| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright 2019 Google LLC |
| */ |
| |
| /** |
| * DOC: The Keyslot Manager |
| * |
| * Many devices with inline encryption support have a limited number of "slots" |
| * into which encryption contexts may be programmed, and requests can be tagged |
| * with a slot number to specify the key to use for en/decryption. |
| * |
| * As the number of slots are limited, and programming keys is expensive on |
| * many inline encryption hardware, we don't want to program the same key into |
| * multiple slots - if multiple requests are using the same key, we want to |
| * program just one slot with that key and use that slot for all requests. |
| * |
| * The keyslot manager manages these keyslots appropriately, and also acts as |
| * an abstraction between the inline encryption hardware and the upper layers. |
| * |
| * Lower layer devices will set up a keyslot manager in their request queue |
| * and tell it how to perform device specific operations like programming/ |
| * evicting keys from keyslots. |
| * |
| * Upper layers will call keyslot_manager_get_slot_for_key() to program a |
| * key into some slot in the inline encryption hardware. |
| */ |
| #include <crypto/algapi.h> |
| #include <linux/keyslot-manager.h> |
| #include <linux/atomic.h> |
| #include <linux/mutex.h> |
| #include <linux/pm_runtime.h> |
| #include <linux/wait.h> |
| #include <linux/blkdev.h> |
| |
| struct keyslot { |
| atomic_t slot_refs; |
| struct list_head idle_slot_node; |
| struct hlist_node hash_node; |
| struct blk_crypto_key key; |
| }; |
| |
| struct keyslot_manager { |
| unsigned int num_slots; |
| struct keyslot_mgmt_ll_ops ksm_ll_ops; |
| unsigned int features; |
| unsigned int crypto_mode_supported[BLK_ENCRYPTION_MODE_MAX]; |
| unsigned int max_dun_bytes_supported; |
| void *ll_priv_data; |
| |
| #ifdef CONFIG_PM |
| /* Device for runtime power management (NULL if none) */ |
| struct device *dev; |
| #endif |
| |
| /* Protects programming and evicting keys from the device */ |
| struct rw_semaphore lock; |
| |
| /* List of idle slots, with least recently used slot at front */ |
| wait_queue_head_t idle_slots_wait_queue; |
| struct list_head idle_slots; |
| spinlock_t idle_slots_lock; |
| |
| /* |
| * Hash table which maps key hashes to keyslots, so that we can find a |
| * key's keyslot in O(1) time rather than O(num_slots). Protected by |
| * 'lock'. A cryptographic hash function is used so that timing attacks |
| * can't leak information about the raw keys. |
| */ |
| struct hlist_head *slot_hashtable; |
| unsigned int slot_hashtable_size; |
| |
| /* Per-keyslot data */ |
| struct keyslot slots[]; |
| }; |
| |
| static inline bool keyslot_manager_is_passthrough(struct keyslot_manager *ksm) |
| { |
| return ksm->num_slots == 0; |
| } |
| |
| #ifdef CONFIG_PM |
| static inline void keyslot_manager_set_dev(struct keyslot_manager *ksm, |
| struct device *dev) |
| { |
| ksm->dev = dev; |
| } |
| |
| /* If there's an underlying device and it's suspended, resume it. */ |
| static inline void keyslot_manager_pm_get(struct keyslot_manager *ksm) |
| { |
| if (ksm->dev) |
| pm_runtime_get_sync(ksm->dev); |
| } |
| |
| static inline void keyslot_manager_pm_put(struct keyslot_manager *ksm) |
| { |
| if (ksm->dev) |
| pm_runtime_put_sync(ksm->dev); |
| } |
| #else /* CONFIG_PM */ |
| static inline void keyslot_manager_set_dev(struct keyslot_manager *ksm, |
| struct device *dev) |
| { |
| } |
| |
| static inline void keyslot_manager_pm_get(struct keyslot_manager *ksm) |
| { |
| } |
| |
| static inline void keyslot_manager_pm_put(struct keyslot_manager *ksm) |
| { |
| } |
| #endif /* !CONFIG_PM */ |
| |
| static inline void keyslot_manager_hw_enter(struct keyslot_manager *ksm) |
| { |
| /* |
| * Calling into the driver requires ksm->lock held and the device |
| * resumed. But we must resume the device first, since that can acquire |
