| #define ADMA_LL_DBG(x) ({ if (1) x; 0; }) |
| #else |
| #define ADMA_LL_DBG(x) ({ if (0) x; 0; }) |
| #endif |
| |
| static void print_cb(struct ppc440spe_adma_chan *chan, void *block) |
| { |
| struct dma_cdb *cdb; |
| struct xor_cb *cb; |
| int i; |
| |
| switch (chan->device->id) { |
| case 0: |
| case 1: |
| cdb = block; |
| |
| pr_debug("CDB at %p [%d]:\n" |
| "\t attr 0x%02x opc 0x%02x cnt 0x%08x\n" |
| "\t sg1u 0x%08x sg1l 0x%08x\n" |
| "\t sg2u 0x%08x sg2l 0x%08x\n" |
| "\t sg3u 0x%08x sg3l 0x%08x\n", |
| cdb, chan->device->id, |
| cdb->attr, cdb->opc, le32_to_cpu(cdb->cnt), |
| le32_to_cpu(cdb->sg1u), le32_to_cpu(cdb->sg1l), |
| le32_to_cpu(cdb->sg2u), le32_to_cpu(cdb->sg2l), |
| le32_to_cpu(cdb->sg3u), le32_to_cpu(cdb->sg3l) |
| ); |
| break; |
| case 2: |
| cb = block; |
| |
| pr_debug("CB at %p [%d]:\n" |
| "\t cbc 0x%08x cbbc 0x%08x cbs 0x%08x\n" |
| "\t cbtah 0x%08x cbtal 0x%08x\n" |
| "\t cblah 0x%08x cblal 0x%08x\n", |
| cb, chan->device->id, |
| cb->cbc, cb->cbbc, cb->cbs, |
| cb->cbtah, cb->cbtal, |
| cb->cblah, cb->cblal); |
| for (i = 0; i < 16; i++) { |
| if (i && !cb->ops[i].h && !cb->ops[i].l) |
| continue; |
| pr_debug("\t ops[%2d]: h 0x%08x l 0x%08x\n", |
| i, cb->ops[i].h, cb->ops[i].l); |
| } |
| break; |
| } |
| } |
| |
| static void print_cb_list(struct ppc440spe_adma_chan *chan, |
| struct ppc440spe_adma_desc_slot *iter) |
| { |
| for (; iter; iter = iter->hw_next) |
| print_cb(chan, iter->hw_desc); |
| } |
| |
| static void prep_dma_xor_dbg(int id, dma_addr_t dst, dma_addr_t *src, |
| unsigned int src_cnt) |
| { |
| int i; |
| |
| pr_debug("\n%s(%d):\nsrc: ", __func__, id); |
| for (i = 0; i < src_cnt; i++) |
| pr_debug("\t0x%016llx ", src[i]); |
| pr_debug("dst:\n\t0x%016llx\n", dst); |
| } |
| |
| static void prep_dma_pq_dbg(int id, dma_addr_t *dst, dma_addr_t *src, |
| unsigned int src_cnt) |
| { |
| int i; |
| |
| pr_debug("\n%s(%d):\nsrc: ", __func__, id); |
| for (i = 0; i < src_cnt; i++) |
| pr_debug("\t0x%016llx ", src[i]); |
| pr_debug("dst: "); |
| for (i = 0; i < 2; i++) |
| pr_debug("\t0x%016llx ", dst[i]); |
| } |
| |
| static void prep_dma_pqzero_sum_dbg(int id, dma_addr_t *src, |
| unsigned int src_cnt, |
| const unsigned char *scf) |
| { |
| int i; |
| |
| pr_debug("\n%s(%d):\nsrc(coef): ", __func__, id); |
| if (scf) { |
| for (i = 0; i < src_cnt; i++) |
| pr_debug("\t0x%016llx(0x%02x) ", src[i], scf[i]); |
| } else { |
| for (i = 0; i < src_cnt; i++) |
| pr_debug("\t0x%016llx(no) ", src[i]); |
| } |
| |
| pr_debug("dst: "); |
| for (i = 0; i < 2; i++) |
| pr_debug("\t0x%016llx ", src[src_cnt + i]); |
| } |
| |
| /****************************************************************************** |
| * Command (Descriptor) Blocks low-level routines |
| ******************************************************************************/ |
| /** |
| * ppc440spe_desc_init_interrupt - initialize the descriptor for INTERRUPT |
| * pseudo operation |
| */ |
| static void ppc440spe_desc_init_interrupt(struct ppc440spe_adma_desc_slot *desc, |
| struct ppc440spe_adma_chan *chan) |
| { |
| struct xor_cb *p; |
| |
| switch (chan->device->id) { |
| case PPC440SPE_XOR_ID: |
| p = desc->hw_desc; |
| memset(desc->hw_desc, 0, sizeof(struct xor_cb)); |
| /* NOP with Command Block Complete Enable */ |
| p->cbc = XOR_CBCR_CBCE_BIT; |
| break; |
| case PPC440SPE_DMA0_ID: |
| case PPC440SPE_DMA1_ID: |
| memset(desc->hw_desc, 0, sizeof(struct dma_cdb)); |
| /* NOP with interrupt */ |
| set_bit(PPC440SPE_DESC_INT, &desc->flags); |
| break; |
| default: |
| printk(KERN_ERR "Unsupported id %d in %s\n", chan->device->id, |
| __func__); |
| break; |
| } |
| } |
| |
| /** |
| * ppc440spe_desc_init_null_xor - initialize the descriptor for NULL XOR |
| * pseudo operation |
| */ |
| static void ppc440spe_desc_init_null_xor(struct ppc440spe_adma_desc_slot *desc) |
| { |
| memset(desc->hw_desc, 0, sizeof(struct xor_cb)); |
| desc->hw_next = NULL; |
| desc->src_cnt = 0; |
| desc->dst_cnt = 1; |
| } |
| |
| /** |
| * ppc440spe_desc_init_xor - initialize the descriptor for XOR operation |
| */ |
| static void ppc440spe_desc_init_xor(struct ppc440spe_adma_desc_slot *desc, |
| int src_cnt, unsigned long flags) |
| { |
| struct xor_cb *hw_desc = desc->hw_desc; |
| |
| memset(desc->hw_desc, 0, sizeof(struct xor_cb)); |
| desc->hw_next = NULL; |
| desc->src_cnt = src_cnt; |
| desc->dst_cnt = 1; |
| |
| hw_desc->cbc = XOR_CBCR_TGT_BIT | src_cnt; |
| if (flags & DMA_PREP_INTERRUPT) |
| /* Enable interrupt on completion */ |
| hw_desc->cbc |= XOR_CBCR_CBCE_BIT; |
| } |
| |
| /** |
| * ppc440spe_desc_init_dma2pq - initialize the descriptor for PQ |
| * operation in DMA2 controller |
| */ |
| static void ppc440spe_desc_init_dma2pq(struct ppc440spe_adma_desc_slot *desc, |
| int dst_cnt, int src_cnt, unsigned long flags) |
| { |
| struct xor_cb *hw_desc = desc->hw_desc; |
| |
| memset(desc->hw_desc, 0, sizeof(struct xor_cb)); |
| desc->hw_next = NULL; |
| desc->src_cnt = src_cnt; |
| desc->dst_cnt = dst_cnt; |
| memset(desc->reverse_flags, 0, sizeof(desc->reverse_flags)); |
| desc->descs_per_op = 0; |
| |
| hw_desc->cbc = XOR_CBCR_TGT_BIT; |
| if (flags & DMA_PREP_INTERRUPT) |
| /* Enable interrupt on completion */ |
| hw_desc->cbc |= XOR_CBCR_CBCE_BIT; |
| } |
| |
| #define DMA_CTRL_FLAGS_LAST DMA_PREP_FENCE |
| #define DMA_PREP_ZERO_P (DMA_CTRL_FLAGS_LAST << 1) |
| #define DMA_PREP_ZERO_Q (DMA_PREP_ZERO_P << 1) |
| |
| /** |
| * ppc440spe_desc_init_dma01pq - initialize the descriptors for PQ operation |
| * with DMA0/1 |
| */ |
| static void ppc440spe_desc_init_dma01pq(struct ppc440spe_adma_desc_slot *desc, |
| int dst_cnt, int src_cnt, unsigned long flags, |
| unsigned long op) |
| { |
| struct dma_cdb *hw_desc; |
| struct ppc440spe_adma_desc_slot *iter; |
| u8 dopc; |
| |
| /* Common initialization of a PQ descriptors chain */ |
| set_bits(op, &desc->flags); |
| desc->src_cnt = src_cnt; |
| desc->dst_cnt = dst_cnt; |
| |
| /* WXOR MULTICAST if both P and Q are being computed |
| * MV_SG1_SG2 if Q only |
| */ |
| dopc = (desc->dst_cnt == DMA_DEST_MAX_NUM) ? |
| DMA_CDB_OPC_MULTICAST : DMA_CDB_OPC_MV_SG1_SG2; |
| |
| list_for_each_entry(iter, &desc->group_list, chain_node) { |
| hw_desc = iter->hw_desc; |
| memset(iter->hw_desc, 0, sizeof(struct dma_cdb)); |
| |
| if (likely(!list_is_last(&iter->chain_node, |
| &desc->group_list))) { |
| /* set 'next' pointer */ |
| iter->hw_next = list_entry(iter->chain_node.next, |
| struct ppc440spe_adma_desc_slot, chain_node); |
| clear_bit(PPC440SPE_DESC_INT, &iter->flags); |
| } else { |
| /* this is the last descriptor. |
| * this slot will be pasted from ADMA level |
| * each time it wants to configure parameters |
| * of the transaction (src, dst, ...) |
| */ |
| iter->hw_next = NULL; |
| if (flags & DMA_PREP_INTERRUPT) |
| set_bit(PPC440SPE_DESC_INT, &iter->flags); |
| else |
| clear_bit(PPC440SPE_DESC_INT, &iter->flags); |
| } |
| } |
| |
| /* Set OPS depending on WXOR/RXOR type of operation */ |
| if (!test_bit(PPC440SPE_DESC_RXOR, &desc->flags)) { |
| /* This is a WXOR only chain: |
| * - first descriptors are for zeroing destinations |
| * if PPC440SPE_ZERO_P/Q set; |
| * - descriptors remained are for GF-XOR operations. |
| */ |
| iter = list_first_entry(&desc->group_list, |
| struct ppc440spe_adma_desc_slot, |
| chain_node); |
| |
| if (test_bit(PPC440SPE_ZERO_P, &desc->flags)) { |
| hw_desc = iter->hw_desc; |
| hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2; |
| iter = list_first_entry(&iter->chain_node, |
| struct ppc440spe_adma_desc_slot, |
| chain_node); |
| } |
| |
| if (test_bit(PPC440SPE_ZERO_Q, &desc->flags)) { |
| hw_desc = iter->hw_desc; |
| hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2; |
| iter = list_first_entry(&iter->chain_node, |
| struct ppc440spe_adma_desc_slot, |
| chain_node); |
| } |
| |
| list_for_each_entry_from(iter, &desc->group_list, chain_node) { |
| hw_desc = iter->hw_desc; |
| hw_desc->opc = dopc; |
| } |
| } else { |
| /* This is either RXOR-only or mixed RXOR/WXOR */ |
| |
| /* The first 1 or 2 slots in chain are always RXOR, |
| * if need to calculate P & Q, then there are two |
| * RXOR slots; if only P or only Q, then there is one |
| */ |
| iter = list_first_entry(&desc->group_list, |
| struct ppc440spe_adma_desc_slot, |
| chain_node); |
| hw_desc = iter->hw_desc; |
| hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2; |
| |
| if (desc->dst_cnt == DMA_DEST_MAX_NUM) { |
| iter = list_first_entry(&iter->chain_node, |
| struct ppc440spe_adma_desc_slot, |
| chain_node); |
| hw_desc = iter->hw_desc; |
| hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2; |
| } |
| |
| /* The remaining descs (if any) are WXORs */ |
| if (test_bit(PPC440SPE_DESC_WXOR, &desc->flags)) { |
| iter = list_first_entry(&iter->chain_node, |
| struct ppc440spe_adma_desc_slot, |
| chain_node); |
| list_for_each_entry_from(iter, &desc->group_list, |
| chain_node) { |
| hw_desc = iter->hw_desc; |
| hw_desc->opc = dopc; |
| } |
| } |
| } |
| } |
| |
| /** |
| * ppc440spe_desc_init_dma01pqzero_sum - initialize the descriptor |
| * for PQ_ZERO_SUM operation |
| */ |
| static void ppc440spe_desc_init_dma01pqzero_sum( |
| struct ppc440spe_adma_desc_slot *desc, |
| int dst_cnt, int src_cnt) |
| { |
| struct dma_cdb *hw_desc; |
| struct ppc440spe_adma_desc_slot *iter; |
| int i = 0; |
| u8 dopc = (dst_cnt == 2) ? DMA_CDB_OPC_MULTICAST : |
| DMA_CDB_OPC_MV_SG1_SG2; |
| /* |
| * Initialize starting from 2nd or 3rd descriptor dependent |
| * on dst_cnt. First one or two slots are for cloning P |
| * and/or Q to chan->pdest and/or chan->qdest as we have |
| * to preserve original P/Q. |
| */ |
| iter = list_first_entry(&desc->group_list, |
| struct ppc440spe_adma_desc_slot, chain_node); |
| iter = list_entry(iter->chain_node.next, |
| struct ppc440spe_adma_desc_slot, chain_node); |
| |
| if (dst_cnt > 1) { |
| iter = list_entry(iter->chain_node.next, |
| struct ppc440spe_adma_desc_slot, chain_node); |
| } |
| /* initialize each source descriptor in chain */ |
| list_for_each_entry_from(iter, &desc->group_list, chain_node) { |
| hw_desc = iter->hw_desc; |
| memset(iter->hw_desc, 0, sizeof(struct dma_cdb)); |
| iter->src_cnt = 0; |
| iter->dst_cnt = 0; |
| |
| /* This is a ZERO_SUM operation: |
| * - <src_cnt> descriptors starting from 2nd or 3rd |
| * descriptor are for GF-XOR operations; |
| * - remaining <dst_cnt> descriptors are for checking the result |
| */ |
| if (i++ < src_cnt) |
| /* MV_SG1_SG2 if only Q is being verified |
| * MULTICAST if both P and Q are being verified |
| */ |
| hw_desc->opc = dopc; |
| else |
| /* DMA_CDB_OPC_DCHECK128 operation */ |
| hw_desc->opc = DMA_CDB_OPC_DCHECK128; |
| |
| if (likely(!list_is_last(&iter->chain_node, |
| &desc->group_list))) { |
| /* set 'next' pointer */ |
| iter->hw_next = list_entry(iter->chain_node.next, |
| struct ppc440spe_adma_desc_slot, |
| chain_node); |
| } else { |
| /* this is the last descriptor. |
| * this slot will be pasted from ADMA level |
| * each time it wants to configure parameters |
| * of the transaction (src, dst, ...) |
| */ |
| iter->hw_next = NULL; |
| /* always enable interrupt generation since we get |
| * the status of pqzero from the handler |
| */ |
| set_bit(PPC440SPE_DESC_INT, &iter->flags); |
| } |
| } |
| desc->src_cnt = src_cnt; |
| desc->dst_cnt = dst_cnt; |
| } |
| |
| /** |
| * ppc440spe_desc_init_memcpy - initialize the descriptor for MEMCPY operation |
| */ |
| static void ppc440spe_desc_init_memcpy(struct ppc440spe_adma_desc_slot *desc, |
| unsigned long flags) |
| { |
| struct dma_cdb *hw_desc = desc->hw_desc; |
| |
| memset(desc->hw_desc, 0, sizeof(struct dma_cdb)); |
| desc->hw_next = NULL; |
| desc->src_cnt = 1; |
| desc->dst_cnt = 1; |
| |
| if (flags & DMA_PREP_INTERRUPT) |
| set_bit(PPC440SPE_DESC_INT, &desc->flags); |
| else |
| clear_bit(PPC440SPE_DESC_INT, &desc->flags); |
| |
| hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2; |
| } |
| |
| /** |
| * ppc440spe_desc_init_memset - initialize the descriptor for MEMSET operation |
| */ |
| static void ppc440spe_desc_init_memset(struct ppc440spe_adma_desc_slot *desc, |
| int value, unsigned long flags) |
| { |
| struct dma_cdb *hw_desc = desc->hw_desc; |
| |
| memset(desc->hw_desc, 0, sizeof(struct dma_cdb)); |
| desc->hw_next = NULL; |
| desc->src_cnt = 1; |
| desc->dst_cnt = 1; |
| |
| if (flags & DMA_PREP_INTERRUPT) |
| set_bit(PPC440SPE_DESC_INT, &desc->flags); |
| else |
| clear_bit(PPC440SPE_DESC_INT, &desc->flags); |
| |
| hw_desc->sg1u = hw_desc->sg1l = cpu_to_le32((u32)value); |
| hw_desc->sg3u = hw_desc->sg3l = cpu_to_le32((u32)value); |
| hw_desc->opc = DMA_CDB_OPC_DFILL128; |
| } |
| |
| /** |
| * ppc440spe_desc_set_src_addr - set source address into the descriptor |
| */ |
| static void ppc440spe_desc_set_src_addr(struct ppc440spe_adma_desc_slot *desc, |
| struct ppc440spe_adma_chan *chan, |
| int src_idx, dma_addr_t addrh, |
| dma_addr_t addrl) |
| { |
| struct dma_cdb *dma_hw_desc; |
| struct xor_cb *xor_hw_desc; |
| phys_addr_t addr64, tmplow, tmphi; |
| |
| switch (chan->device->id) { |
| case PPC440SPE_DMA0_ID: |
| case PPC440SPE_DMA1_ID: |
| if (!addrh) { |
| addr64 = addrl; |
| tmphi = (addr64 >> 32); |
| tmplow = (addr64 & 0xFFFFFFFF); |
| } else { |
| tmphi = addrh; |
| tmplow = addrl; |
| } |
| dma_hw_desc = desc->hw_desc; |
| dma_hw_desc->sg1l = cpu_to_le32((u32)tmplow); |
| dma_hw_desc->sg1u |= cpu_to_le32((u32)tmphi); |
| break; |
| case PPC440SPE_XOR_ID: |
| xor_hw_desc = desc->hw_desc; |
| xor_hw_desc->ops[src_idx].l = addrl; |
| xor_hw_desc->ops[src_idx].h |= addrh; |
| break; |
| } |
| } |
| |
| /** |
| * ppc440spe_desc_set_src_mult - set source address mult into the descriptor |
| */ |
| static void ppc440spe_desc_set_src_mult(struct ppc440spe_adma_desc_slot *desc, |
| struct ppc440spe_adma_chan *chan, u32 mult_index, |
| int sg_index, unsigned char mult_value) |
| { |
| struct dma_cdb *dma_hw_desc; |
| struct xor_cb *xor_hw_desc; |
| u32 *psgu; |
| |
| switch (chan->device->id) { |
| case PPC440SPE_DMA0_ID: |
| case PPC440SPE_DMA1_ID: |
| dma_hw_desc = desc->hw_desc; |
| |
| switch (sg_index) { |
| /* for RXOR operations set multiplier |
| * into source cued address |
| */ |
| case DMA_CDB_SG_SRC: |
| psgu = &dma_hw_desc->sg1u; |
| break; |
| /* for WXOR operations set multiplier |
| * into destination cued address(es) |
| */ |
| case DMA_CDB_SG_DST1: |
| psgu = &dma_hw_desc->sg2u; |
| break; |
| case DMA_CDB_SG_DST2: |
| psgu = &dma_hw_desc->sg3u; |
| break; |
| default: |
| BUG(); |
| } |
| |
| *psgu |= cpu_to_le32(mult_value << mult_index); |
| break; |
| case PPC440SPE_XOR_ID: |
| xor_hw_desc = desc->hw_desc; |
| break; |
| default: |
| BUG(); |
| } |
| } |
| |
| /** |
| * ppc440spe_desc_set_dest_addr - set destination address into the descriptor |
| */ |
| static void ppc440spe_desc_set_dest_addr(struct ppc440spe_adma_desc_slot *desc, |
| struct ppc440spe_adma_chan *chan, |
| dma_addr_t addrh, dma_addr_t addrl, |
| u32 dst_idx) |
| { |
| struct dma_cdb *dma_hw_desc; |
| struct xor_cb *xor_hw_desc; |
| phys_addr_t addr64, tmphi, tmplow; |
| u32 *psgu, *psgl; |
| |
| switch (chan->device->id) { |
| case PPC440SPE_DMA0_ID: |
| case PPC440SPE_DMA1_ID: |
| if (!addrh) { |
| addr64 = addrl; |
| tmphi = (addr64 >> 32); |
| tmplow = (addr64 & 0xFFFFFFFF); |
| } else { |
| tmphi = addrh; |
| tmplow = addrl; |
| } |
| dma_hw_desc = desc->hw_desc; |
| |
| psgu = dst_idx ? &dma_hw_desc->sg3u : &dma_hw_desc->sg2u; |
| psgl = dst_idx ? &dma_hw_desc->sg3l : &dma_hw_desc->sg2l; |
| |
| *psgl = cpu_to_le32((u32)tmplow); |
| *psgu |= cpu_to_le32((u32)tmphi); |
| break; |
| case PPC440SPE_XOR_ID: |
| xor_hw_desc = desc->hw_desc; |
| xor_hw_desc->cbtal = addrl; |
| xor_hw_desc->cbtah |= addrh; |
| break; |
| } |
| } |
| |
| /** |
| * ppc440spe_desc_set_byte_count - set number of data bytes involved |
| * into the operation |
| */ |
| static void ppc440spe_desc_set_byte_count(struct ppc440spe_adma_desc_slot *desc, |
| struct ppc440spe_adma_chan *chan, |
| u32 byte_count) |
| { |
| struct dma_cdb *dma_hw_desc; |
| struct xor_cb *xor_hw_desc; |
| |
| switch (chan->device->id) { |
| case PPC440SPE_DMA0_ID: |
| case PPC440SPE_DMA1_ID: |
| dma_hw_desc = desc->hw_desc; |
| dma_hw_desc->cnt = cpu_to_le32(byte_count); |
| break; |
| case PPC440SPE_XOR_ID: |
| xor_hw_desc = desc->hw_desc; |
| xor_hw_desc->cbbc = byte_count; |
| break; |
| } |
| } |
| |
| /** |
| * ppc440spe_desc_set_rxor_block_size - set RXOR block size |
| */ |
| static inline void ppc440spe_desc_set_rxor_block_size(u32 byte_count) |
| { |
| /* assume that byte_count is aligned on the 512-boundary; |
| * thus write it directly to the register (bits 23:31 are |
| * reserved there). |
| */ |
| dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CF2H, byte_count); |
| } |
| |
| /** |
| * ppc440spe_desc_set_dcheck - set CHECK pattern |
| */ |
| static void ppc440spe_desc_set_dcheck(struct ppc440spe_adma_desc_slot *desc, |
| struct ppc440spe_adma_chan *chan, u8 *qword) |
| { |
| struct dma_cdb *dma_hw_desc; |
| |
| switch (chan->device->id) { |
| case PPC440SPE_DMA0_ID: |
| case PPC440SPE_DMA1_ID: |
| dma_hw_desc = desc->hw_desc; |
| iowrite32(qword[0], &dma_hw_desc->sg3l); |
| iowrite32(qword[4], &dma_hw_desc->sg3u); |
| iowrite32(qword[8], &dma_hw_desc->sg2l); |
| iowrite32(qword[12], &dma_hw_desc->sg2u); |
| break; |
| default: |
| BUG(); |
| } |
| } |
| |
| /** |
| * ppc440spe_xor_set_link - set link address in xor CB |
| */ |
| static void ppc440spe_xor_set_link(struct ppc440spe_adma_desc_slot *prev_desc, |
| struct ppc440spe_adma_desc_slot *next_desc) |
| { |
| struct xor_cb *xor_hw_desc = prev_desc->hw_desc; |
| |
| if (unlikely(!next_desc || !(next_desc->phys))) { |
| printk(KERN_ERR "%s: next_desc=0x%p; next_desc->phys=0x%llx\n", |
| __func__, next_desc, |
| next_desc ? next_desc->phys : 0); |
| BUG(); |
| } |
| |
| xor_hw_desc->cbs = 0; |
| xor_hw_desc->cblal = next_desc->phys; |
| xor_hw_desc->cblah = 0; |
| xor_hw_desc->cbc |= XOR_CBCR_LNK_BIT; |
| } |
| |
| /** |
| * ppc440spe_desc_set_link - set the address of descriptor following this |
| * descriptor in chain |
| */ |
| static void ppc440spe_desc_set_link(struct ppc440spe_adma_chan *chan, |
| struct ppc440spe_adma_desc_slot *prev_desc, |
| struct ppc440spe_adma_desc_slot *next_desc) |
| { |
| unsigned long flags; |
| struct ppc440spe_adma_desc_slot *tail = next_desc; |
| |
| if (unlikely(!prev_desc || !next_desc || |
| (prev_desc->hw_next && prev_desc->hw_next != next_desc))) { |
| /* If previous next is overwritten something is wrong. |
| * though we may refetch from append to initiate list |
| * processing; in this case - it's ok. |
| */ |
| printk(KERN_ERR "%s: prev_desc=0x%p; next_desc=0x%p; " |
| "prev->hw_next=0x%p\n", __func__, prev_desc, |
| next_desc, prev_desc ? prev_desc->hw_next : 0); |
| BUG(); |
| } |
| |
| local_irq_save(flags); |
| |
| /* do s/w chaining both for DMA and XOR descriptors */ |
| prev_desc->hw_next = next_desc; |
| |
| switch (chan->device->id) { |
| case PPC440SPE_DMA0_ID: |
| case PPC440SPE_DMA1_ID: |
| break; |
| case PPC440SPE_XOR_ID: |
| /* bind descriptor to the chain */ |
| while (tail->hw_next) |
| tail = tail->hw_next; |
| xor_last_linked = tail; |
| |
| if (prev_desc == xor_last_submit) |
| /* do not link to the last submitted CB */ |
| break; |
| ppc440spe_xor_set_link(prev_desc, next_desc); |
| break; |
| } |
| |
| local_irq_restore(flags); |
| } |
| |
| /** |
| * ppc440spe_desc_get_src_addr - extract the source address from the descriptor |
| */ |
| static u32 ppc440spe_desc_get_src_addr(struct ppc440spe_adma_desc_slot *desc, |
| struct ppc440spe_adma_chan *chan, int src_idx) |
| { |
| struct dma_cdb *dma_hw_desc; |
| struct xor_cb *xor_hw_desc; |
| |
| switch (chan->device->id) { |
| case PPC440SPE_DMA0_ID: |
| case PPC440SPE_DMA1_ID: |
| dma_hw_desc = desc->hw_desc; |
| /* May have 0, 1, 2, or 3 sources */ |
| switch (dma_hw_desc->opc) { |
| case DMA_CDB_OPC_NO_OP: |
| case DMA_CDB_OPC_DFILL128: |
| return 0; |
| case DMA_CDB_OPC_DCHECK128: |
| if (unlikely(src_idx)) { |
| printk(KERN_ERR "%s: try to get %d source for" |
| " DCHECK128\n", __func__, src_idx); |
| BUG(); |
| } |
| return le32_to_cpu(dma_hw_desc->sg1l); |
| case DMA_CDB_OPC_MULTICAST: |
| case DMA_CDB_OPC_MV_SG1_SG2: |
| if (unlikely(src_idx > 2)) { |
| printk(KERN_ERR "%s: try to get %d source from" |
| " DMA descr\n", __func__, src_idx); |
| BUG(); |
| } |
| if (src_idx) { |
| if (le32_to_cpu(dma_hw_desc->sg1u) & |
| DMA_CUED_XOR_WIN_MSK) { |
| u8 region; |
| |
| if (src_idx == 1) |
| return le32_to_cpu( |
| dma_hw_desc->sg1l) + |
| desc->unmap_len; |
| |
| region = (le32_to_cpu( |
| dma_hw_desc->sg1u)) >> |
| DMA_CUED_REGION_OFF; |
| |
| region &= DMA_CUED_REGION_MSK; |
| switch (region) { |
| case DMA_RXOR123: |
| return le32_to_cpu( |
| dma_hw_desc->sg1l) + |
| (desc->unmap_len << 1); |
| case DMA_RXOR124: |
| return le32_to_cpu( |
| dma_hw_desc->sg1l) + |
| (desc->unmap_len * 3); |
| case DMA_RXOR125: |
| return le32_to_cpu( |
| dma_hw_desc->sg1l) + |
| (desc->unmap_len << 2); |
| default: |
| printk(KERN_ERR |
| "%s: try to" |
| " get src3 for region %02x" |
| "PPC440SPE_DESC_RXOR12?\n", |
| __func__, region); |
| BUG(); |
| } |
| } else { |
| printk(KERN_ERR |
| "%s: try to get %d" |
| " source for non-cued descr\n", |
| __func__, src_idx); |
| BUG(); |
| } |
| } |
| return le32_to_cpu(dma_hw_desc->sg1l); |
| default: |
| printk(KERN_ERR "%s: unknown OPC 0x%02x\n", |
| __func__, dma_hw_desc->opc); |
| BUG(); |
| } |
| return le32_to_cpu(dma_hw_desc->sg1l); |
| case PPC440SPE_XOR_ID: |
| /* May have up to 16 sources */ |
| xor_hw_desc = desc->hw_desc; |
| return xor_hw_desc->ops[src_idx].l; |
| } |
| return 0; |
| } |
| |
| /** |
| * ppc440spe_desc_get_dest_addr - extract the destination address from the |
| * descriptor |
| */ |
| static u32 ppc440spe_desc_get_dest_addr(struct ppc440spe_adma_desc_slot *desc, |
| struct ppc440spe_adma_chan *chan, int idx) |
| { |
| struct dma_cdb *dma_hw_desc; |
| struct xor_cb *xor_hw_desc; |
| |
| switch (chan->device->id) { |
| case PPC440SPE_DMA0_ID: |
| case PPC440SPE_DMA1_ID: |
| dma_hw_desc = desc->hw_desc; |
| |
| if (likely(!idx)) |
| return le32_to_cpu(dma_hw_desc->sg2l); |
| return le32_to_cpu(dma_hw_desc->sg3l); |
| case PPC440SPE_XOR_ID: |
| xor_hw_desc = desc->hw_desc; |
| return xor_hw_desc->cbtal; |
| } |
| return 0; |
| } |
| |
| /** |
| * ppc440spe_desc_get_src_num - extract the number of source addresses from |
| * the descriptor |
| */ |
| static u32 ppc440spe_desc_get_src_num(struct ppc440spe_adma_desc_slot *desc, |
| struct ppc440spe_adma_chan *chan) |
| { |
| struct dma_cdb *dma_hw_desc; |
| struct xor_cb *xor_hw_desc; |
| |
| switch (chan->device->id) { |
| case PPC440SPE_DMA0_ID: |
| case PPC440SPE_DMA1_ID: |
| dma_hw_desc = desc->hw_desc; |
| |
| switch (dma_hw_desc->opc) { |
| case DMA_CDB_OPC_NO_OP: |
| case DMA_CDB_OPC_DFILL128: |
| return 0; |
| case DMA_CDB_OPC_DCHECK128: |
| return 1; |
| case DMA_CDB_OPC_MV_SG1_SG2: |
| case DMA_CDB_OPC_MULTICAST: |
| /* |
| * Only for RXOR operations we have more than |
| * one source |
| */ |
| if (le32_to_cpu(dma_hw_desc->sg1u) & |
| DMA_CUED_XOR_WIN_MSK) { |
| /* RXOR op, there are 2 or 3 sources */ |
| if (((le32_to_cpu(dma_hw_desc->sg1u) >> |
| DMA_CUED_REGION_OFF) & |
| DMA_CUED_REGION_MSK) == DMA_RXOR12) { |
| /* RXOR 1-2 */ |
| return 2; |
| } else { |
| /* RXOR 1-2-3/1-2-4/1-2-5 */ |
| return 3; |
| } |
| } |
| return 1; |
| default: |
| printk(KERN_ERR "%s: unknown OPC 0x%02x\n", |
| __func__, dma_hw_desc->opc); |
| BUG(); |
| } |
| case PPC440SPE_XOR_ID: |
| /* up to 16 sources */ |
| xor_hw_desc = desc->hw_desc; |
| return xor_hw_desc->cbc & XOR_CDCR_OAC_MSK; |
| default: |
| BUG(); |
| } |
| return 0; |
| } |
| |
| /** |
| * ppc440spe_desc_get_dst_num - get the number of destination addresses in |
| * this descriptor |
| */ |
| static u32 ppc440spe_desc_get_dst_num(struct ppc440spe_adma_desc_slot *desc, |
| struct ppc440spe_adma_chan *chan) |
| { |
| struct dma_cdb *dma_hw_desc; |
| |
| switch (chan->device->id) { |
| case PPC440SPE_DMA0_ID: |
| case PPC440SPE_DMA1_ID: |
| /* May be 1 or 2 destinations */ |
| dma_hw_desc = desc->hw_desc; |
| switch (dma_hw_desc->opc) { |
| case DMA_CDB_OPC_NO_OP: |
| case DMA_CDB_OPC_DCHECK128: |
| return 0; |
| case DMA_CDB_OPC_MV_SG1_SG2: |
| case DMA_CDB_OPC_DFILL128: |
| return 1; |
| case DMA_CDB_OPC_MULTICAST: |
| if (desc->dst_cnt == 2) |
| return 2; |
| else |
| return 1; |
| default: |
| printk(KERN_ERR "%s: unknown OPC 0x%02x\n", |
| __func__, dma_hw_desc->opc); |
| BUG(); |
| } |
| case PPC440SPE_XOR_ID: |
| /* Always only 1 destination */ |
| return 1; |
| default: |
| BUG(); |
| } |
| return 0; |
| } |
| |
| /** |
| * ppc440spe_desc_get_link - get the address of the descriptor that |
| * follows this one |
| */ |
| static inline u32 ppc440spe_desc_get_link(struct ppc440spe_adma_desc_slot *desc, |
| struct ppc440spe_adma_chan *chan) |
| { |
| if (!desc->hw_next) |
| return 0; |
| |
| return desc->hw_next->phys; |
| } |
| |
| /** |
| * ppc440spe_desc_is_aligned - check alignment |
| */ |
| static inline int ppc440spe_desc_is_aligned( |
| struct ppc440spe_adma_desc_slot *desc, int num_slots) |
| { |
| return (desc->idx & (num_slots - 1)) ? 0 : 1; |
| } |
| |
| /** |
| * ppc440spe_chan_xor_slot_count - get the number of slots necessary for |
| * XOR operation |
| */ |
| static int ppc440spe_chan_xor_slot_count(size_t len, int src_cnt, |
| int *slots_per_op) |
| { |
| int slot_cnt; |
| |
| /* each XOR descriptor provides up to 16 source operands */ |
| slot_cnt = *slots_per_op = (src_cnt + XOR_MAX_OPS - 1)/XOR_MAX_OPS; |
| |
| if (likely(len <= PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT)) |
| return slot_cnt; |
| |
| printk(KERN_ERR "%s: len %d > max %d !!\n", |
| __func__, len, PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT); |
| BUG(); |
| return slot_cnt; |
| } |
| |
| /** |
| * ppc440spe_dma2_pq_slot_count - get the number of slots necessary for |
| * DMA2 PQ operation |
| */ |
| static int ppc440spe_dma2_pq_slot_count(dma_addr_t *srcs, |
| int src_cnt, size_t len) |
| { |
| signed long long order = 0; |
| int state = 0; |
| int addr_count = 0; |
| int i; |
| for (i = 1; i < src_cnt; i++) { |
| dma_addr_t cur_addr = srcs[i]; |
| dma_addr_t old_addr = srcs[i-1]; |
| switch (state) { |
| case 0: |
| if (cur_addr == old_addr + len) { |
| /* direct RXOR */ |
| order = 1; |
| state = 1; |
| if (i == src_cnt-1) |
| addr_count++; |
| } else if (old_addr == cur_addr + len) { |
| /* reverse RXOR */ |
| order = -1; |
| state = 1; |
| if (i == src_cnt-1) |
| addr_count++; |
| } else { |
| state = 3; |
| } |
| break; |
| case 1: |
| if (i == src_cnt-2 || (order == -1 |
| && cur_addr != old_addr - len)) { |
| order = 0; |
| state = 0; |
| addr_count++; |
| } else if (cur_addr == old_addr + len*order) { |
| state = 2; |
| if (i == src_cnt-1) |
| addr_count++; |
| } else if (cur_addr == old_addr + 2*len) { |
| state = 2; |
| if (i == src_cnt-1) |
| addr_count++; |
| } else if (cur_addr == old_addr + 3*len) { |
| state = 2; |
| if (i == src_cnt-1) |
| addr_count++; |
| } else { |
| order = 0; |
| state = 0; |
| addr_count++; |
| } |
| break; |
| case 2: |
| order = 0; |
| state = 0; |
| addr_count++; |
| break; |
| } |
| if (state == 3) |
| break; |
| } |
| if (src_cnt <= 1 || (state != 1 && state != 2)) { |
| pr_err("%s: src_cnt=%d, state=%d, addr_count=%d, order=%lld\n", |
| __func__, src_cnt, state, addr_count, order); |
| for (i = 0; i < src_cnt; i++) |
| pr_err("\t[%d] 0x%llx \n", i, srcs[i]); |
| BUG(); |
| } |
| |
| return (addr_count + XOR_MAX_OPS - 1) / XOR_MAX_OPS; |
| } |
| |
| |
| /****************************************************************************** |
| * ADMA channel low-level routines |
| ******************************************************************************/ |
| |
| static u32 |
| ppc440spe_chan_get_current_descriptor(struct ppc440spe_adma_chan *chan); |
| static void ppc440spe_chan_append(struct ppc440spe_adma_chan *chan); |
| |
| /** |
| * ppc440spe_adma_device_clear_eot_status - interrupt ack to XOR or DMA engine |
| */ |
| static void ppc440spe_adma_device_clear_eot_status( |
| struct ppc440spe_adma_chan *chan) |
| { |
| struct dma_regs *dma_reg; |
| struct xor_regs *xor_reg; |
| u8 *p = chan->device->dma_desc_pool_virt; |
| struct dma_cdb *cdb; |
| u32 rv, i; |
| |
| switch (chan->device->id) { |
| case PPC440SPE_DMA0_ID: |
| case PPC440SPE_DMA1_ID: |
| /* read FIFO to ack */ |
| dma_reg = chan->device->dma_reg; |
| while ((rv = ioread32(&dma_reg->csfpl))) { |
| i = rv & DMA_CDB_ADDR_MSK; |
| cdb = (struct dma_cdb *)&p[i - |
| (u32)chan->device->dma_desc_pool]; |
| |
| /* Clear opcode to ack. This is necessary for |
| * ZeroSum operations only |
| */ |
| cdb->opc = 0; |
| |
| if (test_bit(PPC440SPE_RXOR_RUN, |
| &ppc440spe_rxor_state)) { |
| /* probably this is a completed RXOR op, |
| * get pointer to CDB using the fact that |
| * physical and virtual addresses of CDB |
| * in pools have the same offsets |
| */ |
| if (le32_to_cpu(cdb->sg1u) & |
| DMA_CUED_XOR_BASE) { |
| /* this is a RXOR */ |
| clear_bit(PPC440SPE_RXOR_RUN, |
| &ppc440spe_rxor_state); |
| } |
| } |
| |
| if (rv & DMA_CDB_STATUS_MSK) { |
| /* ZeroSum check failed |
| */ |
| struct ppc440spe_adma_desc_slot *iter; |
| dma_addr_t phys = rv & ~DMA_CDB_MSK; |
| |
| /* |
| * Update the status of corresponding |
| * descriptor. |
| */ |
| list_for_each_entry(iter, &chan->chain, |
| chain_node) { |
| if (iter->phys == phys) |
| break; |
| } |
| /* |
| * if cannot find the corresponding |
| * slot it's a bug |
| */ |
| BUG_ON(&iter->chain_node == &chan->chain); |
| |
| if (iter->xor_check_result) { |
| if (test_bit(PPC440SPE_DESC_PCHECK, |
| &iter->flags)) { |
| *iter->xor_check_result |= |
| SUM_CHECK_P_RESULT; |
| } else |
| if (test_bit(PPC440SPE_DESC_QCHECK, |
| &iter->flags)) { |
| *iter->xor_check_result |= |
| SUM_CHECK_Q_RESULT; |
| } else |
| BUG(); |
| } |
| } |
| } |
| |
| rv = ioread32(&dma_reg->dsts); |
| if (rv) { |
| pr_err("DMA%d err status: 0x%x\n", |
| chan->device->id, rv); |
| /* write back to clear */ |
| iowrite32(rv, &dma_reg->dsts); |
| } |
| break; |
| case PPC440SPE_XOR_ID: |
| /* reset status bits to ack */ |
| xor_reg = chan->device->xor_reg; |
| rv = ioread32be(&xor_reg->sr); |
| iowrite32be(rv, &xor_reg->sr); |
| |
| if (rv & (XOR_IE_ICBIE_BIT|XOR_IE_ICIE_BIT|XOR_IE_RPTIE_BIT)) { |
| if (rv & XOR_IE_RPTIE_BIT) { |
| /* Read PLB Timeout Error. |
| * Try to resubmit the CB |
| */ |
| u32 val = ioread32be(&xor_reg->ccbalr); |
| |
| iowrite32be(val, &xor_reg->cblalr); |
| |
| val = ioread32be(&xor_reg->crsr); |
| iowrite32be(val | XOR_CRSR_XAE_BIT, |
| &xor_reg->crsr); |
| } else |
| pr_err("XOR ERR 0x%x status\n", rv); |
| break; |
| } |
| |
| /* if the XORcore is idle, but there are unprocessed CBs |
| * then refetch the s/w chain here |
| */ |
| if (!(ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT) && |
| do_xor_refetch) |
| ppc440spe_chan_append(chan); |
| break; |
| } |
| } |
| |
| /** |
| * ppc440spe_chan_is_busy - get the channel status |
| */ |
| static int ppc440spe_chan_is_busy(struct ppc440spe_adma_chan *chan) |
| { |
| struct dma_regs *dma_reg; |
| struct xor_regs *xor_reg; |
| int busy = 0; |
| |
| switch (chan->device->id) { |
| case PPC440SPE_DMA0_ID: |
| case PPC440SPE_DMA1_ID: |
| dma_reg = chan->device->dma_reg; |
| /* if command FIFO's head and tail pointers are equal and |
| * status tail is the same as command, then channel is free |
| */ |
| if (ioread16(&dma_reg->cpfhp) != ioread16(&dma_reg->cpftp) || |
| ioread16(&dma_reg->cpftp) != ioread16(&dma_reg->csftp)) |
| busy = 1; |
| break; |
| case PPC440SPE_XOR_ID: |
| /* use the special status bit for the XORcore |
| */ |
| xor_reg = chan->device->xor_reg; |
| busy = (ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT) ? 1 : 0; |
| break; |
| } |
| |
| return busy; |
| } |
| |
| /** |
| * ppc440spe_chan_set_first_xor_descriptor - init XORcore chain |
| */ |
| static void ppc440spe_chan_set_first_xor_descriptor( |
| struct ppc440spe_adma_chan *chan, |
| struct ppc440spe_adma_desc_slot *next_desc) |
| { |
| struct xor_regs *xor_reg = chan->device->xor_reg; |
| |
| if (ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT) |
| printk(KERN_INFO "%s: Warn: XORcore is running " |
| "when try to set the first CDB!\n", |
| __func__); |
| |
| xor_last_submit = xor_last_linked = next_desc; |
| |
| iowrite32be(XOR_CRSR_64BA_BIT, &xor_reg->crsr); |
| |
| iowrite32be(next_desc->phys, &xor_reg->cblalr); |
| iowrite32be(0, &xor_reg->cblahr); |
| iowrite32be(ioread32be(&xor_reg->cbcr) | XOR_CBCR_LNK_BIT, |
| &xor_reg->cbcr); |
| |
| chan->hw_chain_inited = 1; |
| } |
| |
| /** |
| * ppc440spe_dma_put_desc - put DMA0,1 descriptor to FIFO. |
| * called with irqs disabled |
| */ |
| static void ppc440spe_dma_put_desc(struct ppc440spe_adma_chan *chan, |
| struct ppc440spe_adma_desc_slot *desc) |
| { |
| u32 pcdb; |
| struct dma_regs *dma_reg = chan->device->dma_reg; |
| |
| pcdb = desc->phys; |
| if (!test_bit(PPC440SPE_DESC_INT, &desc->flags)) |
| pcdb |= DMA_CDB_NO_INT; |
| |
| chan_last_sub[chan->device->id] = desc; |
| |
| ADMA_LL_DBG(print_cb(chan, desc->hw_desc)); |
| |
| iowrite32(pcdb, &dma_reg->cpfpl); |
| } |
| |
| /** |
| * ppc440spe_chan_append - update the h/w chain in the channel |
| */ |
| static void ppc440spe_chan_append(struct ppc440spe_adma_chan *chan) |
| { |
| struct xor_regs *xor_reg; |
| struct ppc440spe_adma_desc_slot *iter; |
| struct xor_cb *xcb; |
| u32 cur_desc; |
| unsigned long flags; |
| |
| local_irq_save(flags); |
| |
| switch (chan->device->id) { |
| case PPC440SPE_DMA0_ID: |
| case PPC440SPE_DMA1_ID: |
| cur_desc = ppc440spe_chan_get_current_descriptor(chan); |
| |
| if (likely(cur_desc)) { |
| iter = chan_last_sub[chan->device->id]; |
| BUG_ON(!iter); |
| } else { |
| /* first peer */ |
| iter = chan_first_cdb[chan->device->id]; |
| BUG_ON(!iter); |
| ppc440spe_dma_put_desc(chan, iter); |
| chan->hw_chain_inited = 1; |
| } |
| |
| /* is there something new to append */ |
| if (!iter->hw_next) |
| break; |
| |
| /* flush descriptors from the s/w queue to fifo */ |
| list_for_each_entry_continue(iter, &chan->chain, chain_node) { |
| ppc440spe_dma_put_desc(chan, iter); |
| if (!iter->hw_next) |
| break; |
| } |
| break; |
| case PPC440SPE_XOR_ID: |
| /* update h/w links and refetch */ |
| if (!xor_last_submit->hw_next) |
| break; |
| |
| xor_reg = chan->device->xor_reg; |
| /* the last linked CDB has to generate an interrupt |
| * that we'd be able to append the next lists to h/w |
| * regardless of the XOR engine state at the moment of |
| * appending of these next lists |
| */ |
| xcb = xor_last_linked->hw_desc; |
| xcb->cbc |= XOR_CBCR_CBCE_BIT; |
| |
| if (!(ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT)) { |
| /* XORcore is idle. Refetch now */ |
| do_xor_refetch = 0; |
| ppc440spe_xor_set_link(xor_last_submit, |
| xor_last_submit->hw_next); |
| |
| ADMA_LL_DBG(print_cb_list(chan, |
| xor_last_submit->hw_next)); |
| |
| xor_last_submit = xor_last_linked; |