| * and release ksm->lock via keyslot_manager_reprogram_all_keys(). |
| */ |
| keyslot_manager_pm_get(ksm); |
| down_write(&ksm->lock); |
| } |
| |
| static inline void keyslot_manager_hw_exit(struct keyslot_manager *ksm) |
| { |
| up_write(&ksm->lock); |
| keyslot_manager_pm_put(ksm); |
| } |
| |
| /** |
| * keyslot_manager_create() - Create a keyslot manager |
| * @dev: Device for runtime power management (NULL if none) |
| * @num_slots: The number of key slots to manage. |
| * @ksm_ll_ops: The struct keyslot_mgmt_ll_ops for the device that this keyslot |
| * manager will use to perform operations like programming and |
| * evicting keys. |
| * @features: The supported features as a bitmask of BLK_CRYPTO_FEATURE_* flags. |
| * Most drivers should set BLK_CRYPTO_FEATURE_STANDARD_KEYS here. |
| * @crypto_mode_supported: Array of size BLK_ENCRYPTION_MODE_MAX of |
| * bitmasks that represents whether a crypto mode |
| * and data unit size are supported. The i'th bit |
| * of crypto_mode_supported[crypto_mode] is set iff |
| * a data unit size of (1 << i) is supported. We |
| * only support data unit sizes that are powers of |
| * 2. |
| * @ll_priv_data: Private data passed as is to the functions in ksm_ll_ops. |
| * |
| * Allocate memory for and initialize a keyslot manager. Called by e.g. |
| * storage drivers to set up a keyslot manager in their request_queue. |
| * |
| * Context: May sleep |
| * Return: Pointer to constructed keyslot manager or NULL on error. |
| */ |
| struct keyslot_manager *keyslot_manager_create( |
| struct device *dev, |
| unsigned int num_slots, |
| const struct keyslot_mgmt_ll_ops *ksm_ll_ops, |
| unsigned int features, |
| const unsigned int crypto_mode_supported[BLK_ENCRYPTION_MODE_MAX], |
| void *ll_priv_data) |
| { |
| struct keyslot_manager *ksm; |
| unsigned int slot; |
| unsigned int i; |
| |
| if (num_slots == 0) |
| return NULL; |
| |
| /* Check that all ops are specified */ |
| if (ksm_ll_ops->keyslot_program == NULL || |
| ksm_ll_ops->keyslot_evict == NULL) |
| return NULL; |
| |
| ksm = kvzalloc(struct_size(ksm, slots, num_slots), GFP_KERNEL); |
| if (!ksm) |
| return NULL; |
| |
| ksm->num_slots = num_slots; |
| ksm->ksm_ll_ops = *ksm_ll_ops; |
| ksm->features = features; |
| memcpy(ksm->crypto_mode_supported, crypto_mode_supported, |
| sizeof(ksm->crypto_mode_supported)); |
| ksm->max_dun_bytes_supported = BLK_CRYPTO_MAX_IV_SIZE; |
| ksm->ll_priv_data = ll_priv_data; |
| keyslot_manager_set_dev(ksm, dev); |
| |
| init_rwsem(&ksm->lock); |
| |
| init_waitqueue_head(&ksm->idle_slots_wait_queue); |
| INIT_LIST_HEAD(&ksm->idle_slots); |
| |
| for (slot = 0; slot < num_slots; slot++) { |
| list_add_tail(&ksm->slots[slot].idle_slot_node, |
| &ksm->idle_slots); |
| } |
| |
| spin_lock_init(&ksm->idle_slots_lock); |
| |
| ksm->slot_hashtable_size = roundup_pow_of_two(num_slots); |
| ksm->slot_hashtable = kvmalloc_array(ksm->slot_hashtable_size, |
| sizeof(ksm->slot_hashtable[0]), |
| GFP_KERNEL); |
| if (!ksm->slot_hashtable) |
| goto err_free_ksm; |
| for (i = 0; i < ksm->slot_hashtable_size; i++) |
| INIT_HLIST_HEAD(&ksm->slot_hashtable[i]); |
| |
| return ksm; |
| |
| err_free_ksm: |
| keyslot_manager_destroy(ksm); |
| return NULL; |
| } |
| EXPORT_SYMBOL_GPL(keyslot_manager_create); |
| |
| void keyslot_manager_set_max_dun_bytes(struct keyslot_manager *ksm, |
| unsigned int max_dun_bytes) |
| { |
| ksm->max_dun_bytes_supported = max_dun_bytes; |
| } |
| EXPORT_SYMBOL_GPL(keyslot_manager_set_max_dun_bytes); |
| |
| static inline struct hlist_head * |
| hash_bucket_for_key(struct keyslot_manager *ksm, |
| const struct blk_crypto_key *key) |
| { |
| return &ksm->slot_hashtable[blk_crypto_key_hash(key) & |
| (ksm->slot_hashtable_size - 1)]; |
| } |
| |
| static void remove_slot_from_lru_list(struct keyslot_manager *ksm, int slot) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&ksm->idle_slots_lock, flags); |
| list_del(&ksm->slots[slot].idle_slot_node); |