| iowrite32be(ioread32be(&xor_reg->crsr) | |
| XOR_CRSR_RCBE_BIT | XOR_CRSR_64BA_BIT, |
| &xor_reg->crsr); |
| } else { |
| /* XORcore is running. Refetch later in the handler */ |
| do_xor_refetch = 1; |
| } |
| |
| break; |
| } |
| |
| local_irq_restore(flags); |
| } |
| |
| /** |
| * ppc440spe_chan_get_current_descriptor - get the currently executed descriptor |
| */ |
| static u32 |
| ppc440spe_chan_get_current_descriptor(struct ppc440spe_adma_chan *chan) |
| { |
| struct dma_regs *dma_reg; |
| struct xor_regs *xor_reg; |
| |
| if (unlikely(!chan->hw_chain_inited)) |
| /* h/w descriptor chain is not initialized yet */ |
| return 0; |
| |
| switch (chan->device->id) { |
| case PPC440SPE_DMA0_ID: |
| case PPC440SPE_DMA1_ID: |
| dma_reg = chan->device->dma_reg; |
| return ioread32(&dma_reg->acpl) & (~DMA_CDB_MSK); |
| case PPC440SPE_XOR_ID: |
| xor_reg = chan->device->xor_reg; |
| return ioread32be(&xor_reg->ccbalr); |
| } |
| return 0; |
| } |
| |
| /** |
| * ppc440spe_chan_run - enable the channel |
| */ |
| static void ppc440spe_chan_run(struct ppc440spe_adma_chan *chan) |
| { |
| struct xor_regs *xor_reg; |
| |
| switch (chan->device->id) { |
| case PPC440SPE_DMA0_ID: |
| case PPC440SPE_DMA1_ID: |
| /* DMAs are always enabled, do nothing */ |
| break; |
| case PPC440SPE_XOR_ID: |
| /* drain write buffer */ |
| xor_reg = chan->device->xor_reg; |
| |
| /* fetch descriptor pointed to in <link> */ |
| iowrite32be(XOR_CRSR_64BA_BIT | XOR_CRSR_XAE_BIT, |
| &xor_reg->crsr); |
| break; |
| } |
| } |
| |
| /****************************************************************************** |
| * ADMA device level |
| ******************************************************************************/ |
| |
| static void ppc440spe_chan_start_null_xor(struct ppc440spe_adma_chan *chan); |
| static int ppc440spe_adma_alloc_chan_resources(struct dma_chan *chan); |
| |
| static dma_cookie_t |
| ppc440spe_adma_tx_submit(struct dma_async_tx_descriptor *tx); |
| |
| static void ppc440spe_adma_set_dest(struct ppc440spe_adma_desc_slot *tx, |
| dma_addr_t addr, int index); |
| static void |
| ppc440spe_adma_memcpy_xor_set_src(struct ppc440spe_adma_desc_slot *tx, |
| dma_addr_t addr, int index); |
| |
| static void |
| ppc440spe_adma_pq_set_dest(struct ppc440spe_adma_desc_slot *tx, |
| dma_addr_t *paddr, unsigned long flags); |
| static void |
| ppc440spe_adma_pq_set_src(struct ppc440spe_adma_desc_slot *tx, |
| dma_addr_t addr, int index); |
| static void |
| ppc440spe_adma_pq_set_src_mult(struct ppc440spe_adma_desc_slot *tx, |
| unsigned char mult, int index, int dst_pos); |
| static void |
| ppc440spe_adma_pqzero_sum_set_dest(struct ppc440spe_adma_desc_slot *tx, |
| dma_addr_t paddr, dma_addr_t qaddr); |
| |
| static struct page *ppc440spe_rxor_srcs[32]; |
| |
| /** |
| * ppc440spe_can_rxor - check if the operands may be processed with RXOR |
| */ |
| static int ppc440spe_can_rxor(struct page **srcs, int src_cnt, size_t len) |
| { |
| int i, order = 0, state = 0; |
| int idx = 0; |
| |
| if (unlikely(!(src_cnt > 1))) |
| return 0; |
| |
| BUG_ON(src_cnt > ARRAY_SIZE(ppc440spe_rxor_srcs)); |
| |
| /* Skip holes in the source list before checking */ |
| for (i = 0; i < src_cnt; i++) { |
| if (!srcs[i]) |
| continue; |
| ppc440spe_rxor_srcs[idx++] = srcs[i]; |
| } |
| src_cnt = idx; |
| |
| for (i = 1; i < src_cnt; i++) { |
| char *cur_addr = page_address(ppc440spe_rxor_srcs[i]); |
| char *old_addr = page_address(ppc440spe_rxor_srcs[i - 1]); |
| |
| switch (state) { |
| case 0: |
| if (cur_addr == old_addr + len) { |
| /* direct RXOR */ |
| order = 1; |
| state = 1; |
| } else if (old_addr == cur_addr + len) { |
| /* reverse RXOR */ |
| order = -1; |
| state = 1; |
| } else |
| goto out; |
| break; |
| case 1: |
| if ((i == src_cnt - 2) || |
| (order == -1 && cur_addr != old_addr - len)) { |
| order = 0; |
| state = 0; |
| } else if ((cur_addr == old_addr + len * order) || |
| (cur_addr == old_addr + 2 * len) || |
| (cur_addr == old_addr + 3 * len)) { |
| state = 2; |
| } else { |
| order = 0; |
| state = 0; |
| } |
| break; |
| case 2: |
| order = 0; |
| state = 0; |
| break; |
| } |
| } |
| |
| out: |
| if (state == 1 || state == 2) |
| return 1; |
| |
| return 0; |
| } |
| |
| /** |
| * ppc440spe_adma_device_estimate - estimate the efficiency of processing |
| * the operation given on this channel. It's assumed that 'chan' is |
| * capable to process 'cap' type of operation. |
| * @chan: channel to use |
| * @cap: type of transaction |
| * @dst_lst: array of destination pointers |
| * @dst_cnt: number of destination operands |
| * @src_lst: array of source pointers |
| * @src_cnt: number of source operands |
| * @src_sz: size of each source operand |
| */ |
| static int ppc440spe_adma_estimate(struct dma_chan *chan, |
| enum dma_transaction_type cap, struct page **dst_lst, int dst_cnt, |
| struct page **src_lst, int src_cnt, size_t src_sz) |
| { |
| int ef = 1; |
| |
| if (cap == DMA_PQ || cap == DMA_PQ_VAL) { |
| /* If RAID-6 capabilities were not activated don't try |
| * to use them |
| */ |
| if (unlikely(!ppc440spe_r6_enabled)) |
| return -1; |
| } |
| /* In the current implementation of ppc440spe ADMA driver it |
| * makes sense to pick out only pq case, because it may be |
| * processed: |
| * (1) either using Biskup method on DMA2; |
| * (2) or on DMA0/1. |
| * Thus we give a favour to (1) if the sources are suitable; |
| * else let it be processed on one of the DMA0/1 engines. |
| * In the sum_product case where destination is also the |
| * source process it on DMA0/1 only. |
| */ |
| if (cap == DMA_PQ && chan->chan_id == PPC440SPE_XOR_ID) { |
| |
| if (dst_cnt == 1 && src_cnt == 2 && dst_lst[0] == src_lst[1]) |
| ef = 0; /* sum_product case, process on DMA0/1 */ |
| else if (ppc440spe_can_rxor(src_lst, src_cnt, src_sz)) |
| ef = 3; /* override (DMA0/1 + idle) */ |
| else |
| ef = 0; /* can't process on DMA2 if !rxor */ |
| } |
| |
| /* channel idleness increases the priority */ |
| if (likely(ef) && |
| !ppc440spe_chan_is_busy(to_ppc440spe_adma_chan(chan))) |
| ef++; |
| |
| return ef; |
| } |
| |
| struct dma_chan * |
| ppc440spe_async_tx_find_best_channel(enum dma_transaction_type cap, |
| struct page **dst_lst, int dst_cnt, struct page **src_lst, |
| int src_cnt, size_t src_sz) |
| { |
| struct dma_chan *best_chan = NULL; |
| struct ppc_dma_chan_ref *ref; |
| int best_rank = -1; |
| |
| if (unlikely(!src_sz)) |
| return NULL; |
| if (src_sz > PAGE_SIZE) { |
| /* |
| * should a user of the api ever pass > PAGE_SIZE requests |
| * we sort out cases where temporary page-sized buffers |
| * are used. |
| */ |
| switch (cap) { |
| case DMA_PQ: |
| if (src_cnt == 1 && dst_lst[1] == src_lst[0]) |
| return NULL; |
| if (src_cnt == 2 && dst_lst[1] == src_lst[1]) |
| return NULL; |
| break; |
| case DMA_PQ_VAL: |
| case DMA_XOR_VAL: |
| return NULL; |
| default: |
| break; |
| } |
| } |
| |
| list_for_each_entry(ref, &ppc440spe_adma_chan_list, node) { |
| if (dma_has_cap(cap, ref->chan->device->cap_mask)) { |
| int rank; |
| |
| rank = ppc440spe_adma_estimate(ref->chan, cap, dst_lst, |
| dst_cnt, src_lst, src_cnt, src_sz); |
| if (rank > best_rank) { |
| best_rank = rank; |
| best_chan = ref->chan; |
| } |
| } |
| } |
| |
| return best_chan; |
| } |
| EXPORT_SYMBOL_GPL(ppc440spe_async_tx_find_best_channel); |
| |
| /** |
| * ppc440spe_get_group_entry - get group entry with index idx |
| * @tdesc: is the last allocated slot in the group. |
| */ |
| static struct ppc440spe_adma_desc_slot * |
| ppc440spe_get_group_entry(struct ppc440spe_adma_desc_slot *tdesc, u32 entry_idx) |
| { |
| struct ppc440spe_adma_desc_slot *iter = tdesc->group_head; |
| int i = 0; |
| |
| if (entry_idx < 0 || entry_idx >= (tdesc->src_cnt + tdesc->dst_cnt)) { |
| printk("%s: entry_idx %d, src_cnt %d, dst_cnt %d\n", |
| __func__, entry_idx, tdesc->src_cnt, tdesc->dst_cnt); |
| BUG(); |
| } |
| |
| list_for_each_entry(iter, &tdesc->group_list, chain_node) { |
| if (i++ == entry_idx) |
| break; |
| } |
| return iter; |
| } |
| |
| /** |
| * ppc440spe_adma_free_slots - flags descriptor slots for reuse |
| * @slot: Slot to free |
| * Caller must hold &ppc440spe_chan->lock while calling this function |
| */ |
| static void ppc440spe_adma_free_slots(struct ppc440spe_adma_desc_slot *slot, |
| struct ppc440spe_adma_chan *chan) |
| { |
| int stride = slot->slots_per_op; |
| |
| while (stride--) { |
| slot->slots_per_op = 0; |
| slot = list_entry(slot->slot_node.next, |
| struct ppc440spe_adma_desc_slot, |
| slot_node); |
| } |
| } |
| |
| static void ppc440spe_adma_unmap(struct ppc440spe_adma_chan *chan, |
| struct ppc440spe_adma_desc_slot *desc) |
| { |
| u32 src_cnt, dst_cnt; |
| dma_addr_t addr; |
| |
| /* |
| * get the number of sources & destination |
| * included in this descriptor and unmap |
| * them all |
| */ |
| src_cnt = ppc440spe_desc_get_src_num(desc, chan); |
| dst_cnt = ppc440spe_desc_get_dst_num(desc, chan); |
| |
| /* unmap destinations */ |
| if (!(desc->async_tx.flags & DMA_COMPL_SKIP_DEST_UNMAP)) { |
| while (dst_cnt--) { |
| addr = ppc440spe_desc_get_dest_addr( |
| desc, chan, dst_cnt); |
| dma_unmap_page(chan->device->dev, |
| addr, desc->unmap_len, |
| DMA_FROM_DEVICE); |
| } |
| } |
| |
| /* unmap sources */ |
| if (!(desc->async_tx.flags & DMA_COMPL_SKIP_SRC_UNMAP)) { |
| while (src_cnt--) { |
| addr = ppc440spe_desc_get_src_addr( |
| desc, chan, src_cnt); |
| dma_unmap_page(chan->device->dev, |
| addr, desc->unmap_len, |
| DMA_TO_DEVICE); |
| } |
| } |
| } |
| |
| /** |
| * ppc440spe_adma_run_tx_complete_actions - call functions to be called |
| * upon completion |
| */ |
| static dma_cookie_t ppc440spe_adma_run_tx_complete_actions( |
| struct ppc440spe_adma_desc_slot *desc, |
| struct ppc440spe_adma_chan *chan, |
| dma_cookie_t cookie) |
| { |
| int i; |
| |
| BUG_ON(desc->async_tx.cookie < 0); |
| if (desc->async_tx.cookie > 0) { |
| cookie = desc->async_tx.cookie; |
| desc->async_tx.cookie = 0; |
| |
| /* call the callback (must not sleep or submit new |
| * operations to this channel) |
| */ |
| if (desc->async_tx.callback) |
| desc->async_tx.callback( |
| desc->async_tx.callback_param); |
| |
| dma_descriptor_unmap(&desc->async_tx); |
| /* unmap dma addresses |
| * (unmap_single vs unmap_page?) |
| * |
| * actually, ppc's dma_unmap_page() functions are empty, so |
| * the following code is just for the sake of completeness |
| */ |
| if (chan && chan->needs_unmap && desc->group_head && |
| desc->unmap_len) { |
| struct ppc440spe_adma_desc_slot *unmap = |
| desc->group_head; |
| /* assume 1 slot per op always */ |
| u32 slot_count = unmap->slot_cnt; |
| |
| /* Run through the group list and unmap addresses */ |
| for (i = 0; i < slot_count; i++) { |
| BUG_ON(!unmap); |
| ppc440spe_adma_unmap(chan, unmap); |
| unmap = unmap->hw_next; |
| } |
| } |
| } |
| |
| /* run dependent operations */ |
| dma_run_dependencies(&desc->async_tx); |
| |
| return cookie; |
| } |
| |
| /** |
| * ppc440spe_adma_clean_slot - clean up CDB slot (if ack is set) |
| */ |
| static int ppc440spe_adma_clean_slot(struct ppc440spe_adma_desc_slot *desc, |
| struct ppc440spe_adma_chan *chan) |
| { |
| /* the client is allowed to attach dependent operations |
| * until 'ack' is set |
| */ |
| if (!async_tx_test_ack(&desc->async_tx)) |
| return 0; |
| |
| /* leave the last descriptor in the chain |
| * so we can append to it |
| */ |
| if (list_is_last(&desc->chain_node, &chan->chain) || |
| desc->phys == ppc440spe_chan_get_current_descriptor(chan)) |
| return 1; |
| |
| if (chan->device->id != PPC440SPE_XOR_ID) { |
| /* our DMA interrupt handler clears opc field of |
| * each processed descriptor. For all types of |
| * operations except for ZeroSum we do not actually |
| * need ack from the interrupt handler. ZeroSum is a |
| * special case since the result of this operation |
| * is available from the handler only, so if we see |
| * such type of descriptor (which is unprocessed yet) |
| * then leave it in chain. |
| */ |
| struct dma_cdb *cdb = desc->hw_desc; |
| if (cdb->opc == DMA_CDB_OPC_DCHECK128) |
| return 1; |
| } |
| |
| dev_dbg(chan->device->common.dev, "\tfree slot %llx: %d stride: %d\n", |
| desc->phys, desc->idx, desc->slots_per_op); |
| |
| list_del(&desc->chain_node); |
| ppc440spe_adma_free_slots(desc, chan); |
| return 0; |
| } |
| |
| /** |
| * __ppc440spe_adma_slot_cleanup - this is the common clean-up routine |
| * which runs through the channel CDBs list until reach the descriptor |
| * currently processed. When routine determines that all CDBs of group |
| * are completed then corresponding callbacks (if any) are called and slots |
| * are freed. |
| */ |
| static void __ppc440spe_adma_slot_cleanup(struct ppc440spe_adma_chan *chan) |
| { |
| struct ppc440spe_adma_desc_slot *iter, *_iter, *group_start = NULL; |
| dma_cookie_t cookie = 0; |
| u32 current_desc = ppc440spe_chan_get_current_descriptor(chan); |
| int busy = ppc440spe_chan_is_busy(chan); |
| int seen_current = 0, slot_cnt = 0, slots_per_op = 0; |
| |
| dev_dbg(chan->device->common.dev, "ppc440spe adma%d: %s\n", |
| chan->device->id, __func__); |
| |
| if (!current_desc) { |
| /* There were no transactions yet, so |
| * nothing to clean |
| */ |
| return; |
| } |
| |
| /* free completed slots from the chain starting with |
| * the oldest descriptor |
| */ |
| list_for_each_entry_safe(iter, _iter, &chan->chain, |
| chain_node) { |
| dev_dbg(chan->device->common.dev, "\tcookie: %d slot: %d " |
| "busy: %d this_desc: %#llx next_desc: %#x " |
| "cur: %#x ack: %d\n", |
| iter->async_tx.cookie, iter->idx, busy, iter->phys, |
| ppc440spe_desc_get_link(iter, chan), current_desc, |
| async_tx_test_ack(&iter->async_tx)); |
| prefetch(_iter); |
| prefetch(&_iter->async_tx); |
| |
| /* do not advance past the current descriptor loaded into the |
| * hardware channel,subsequent descriptors are either in process |
| * or have not been submitted |
| */ |
| if (seen_current) |
| break; |
| |
| /* stop the search if we reach the current descriptor and the |
| * channel is busy, or if it appears that the current descriptor |
| * needs to be re-read (i.e. has been appended to) |
| */ |
| if (iter->phys == current_desc) { |
| BUG_ON(seen_current++); |
| if (busy || ppc440spe_desc_get_link(iter, chan)) { |
| /* not all descriptors of the group have |
| * been completed; exit. |
| */ |
| break; |
| } |
| } |
| |
| /* detect the start of a group transaction */ |
| if (!slot_cnt && !slots_per_op) { |
| slot_cnt = iter->slot_cnt; |
| slots_per_op = iter->slots_per_op; |
| if (slot_cnt <= slots_per_op) { |
| slot_cnt = 0; |
| slots_per_op = 0; |
| } |
| } |
| |
| if (slot_cnt) { |
| if (!group_start) |
| group_start = iter; |
| slot_cnt -= slots_per_op; |
| } |
| |
| /* all the members of a group are complete */ |
| if (slots_per_op != 0 && slot_cnt == 0) { |
| struct ppc440spe_adma_desc_slot *grp_iter, *_grp_iter; |
| int end_of_chain = 0; |
| |
| /* clean up the group */ |
| slot_cnt = group_start->slot_cnt; |
| grp_iter = group_start; |
| list_for_each_entry_safe_from(grp_iter, _grp_iter, |
| &chan->chain, chain_node) { |
| |
| cookie = ppc440spe_adma_run_tx_complete_actions( |
| grp_iter, chan, cookie); |
| |
| slot_cnt -= slots_per_op; |
| end_of_chain = ppc440spe_adma_clean_slot( |
| grp_iter, chan); |
| if (end_of_chain && slot_cnt) { |
| /* Should wait for ZeroSum completion */ |
| if (cookie > 0) |
| chan->common.completed_cookie = cookie; |
| return; |
| } |
| |
| if (slot_cnt == 0 || end_of_chain) |
| break; |
| } |
| |
| /* the group should be complete at this point */ |
| BUG_ON(slot_cnt); |
| |
| slots_per_op = 0; |
| group_start = NULL; |
| if (end_of_chain) |
| break; |
| else |
| continue; |
| } else if (slots_per_op) /* wait for group completion */ |
| continue; |
| |
| cookie = ppc440spe_adma_run_tx_complete_actions(iter, chan, |
| cookie); |
| |
| if (ppc440spe_adma_clean_slot(iter, chan)) |
| break; |
| } |
| |
| BUG_ON(!seen_current); |
| |
| if (cookie > 0) { |
| chan->common.completed_cookie = cookie; |
| pr_debug("\tcompleted cookie %d\n", cookie); |
| } |
| |
| } |
| |
| /** |
| * ppc440spe_adma_tasklet - clean up watch-dog initiator |
| */ |
| static void ppc440spe_adma_tasklet(unsigned long data) |
| { |
| struct ppc440spe_adma_chan *chan = (struct ppc440spe_adma_chan *) data; |
| |
| spin_lock_nested(&chan->lock, SINGLE_DEPTH_NESTING); |
| __ppc440spe_adma_slot_cleanup(chan); |
| spin_unlock(&chan->lock); |
| } |
| |
| /** |
| * ppc440spe_adma_slot_cleanup - clean up scheduled initiator |
| */ |
| static void ppc440spe_adma_slot_cleanup(struct ppc440spe_adma_chan *chan) |
| { |
| spin_lock_bh(&chan->lock); |
| __ppc440spe_adma_slot_cleanup(chan); |
| spin_unlock_bh(&chan->lock); |
| } |
| |
| /** |
| * ppc440spe_adma_alloc_slots - allocate free slots (if any) |
| */ |
| static struct ppc440spe_adma_desc_slot *ppc440spe_adma_alloc_slots( |
| struct ppc440spe_adma_chan *chan, int num_slots, |
| int slots_per_op) |
| { |
| struct ppc440spe_adma_desc_slot *iter = NULL, *_iter; |
| struct ppc440spe_adma_desc_slot *alloc_start = NULL; |
| struct list_head chain = LIST_HEAD_INIT(chain); |
| int slots_found, retry = 0; |
| |
| |
| BUG_ON(!num_slots || !slots_per_op); |
| /* start search from the last allocated descrtiptor |
| * if a contiguous allocation can not be found start searching |
| * from the beginning of the list |
| */ |
| retry: |
| slots_found = 0; |
| if (retry == 0) |
| iter = chan->last_used; |
| else |
| iter = list_entry(&chan->all_slots, |
| struct ppc440spe_adma_desc_slot, |
| slot_node); |
| list_for_each_entry_safe_continue(iter, _iter, &chan->all_slots, |
| slot_node) { |
| prefetch(_iter); |
| prefetch(&_iter->async_tx); |
| if (iter->slots_per_op) { |
| slots_found = 0; |
| continue; |
| } |
| |
| /* start the allocation if the slot is correctly aligned */ |
| if (!slots_found++) |
| alloc_start = iter; |
| |
| if (slots_found == num_slots) { |
| struct ppc440spe_adma_desc_slot *alloc_tail = NULL; |
| struct ppc440spe_adma_desc_slot *last_used = NULL; |
| |
| iter = alloc_start; |
| while (num_slots) { |
| int i; |
| /* pre-ack all but the last descriptor */ |
| if (num_slots != slots_per_op) |
| async_tx_ack(&iter->async_tx); |
| |
| list_add_tail(&iter->chain_node, &chain); |
| alloc_tail = iter; |
| iter->async_tx.cookie = 0; |
| iter->hw_next = NULL; |
| iter->flags = 0; |
| iter->slot_cnt = num_slots; |
| iter->xor_check_result = NULL; |
| for (i = 0; i < slots_per_op; i++) { |
| iter->slots_per_op = slots_per_op - i; |
| last_used = iter; |
| iter = list_entry(iter->slot_node.next, |
| struct ppc440spe_adma_desc_slot, |
| slot_node); |
| } |
| num_slots -= slots_per_op; |
| } |
| alloc_tail->group_head = alloc_start; |
| alloc_tail->async_tx.cookie = -EBUSY; |
| list_splice(&chain, &alloc_tail->group_list); |
| chan->last_used = last_used; |
| return alloc_tail; |
| } |
| } |
| if (!retry++) |
| goto retry; |
| |
| /* try to free some slots if the allocation fails */ |
| tasklet_schedule(&chan->irq_tasklet); |
| return NULL; |
| } |
| |
| /** |
| * ppc440spe_adma_alloc_chan_resources - allocate pools for CDB slots |
| */ |
| static int ppc440spe_adma_alloc_chan_resources(struct dma_chan *chan) |
| { |
| struct ppc440spe_adma_chan *ppc440spe_chan; |
| struct ppc440spe_adma_desc_slot *slot = NULL; |
| char *hw_desc; |
| int i, db_sz; |
| int init; |
| |
| ppc440spe_chan = to_ppc440spe_adma_chan(chan); |
| init = ppc440spe_chan->slots_allocated ? 0 : 1; |
| chan->chan_id = ppc440spe_chan->device->id; |
| |
| /* Allocate descriptor slots */ |
| i = ppc440spe_chan->slots_allocated; |
| if (ppc440spe_chan->device->id != PPC440SPE_XOR_ID) |
| db_sz = sizeof(struct dma_cdb); |
| else |
| db_sz = sizeof(struct xor_cb); |
| |
| for (; i < (ppc440spe_chan->device->pool_size / db_sz); i++) { |
| slot = kzalloc(sizeof(struct ppc440spe_adma_desc_slot), |
| GFP_KERNEL); |
| if (!slot) { |
| printk(KERN_INFO "SPE ADMA Channel only initialized" |
| " %d descriptor slots", i--); |
| break; |
| } |
| |
| hw_desc = (char *) ppc440spe_chan->device->dma_desc_pool_virt; |
| slot->hw_desc = (void *) &hw_desc[i * db_sz]; |
| dma_async_tx_descriptor_init(&slot->async_tx, chan); |
| slot->async_tx.tx_submit = ppc440spe_adma_tx_submit; |
| INIT_LIST_HEAD(&slot->chain_node); |
| INIT_LIST_HEAD(&slot->slot_node); |
| INIT_LIST_HEAD(&slot->group_list); |
| slot->phys = ppc440spe_chan->device->dma_desc_pool + i * db_sz; |
| slot->idx = i; |
| |
| spin_lock_bh(&ppc440spe_chan->lock); |
| ppc440spe_chan->slots_allocated++; |
| list_add_tail(&slot->slot_node, &ppc440spe_chan->all_slots); |
| spin_unlock_bh(&ppc440spe_chan->lock); |
| } |
| |
| if (i && !ppc440spe_chan->last_used) { |
| ppc440spe_chan->last_used = |
| list_entry(ppc440spe_chan->all_slots.next, |
| struct ppc440spe_adma_desc_slot, |
| slot_node); |
| } |
| |
| dev_dbg(ppc440spe_chan->device->common.dev, |
| "ppc440spe adma%d: allocated %d descriptor slots\n", |
| ppc440spe_chan->device->id, i); |
| |
| /* initialize the channel and the chain with a null operation */ |
| if (init) { |
| switch (ppc440spe_chan->device->id) { |
| case PPC440SPE_DMA0_ID: |
| case PPC440SPE_DMA1_ID: |
| ppc440spe_chan->hw_chain_inited = 0; |
| /* Use WXOR for self-testing */ |
| if (!ppc440spe_r6_tchan) |
| ppc440spe_r6_tchan = ppc440spe_chan; |
| break; |
| case PPC440SPE_XOR_ID: |
| ppc440spe_chan_start_null_xor(ppc440spe_chan); |
| break; |
| default: |
| BUG(); |
| } |
| ppc440spe_chan->needs_unmap = 1; |
| } |
| |
| return (i > 0) ? i : -ENOMEM; |
| } |
| |
| /** |
| * ppc440spe_rxor_set_region_data - |
| */ |
| static void ppc440spe_rxor_set_region(struct ppc440spe_adma_desc_slot *desc, |
| u8 xor_arg_no, u32 mask) |
| { |
| struct xor_cb *xcb = desc->hw_desc; |
| |
| xcb->ops[xor_arg_no].h |= mask; |
| } |
| |
| /** |
| * ppc440spe_rxor_set_src - |
| */ |
| static void ppc440spe_rxor_set_src(struct ppc440spe_adma_desc_slot *desc, |
| u8 xor_arg_no, dma_addr_t addr) |
| { |
| struct xor_cb *xcb = desc->hw_desc; |
| |
| xcb->ops[xor_arg_no].h |= DMA_CUED_XOR_BASE; |
| xcb->ops[xor_arg_no].l = addr; |
| } |
| |
| /** |
| * ppc440spe_rxor_set_mult - |
| */ |
| static void ppc440spe_rxor_set_mult(struct ppc440spe_adma_desc_slot *desc, |
| u8 xor_arg_no, u8 idx, u8 mult) |
| { |
| struct xor_cb *xcb = desc->hw_desc; |
| |
| xcb->ops[xor_arg_no].h |= mult << (DMA_CUED_MULT1_OFF + idx * 8); |
| } |
| |
| /** |
| * ppc440spe_adma_check_threshold - append CDBs to h/w chain if threshold |
| * has been achieved |
| */ |
| static void ppc440spe_adma_check_threshold(struct ppc440spe_adma_chan *chan) |
| { |
| dev_dbg(chan->device->common.dev, "ppc440spe adma%d: pending: %d\n", |
| chan->device->id, chan->pending); |
| |
| if (chan->pending >= PPC440SPE_ADMA_THRESHOLD) { |
| chan->pending = 0; |
| ppc440spe_chan_append(chan); |
| } |
| } |
| |
| /** |
| * ppc440spe_adma_tx_submit - submit new descriptor group to the channel |
| * (it's not necessary that descriptors will be submitted to the h/w |
| * chains too right now) |
| */ |
| static dma_cookie_t ppc440spe_adma_tx_submit(struct dma_async_tx_descriptor *tx) |
| { |
| struct ppc440spe_adma_desc_slot *sw_desc; |
| struct ppc440spe_adma_chan *chan = to_ppc440spe_adma_chan(tx->chan); |
| struct ppc440spe_adma_desc_slot *group_start, *old_chain_tail; |
| int slot_cnt; |
| int slots_per_op; |
| dma_cookie_t cookie; |
| |
| sw_desc = tx_to_ppc440spe_adma_slot(tx); |
| |
| group_start = sw_desc->group_head; |
| slot_cnt = group_start->slot_cnt; |
| slots_per_op = group_start->slots_per_op; |
| |
| spin_lock_bh(&chan->lock); |
| cookie = dma_cookie_assign(tx); |
| |
| if (unlikely(list_empty(&chan->chain))) { |
| /* first peer */ |
| list_splice_init(&sw_desc->group_list, &chan->chain); |
| chan_first_cdb[chan->device->id] = group_start; |
| } else { |
| /* isn't first peer, bind CDBs to chain */ |
| old_chain_tail = list_entry(chan->chain.prev, |
| struct ppc440spe_adma_desc_slot, |
| chain_node); |
| list_splice_init(&sw_desc->group_list, |
| &old_chain_tail->chain_node); |
| /* fix up the hardware chain */ |
| ppc440spe_desc_set_link(chan, old_chain_tail, group_start); |
| } |
| |
| /* increment the pending count by the number of operations */ |
| chan->pending += slot_cnt / slots_per_op; |
| ppc440spe_adma_check_threshold(chan); |
| spin_unlock_bh(&chan->lock); |
| |
| dev_dbg(chan->device->common.dev, |
| "ppc440spe adma%d: %s cookie: %d slot: %d tx %p\n", |
| chan->device->id, __func__, |
| sw_desc->async_tx.cookie, sw_desc->idx, sw_desc); |
| |
| return cookie; |
| } |
| |
| /** |
| * ppc440spe_adma_prep_dma_interrupt - prepare CDB for a pseudo DMA operation |
| */ |
| static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_interrupt( |
| struct dma_chan *chan, unsigned long flags) |
| { |
| struct ppc440spe_adma_chan *ppc440spe_chan; |
| struct ppc440spe_adma_desc_slot *sw_desc, *group_start; |
| int slot_cnt, slots_per_op; |
| |
| ppc440spe_chan = to_ppc440spe_adma_chan(chan); |
| |
| dev_dbg(ppc440spe_chan->device->common.dev, |
| "ppc440spe adma%d: %s\n", ppc440spe_chan->device->id, |
| __func__); |
| |
| spin_lock_bh(&ppc440spe_chan->lock); |
| slot_cnt = slots_per_op = 1; |
| sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, |
| slots_per_op); |
| if (sw_desc) { |
| group_start = sw_desc->group_head; |
| ppc440spe_desc_init_interrupt(group_start, ppc440spe_chan); |
| group_start->unmap_len = 0; |
| sw_desc->async_tx.flags = flags; |
| } |
| spin_unlock_bh(&ppc440spe_chan->lock); |
| |
| return sw_desc ? &sw_desc->async_tx : NULL; |
| } |
| |
| /** |
| * ppc440spe_adma_prep_dma_memcpy - prepare CDB for a MEMCPY operation |
| */ |
| static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_memcpy( |
| struct dma_chan *chan, dma_addr_t dma_dest, |
| dma_addr_t dma_src, size_t len, unsigned long flags) |
| { |
| struct ppc440spe_adma_chan *ppc440spe_chan; |
| struct ppc440spe_adma_desc_slot *sw_desc, *group_start; |
| int slot_cnt, slots_per_op; |
| |
| ppc440spe_chan = to_ppc440spe_adma_chan(chan); |
| |
| if (unlikely(!len)) |
| return NULL; |
| |
| BUG_ON(len > PPC440SPE_ADMA_DMA_MAX_BYTE_COUNT); |
| |
| spin_lock_bh(&ppc440spe_chan->lock); |
| |
| dev_dbg(ppc440spe_chan->device->common.dev, |
| "ppc440spe adma%d: %s len: %u int_en %d\n", |
| ppc440spe_chan->device->id, __func__, len, |
| flags & DMA_PREP_INTERRUPT ? 1 : 0); |
| slot_cnt = slots_per_op = 1; |
| sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, |
| slots_per_op); |
| if (sw_desc) { |
| group_start = sw_desc->group_head; |
| ppc440spe_desc_init_memcpy(group_start, flags); |
| ppc440spe_adma_set_dest(group_start, dma_dest, 0); |
| ppc440spe_adma_memcpy_xor_set_src(group_start, dma_src, 0); |
| ppc440spe_desc_set_byte_count(group_start, ppc440spe_chan, len); |
| sw_desc->unmap_len = len; |
| sw_desc->async_tx.flags = flags; |
| } |
| spin_unlock_bh(&ppc440spe_chan->lock); |
| |
| return sw_desc ? &sw_desc->async_tx : NULL; |
| } |
| |
| /** |
| * ppc440spe_adma_prep_dma_xor - prepare CDB for a XOR operation |
| */ |
| static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_xor( |
| struct dma_chan *chan, dma_addr_t dma_dest, |
| dma_addr_t *dma_src, u32 src_cnt, size_t len, |
| unsigned long flags) |
| { |
| struct ppc440spe_adma_chan *ppc440spe_chan; |
| struct ppc440spe_adma_desc_slot *sw_desc, *group_start; |
| int slot_cnt, slots_per_op; |
| |
| ppc440spe_chan = to_ppc440spe_adma_chan(chan); |
| |
| ADMA_LL_DBG(prep_dma_xor_dbg(ppc440spe_chan->device->id, |
| dma_dest, dma_src, src_cnt)); |
| if (unlikely(!len)) |
| return NULL; |
| BUG_ON(len > PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT); |
| |
| dev_dbg(ppc440spe_chan->device->common.dev, |
| "ppc440spe adma%d: %s src_cnt: %d len: %u int_en: %d\n", |
| ppc440spe_chan->device->id, __func__, src_cnt, len, |
| flags & DMA_PREP_INTERRUPT ? 1 : 0); |
| |
| spin_lock_bh(&ppc440spe_chan->lock); |
| slot_cnt = ppc440spe_chan_xor_slot_count(len, src_cnt, &slots_per_op); |
| sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, |
| slots_per_op); |
| if (sw_desc) { |
| group_start = sw_desc->group_head; |
| ppc440spe_desc_init_xor(group_start, src_cnt, flags); |
| ppc440spe_adma_set_dest(group_start, dma_dest, 0); |
| while (src_cnt--) |
| ppc440spe_adma_memcpy_xor_set_src(group_start, |
| dma_src[src_cnt], src_cnt); |
| ppc440spe_desc_set_byte_count(group_start, ppc440spe_chan, len); |
| sw_desc->unmap_len = len; |
| sw_desc->async_tx.flags = flags; |
| } |
| spin_unlock_bh(&ppc440spe_chan->lock); |
| |
| return sw_desc ? &sw_desc->async_tx : NULL; |
| } |
| |
| static inline void |
| ppc440spe_desc_set_xor_src_cnt(struct ppc440spe_adma_desc_slot *desc, |
| int src_cnt); |
| static void ppc440spe_init_rxor_cursor(struct ppc440spe_rxor *cursor); |
| |
| /** |
| * ppc440spe_adma_init_dma2rxor_slot - |
| */ |
| static void ppc440spe_adma_init_dma2rxor_slot( |
| struct ppc440spe_adma_desc_slot *desc, |
| dma_addr_t *src, int src_cnt) |
| { |
| int i; |
| |
| /* initialize CDB */ |
| for (i = 0; i < src_cnt; i++) { |
| ppc440spe_adma_dma2rxor_prep_src(desc, &desc->rxor_cursor, i, |
| desc->src_cnt, (u32)src[i]); |
| } |
| } |
| |
| /** |
| * ppc440spe_dma01_prep_mult - |
| * for Q operation where destination is also the source |
| */ |
| static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_mult( |
| struct ppc440spe_adma_chan *ppc440spe_chan, |
| dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt, |
| const unsigned char *scf, size_t len, unsigned long flags) |
| { |
| struct ppc440spe_adma_desc_slot *sw_desc = NULL; |
| unsigned long op = 0; |
| int slot_cnt; |
| |
| set_bit(PPC440SPE_DESC_WXOR, &op); |
| slot_cnt = 2; |
| |
| spin_lock_bh(&ppc440spe_chan->lock); |
| |
| /* use WXOR, each descriptor occupies one slot */ |
| sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1); |
| if (sw_desc) { |
| struct ppc440spe_adma_chan *chan; |
| struct ppc440spe_adma_desc_slot *iter; |
| struct dma_cdb *hw_desc; |
| |
| chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan); |
| set_bits(op, &sw_desc->flags); |
| sw_desc->src_cnt = src_cnt; |
| sw_desc->dst_cnt = dst_cnt; |
| /* First descriptor, zero data in the destination and copy it |
| * to q page using MULTICAST transfer. |
| */ |
| iter = list_first_entry(&sw_desc->group_list, |
| struct ppc440spe_adma_desc_slot, |
| chain_node); |
| memset(iter->hw_desc, 0, sizeof(struct dma_cdb)); |
| /* set 'next' pointer */ |
| iter->hw_next = list_entry(iter->chain_node.next, |
| struct ppc440spe_adma_desc_slot, |
| chain_node); |
| clear_bit(PPC440SPE_DESC_INT, &iter->flags); |
| hw_desc = iter->hw_desc; |
| hw_desc->opc = DMA_CDB_OPC_MULTICAST; |
| |
| ppc440spe_desc_set_dest_addr(iter, chan, |
| DMA_CUED_XOR_BASE, dst[0], 0); |
| ppc440spe_desc_set_dest_addr(iter, chan, 0, dst[1], 1); |
| ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB, |
| src[0]); |
| ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len); |
| iter->unmap_len = len; |
| |
| /* |
| * Second descriptor, multiply data from the q page |
| * and store the result in real destination. |
| */ |
| iter = list_first_entry(&iter->chain_node, |
| struct ppc440spe_adma_desc_slot, |
| chain_node); |
| memset(iter->hw_desc, 0, sizeof(struct dma_cdb)); |
| iter->hw_next = NULL; |
| if (flags & DMA_PREP_INTERRUPT) |
| set_bit(PPC440SPE_DESC_INT, &iter->flags); |
| else |
| clear_bit(PPC440SPE_DESC_INT, &iter->flags); |
| |
| hw_desc = iter->hw_desc; |
| hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2; |
| ppc440spe_desc_set_src_addr(iter, chan, 0, |
| DMA_CUED_XOR_HB, dst[1]); |
| ppc440spe_desc_set_dest_addr(iter, chan, |
| DMA_CUED_XOR_BASE, dst[0], 0); |
| |
| ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF, |
| DMA_CDB_SG_DST1, scf[0]); |
| ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len); |
| iter->unmap_len = len; |
| sw_desc->async_tx.flags = flags; |
| } |
| |
| spin_unlock_bh(&ppc440spe_chan->lock); |
| |
| return sw_desc; |
| } |
| |
| /** |
| * ppc440spe_dma01_prep_sum_product - |
| * Dx = A*(P+Pxy) + B*(Q+Qxy) operation where destination is also |
| * the source. |
| */ |
| static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_sum_product( |
| struct ppc440spe_adma_chan *ppc440spe_chan, |
| dma_addr_t *dst, dma_addr_t *src, int src_cnt, |
| const unsigned char *scf, size_t len, unsigned long flags) |
| { |
| struct ppc440spe_adma_desc_slot *sw_desc = NULL; |
| unsigned long op = 0; |
| int slot_cnt; |
| |
| set_bit(PPC440SPE_DESC_WXOR, &op); |
| slot_cnt = 3; |
| |
| spin_lock_bh(&ppc440spe_chan->lock); |
| |
| /* WXOR, each descriptor occupies one slot */ |
| sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1); |
| if (sw_desc) { |
| struct ppc440spe_adma_chan *chan; |
| struct ppc440spe_adma_desc_slot *iter; |
| struct dma_cdb *hw_desc; |
| |
| chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan); |
| set_bits(op, &sw_desc->flags); |
| sw_desc->src_cnt = src_cnt; |
| sw_desc->dst_cnt = 1; |
| /* 1st descriptor, src[1] data to q page and zero destination */ |
| iter = list_first_entry(&sw_desc->group_list, |
| struct ppc440spe_adma_desc_slot, |
| chain_node); |
| memset(iter->hw_desc, 0, sizeof(struct dma_cdb)); |
| iter->hw_next = list_entry(iter->chain_node.next, |
| struct ppc440spe_adma_desc_slot, |
| chain_node); |
| clear_bit(PPC440SPE_DESC_INT, &iter->flags); |
| hw_desc = iter->hw_desc; |
| hw_desc->opc = DMA_CDB_OPC_MULTICAST; |
| |
| ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE, |
| *dst, 0); |
| ppc440spe_desc_set_dest_addr(iter, chan, 0, |
| ppc440spe_chan->qdest, 1); |
| ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB, |
| src[1]); |
| ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len); |
| iter->unmap_len = len; |
| |
| /* 2nd descriptor, multiply src[1] data and store the |
| * result in destination */ |
| iter = list_first_entry(&iter->chain_node, |
| struct ppc440spe_adma_desc_slot, |
| chain_node); |
| memset(iter->hw_desc, 0, sizeof(struct dma_cdb)); |
| /* set 'next' pointer */ |
| iter->hw_next = list_entry(iter->chain_node.next, |
| struct ppc440spe_adma_desc_slot, |
| chain_node); |
| if (flags & DMA_PREP_INTERRUPT) |
| set_bit(PPC440SPE_DESC_INT, &iter->flags); |
| else |
| clear_bit(PPC440SPE_DESC_INT, &iter->flags); |
| |
| hw_desc = iter->hw_desc; |
| hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2; |
| ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB, |
| ppc440spe_chan->qdest); |
| ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE, |
| *dst, 0); |
| ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF, |
| DMA_CDB_SG_DST1, scf[1]); |
| ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len); |
| iter->unmap_len = len; |
| |
| /* |
| * 3rd descriptor, multiply src[0] data and xor it |
| * with destination |
| */ |
| iter = list_first_entry(&iter->chain_node, |
| struct ppc440spe_adma_desc_slot, |
| chain_node); |
| memset(iter->hw_desc, 0, sizeof(struct dma_cdb)); |
| iter->hw_next = NULL; |
| if (flags & DMA_PREP_INTERRUPT) |
| set_bit(PPC440SPE_DESC_INT, &iter->flags); |
| else |
| clear_bit(PPC440SPE_DESC_INT, &iter->flags); |
| |
| hw_desc = iter->hw_desc; |
| hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2; |
| ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB, |
| src[0]); |
| ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE, |
| *dst, 0); |
| ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF, |
| DMA_CDB_SG_DST1, scf[0]); |
| ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len); |
| iter->unmap_len = len; |
| sw_desc->async_tx.flags = flags; |
| } |
| |
| spin_unlock_bh(&ppc440spe_chan->lock); |
| |
| return sw_desc; |
| } |
| |
| static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_pq( |
| struct ppc440spe_adma_chan *ppc440spe_chan, |
| dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt, |
| const unsigned char *scf, size_t len, unsigned long flags) |
| { |
| int slot_cnt; |
| struct ppc440spe_adma_desc_slot *sw_desc = NULL, *iter; |
| unsigned long op = 0; |
| unsigned char mult = 1; |
| |
| pr_debug("%s: dst_cnt %d, src_cnt %d, len %d\n", |
| __func__, dst_cnt, src_cnt, len); |
| /* select operations WXOR/RXOR depending on the |
| * source addresses of operators and the number |
| * of destinations (RXOR support only Q-parity calculations) |
| */ |
| set_bit(PPC440SPE_DESC_WXOR, &op); |
| if (!test_and_set_bit(PPC440SPE_RXOR_RUN, &ppc440spe_rxor_state)) { |
| /* no active RXOR; |
| * do RXOR if: |
| * - there are more than 1 source, |
| * - len is aligned on 512-byte boundary, |
| * - source addresses fit to one of 4 possible regions. |
| */ |
| if (src_cnt > 1 && |
| !(len & MQ0_CF2H_RXOR_BS_MASK) && |
| (src[0] + len) == src[1]) { |
| /* may do RXOR R1 R2 */ |
| set_bit(PPC440SPE_DESC_RXOR, &op); |
| if (src_cnt != 2) { |
| /* may try to enhance region of RXOR */ |
| if ((src[1] + len) == src[2]) { |
| /* do RXOR R1 R2 R3 */ |
| set_bit(PPC440SPE_DESC_RXOR123, |
| &op); |
| } else if ((src[1] + len * 2) == src[2]) { |
| /* do RXOR R1 R2 R4 */ |
| set_bit(PPC440SPE_DESC_RXOR124, &op); |
| } else if ((src[1] + len * 3) == src[2]) { |
| /* do RXOR R1 R2 R5 */ |
| set_bit(PPC440SPE_DESC_RXOR125, |
| &op); |
| } else { |
| /* do RXOR R1 R2 */ |
| set_bit(PPC440SPE_DESC_RXOR12, |
| &op); |
| } |
| } else { |
| /* do RXOR R1 R2 */ |
| set_bit(PPC440SPE_DESC_RXOR12, &op); |
| } |
| } |
| |
| if (!test_bit(PPC440SPE_DESC_RXOR, &op)) { |
| /* can not do this operation with RXOR */ |
| clear_bit(PPC440SPE_RXOR_RUN, |
| &ppc440spe_rxor_state); |
| } else { |
| /* can do; set block size right now */ |
| ppc440spe_desc_set_rxor_block_size(len); |
| } |
| } |
| |
| /* Number of necessary slots depends on operation type selected */ |
| if (!test_bit(PPC440SPE_DESC_RXOR, &op)) { |
| /* This is a WXOR only chain. Need descriptors for each |
| * source to GF-XOR them with WXOR, and need descriptors |
| * for each destination to zero them with WXOR |
| */ |
| slot_cnt = src_cnt; |
| |
| if (flags & DMA_PREP_ZERO_P) { |
| slot_cnt++; |
| set_bit(PPC440SPE_ZERO_P, &op); |
| } |
| if (flags & DMA_PREP_ZERO_Q) { |
| slot_cnt++; |
| set_bit(PPC440SPE_ZERO_Q, &op); |
| } |
| } else { |
| /* Need 1/2 descriptor for RXOR operation, and |
| * need (src_cnt - (2 or 3)) for WXOR of sources |
| * remained (if any) |
| */ |
| slot_cnt = dst_cnt; |
| |
| if (flags & DMA_PREP_ZERO_P) |
| set_bit(PPC440SPE_ZERO_P, &op); |
| if (flags & DMA_PREP_ZERO_Q) |
| set_bit(PPC440SPE_ZERO_Q, &op); |
| |
| if (test_bit(PPC440SPE_DESC_RXOR12, &op)) |
| slot_cnt += src_cnt - 2; |
| else |
| slot_cnt += src_cnt - 3; |
| |
| /* Thus we have either RXOR only chain or |
| * mixed RXOR/WXOR |
| */ |
| if (slot_cnt == dst_cnt) |
| /* RXOR only chain */ |
| clear_bit(PPC440SPE_DESC_WXOR, &op); |
| } |
| |
| spin_lock_bh(&ppc440spe_chan->lock); |
| /* for both RXOR/WXOR each descriptor occupies one slot */ |
| sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1); |
| if (sw_desc) { |
| ppc440spe_desc_init_dma01pq(sw_desc, dst_cnt, src_cnt, |
| flags, op); |
| |
| /* setup dst/src/mult */ |
| pr_debug("%s: set dst descriptor 0, 1: 0x%016llx, 0x%016llx\n", |
| __func__, dst[0], dst[1]); |
| ppc440spe_adma_pq_set_dest(sw_desc, dst, flags); |
| while (src_cnt--) { |
| ppc440spe_adma_pq_set_src(sw_desc, src[src_cnt], |
| src_cnt); |
| |
| /* NOTE: "Multi = 0 is equivalent to = 1" as it |
| * stated in 440SPSPe_RAID6_Addendum_UM_1_17.pdf |
| * doesn't work for RXOR with DMA0/1! Instead, multi=0 |
| * leads to zeroing source data after RXOR. |
| * So, for P case set-up mult=1 explicitly. |
| */ |
| if (!(flags & DMA_PREP_PQ_DISABLE_Q)) |
| mult = scf[src_cnt]; |
| ppc440spe_adma_pq_set_src_mult(sw_desc, |
| mult, src_cnt, dst_cnt - 1); |
| } |
| |
| /* Setup byte count foreach slot just allocated */ |
| sw_desc->async_tx.flags = flags; |
| list_for_each_entry(iter, &sw_desc->group_list, |
| chain_node) { |
| ppc440spe_desc_set_byte_count(iter, |
| ppc440spe_chan, len); |
| iter->unmap_len = len; |
| } |
| } |
| spin_unlock_bh(&ppc440spe_chan->lock); |
| |
| return sw_desc; |
| } |
| |
| static struct ppc440spe_adma_desc_slot *ppc440spe_dma2_prep_pq( |
| struct ppc440spe_adma_chan *ppc440spe_chan, |
| dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt, |
| const unsigned char *scf, size_t len, unsigned long flags) |
| { |
| int slot_cnt, descs_per_op; |
| struct ppc440spe_adma_desc_slot *sw_desc = NULL, *iter; |
| unsigned long op = 0; |
| unsigned char mult = 1; |
| |
| BUG_ON(!dst_cnt); |
| /*pr_debug("%s: dst_cnt %d, src_cnt %d, len %d\n", |
| __func__, dst_cnt, src_cnt, len);*/ |
| |
| spin_lock_bh(&ppc440spe_chan->lock); |
| descs_per_op = ppc440spe_dma2_pq_slot_count(src, src_cnt, len); |
| if (descs_per_op < 0) { |
| spin_unlock_bh(&ppc440spe_chan->lock); |
| return NULL; |
| } |
| |
| /* depending on number of sources we have 1 or 2 RXOR chains */ |
| slot_cnt = descs_per_op * dst_cnt; |
| |
| sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1); |
| if (sw_desc) { |
| op = slot_cnt; |
| sw_desc->async_tx.flags = flags; |
| list_for_each_entry(iter, &sw_desc->group_list, chain_node) { |
| ppc440spe_desc_init_dma2pq(iter, dst_cnt, src_cnt, |
| --op ? 0 : flags); |
| ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, |
| len); |
| iter->unmap_len = len; |
| |
| ppc440spe_init_rxor_cursor(&(iter->rxor_cursor)); |
| iter->rxor_cursor.len = len; |
| iter->descs_per_op = descs_per_op; |
| } |
| op = 0; |
| list_for_each_entry(iter, &sw_desc->group_list, chain_node) { |
| op++; |
| if (op % descs_per_op == 0) |
| ppc440spe_adma_init_dma2rxor_slot(iter, src, |
| src_cnt); |
| if (likely(!list_is_last(&iter->chain_node, |
| &sw_desc->group_list))) { |
| /* set 'next' pointer */ |
| iter->hw_next = |
| list_entry(iter->chain_node.next, |
| struct ppc440spe_adma_desc_slot, |
| chain_node); |
| ppc440spe_xor_set_link(iter, iter->hw_next); |
| } else { |
| /* this is the last descriptor. */ |
| iter->hw_next = NULL; |
| } |
| } |
| |
| /* fixup head descriptor */ |
| sw_desc->dst_cnt = dst_cnt; |
| if (flags & DMA_PREP_ZERO_P) |
| set_bit(PPC440SPE_ZERO_P, &sw_desc->flags); |
| if (flags & DMA_PREP_ZERO_Q) |
| set_bit(PPC440SPE_ZERO_Q, &sw_desc->flags); |
| |
| /* setup dst/src/mult */ |
| ppc440spe_adma_pq_set_dest(sw_desc, dst, flags); |
| |
| while (src_cnt--) { |
| /* handle descriptors (if dst_cnt == 2) inside |
| * the ppc440spe_adma_pq_set_srcxxx() functions |
| */ |
| ppc440spe_adma_pq_set_src(sw_desc, src[src_cnt], |
| src_cnt); |
| if (!(flags & DMA_PREP_PQ_DISABLE_Q)) |
| mult = scf[src_cnt]; |
| ppc440spe_adma_pq_set_src_mult(sw_desc, |
| mult, src_cnt, dst_cnt - 1); |
| } |
| } |
| spin_unlock_bh(&ppc440spe_chan->lock); |
| ppc440spe_desc_set_rxor_block_size(len); |
| return sw_desc; |
| } |
| |
| /** |
| * ppc440spe_adma_prep_dma_pq - prepare CDB (group) for a GF-XOR operation |
| */ |
| static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_pq( |
| struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src, |
| unsigned int src_cnt, const unsigned char *scf, |
| size_t len, unsigned long flags) |
| { |
| struct ppc440spe_adma_chan *ppc440spe_chan; |
| struct ppc440spe_adma_desc_slot *sw_desc = NULL; |
| int dst_cnt = 0; |
| |
| ppc440spe_chan = to_ppc440spe_adma_chan(chan); |
| |
| ADMA_LL_DBG(prep_dma_pq_dbg(ppc440spe_chan->device->id, |
| dst, src, src_cnt)); |
| BUG_ON(!len); |
| BUG_ON(len > PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT); |
| BUG_ON(!src_cnt); |
| |
| if (src_cnt == 1 && dst[1] == src[0]) { |
| dma_addr_t dest[2]; |
| |
| /* dst[1] is real destination (Q) */ |
| dest[0] = dst[1]; |
| /* this is the page to multicast source data to */ |
| dest[1] = ppc440spe_chan->qdest; |
| sw_desc = ppc440spe_dma01_prep_mult(ppc440spe_chan, |
| dest, 2, src, src_cnt, scf, len, flags); |
| return sw_desc ? &sw_desc->async_tx : NULL; |
| } |
| |
| if (src_cnt == 2 && dst[1] == src[1]) { |
| sw_desc = ppc440spe_dma01_prep_sum_product(ppc440spe_chan, |
| &dst[1], src, 2, scf, len, flags); |
| return sw_desc ? &sw_desc->async_tx : NULL; |
| } |
| |
| if (!(flags & DMA_PREP_PQ_DISABLE_P)) { |
| BUG_ON(!dst[0]); |
| dst_cnt++; |
| flags |= DMA_PREP_ZERO_P; |
| } |
| |
| if (!(flags & DMA_PREP_PQ_DISABLE_Q)) { |
| BUG_ON(!dst[1]); |
| dst_cnt++; |
| flags |= DMA_PREP_ZERO_Q; |
| } |
| |
| BUG_ON(!dst_cnt); |
| |
| dev_dbg(ppc440spe_chan->device->common.dev, |
| "ppc440spe adma%d: %s src_cnt: %d len: %u int_en: %d\n", |
| ppc440spe_chan->device->id, __func__, src_cnt, len, |
| flags & DMA_PREP_INTERRUPT ? 1 : 0); |
| |
| switch (ppc440spe_chan->device->id) { |
| case PPC440SPE_DMA0_ID: |
| case PPC440SPE_DMA1_ID: |
| sw_desc = ppc440spe_dma01_prep_pq(ppc440spe_chan, |
| dst, dst_cnt, src, src_cnt, scf, |
| len, flags); |
| break; |
| |
| case PPC440SPE_XOR_ID: |
| sw_desc = ppc440spe_dma2_prep_pq(ppc440spe_chan, |
| dst, dst_cnt, src, src_cnt, scf, |
| len, flags); |
| break; |
| } |
| |
| return sw_desc ? &sw_desc->async_tx : NULL; |
| } |
| |
| /** |
| * ppc440spe_adma_prep_dma_pqzero_sum - prepare CDB group for |
| * a PQ_ZERO_SUM operation |
| */ |
| static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_pqzero_sum( |
| struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src, |
| unsigned int src_cnt, const unsigned char *scf, size_t len, |
| enum sum_check_flags *pqres, unsigned long flags) |
| { |
| struct ppc440spe_adma_chan *ppc440spe_chan; |
| struct ppc440spe_adma_desc_slot *sw_desc, *iter; |
| dma_addr_t pdest, qdest; |
| int slot_cnt, slots_per_op, idst, dst_cnt; |
| |
| ppc440spe_chan = to_ppc440spe_adma_chan(chan); |
| |
| if (flags & DMA_PREP_PQ_DISABLE_P) |
| pdest = 0; |
| else |
| pdest = pq[0]; |
| |
| if (flags & DMA_PREP_PQ_DISABLE_Q) |
| qdest = 0; |
| else |
| qdest = pq[1]; |
| |
| ADMA_LL_DBG(prep_dma_pqzero_sum_dbg(ppc440spe_chan->device->id, |
| src, src_cnt, scf)); |
| |
| /* Always use WXOR for P/Q calculations (two destinations). |
| * Need 1 or 2 extra slots to verify results are zero. |
| */ |
| idst = dst_cnt = (pdest && qdest) ? 2 : 1; |
| |
| /* One additional slot per destination to clone P/Q |
| * before calculation (we have to preserve destinations). |
| */ |
| slot_cnt = src_cnt + dst_cnt * 2; |
| slots_per_op = 1; |
| |
| spin_lock_bh(&ppc440spe_chan->lock); |
| sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, |
| slots_per_op); |
| if (sw_desc) { |
| ppc440spe_desc_init_dma01pqzero_sum(sw_desc, dst_cnt, src_cnt); |
| |
| /* Setup byte count for each slot just allocated */ |
| sw_desc->async_tx.flags = flags; |
| list_for_each_entry(iter, &sw_desc->group_list, chain_node) { |
| ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, |
| len); |
| iter->unmap_len = len; |
| } |
| |
| if (pdest) { |
| struct dma_cdb *hw_desc; |
| struct ppc440spe_adma_chan *chan; |
| |
| iter = sw_desc->group_head; |
| chan = to_ppc440spe_adma_chan(iter->async_tx.chan); |
| memset(iter->hw_desc, 0, sizeof(struct dma_cdb)); |
| iter->hw_next = list_entry(iter->chain_node.next, |
| struct ppc440spe_adma_desc_slot, |
| chain_node); |
| hw_desc = iter->hw_desc; |
| hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2; |
| iter->src_cnt = 0; |
| iter->dst_cnt = 0; |
| ppc440spe_desc_set_dest_addr(iter, chan, 0, |
| ppc440spe_chan->pdest, 0); |
| ppc440spe_desc_set_src_addr(iter, chan, 0, 0, pdest); |
| ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, |
| len); |
| iter->unmap_len = 0; |
| /* override pdest to preserve original P */ |
| pdest = ppc440spe_chan->pdest; |
| } |
| if (qdest) { |
| struct dma_cdb *hw_desc; |
| struct ppc440spe_adma_chan *chan; |
| |
| iter = list_first_entry(&sw_desc->group_list, |
| struct ppc440spe_adma_desc_slot, |
| chain_node); |
| chan = to_ppc440spe_adma_chan(iter->async_tx.chan); |
| |
| if (pdest) { |
| iter = list_entry(iter->chain_node.next, |
| struct ppc440spe_adma_desc_slot, |
| chain_node); |
| } |
| |
| memset(iter->hw_desc, 0, sizeof(struct dma_cdb)); |
| iter->hw_next = list_entry(iter->chain_node.next, |
| struct ppc440spe_adma_desc_slot, |
| chain_node); |
| hw_desc = iter->hw_desc; |
| hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2; |
| iter->src_cnt = 0; |
| iter->dst_cnt = 0; |
| ppc440spe_desc_set_dest_addr(iter, chan, 0, |
| ppc440spe_chan->qdest, 0); |
| ppc440spe_desc_set_src_addr(iter, chan, 0, 0, qdest); |
| ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, |
| len); |
| iter->unmap_len = 0; |
| /* override qdest to preserve original Q */ |
| qdest = ppc440spe_chan->qdest; |
| } |
| |
| /* Setup destinations for P/Q ops */ |
| ppc440spe_adma_pqzero_sum_set_dest(sw_desc, pdest, qdest); |
| |
| /* Setup zero QWORDs into DCHECK CDBs */ |
| idst = dst_cnt; |
| list_for_each_entry_reverse(iter, &sw_desc->group_list, |
| chain_node) { |
| /* |
| * The last CDB corresponds to Q-parity check, |
| * the one before last CDB corresponds |
| * P-parity check |
| */ |
| if (idst == DMA_DEST_MAX_NUM) { |
| if (idst == dst_cnt) { |
| set_bit(PPC440SPE_DESC_QCHECK, |
| &iter->flags); |
| } else { |
| set_bit(PPC440SPE_DESC_PCHECK, |
| &iter->flags); |
| } |
| } else { |
| if (qdest) { |
| set_bit(PPC440SPE_DESC_QCHECK, |
| &iter->flags); |
| } else { |
| set_bit(PPC440SPE_DESC_PCHECK, |
| &iter->flags); |
| } |
| } |
| iter->xor_check_result = pqres; |
| |
| /* |
| * set it to zero, if check fail then result will |
| * be updated |
| */ |
| *iter->xor_check_result = 0; |
| ppc440spe_desc_set_dcheck(iter, ppc440spe_chan, |
| ppc440spe_qword); |
| |
| if (!(--dst_cnt)) |
| break; |
| } |
| |
| /* Setup sources and mults for P/Q ops */ |
| list_for_each_entry_continue_reverse(iter, &sw_desc->group_list, |
| chain_node) { |
| struct ppc440spe_adma_chan *chan; |
| u32 mult_dst; |
| |
| chan = to_ppc440spe_adma_chan(iter->async_tx.chan); |
| ppc440spe_desc_set_src_addr(iter, chan, 0, |
| DMA_CUED_XOR_HB, |
| src[src_cnt - 1]); |
| if (qdest) { |
| mult_dst = (dst_cnt - 1) ? DMA_CDB_SG_DST2 : |
| DMA_CDB_SG_DST1; |
| ppc440spe_desc_set_src_mult(iter, chan, |
| DMA_CUED_MULT1_OFF, |
| mult_dst, |
| scf[src_cnt - 1]); |
| } |
| if (!(--src_cnt)) |
| break; |
| } |
| } |
| spin_unlock_bh(&ppc440spe_chan->lock); |
| return sw_desc ? &sw_desc->async_tx : NULL; |
| } |
| |
| /** |
| * ppc440spe_adma_prep_dma_xor_zero_sum - prepare CDB group for |
| * XOR ZERO_SUM operation |
| */ |
| static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_xor_zero_sum( |
| struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt, |
| size_t len, enum sum_check_flags *result, unsigned long flags) |
| { |
| struct dma_async_tx_descriptor *tx; |
| dma_addr_t pq[2]; |
| |
| /* validate P, disable Q */ |
| pq[0] = src[0]; |
| pq[1] = 0; |
| flags |= DMA_PREP_PQ_DISABLE_Q; |
| |
| tx = ppc440spe_adma_prep_dma_pqzero_sum(chan, pq, &src[1], |
| src_cnt - 1, 0, len, |
| result, flags); |
| return tx; |
| } |
| |
| /** |
| * ppc440spe_adma_set_dest - set destination address into descriptor |
| */ |
| static void ppc440spe_adma_set_dest(struct ppc440spe_adma_desc_slot *sw_desc, |
| dma_addr_t addr, int index) |
| { |
| struct ppc440spe_adma_chan *chan; |
| |
| BUG_ON(index >= sw_desc->dst_cnt); |
| |
| chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan); |
| |
| switch (chan->device->id) { |
| case PPC440SPE_DMA0_ID: |
| case PPC440SPE_DMA1_ID: |
| /* to do: support transfers lengths > |
| * PPC440SPE_ADMA_DMA/XOR_MAX_BYTE_COUNT |
| */ |
| ppc440spe_desc_set_dest_addr(sw_desc->group_head, |
| chan, 0, addr, index); |
| break; |
| case PPC440SPE_XOR_ID: |
| sw_desc = ppc440spe_get_group_entry(sw_desc, index); |
| ppc440spe_desc_set_dest_addr(sw_desc, |
| chan, 0, addr, index); |
| break; |
| } |
| } |
| |
| static void ppc440spe_adma_pq_zero_op(struct ppc440spe_adma_desc_slot *iter, |
| struct ppc440spe_adma_chan *chan, dma_addr_t addr) |
| { |
| /* To clear destinations update the descriptor |
| * (P or Q depending on index) as follows: |
| * addr is destination (0 corresponds to SG2): |
| */ |
| ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE, addr, 0); |
| |
| /* ... and the addr is source: */ |
| ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB, addr); |
| |
| /* addr is always SG2 then the mult is always DST1 */ |
| ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF, |
| DMA_CDB_SG_DST1, 1); |
| } |
| |
| /** |
| * ppc440spe_adma_pq_set_dest - set destination address into descriptor |
| * for the PQXOR operation |
| */ |
| static void ppc440spe_adma_pq_set_dest(struct ppc440spe_adma_desc_slot *sw_desc, |
| dma_addr_t *addrs, unsigned long flags) |
| { |
| struct ppc440spe_adma_desc_slot *iter; |
| struct ppc440spe_adma_chan *chan; |
| dma_addr_t paddr, qaddr; |
| dma_addr_t addr = 0, ppath, qpath; |
| int index = 0, i; |
| |
| chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan); |
| |
| if (flags & DMA_PREP_PQ_DISABLE_P) |
| paddr = 0; |
| else |
| paddr = addrs[0]; |
| |
| if (flags & DMA_PREP_PQ_DISABLE_Q) |
| qaddr = 0; |
| else |
| qaddr = addrs[1]; |
| |
| if (!paddr || !qaddr) |
| addr = paddr ? paddr : qaddr; |
| |
| switch (chan->device->id) { |
| case PPC440SPE_DMA0_ID: |
| case PPC440SPE_DMA1_ID: |
| /* walk through the WXOR source list and set P/Q-destinations |
| * for each slot: |
| */ |
| if (!test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) { |
| /* This is WXOR-only chain; may have 1/2 zero descs */ |
| if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags)) |
| index++; |
| if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags)) |
| index++; |
| |
| iter = ppc440spe_get_group_entry(sw_desc, index); |
| if (addr) { |
| /* one destination */ |
| list_for_each_entry_from(iter, |
| &sw_desc->group_list, chain_node) |
| ppc440spe_desc_set_dest_addr(iter, chan, |
| DMA_CUED_XOR_BASE, addr, 0); |
| } else { |
| /* two destinations */ |
| list_for_each_entry_from(iter, |
| &sw_desc->group_list, chain_node) { |
| ppc440spe_desc_set_dest_addr(iter, chan, |
| DMA_CUED_XOR_BASE, paddr, 0); |
| ppc440spe_desc_set_dest_addr(iter, chan, |
| DMA_CUED_XOR_BASE, qaddr, 1); |
| } |
| } |
| |
| if (index) { |
| /* To clear destinations update the descriptor |
| * (1st,2nd, or both depending on flags) |
| */ |
| index = 0; |
| if (test_bit(PPC440SPE_ZERO_P, |
| &sw_desc->flags)) { |
| iter = ppc440spe_get_group_entry( |
| sw_desc, index++); |
| ppc440spe_adma_pq_zero_op(iter, chan, |
| paddr); |
| } |
| |
| if (test_bit(PPC440SPE_ZERO_Q, |
| &sw_desc->flags)) { |
| iter = ppc440spe_get_group_entry( |
| sw_desc, index++); |
| ppc440spe_adma_pq_zero_op(iter, chan, |
| qaddr); |
| } |
| |
| return; |
| } |
| } else { |
| /* This is RXOR-only or RXOR/WXOR mixed chain */ |
| |
| /* If we want to include destination into calculations, |
| * then make dest addresses cued with mult=1 (XOR). |
| */ |
| ppath = test_bit(PPC440SPE_ZERO_P, &sw_desc->flags) ? |
| DMA_CUED_XOR_HB : |
| DMA_CUED_XOR_BASE | |
| (1 << DMA_CUED_MULT1_OFF); |
| qpath = test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags) ? |
| DMA_CUED_XOR_HB : |
| DMA_CUED_XOR_BASE | |
| (1 << DMA_CUED_MULT1_OFF); |
| |
| /* Setup destination(s) in RXOR slot(s) */ |
| iter = ppc440spe_get_group_entry(sw_desc, index++); |
| ppc440spe_desc_set_dest_addr(iter, chan, |
| paddr ? ppath : qpath, |
| paddr ? paddr : qaddr, 0); |
| if (!addr) { |
| /* two destinations */ |
| iter = ppc440spe_get_group_entry(sw_desc, |
| index++); |
| ppc440spe_desc_set_dest_addr(iter, chan, |
| qpath, qaddr, 0); |
| } |
| |
| if (test_bit(PPC440SPE_DESC_WXOR, &sw_desc->flags)) { |
| /* Setup destination(s) in remaining WXOR |
| * slots |
| */ |
| iter = ppc440spe_get_group_entry(sw_desc, |
| index); |
| if (addr) { |
| /* one destination */ |
| list_for_each_entry_from(iter, |
| &sw_desc->group_list, |
| chain_node) |
| ppc440spe_desc_set_dest_addr( |
| iter, chan, |
| DMA_CUED_XOR_BASE, |
| addr, 0); |
| |
| } else { |
| /* two destinations */ |
| list_for_each_entry_from(iter, |
| &sw_desc->group_list, |
| chain_node) { |
| ppc440spe_desc_set_dest_addr( |
| iter, chan, |
| DMA_CUED_XOR_BASE, |
| paddr, 0); |
| ppc440spe_desc_set_dest_addr( |
| iter, chan, |
| DMA_CUED_XOR_BASE, |
| qaddr, 1); |
| } |
| } |
| } |
| |
| } |
| break; |
| |
| case PPC440SPE_XOR_ID: |
| /* DMA2 descriptors have only 1 destination, so there are |
| * two chains - one for each dest. |
| * If we want to include destination into calculations, |
| * then make dest addresses cued with mult=1 (XOR). |
| */ |
| ppath = test_bit(PPC440SPE_ZERO_P, &sw_desc->flags) ? |
| DMA_CUED_XOR_HB : |
| DMA_CUED_XOR_BASE | |
| (1 << DMA_CUED_MULT1_OFF); |
| |
| qpath = test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags) ? |
| DMA_CUED_XOR_HB : |
| DMA_CUED_XOR_BASE | |
| (1 << DMA_CUED_MULT1_OFF); |
| |
| iter = ppc440spe_get_group_entry(sw_desc, 0); |
| for (i = 0; i < sw_desc->descs_per_op; i++) { |
| ppc440spe_desc_set_dest_addr(iter, chan, |
| paddr ? ppath : qpath, |
| paddr ? paddr : qaddr, 0); |
| iter = list_entry(iter->chain_node.next, |
| struct ppc440spe_adma_desc_slot, |
| chain_node); |
| } |
| |
| if (!addr) { |
| /* Two destinations; setup Q here */ |
| iter = ppc440spe_get_group_entry(sw_desc, |
| sw_desc->descs_per_op); |
| for (i = 0; i < sw_desc->descs_per_op; i++) { |
| ppc440spe_desc_set_dest_addr(iter, |
| chan, qpath, qaddr, 0); |
| iter = list_entry(iter->chain_node.next, |
| struct ppc440spe_adma_desc_slot, |
| chain_node); |
| } |
| } |
| |
| break; |
| } |
| } |
| |
| /** |
| * ppc440spe_adma_pq_zero_sum_set_dest - set destination address into descriptor |
| * for the PQ_ZERO_SUM operation |
| */ |
| static void ppc440spe_adma_pqzero_sum_set_dest( |
| struct ppc440spe_adma_desc_slot *sw_desc, |
| dma_addr_t paddr, dma_addr_t qaddr) |
| { |
| struct ppc440spe_adma_desc_slot *iter, *end; |
| struct ppc440spe_adma_chan *chan; |
| dma_addr_t addr = 0; |
| int idx; |
| |
| chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan); |
| |
| /* walk through the WXOR source list and set P/Q-destinations |
| * for each slot |
| */ |
| idx = (paddr && qaddr) ? 2 : 1; |
| /* set end */ |
| list_for_each_entry_reverse(end, &sw_desc->group_list, |
| chain_node) { |
| if (!(--idx)) |
| break; |
| } |
| /* set start */ |
| idx = (paddr && qaddr) ? 2 : 1; |
| iter = ppc440spe_get_group_entry(sw_desc, idx); |
| |
| if (paddr && qaddr) { |
| /* two destinations */ |
| list_for_each_entry_from(iter, &sw_desc->group_list, |
| chain_node) { |
| if (unlikely(iter == end)) |
| break; |
| ppc440spe_desc_set_dest_addr(iter, chan, |
| DMA_CUED_XOR_BASE, paddr, 0); |
| ppc440spe_desc_set_dest_addr(iter, chan, |
| DMA_CUED_XOR_BASE, qaddr, 1); |
| } |
| } else { |
| /* one destination */ |
| addr = paddr ? paddr : qaddr; |
| list_for_each_entry_from(iter, &sw_desc->group_list, |
| chain_node) { |
| if (unlikely(iter == end)) |
| break; |
| ppc440spe_desc_set_dest_addr(iter, chan, |
| DMA_CUED_XOR_BASE, addr, 0); |
| } |
| } |
| |
| /* The remaining descriptors are DATACHECK. These have no need in |
| * destination. Actually, these destinations are used there |
| * as sources for check operation. So, set addr as source. |
| */ |
| ppc440spe_desc_set_src_addr(end, chan, 0, 0, addr ? addr : paddr); |
| |
| if (!addr) { |
| end = list_entry(end->chain_node.next, |
| struct ppc440spe_adma_desc_slot, chain_node); |
| ppc440spe_desc_set_src_addr(end, chan, 0, 0, qaddr); |
| } |
| } |
| |
| /** |
| * ppc440spe_desc_set_xor_src_cnt - set source count into descriptor |
| */ |
| static inline void ppc440spe_desc_set_xor_src_cnt( |
| struct ppc440spe_adma_desc_slot *desc, |
| int src_cnt) |
| { |
| struct xor_cb *hw_desc = desc->hw_desc; |
| |
| hw_desc->cbc &= ~XOR_CDCR_OAC_MSK; |
| hw_desc->cbc |= src_cnt; |
| } |
| |
| /** |
| * ppc440spe_adma_pq_set_src - set source address into descriptor |
| */ |
| static void ppc440spe_adma_pq_set_src(struct ppc440spe_adma_desc_slot *sw_desc, |
| dma_addr_t addr, int index) |
| { |
| struct ppc440spe_adma_chan *chan; |
| dma_addr_t haddr = 0; |
| struct ppc440spe_adma_desc_slot *iter = NULL; |
| |
| chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan); |
| |
| switch (chan->device->id) { |
| case PPC440SPE_DMA0_ID: |
| case PPC440SPE_DMA1_ID: |
| /* DMA0,1 may do: WXOR, RXOR, RXOR+WXORs chain |
| */ |
| if (test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) { |
| /* RXOR-only or RXOR/WXOR operation */ |
| int iskip = test_bit(PPC440SPE_DESC_RXOR12, |
| &sw_desc->flags) ? 2 : 3; |
| |
| if (index == 0) { |
| /* 1st slot (RXOR) */ |
| /* setup sources region (R1-2-3, R1-2-4, |
| * or R1-2-5) |
| */ |
| if (test_bit(PPC440SPE_DESC_RXOR12, |
| &sw_desc->flags)) |
| haddr = DMA_RXOR12 << |
| DMA_CUED_REGION_OFF; |
| else if (test_bit(PPC440SPE_DESC_RXOR123, |
| &sw_desc->flags)) |
| haddr = DMA_RXOR123 << |
| DMA_CUED_REGION_OFF; |
| else if (test_bit(PPC440SPE_DESC_RXOR124, |
| &sw_desc->flags)) |
| haddr = DMA_RXOR124 << |
| DMA_CUED_REGION_OFF; |
| else if (test_bit(PPC440SPE_DESC_RXOR125, |
| &sw_desc->flags)) |
| haddr = DMA_RXOR125 << |
| DMA_CUED_REGION_OFF; |
| else |
| BUG(); |
| haddr |= DMA_CUED_XOR_BASE; |
| iter = ppc440spe_get_group_entry(sw_desc, 0); |
| } else if (index < iskip) { |
| /* 1st slot (RXOR) |
| * shall actually set source address only once |
| * instead of first <iskip> |
| */ |
| iter = NULL; |
| } else { |
| /* 2nd/3d and next slots (WXOR); |
| * skip first slot with RXOR |
| */ |
| haddr = DMA_CUED_XOR_HB; |
| iter = ppc440spe_get_group_entry(sw_desc, |
| index - iskip + sw_desc->dst_cnt); |
| } |
| } else { |
| int znum = 0; |
| |
| /* WXOR-only operation; skip first slots with |
| * zeroing destinations |
| */ |
| if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags)) |
| znum++; |
| if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags)) |
| znum++; |
| |
| haddr = DMA_CUED_XOR_HB; |
| iter = ppc440spe_get_group_entry(sw_desc, |
| index + znum); |
| } |
| |
| if (likely(iter)) { |
| ppc440spe_desc_set_src_addr(iter, chan, 0, haddr, addr); |
| |
| if (!index && |
| test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags) && |
| sw_desc->dst_cnt == 2) { |
| /* if we have two destinations for RXOR, then |
| * setup source in the second descr too |
| */ |
| iter = ppc440spe_get_group_entry(sw_desc, 1); |
| ppc440spe_desc_set_src_addr(iter, chan, 0, |
| haddr, addr); |
| } |
| } |
| break; |
| |
| case PPC440SPE_XOR_ID: |
| /* DMA2 may do Biskup */ |
| iter = sw_desc->group_head; |
| if (iter->dst_cnt == 2) { |
| /* both P & Q calculations required; set P src here */ |
| ppc440spe_adma_dma2rxor_set_src(iter, index, addr); |
| |
| /* this is for Q */ |
| iter = ppc440spe_get_group_entry(sw_desc, |
| sw_desc->descs_per_op); |
| } |
| ppc440spe_adma_dma2rxor_set_src(iter, index, addr); |
| break; |
| } |
| } |
| |
| /** |
| * ppc440spe_adma_memcpy_xor_set_src - set source address into descriptor |
| */ |
| static void ppc440spe_adma_memcpy_xor_set_src( |
| struct ppc440spe_adma_desc_slot *sw_desc, |
| dma_addr_t addr, int index) |
| { |
| struct ppc440spe_adma_chan *chan; |
| |
| chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan); |
| sw_desc = sw_desc->group_head; |
| |
| if (likely(sw_desc)) |
| ppc440spe_desc_set_src_addr(sw_desc, chan, index, 0, addr); |
| } |
| |
| /** |
| * ppc440spe_adma_dma2rxor_inc_addr - |
| */ |
| static void ppc440spe_adma_dma2rxor_inc_addr( |
| struct ppc440spe_adma_desc_slot *desc, |
| struct ppc440spe_rxor *cursor, int index, int src_cnt) |
| { |
| cursor->addr_count++; |
| if (index == src_cnt - 1) { |
| ppc440spe_desc_set_xor_src_cnt(desc, cursor->addr_count); |
| } else if (cursor->addr_count == XOR_MAX_OPS) { |
| ppc440spe_desc_set_xor_src_cnt(desc, cursor->addr_count); |
| cursor->addr_count = 0; |
| cursor->desc_count++; |
| } |
| } |
| |
| /** |
| * ppc440spe_adma_dma2rxor_prep_src - setup RXOR types in DMA2 CDB |
| */ |
| static int ppc440spe_adma_dma2rxor_prep_src( |
| struct ppc440spe_adma_desc_slot *hdesc, |
| struct ppc440spe_rxor *cursor, int index, |
| int src_cnt, u32 addr) |
| { |
| int rval = 0; |
| u32 sign; |
| struct ppc440spe_adma_desc_slot *desc = hdesc; |
| int i; |
| |
| for (i = 0; i < cursor->desc_count; i++) { |
| desc = list_entry(hdesc->chain_node.next, |
| struct ppc440spe_adma_desc_slot, |
| chain_node); |
| } |
| |
| switch (cursor->state) { |
| case 0: |
| if (addr == cursor->addrl + cursor->len) { |
| /* direct RXOR */ |
| cursor->state = 1; |
| cursor->xor_count++; |
| if (index == src_cnt-1) { |
| ppc440spe_rxor_set_region(desc, |
| cursor->addr_count, |
| DMA_RXOR12 << DMA_CUED_REGION_OFF); |
| ppc440spe_adma_dma2rxor_inc_addr( |
| desc, cursor, index, src_cnt); |
| } |
| } else if (cursor->addrl == addr + cursor->len) { |
| /* reverse RXOR */ |
| cursor->state = 1; |
| cursor->xor_count++; |
| set_bit(cursor->addr_count, &desc->reverse_flags[0]); |
| if (index == src_cnt-1) { |
| ppc440spe_rxor_set_region(desc, |
| cursor->addr_count, |
| DMA_RXOR12 << DMA_CUED_REGION_OFF); |
| ppc440spe_adma_dma2rxor_inc_addr( |
| desc, cursor, index, src_cnt); |
| } |
| } else { |
| printk(KERN_ERR "Cannot build " |
| "DMA2 RXOR command block.\n"); |
| BUG(); |
| } |
| break; |
| case 1: |
| sign = test_bit(cursor->addr_count, |
| desc->reverse_flags) |
| ? -1 : 1; |
| if (index == src_cnt-2 || (sign == -1 |
| && addr != cursor->addrl - 2*cursor->len)) { |
| cursor->state = 0; |
| cursor->xor_count = 1; |
| cursor->addrl = addr; |
| ppc440spe_rxor_set_region(desc, |
| cursor->addr_count, |
| DMA_RXOR12 << DMA_CUED_REGION_OFF); |
| ppc440spe_adma_dma2rxor_inc_addr( |
| desc, cursor, index, src_cnt); |
| } else if (addr == cursor->addrl + 2*sign*cursor->len) { |
| cursor->state = 2; |
| cursor->xor_count = 0; |
| ppc440spe_rxor_set_region(desc, |
| cursor->addr_count, |
| DMA_RXOR123 << DMA_CUED_REGION_OFF); |
| if (index == src_cnt-1) { |
| ppc440spe_adma_dma2rxor_inc_addr( |
| desc, cursor, index, src_cnt); |
| } |
| } else if (addr == cursor->addrl + 3*cursor->len) { |
| cursor->state = 2; |
| cursor->xor_count = 0; |
| ppc440spe_rxor_set_region(desc, |
| cursor->addr_count, |
| DMA_RXOR124 << DMA_CUED_REGION_OFF); |
| if (index == src_cnt-1) { |
| ppc440spe_adma_dma2rxor_inc_addr( |
| desc, cursor, index, src_cnt); |
| } |
| } else if (addr == cursor->addrl + 4*cursor->len) { |
| cursor->state = 2; |
| cursor->xor_count = 0; |
| ppc440spe_rxor_set_region(desc, |
| cursor->addr_count, |
| DMA_RXOR125 << DMA_CUED_REGION_OFF); |
| if (index == src_cnt-1) { |
| ppc440spe_adma_dma2rxor_inc_addr( |
| desc, cursor, index, src_cnt); |
| } |
| } else { |
| cursor->state = 0; |
| cursor->xor_count = 1; |
| cursor->addrl = addr; |
| ppc440spe_rxor_set_region(desc, |
| cursor->addr_count, |
| DMA_RXOR12 << DMA_CUED_REGION_OFF); |
| ppc440spe_adma_dma2rxor_inc_addr( |
| desc, cursor, index, src_cnt); |
| } |
| break; |
| case 2: |
| cursor->state = 0; |
| cursor->addrl = addr; |
| cursor->xor_count++; |
| if (index) { |
| ppc440spe_adma_dma2rxor_inc_addr( |
| desc, cursor, index, src_cnt); |
| } |
| break; |
| } |
| |
| return rval; |
| } |
| |
| /** |
| * ppc440spe_adma_dma2rxor_set_src - set RXOR source address; it's assumed that |
| * ppc440spe_adma_dma2rxor_prep_src() has already done prior this call |
| */ |
| static void ppc440spe_adma_dma2rxor_set_src( |
| struct ppc440spe_adma_desc_slot *desc, |
| int index, dma_addr_t addr) |
| { |
| struct xor_cb *xcb = desc->hw_desc; |
| int k = 0, op = 0, lop = 0; |
| |
| /* get the RXOR operand which corresponds to index addr */ |
| while (op <= index) { |
| lop = op; |
| if (k == XOR_MAX_OPS) { |
| k = 0; |
| desc = list_entry(desc->chain_node.next, |
| struct ppc440spe_adma_desc_slot, chain_node); |
| xcb = desc->hw_desc; |
| |
| } |
| if ((xcb->ops[k++].h & (DMA_RXOR12 << DMA_CUED_REGION_OFF)) == |
| (DMA_RXOR12 << DMA_CUED_REGION_OFF)) |
| op += 2; |
| else |
| op += 3; |
| } |
| |
| BUG_ON(k < 1); |
| |
| if (test_bit(k-1, desc->reverse_flags)) { |
| /* reverse operand order; put last op in RXOR group */ |
| if (index == op - 1) |
| ppc440spe_rxor_set_src(desc, k - 1, addr); |
| } else { |
| /* direct operand order; put first op in RXOR group */ |
| if (index == lop) |
| ppc440spe_rxor_set_src(desc, k - 1, addr); |
| } |
| } |
| |
| /** |
| * ppc440spe_adma_dma2rxor_set_mult - set RXOR multipliers; it's assumed that |
| * ppc440spe_adma_dma2rxor_prep_src() has already done prior this call |
| */ |
| static void ppc440spe_adma_dma2rxor_set_mult( |
| struct ppc440spe_adma_desc_slot *desc, |
| int index, u8 mult) |
| { |
| struct xor_cb *xcb = desc->hw_desc; |
| int k = 0, op = 0, lop = 0; |
| |
| /* get the RXOR operand which corresponds to index mult */ |
| while (op <= index) { |
| lop = op; |
| if (k == XOR_MAX_OPS) { |
| k = 0; |
| desc = list_entry(desc->chain_node.next, |
| struct ppc440spe_adma_desc_slot, |
| chain_node); |
| xcb = desc->hw_desc; |
| |
| } |
| if ((xcb->ops[k++].h & (DMA_RXOR12 << DMA_CUED_REGION_OFF)) == |
| (DMA_RXOR12 << DMA_CUED_REGION_OFF)) |
| op += 2; |
| else |
| op += 3; |
| } |
| |
| BUG_ON(k < 1); |
| if (test_bit(k-1, desc->reverse_flags)) { |
| /* reverse order */ |
| ppc440spe_rxor_set_mult(desc, k - 1, op - index - 1, mult); |
| } else { |
| /* direct order */ |
| ppc440spe_rxor_set_mult(desc, k - 1, index - lop, mult); |
| } |
| } |
| |
| /** |
| * ppc440spe_init_rxor_cursor - |
| */ |
| static void ppc440spe_init_rxor_cursor(struct ppc440spe_rxor *cursor) |
| { |
| memset(cursor, 0, sizeof(struct ppc440spe_rxor)); |
| cursor->state = 2; |
| } |
| |
| /** |
| * ppc440spe_adma_pq_set_src_mult - set multiplication coefficient into |
| * descriptor for the PQXOR operation |
| */ |
| static void ppc440spe_adma_pq_set_src_mult( |
| struct ppc440spe_adma_desc_slot *sw_desc, |
| unsigned char mult, int index, int dst_pos) |
| { |
| struct ppc440spe_adma_chan *chan; |
| u32 mult_idx, mult_dst; |
| struct ppc440spe_adma_desc_slot *iter = NULL, *iter1 = NULL; |
| |
| chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan); |
| |
| switch (chan->device->id) { |
| case PPC440SPE_DMA0_ID: |
| case PPC440SPE_DMA1_ID: |
| if (test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) { |
| int region = test_bit(PPC440SPE_DESC_RXOR12, |
| &sw_desc->flags) ? 2 : 3; |
| |
| if (index < region) { |
| /* RXOR multipliers */ |
| iter = ppc440spe_get_group_entry(sw_desc, |
| sw_desc->dst_cnt - 1); |
| if (sw_desc->dst_cnt == 2) |
| iter1 = ppc440spe_get_group_entry( |
| sw_desc, 0); |
| |
| mult_idx = DMA_CUED_MULT1_OFF + (index << 3); |
| mult_dst = DMA_CDB_SG_SRC; |
| } else { |
| /* WXOR multiplier */ |
| iter = ppc440spe_get_group_entry(sw_desc, |
| index - region + |
| sw_desc->dst_cnt); |
| mult_idx = DMA_CUED_MULT1_OFF; |
| mult_dst = dst_pos ? DMA_CDB_SG_DST2 : |
| DMA_CDB_SG_DST1; |
| } |
| } else { |
| int znum = 0; |
| |
| /* WXOR-only; |
| * skip first slots with destinations (if ZERO_DST has |
| * place) |
| */ |
| if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags)) |
| znum++; |
| if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags)) |
| znum++; |
| |
| iter = ppc440spe_get_group_entry(sw_desc, index + znum); |
| mult_idx = DMA_CUED_MULT1_OFF; |
| mult_dst = dst_pos ? DMA_CDB_SG_DST2 : DMA_CDB_SG_DST1; |
| } |
| |
| if (likely(iter)) { |
| ppc440spe_desc_set_src_mult(iter, chan, |
| mult_idx, mult_dst, mult); |
| |
| if (unlikely(iter1)) { |
| /* if we have two destinations for RXOR, then |
| * we've just set Q mult. Set-up P now. |
| */ |
| ppc440spe_desc_set_src_mult(iter1, chan, |
| mult_idx, mult_dst, 1); |
| } |
| |
| } |
| break; |
| |
| case PPC440SPE_XOR_ID: |
| iter = sw_desc->group_head; |
| if (sw_desc->dst_cnt == 2) { |
| /* both P & Q calculations required; set P mult here */ |
| ppc440spe_adma_dma2rxor_set_mult(iter, index, 1); |
| |
| /* and then set Q mult */ |
| iter = ppc440spe_get_group_entry(sw_desc, |
| sw_desc->descs_per_op); |
| } |
| ppc440spe_adma_dma2rxor_set_mult(iter, index, mult); |
| break; |
| } |
| } |
| |
| /** |
| * ppc440spe_adma_free_chan_resources - free the resources allocated |
| */ |
| static void ppc440spe_adma_free_chan_resources(struct dma_chan *chan) |
| { |
| struct ppc440spe_adma_chan *ppc440spe_chan; |
| struct ppc440spe_adma_desc_slot *iter, *_iter; |
| int in_use_descs = 0; |
| |
| ppc440spe_chan = to_ppc440spe_adma_chan(chan); |
| ppc440spe_adma_slot_cleanup(ppc440spe_chan); |
| |
| spin_lock_bh(&ppc440spe_chan->lock); |
| list_for_each_entry_safe(iter, _iter, &ppc440spe_chan->chain, |
| chain_node) { |
| in_use_descs++; |
| list_del(&iter->chain_node); |
| } |
| list_for_each_entry_safe_reverse(iter, _iter, |
| &ppc440spe_chan->all_slots, slot_node) { |
| list_del(&iter->slot_node); |
| kfree(iter); |
| ppc440spe_chan->slots_allocated--; |
| } |
| ppc440spe_chan->last_used = NULL; |
| |
| dev_dbg(ppc440spe_chan->device->common.dev, |
| "ppc440spe adma%d %s slots_allocated %d\n", |
| ppc440spe_chan->device->id, |
| __func__, ppc440spe_chan->slots_allocated); |
| spin_unlock_bh(&ppc440spe_chan->lock); |
| |
| /* one is ok since we left it on there on purpose */ |
| if (in_use_descs > 1) |
| printk(KERN_ERR "SPE: Freeing %d in use descriptors!\n", |
| in_use_descs - 1); |
| } |
| |
| /** |
| * ppc440spe_adma_tx_status - poll the status of an ADMA transaction |
| * @chan: ADMA channel handle |
| * @cookie: ADMA transaction identifier |
| * @txstate: a holder for the current state of the channel |
| */ |
| static enum dma_status ppc440spe_adma_tx_status(struct dma_chan *chan, |
| dma_cookie_t cookie, struct dma_tx_state *txstate) |
| { |
| struct ppc440spe_adma_chan *ppc440spe_chan; |
| enum dma_status ret; |
| |
| ppc440spe_chan = to_ppc440spe_adma_chan(chan); |
| ret = dma_cookie_status(chan, cookie, txstate); |
| if (ret == DMA_SUCCESS) |
| return ret; |
| |
| ppc440spe_adma_slot_cleanup(ppc440spe_chan); |
| |
| return dma_cookie_status(chan, cookie, txstate); |
| } |
| |
| /** |
| * ppc440spe_adma_eot_handler - end of transfer interrupt handler |
| */ |
| static irqreturn_t ppc440spe_adma_eot_handler(int irq, void *data) |
| { |
| struct ppc440spe_adma_chan *chan = data; |
| |
| dev_dbg(chan->device->common.dev, |
| "ppc440spe adma%d: %s\n", chan->device->id, __func__); |
| |
| tasklet_schedule(&chan->irq_tasklet); |
| ppc440spe_adma_device_clear_eot_status(chan); |
| |
| return IRQ_HANDLED; |
| } |
| |
| /** |
| * ppc440spe_adma_err_handler - DMA error interrupt handler; |
| * do the same things as a eot handler |
| */ |
| static irqreturn_t ppc440spe_adma_err_handler(int irq, void *data) |
| { |
| struct ppc440spe_adma_chan *chan = data; |
| |
| dev_dbg(chan->device->common.dev, |
| "ppc440spe adma%d: %s\n", chan->device->id, __func__); |
| |
| tasklet_schedule(&chan->irq_tasklet); |
| ppc440spe_adma_device_clear_eot_status(chan); |
| |
| return IRQ_HANDLED; |
| } |
| |
| /** |
| * ppc440spe_test_callback - called when test operation has been done |
| */ |
| static void ppc440spe_test_callback(void *unused) |
| { |
| complete(&ppc440spe_r6_test_comp); |
| } |
| |
| /** |
| * ppc440spe_adma_issue_pending - flush all pending descriptors to h/w |
| */ |
| static void ppc440spe_adma_issue_pending(struct dma_chan *chan) |
| { |
| struct ppc440spe_adma_chan *ppc440spe_chan; |
| |
| ppc440spe_chan = to_ppc440spe_adma_chan(chan); |
| dev_dbg(ppc440spe_chan->device->common.dev, |
| "ppc440spe adma%d: %s %d \n", ppc440spe_chan->device->id, |
| __func__, ppc440spe_chan->pending); |
| |
| if (ppc440spe_chan->pending) { |
| ppc440spe_chan->pending = 0; |
| ppc440spe_chan_append(ppc440spe_chan); |
| } |
| } |
| |
| /** |
| * ppc440spe_chan_start_null_xor - initiate the first XOR operation (DMA engines |
| * use FIFOs (as opposite to chains used in XOR) so this is a XOR |
| * specific operation) |
| */ |
| static void ppc440spe_chan_start_null_xor(struct ppc440spe_adma_chan *chan) |
| { |
| struct ppc440spe_adma_desc_slot *sw_desc, *group_start; |
| dma_cookie_t cookie; |
| int slot_cnt, slots_per_op; |
| |
| dev_dbg(chan->device->common.dev, |
| "ppc440spe adma%d: %s\n", chan->device->id, __func__); |
| |
| spin_lock_bh(&chan->lock); |
| slot_cnt = ppc440spe_chan_xor_slot_count(0, 2, &slots_per_op); |
| sw_desc = ppc440spe_adma_alloc_slots(chan, slot_cnt, slots_per_op); |
| if (sw_desc) { |
| group_start = sw_desc->group_head; |
| list_splice_init(&sw_desc->group_list, &chan->chain); |
| async_tx_ack(&sw_desc->async_tx); |
| ppc440spe_desc_init_null_xor(group_start); |
| |
| cookie = dma_cookie_assign(&sw_desc->async_tx); |
| |
| /* initialize the completed cookie to be less than |
| * the most recently used cookie |
| */ |
| chan->common.completed_cookie = cookie - 1; |
| |
| /* channel should not be busy */ |
| BUG_ON(ppc440spe_chan_is_busy(chan)); |
| |
| /* set the descriptor address */ |
| ppc440spe_chan_set_first_xor_descriptor(chan, sw_desc); |
| |
| /* run the descriptor */ |
| ppc440spe_chan_run(chan); |
| } else |
| printk(KERN_ERR "ppc440spe adma%d" |
| " failed to allocate null descriptor\n", |
| chan->device->id); |
| spin_unlock_bh(&chan->lock); |
| } |
| |
| /** |
| * ppc440spe_test_raid6 - test are RAID-6 capabilities enabled successfully. |
| * For this we just perform one WXOR operation with the same source |
| * and destination addresses, the GF-multiplier is 1; so if RAID-6 |
| * capabilities are enabled then we'll get src/dst filled with zero. |
| */ |
| static int ppc440spe_test_raid6(struct ppc440spe_adma_chan *chan) |
| { |
| struct ppc440spe_adma_desc_slot *sw_desc, *iter; |
| struct page *pg; |
| char *a; |
| dma_addr_t dma_addr, addrs[2]; |
| unsigned long op = 0; |
| int rval = 0; |
| |
| set_bit(PPC440SPE_DESC_WXOR, &op); |
| |
| pg = alloc_page(GFP_KERNEL); |
| if (!pg) |
| return -ENOMEM; |
| |
| spin_lock_bh(&chan->lock); |
| sw_desc = ppc440spe_adma_alloc_slots(chan, 1, 1); |
| if (sw_desc) { |
| /* 1 src, 1 dsr, int_ena, WXOR */ |
| ppc440spe_desc_init_dma01pq(sw_desc, 1, 1, 1, op); |
| list_for_each_entry(iter, &sw_desc->group_list, chain_node) { |
| ppc440spe_desc_set_byte_count(iter, chan, PAGE_SIZE); |
| iter->unmap_len = PAGE_SIZE; |
| } |
| } else { |
| rval = -EFAULT; |
| spin_unlock_bh(&chan->lock); |
| goto exit; |
| } |
| spin_unlock_bh(&chan->lock); |
| |
| /* Fill the test page with ones */ |
| memset(page_address(pg), 0xFF, PAGE_SIZE); |
| dma_addr = dma_map_page(chan->device->dev, pg, 0, |
| PAGE_SIZE, DMA_BIDIRECTIONAL); |
| |
| /* Setup addresses */ |
| ppc440spe_adma_pq_set_src(sw_desc, dma_addr, 0); |
| ppc440spe_adma_pq_set_src_mult(sw_desc, 1, 0, 0); |
| addrs[0] = dma_addr; |
| addrs[1] = 0; |
| ppc440spe_adma_pq_set_dest(sw_desc, addrs, DMA_PREP_PQ_DISABLE_Q); |
| |
| async_tx_ack(&sw_desc->async_tx); |
| sw_desc->async_tx.callback = ppc440spe_test_callback; |
| sw_desc->async_tx.callback_param = NULL; |
| |
| init_completion(&ppc440spe_r6_test_comp); |
| |
| ppc440spe_adma_tx_submit(&sw_desc->async_tx); |
| ppc440spe_adma_issue_pending(&chan->common); |
| |
| wait_for_completion(&ppc440spe_r6_test_comp); |
| |
| /* Now check if the test page is zeroed */ |
| a = page_address(pg); |
| if ((*(u32 *)a) == 0 && memcmp(a, a+4, PAGE_SIZE-4) == 0) { |
| /* page is zero - RAID-6 enabled */ |
| rval = 0; |
| } else { |
| /* RAID-6 was not enabled */ |
| rval = -EINVAL; |
| } |
| exit: |
| __free_page(pg); |
| return rval; |
| } |
| |
| static void ppc440spe_adma_init_capabilities(struct ppc440spe_adma_device *adev) |
| { |
| switch (adev->id) { |
| case PPC440SPE_DMA0_ID: |
| case PPC440SPE_DMA1_ID: |
| dma_cap_set(DMA_MEMCPY, adev->common.cap_mask); |
| dma_cap_set(DMA_INTERRUPT, adev->common.cap_mask); |
| dma_cap_set(DMA_PQ, adev->common.cap_mask); |
| dma_cap_set(DMA_PQ_VAL, adev->common.cap_mask); |
| dma_cap_set(DMA_XOR_VAL, adev->common.cap_mask); |
| break; |
| case PPC440SPE_XOR_ID: |
| dma_cap_set(DMA_XOR, adev->common.cap_mask); |
| dma_cap_set(DMA_PQ, adev->common.cap_mask); |
| dma_cap_set(DMA_INTERRUPT, adev->common.cap_mask); |
| adev->common.cap_mask = adev->common.cap_mask; |
| break; |
| } |
| |
| /* Set base routines */ |
| adev->common.device_alloc_chan_resources = |
| ppc440spe_adma_alloc_chan_resources; |
| adev->common.device_free_chan_resources = |
| ppc440spe_adma_free_chan_resources; |
| adev->common.device_tx_status = ppc440spe_adma_tx_status; |
| adev->common.device_issue_pending = ppc440spe_adma_issue_pending; |
| |
| /* Set prep routines based on capability */ |
| if (dma_has_cap(DMA_MEMCPY, adev->common.cap_mask)) { |
| adev->common.device_prep_dma_memcpy = |
| ppc440spe_adma_prep_dma_memcpy; |
| } |
| if (dma_has_cap(DMA_XOR, adev->common.cap_mask)) { |
| adev->common.max_xor = XOR_MAX_OPS; |
| adev->common.device_prep_dma_xor = |
| ppc440spe_adma_prep_dma_xor; |
| } |
| if (dma_has_cap(DMA_PQ, adev->common.cap_mask)) { |
| switch (adev->id) { |
| case PPC440SPE_DMA0_ID: |
| dma_set_maxpq(&adev->common, |
| DMA0_FIFO_SIZE / sizeof(struct dma_cdb), 0); |
| break; |
| case PPC440SPE_DMA1_ID: |
| dma_set_maxpq(&adev->common, |
| DMA1_FIFO_SIZE / sizeof(struct dma_cdb), 0); |
| break; |
| case PPC440SPE_XOR_ID: |
| adev->common.max_pq = XOR_MAX_OPS * 3; |
| break; |
| } |
| adev->common.device_prep_dma_pq = |
| ppc440spe_adma_prep_dma_pq; |
| } |
| if (dma_has_cap(DMA_PQ_VAL, adev->common.cap_mask)) { |
| switch (adev->id) { |
| case PPC440SPE_DMA0_ID: |
| adev->common.max_pq = DMA0_FIFO_SIZE / |
| sizeof(struct dma_cdb); |
| break; |
| case PPC440SPE_DMA1_ID: |
| adev->common.max_pq = DMA1_FIFO_SIZE / |
| sizeof(struct dma_cdb); |
| break; |
| } |
| adev->common.device_prep_dma_pq_val = |
| ppc440spe_adma_prep_dma_pqzero_sum; |
| } |
| if (dma_has_cap(DMA_XOR_VAL, adev->common.cap_mask)) { |
| switch (adev->id) { |
| case PPC440SPE_DMA0_ID: |
| adev->common.max_xor = DMA0_FIFO_SIZE / |
| sizeof(struct dma_cdb); |
| break; |
| case PPC440SPE_DMA1_ID: |
| adev->common.max_xor = DMA1_FIFO_SIZE / |
| sizeof(struct dma_cdb); |
| break; |
| } |
| adev->common.device_prep_dma_xor_val = |
| ppc440spe_adma_prep_dma_xor_zero_sum; |
| } |
| if (dma_has_cap(DMA_INTERRUPT, adev->common.cap_mask)) { |
| adev->common.device_prep_dma_interrupt = |
| ppc440spe_adma_prep_dma_interrupt; |
| } |
| pr_info("%s: AMCC(R) PPC440SP(E) ADMA Engine: " |
| "( %s%s%s%s%s%s%s)\n", |
| dev_name(adev->dev), |
| dma_has_cap(DMA_PQ, adev->common.cap_mask) ? "pq " : "", |
| dma_has_cap(DMA_PQ_VAL, adev->common.cap_mask) ? "pq_val " : "", |
| dma_has_cap(DMA_XOR, adev->common.cap_mask) ? "xor " : "", |
| dma_has_cap(DMA_XOR_VAL, adev->common.cap_mask) ? "xor_val " : "", |
| dma_has_cap(DMA_MEMCPY, adev->common.cap_mask) ? "memcpy " : "", |
| dma_has_cap(DMA_INTERRUPT, adev->common.cap_mask) ? "intr " : ""); |
| } |
| |
| static int ppc440spe_adma_setup_irqs(struct ppc440spe_adma_device *adev, |
| struct ppc440spe_adma_chan *chan, |
| int *initcode) |
| { |
| struct platform_device *ofdev; |
| struct device_node *np; |
| int ret; |
| |
| ofdev = container_of(adev->dev, struct platform_device, dev); |
| np = ofdev->dev.of_node; |
| if (adev->id != PPC440SPE_XOR_ID) { |
| adev->err_irq = irq_of_parse_and_map(np, 1); |
| if (adev->err_irq == NO_IRQ) { |
| dev_warn(adev->dev, "no err irq resource?\n"); |
| *initcode = PPC_ADMA_INIT_IRQ2; |
| adev->err_irq = -ENXIO; |
| } else |
| atomic_inc(&ppc440spe_adma_err_irq_ref); |
| } else { |
| adev->err_irq = -ENXIO; |
| } |
| |
| adev->irq = irq_of_parse_and_map(np, 0); |
| if (adev->irq == NO_IRQ) { |
| dev_err(adev->dev, "no irq resource\n"); |
| *initcode = PPC_ADMA_INIT_IRQ1; |
| ret = -ENXIO; |
| goto err_irq_map; |
| } |
| dev_dbg(adev->dev, "irq %d, err irq %d\n", |
| adev->irq, adev->err_irq); |
| |
| ret = request_irq(adev->irq, ppc440spe_adma_eot_handler, |
| 0, dev_driver_string(adev->dev), chan); |
| if (ret) { |
| dev_err(adev->dev, "can't request irq %d\n", |
| adev->irq); |
| *initcode = PPC_ADMA_INIT_IRQ1; |
| ret = -EIO; |
| goto err_req1; |
| } |
| |
| /* only DMA engines have a separate error IRQ |
| * so it's Ok if err_irq < 0 in XOR engine case. |
| */ |
| if (adev->err_irq > 0) { |
| /* both DMA engines share common error IRQ */ |
| ret = request_irq(adev->err_irq, |
| ppc440spe_adma_err_handler, |
| IRQF_SHARED, |
| dev_driver_string(adev->dev), |
| chan); |
| if (ret) { |
| dev_err(adev->dev, "can't request irq %d\n", |
| adev->err_irq); |
| *initcode = PPC_ADMA_INIT_IRQ2; |
| ret = -EIO; |
| goto err_req2; |
| } |
| } |
| |
| if (adev->id == PPC440SPE_XOR_ID) { |
| /* enable XOR engine interrupts */ |
| iowrite32be(XOR_IE_CBCIE_BIT | XOR_IE_ICBIE_BIT | |
| XOR_IE_ICIE_BIT | XOR_IE_RPTIE_BIT, |
| &adev->xor_reg->ier); |
| } else { |
| u32 mask, enable; |
| |
| np = of_find_compatible_node(NULL, NULL, "ibm,i2o-440spe"); |
| if (!np) { |
| pr_err("%s: can't find I2O device tree node\n", |
| __func__); |
| ret = -ENODEV; |
| goto err_req2; |
| } |
| adev->i2o_reg = of_iomap(np, 0); |
| if (!adev->i2o_reg) { |
| pr_err("%s: failed to map I2O registers\n", __func__); |
| of_node_put(np); |
| ret = -EINVAL; |
| goto err_req2; |
| } |
| of_node_put(np); |
| /* Unmask 'CS FIFO Attention' interrupts and |
| * enable generating interrupts on errors |
| */ |
| enable = (adev->id == PPC440SPE_DMA0_ID) ? |
| ~(I2O_IOPIM_P0SNE | I2O_IOPIM_P0EM) : |
| ~(I2O_IOPIM_P1SNE | I2O_IOPIM_P1EM); |
| mask = ioread32(&adev->i2o_reg->iopim) & enable; |
| iowrite32(mask, &adev->i2o_reg->iopim); |
| } |
| return 0; |
| |
| err_req2: |
| free_irq(adev->irq, chan); |
| err_req1: |
| irq_dispose_mapping(adev->irq); |
| err_irq_map: |
| if (adev->err_irq > 0) { |
| if (atomic_dec_and_test(&ppc440spe_adma_err_irq_ref)) |
| irq_dispose_mapping(adev->err_irq); |
| } |
| return ret; |
| } |
| |
| static void ppc440spe_adma_release_irqs(struct ppc440spe_adma_device *adev, |
| struct ppc440spe_adma_chan *chan) |
| { |
| u32 mask, disable; |
| |
| if (adev->id == PPC440SPE_XOR_ID) { |
| /* disable XOR engine interrupts */ |
| mask = ioread32be(&adev->xor_reg->ier); |
| mask &= ~(XOR_IE_CBCIE_BIT | XOR_IE_ICBIE_BIT | |
| XOR_IE_ICIE_BIT | XOR_IE_RPTIE_BIT); |
| iowrite32be(mask, &adev->xor_reg->ier); |
| } else { |
| /* disable DMAx engine interrupts */ |
| disable = (adev->id == PPC440SPE_DMA0_ID) ? |
| (I2O_IOPIM_P0SNE | I2O_IOPIM_P0EM) : |
| (I2O_IOPIM_P1SNE | I2O_IOPIM_P1EM); |
| mask = ioread32(&adev->i2o_reg->iopim) | disable; |
| iowrite32(mask, &adev->i2o_reg->iopim); |
| } |
| free_irq(adev->irq, chan); |
| irq_dispose_mapping(adev->irq); |
| if (adev->err_irq > 0) { |
| free_irq(adev->err_irq, chan); |
| if (atomic_dec_and_test(&ppc440spe_adma_err_irq_ref)) { |
| irq_dispose_mapping(adev->err_irq); |
| iounmap(adev->i2o_reg); |
| } |
| } |
| } |
| |
| /** |
| * ppc440spe_adma_probe - probe the asynch device |
| */ |
| static int ppc440spe_adma_probe(struct platform_device *ofdev) |
| { |
| struct device_node *np = ofdev->dev.of_node; |
| struct resource res; |
| struct ppc440spe_adma_device *adev; |
| struct ppc440spe_adma_chan *chan; |
| struct ppc_dma_chan_ref *ref, *_ref; |
| int ret = 0, initcode = PPC_ADMA_INIT_OK; |
| const u32 *idx; |
| int len; |
| void *regs; |
| u32 id, pool_size; |
| |
| if (of_device_is_compatible(np, "amcc,xor-accelerator")) { |
| id = PPC440SPE_XOR_ID; |
| /* As far as the XOR engine is concerned, it does not |
| * use FIFOs but uses linked list. So there is no dependency |
| * between pool size to allocate and the engine configuration. |
| */ |
| pool_size = PAGE_SIZE << 1; |
| } else { |
| /* it is DMA0 or DMA1 */ |
| idx = of_get_property(np, "cell-index", &len); |
| if (!idx || (len != sizeof(u32))) { |
| dev_err(&ofdev->dev, "Device node %s has missing " |
| "or invalid cell-index property\n", |
| np->full_name); |
| return -EINVAL; |
| } |
| id = *idx; |
| /* DMA0,1 engines use FIFO to maintain CDBs, so we |
| * should allocate the pool accordingly to size of this |
| * FIFO. Thus, the pool size depends on the FIFO depth: |
| * how much CDBs pointers the FIFO may contain then so |
| * much CDBs we should provide in the pool. |
| * That is |
| * CDB size = 32B; |
| * CDBs number = (DMA0_FIFO_SIZE >> 3); |
| * Pool size = CDBs number * CDB size = |
| * = (DMA0_FIFO_SIZE >> 3) << 5 = DMA0_FIFO_SIZE << 2. |
| */ |
| pool_size = (id == PPC440SPE_DMA0_ID) ? |
| DMA0_FIFO_SIZE : DMA1_FIFO_SIZE; |
| pool_size <<= 2; |
| } |
| |
| if (of_address_to_resource(np, 0, &res)) { |
| dev_err(&ofdev->dev, "failed to get memory resource\n"); |
| initcode = PPC_ADMA_INIT_MEMRES; |
| ret = -ENODEV; |
| goto out; |
| } |
| |
| if (!request_mem_region(res.start, resource_size(&res), |
| dev_driver_string(&ofdev->dev))) { |
| dev_err(&ofdev->dev, "failed to request memory region %pR\n", |
| &res); |
| initcode = PPC_ADMA_INIT_MEMREG; |
| ret = -EBUSY; |
| goto out; |
| } |
| |
| /* create a device */ |
| adev = kzalloc(sizeof(*adev), GFP_KERNEL); |
| if (!adev) { |
| dev_err(&ofdev->dev, "failed to allocate device\n"); |
| initcode = PPC_ADMA_INIT_ALLOC; |
| ret = -ENOMEM; |
| goto err_adev_alloc; |
| } |
| |
| adev->id = id; |
| adev->pool_size = pool_size; |
| /* allocate coherent memory for hardware descriptors */ |
| adev->dma_desc_pool_virt = dma_alloc_coherent(&ofdev->dev, |
| adev->pool_size, &adev->dma_desc_pool, |
| GFP_KERNEL); |
| if (adev->dma_desc_pool_virt == NULL) { |
| dev_err(&ofdev->dev, "failed to allocate %d bytes of coherent " |
| "memory for hardware descriptors\n", |
| adev->pool_size); |
| initcode = PPC_ADMA_INIT_COHERENT; |
| ret = -ENOMEM; |
| goto err_dma_alloc; |
| } |
| dev_dbg(&ofdev->dev, "allocated descriptor pool virt 0x%p phys 0x%llx\n", |
| adev->dma_desc_pool_virt, (u64)adev->dma_desc_pool); |
| |
| regs = ioremap(res.start, resource_size(&res)); |
| if (!regs) { |
| dev_err(&ofdev->dev, "failed to ioremap regs!\n"); |
| goto err_regs_alloc; |
| } |
| |
| if (adev->id == PPC440SPE_XOR_ID) { |
| adev->xor_reg = regs; |
| /* Reset XOR */ |
| iowrite32be(XOR_CRSR_XASR_BIT, &adev->xor_reg->crsr); |
| iowrite32be(XOR_CRSR_64BA_BIT, &adev->xor_reg->crrr); |
| } else { |
| size_t fifo_size = (adev->id == PPC440SPE_DMA0_ID) ? |
| DMA0_FIFO_SIZE : DMA1_FIFO_SIZE; |
| adev->dma_reg = regs; |
| /* DMAx_FIFO_SIZE is defined in bytes, |
| * <fsiz> - is defined in number of CDB pointers (8byte). |
| * DMA FIFO Length = CSlength + CPlength, where |
| * CSlength = CPlength = (fsiz + 1) * 8. |
| */ |
| iowrite32(DMA_FIFO_ENABLE | ((fifo_size >> 3) - 2), |
| &adev->dma_reg->fsiz); |
| /* Configure DMA engine */ |
| iowrite32(DMA_CFG_DXEPR_HP | DMA_CFG_DFMPP_HP | DMA_CFG_FALGN, |
| &adev->dma_reg->cfg); |
| /* Clear Status */ |
| iowrite32(~0, &adev->dma_reg->dsts); |
| } |
| |
| adev->dev = &ofdev->dev; |
| adev->common.dev = &ofdev->dev; |
| INIT_LIST_HEAD(&adev->common.channels); |
| platform_set_drvdata(ofdev, adev); |
| |
| /* create a channel */ |
| chan = kzalloc(sizeof(*chan), GFP_KERNEL); |
| if (!chan) { |
| dev_err(&ofdev->dev, "can't allocate channel structure\n"); |
| initcode = PPC_ADMA_INIT_CHANNEL; |
| ret = -ENOMEM; |
| goto err_chan_alloc; |
| } |
| |
| spin_lock_init(&chan->lock); |
| INIT_LIST_HEAD(&chan->chain); |
| INIT_LIST_HEAD(&chan->all_slots); |
| chan->device = adev; |
| chan->common.device = &adev->common; |
| dma_cookie_init(&chan->common); |
| list_add_tail(&chan->common.device_node, &adev->common.channels); |
| tasklet_init(&chan->irq_tasklet, ppc440spe_adma_tasklet, |
| (unsigned long)chan); |
| |
| /* allocate and map helper pages for async validation or |
| * async_mult/async_sum_product operations on DMA0/1. |
| */ |
| if (adev->id != PPC440SPE_XOR_ID) { |
| chan->pdest_page = alloc_page(GFP_KERNEL); |
| chan->qdest_page = alloc_page(GFP_KERNEL); |
| if (!chan->pdest_page || |
| !chan->qdest_page) { |
| if (chan->pdest_page) |
| __free_page(chan->pdest_page); |
| if (chan->qdest_page) |
| __free_page(chan->qdest_page); |
| ret = -ENOMEM; |
| goto err_page_alloc; |
| } |
| chan->pdest = dma_map_page(&ofdev->dev, chan->pdest_page, 0, |
| PAGE_SIZE, DMA_BIDIRECTIONAL); |
| chan->qdest = dma_map_page(&ofdev->dev, chan->qdest_page, 0, |
| PAGE_SIZE, DMA_BIDIRECTIONAL); |
| } |
| |
| ref = kmalloc(sizeof(*ref), GFP_KERNEL); |
| if (ref) { |
| ref->chan = &chan->common; |
| INIT_LIST_HEAD(&ref->node); |
| list_add_tail(&ref->node, &ppc440spe_adma_chan_list); |
| } else { |
| dev_err(&ofdev->dev, "failed to allocate channel reference!\n"); |
| ret = -ENOMEM; |
| goto err_ref_alloc; |
| } |
| |
| ret = ppc440spe_adma_setup_irqs(adev, chan, &initcode); |
| if (ret) |
| goto err_irq; |
| |
| ppc440spe_adma_init_capabilities(adev); |
| |
| ret = dma_async_device_register(&adev->common); |
| if (ret) { |
| initcode = PPC_ADMA_INIT_REGISTER; |
| dev_err(&ofdev->dev, "failed to register dma device\n"); |
| goto err_dev_reg; |
| } |
| |
| goto out; |
| |
| err_dev_reg: |
| ppc440spe_adma_release_irqs(adev, chan); |
| err_irq: |
| list_for_each_entry_safe(ref, _ref, &ppc440spe_adma_chan_list, node) { |
| if (chan == to_ppc440spe_adma_chan(ref->chan)) { |
| list_del(&ref->node); |
| kfree(ref); |
| } |
| } |
| err_ref_alloc: |
| if (adev->id != PPC440SPE_XOR_ID) { |
| dma_unmap_page(&ofdev->dev, chan->pdest, |
| PAGE_SIZE, DMA_BIDIRECTIONAL); |
| dma_unmap_page(&ofdev->dev, chan->qdest, |
| PAGE_SIZE, DMA_BIDIRECTIONAL); |
| __free_page(chan->pdest_page); |
| __free_page(chan->qdest_page); |
| } |
| err_page_alloc: |
| kfree(chan); |
| err_chan_alloc: |
| if (adev->id == PPC440SPE_XOR_ID) |
| iounmap(adev->xor_reg); |
| else |
| iounmap(adev->dma_reg); |
| err_regs_alloc: |
| dma_free_coherent(adev->dev, adev->pool_size, |
| adev->dma_desc_pool_virt, |
| adev->dma_desc_pool); |
| err_dma_alloc: |
| kfree(adev); |
| err_adev_alloc: |
| release_mem_region(res.start, resource_size(&res)); |
| out: |
| if (id < PPC440SPE_ADMA_ENGINES_NUM) |
| ppc440spe_adma_devices[id] = initcode; |
| |
| return ret; |
| } |
| |
| /** |
| * ppc440spe_adma_remove - remove the asynch device |
| */ |
| static int ppc440spe_adma_remove(struct platform_device *ofdev) |
| { |
| struct ppc440spe_adma_device *adev = platform_get_drvdata(ofdev); |
| struct device_node *np = ofdev->dev.of_node; |
| struct resource res; |
| struct dma_chan *chan, *_chan; |
| struct ppc_dma_chan_ref *ref, *_ref; |
| struct ppc440spe_adma_chan *ppc440spe_chan; |
| |
| if (adev->id < PPC440SPE_ADMA_ENGINES_NUM) |
| ppc440spe_adma_devices[adev->id] = -1; |
| |
| dma_async_device_unregister(&adev->common); |
| |
| list_for_each_entry_safe(chan, _chan, &adev->common.channels, |
| device_node) { |
| ppc440spe_chan = to_ppc440spe_adma_chan(chan); |
| ppc440spe_adma_release_irqs(adev, ppc440spe_chan); |
| tasklet_kill(&ppc440spe_chan->irq_tasklet); |
| if (adev->id != PPC440SPE_XOR_ID) { |
| dma_unmap_page(&ofdev->dev, ppc440spe_chan->pdest, |
| PAGE_SIZE, DMA_BIDIRECTIONAL); |
| dma_unmap_page(&ofdev->dev, ppc440spe_chan->qdest, |
| PAGE_SIZE, DMA_BIDIRECTIONAL); |
| __free_page(ppc440spe_chan->pdest_page); |
| __free_page(ppc440spe_chan->qdest_page); |
| } |
| list_for_each_entry_safe(ref, _ref, &ppc440spe_adma_chan_list, |
| node) { |
| if (ppc440spe_chan == |
| to_ppc440spe_adma_chan(ref->chan)) { |
| list_del(&ref->node); |
| kfree(ref); |
| } |
| } |
| list_del(&chan->device_node); |
| kfree(ppc440spe_chan); |
| } |
| |
| dma_free_coherent(adev->dev, adev->pool_size, |
| adev->dma_desc_pool_virt, adev->dma_desc_pool); |
| if (adev->id == PPC440SPE_XOR_ID) |
| iounmap(adev->xor_reg); |
| else |
| iounmap(adev->dma_reg); |
| of_address_to_resource(np, 0, &res); |
| release_mem_region(res.start, resource_size(&res)); |
| kfree(adev); |
| return 0; |
| } |
| |
| /* |
| * /sys driver interface to enable h/w RAID-6 capabilities |
| * Files created in e.g. /sys/devices/plb.0/400100100.dma0/driver/ |
| * directory are "devices", "enable" and "poly". |
| * "devices" shows available engines. |
| * "enable" is used to enable RAID-6 capabilities or to check |
| * whether these has been activated. |
| * "poly" allows setting/checking used polynomial (for PPC440SPe only). |
| */ |
| |
| static ssize_t show_ppc440spe_devices(struct device_driver *dev, char *buf) |
| { |
| ssize_t size = 0; |
| int i; |
| |
| for (i = 0; i < PPC440SPE_ADMA_ENGINES_NUM; i++) { |
| if (ppc440spe_adma_devices[i] == -1) |
| continue; |
| size += snprintf(buf + size, PAGE_SIZE - size, |
| "PPC440SP(E)-ADMA.%d: %s\n", i, |
| ppc_adma_errors[ppc440spe_adma_devices[i]]); |
| } |
| return size; |
| } |
| |
| static ssize_t show_ppc440spe_r6enable(struct device_driver *dev, char *buf) |
| { |
| return snprintf(buf, PAGE_SIZE, |
| "PPC440SP(e) RAID-6 capabilities are %sABLED.\n", |
| ppc440spe_r6_enabled ? "EN" : "DIS"); |
| } |
| |
| static ssize_t store_ppc440spe_r6enable(struct device_driver *dev, |
| const char *buf, size_t count) |
| { |
| unsigned long val; |
| |
| if (!count || count > 11) |
| return -EINVAL; |
| |
| if (!ppc440spe_r6_tchan) |
| return -EFAULT; |
| |
| /* Write a key */ |
| sscanf(buf, "%lx", &val); |
| dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_XORBA, val); |
| isync(); |
| |
| /* Verify whether it really works now */ |
| if (ppc440spe_test_raid6(ppc440spe_r6_tchan) == 0) { |
| pr_info("PPC440SP(e) RAID-6 has been activated " |
| "successfully\n"); |
| ppc440spe_r6_enabled = 1; |
| } else { |
| pr_info("PPC440SP(e) RAID-6 hasn't been activated!" |
| " Error key ?\n"); |
| ppc440spe_r6_enabled = 0; |
| } |
| return count; |
| } |
| |
| static ssize_t show_ppc440spe_r6poly(struct device_driver *dev, char *buf) |
| { |
| ssize_t size = 0; |
| u32 reg; |
| |
| #ifdef CONFIG_440SP |
| /* 440SP has fixed polynomial */ |
| reg = 0x4d; |
| #else |
| reg = dcr_read(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL); |
| reg >>= MQ0_CFBHL_POLY; |
| reg &= 0xFF; |
| #endif |
| |
| size = snprintf(buf, PAGE_SIZE, "PPC440SP(e) RAID-6 driver " |
| "uses 0x1%02x polynomial.\n", reg); |
| return size; |
| } |
| |
| static ssize_t store_ppc440spe_r6poly(struct device_driver *dev, |
| const char *buf, size_t count) |
| { |
| unsigned long reg, val; |
| |
| #ifdef CONFIG_440SP |
| /* 440SP uses default 0x14D polynomial only */ |
| return -EINVAL; |
| #endif |
| |
| if (!count || count > 6) |
| return -EINVAL; |
| |
| /* e.g., 0x14D or 0x11D */ |
| sscanf(buf, "%lx", &val); |
| |
| if (val & ~0x1FF) |
| return -EINVAL; |
| |
| val &= 0xFF; |
| reg = dcr_read(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL); |
| reg &= ~(0xFF << MQ0_CFBHL_POLY); |
| reg |= val << MQ0_CFBHL_POLY; |
| dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL, reg); |
| |
| return count; |
| } |
| |
| static DRIVER_ATTR(devices, S_IRUGO, show_ppc440spe_devices, NULL); |
| static DRIVER_ATTR(enable, S_IRUGO | S_IWUSR, show_ppc440spe_r6enable, |
| store_ppc440spe_r6enable); |
| static DRIVER_ATTR(poly, S_IRUGO | S_IWUSR, show_ppc440spe_r6poly, |
| store_ppc440spe_r6poly); |
| |
| /* |
| * Common initialisation for RAID engines; allocate memory for |
| * DMAx FIFOs, perform configuration common for all DMA engines. |
| * Further DMA engine specific configuration is done at probe time. |
| */ |
| static int ppc440spe_configure_raid_devices(void) |
| { |
| struct device_node *np; |
| struct resource i2o_res; |
| struct i2o_regs __iomem *i2o_reg; |
| dcr_host_t i2o_dcr_host; |
| unsigned int dcr_base, dcr_len; |
| int i, ret; |
| |
| np = of_find_compatible_node(NULL, NULL, "ibm,i2o-440spe"); |
| if (!np) { |
| pr_err("%s: can't find I2O device tree node\n", |
| __func__); |
| return -ENODEV; |
| } |
| |
| if (of_address_to_resource(np, 0, &i2o_res)) { |
| of_node_put(np); |
| return -EINVAL; |
| } |
| |
| i2o_reg = of_iomap(np, 0); |
| if (!i2o_reg) { |
| pr_err("%s: failed to map I2O registers\n", __func__); |
| of_node_put(np); |
| return -EINVAL; |
| } |
| |
| /* Get I2O DCRs base */ |
| dcr_base = dcr_resource_start(np, 0); |
| dcr_len = dcr_resource_len(np, 0); |
| if (!dcr_base && !dcr_len) { |
| pr_err("%s: can't get DCR registers base/len!\n", |
| np->full_name); |
| of_node_put(np); |
| iounmap(i2o_reg); |
| return -ENODEV; |
| } |
| |
| i2o_dcr_host = dcr_map(np, dcr_base, dcr_len); |
| if (!DCR_MAP_OK(i2o_dcr_host)) { |
| pr_err("%s: failed to map DCRs!\n", np->full_name); |
| of_node_put(np); |
| iounmap(i2o_reg); |
| return -ENODEV; |
| } |
| of_node_put(np); |
| |
| /* Provide memory regions for DMA's FIFOs: I2O, DMA0 and DMA1 share |
| * the base address of FIFO memory space. |
| * Actually we need twice more physical memory than programmed in the |
| * <fsiz> register (because there are two FIFOs for each DMA: CP and CS) |
| */ |
| ppc440spe_dma_fifo_buf = kmalloc((DMA0_FIFO_SIZE + DMA1_FIFO_SIZE) << 1, |
| GFP_KERNEL); |
| if (!ppc440spe_dma_fifo_buf) { |
| pr_err("%s: DMA FIFO buffer allocation failed.\n", __func__); |
| iounmap(i2o_reg); |
| dcr_unmap(i2o_dcr_host, dcr_len); |
| return -ENOMEM; |
| } |
| |
| /* |
| * Configure h/w |
| */ |
| /* Reset I2O/DMA */ |
| mtdcri(SDR0, DCRN_SDR0_SRST, DCRN_SDR0_SRST_I2ODMA); |
| mtdcri(SDR0, DCRN_SDR0_SRST, 0); |
| |
| /* Setup the base address of mmaped registers */ |
| dcr_write(i2o_dcr_host, DCRN_I2O0_IBAH, (u32)(i2o_res.start >> 32)); |
| dcr_write(i2o_dcr_host, DCRN_I2O0_IBAL, (u32)(i2o_res.start) | |
| I2O_REG_ENABLE); |
| dcr_unmap(i2o_dcr_host, dcr_len); |
| |
| /* Setup FIFO memory space base address */ |
| iowrite32(0, &i2o_reg->ifbah); |
| iowrite32(((u32)__pa(ppc440spe_dma_fifo_buf)), &i2o_reg->ifbal); |
| |
| /* set zero FIFO size for I2O, so the whole |
| * ppc440spe_dma_fifo_buf is used by DMAs. |
| * DMAx_FIFOs will be configured while probe. |
| */ |
| iowrite32(0, &i2o_reg->ifsiz); |
| iounmap(i2o_reg); |
| |
| /* To prepare WXOR/RXOR functionality we need access to |
| * Memory Queue Module DCRs (finally it will be enabled |
| * via /sys interface of the ppc440spe ADMA driver). |
| */ |
| np = of_find_compatible_node(NULL, NULL, "ibm,mq-440spe"); |
| if (!np) { |
| pr_err("%s: can't find MQ device tree node\n", |
| __func__); |
| ret = -ENODEV; |
| goto out_free; |
| } |
| |
| /* Get MQ DCRs base */ |
| dcr_base = dcr_resource_start(np, 0); |
| dcr_len = dcr_resource_len(np, 0); |
| if (!dcr_base && !dcr_len) { |
| pr_err("%s: can't get DCR registers base/len!\n", |
| np->full_name); |
| ret = -ENODEV; |
| goto out_mq; |
| } |
| |
| ppc440spe_mq_dcr_host = dcr_map(np, dcr_base, dcr_len); |
| if (!DCR_MAP_OK(ppc440spe_mq_dcr_host)) { |
| pr_err("%s: failed to map DCRs!\n", np->full_name); |
| ret = -ENODEV; |
| goto out_mq; |
| } |
| of_node_put(np); |
| ppc440spe_mq_dcr_len = dcr_len; |
| |
| /* Set HB alias */ |
| dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_BAUH, DMA_CUED_XOR_HB); |
| |
| /* Set: |
| * - LL transaction passing limit to 1; |
| * - Memory controller cycle limit to 1; |
| * - Galois Polynomial to 0x14d (default) |
| */ |
| dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL, |
| (1 << MQ0_CFBHL_TPLM) | (1 << MQ0_CFBHL_HBCL) | |
| (PPC440SPE_DEFAULT_POLY << MQ0_CFBHL_POLY)); |
| |
| atomic_set(&ppc440spe_adma_err_irq_ref, 0); |
| for (i = 0; i < PPC440SPE_ADMA_ENGINES_NUM; i++) |
| ppc440spe_adma_devices[i] = -1; |
| |
| return 0; |
| |
| out_mq: |
| of_node_put(np); |
| out_free: |
| kfree(ppc440spe_dma_fifo_buf); |
| return ret; |
| } |
| |
| static const struct of_device_id ppc440spe_adma_of_match[] = { |
| { .compatible = "ibm,dma-440spe", }, |
| { .compatible = "amcc,xor-accelerator", }, |
| {}, |
| }; |
| MODULE_DEVICE_TABLE(of, ppc440spe_adma_of_match); |
| |
| static struct platform_driver ppc440spe_adma_driver = { |
| .probe = ppc440spe_adma_probe, |
| .remove = ppc440spe_adma_remove, |
| .driver = { |
| .name = "PPC440SP(E)-ADMA", |
| .owner = THIS_MODULE, |
| .of_match_table = ppc440spe_adma_of_match, |
| }, |
| }; |
| |
| static __init int ppc440spe_adma_init(void) |
| { |
| int ret; |
| |
| ret = ppc440spe_configure_raid_devices(); |
| if (ret) |
| return ret; |
| |
| ret = platform_driver_register(&ppc440spe_adma_driver); |
| if (ret) { |
| pr_err("%s: failed to register platform driver\n", |
| __func__); |
| goto out_reg; |
| } |
| |
| /* Initialization status */ |
| ret = driver_create_file(&ppc440spe_adma_driver.driver, |
| &driver_attr_devices); |
| if (ret) |
| goto out_dev; |
| |
| /* RAID-6 h/w enable entry */ |
| ret = driver_create_file(&ppc440spe_adma_driver.driver, |
| &driver_attr_enable); |
| if (ret) |
| goto out_en; |
| |
| /* GF polynomial to use */ |
| ret = driver_create_file(&ppc440spe_adma_driver.driver, |
| &driver_attr_poly); |
| if (!ret) |
| return ret; |
| |
| driver_remove_file(&ppc440spe_adma_driver.driver, |
| &driver_attr_enable); |
| out_en: |
| driver_remove_file(&ppc440spe_adma_driver.driver, |
| &driver_attr_devices); |
| out_dev: |
| /* User will not be able to enable h/w RAID-6 */ |
| pr_err("%s: failed to create RAID-6 driver interface\n", |
| __func__); |
| platform_driver_unregister(&ppc440spe_adma_driver); |
| out_reg: |
| dcr_unmap(ppc440spe_mq_dcr_host, ppc440spe_mq_dcr_len); |
| kfree(ppc440spe_dma_fifo_buf); |
| return ret; |
| } |
| |
| static void __exit ppc440spe_adma_exit(void) |
| { |
| driver_remove_file(&ppc440spe_adma_driver.driver, |
| &driver_attr_poly); |
| driver_remove_file(&ppc440spe_adma_driver.driver, |
| &driver_attr_enable); |
| driver_remove_file(&ppc440spe_adma_driver.driver, |
| &driver_attr_devices); |
| platform_driver_unregister(&ppc440spe_adma_driver); |
| dcr_unmap(ppc440spe_mq_dcr_host, ppc440spe_mq_dcr_len); |
| kfree(ppc440spe_dma_fifo_buf); |
| } |
| |
| arch_initcall(ppc440spe_adma_init); |
| module_exit(ppc440spe_adma_exit); |
| |
| MODULE_AUTHOR("Yuri Tikhonov <yur@emcraft.com>"); |
| MODULE_DESCRIPTION("PPC440SPE ADMA Engine Driver"); |
| MODULE_LICENSE("GPL"); |