| spin_unlock_irqrestore(&ksm->idle_slots_lock, flags); |
| } |
| |
| static int find_keyslot(struct keyslot_manager *ksm, |
| const struct blk_crypto_key *key) |
| { |
| const struct hlist_head *head = hash_bucket_for_key(ksm, key); |
| const struct keyslot *slotp; |
| |
| hlist_for_each_entry(slotp, head, hash_node) { |
| if (slotp->key.hash == key->hash && |
| slotp->key.crypto_mode == key->crypto_mode && |
| slotp->key.size == key->size && |
| slotp->key.data_unit_size == key->data_unit_size && |
| !crypto_memneq(slotp->key.raw, key->raw, key->size)) |
| return slotp - ksm->slots; |
| } |
| return -ENOKEY; |
| } |
| |
| static int find_and_grab_keyslot(struct keyslot_manager *ksm, |
| const struct blk_crypto_key *key) |
| { |
| int slot; |
| |
| slot = find_keyslot(ksm, key); |
| if (slot < 0) |
| return slot; |
| if (atomic_inc_return(&ksm->slots[slot].slot_refs) == 1) { |
| /* Took first reference to this slot; remove it from LRU list */ |
| remove_slot_from_lru_list(ksm, slot); |
| } |
| return slot; |
| } |
| |
| /** |
| * keyslot_manager_get_slot_for_key() - Program a key into a keyslot. |
| * @ksm: The keyslot manager to program the key into. |
| * @key: Pointer to the key object to program, including the raw key, crypto |
| * mode, and data unit size. |
| * |
| * Get a keyslot that's been programmed with the specified key. If one already |
| * exists, return it with incremented refcount. Otherwise, wait for a keyslot |
| * to become idle and program it. |
| * |
| * Context: Process context. Takes and releases ksm->lock. |
| * Return: The keyslot on success, else a -errno value. |
| */ |
| int keyslot_manager_get_slot_for_key(struct keyslot_manager *ksm, |
| const struct blk_crypto_key *key) |
| { |
| int slot; |
| int err; |
| struct keyslot *idle_slot; |
| |
| if (keyslot_manager_is_passthrough(ksm)) |
| return 0; |
| |
| down_read(&ksm->lock); |
| slot = find_and_grab_keyslot(ksm, key); |
| up_read(&ksm->lock); |
| if (slot != -ENOKEY) |
| return slot; |
| |
| for (;;) { |
| keyslot_manager_hw_enter(ksm); |
| slot = find_and_grab_keyslot(ksm, key); |
| if (slot != -ENOKEY) { |
| keyslot_manager_hw_exit(ksm); |
| return slot; |
| } |
| |
| /* |
| * If we're here, that means there wasn't a slot that was |
| * already programmed with the key. So try to program it. |
| */ |
| if (!list_empty(&ksm->idle_slots)) |
| break; |
| |
| keyslot_manager_hw_exit(ksm); |
| wait_event(ksm->idle_slots_wait_queue, |
| !list_empty(&ksm->idle_slots)); |
| } |
| |
| idle_slot = list_first_entry(&ksm->idle_slots, struct keyslot, |
| idle_slot_node); |
| slot = idle_slot - ksm->slots; |
| |
| err = ksm->ksm_ll_ops.keyslot_program(ksm, key, slot); |
| if (err) { |
| wake_up(&ksm->idle_slots_wait_queue); |
| keyslot_manager_hw_exit(ksm); |
| return err; |
| } |
| |
| /* Move this slot to the hash list for the new key. */ |
| if (idle_slot->key.crypto_mode != BLK_ENCRYPTION_MODE_INVALID) |
| hlist_del(&idle_slot->hash_node); |
| hlist_add_head(&idle_slot->hash_node, hash_bucket_for_key(ksm, key)); |
| |
| atomic_set(&idle_slot->slot_refs, 1); |
| idle_slot->key = *key; |
| |
| remove_slot_from_lru_list(ksm, slot); |
| |
| keyslot_manager_hw_exit(ksm); |
| return slot; |
| } |
| |
| /** |
| * keyslot_manager_get_slot() - Increment the refcount on the specified slot. |
| * @ksm: The keyslot manager that we want to modify. |
| * @slot: The slot to increment the refcount of. |
| * |
| * This function assumes that there is already an active reference to that slot |
| * and simply increments the refcount. This is useful when cloning a bio that |
| * already has a reference to a keyslot, and we want the cloned bio to also have |
| * its own reference. |
| * |
| * Context: Any context. |
| */ |
| void keyslot_manager_get_slot(struct keyslot_manager *ksm, unsigned int slot) |
| { |
| if (keyslot_manager_is_passthrough(ksm)) |
| return; |
| |
| if (WARN_ON(slot >= ksm->num_slots)) |
| return; |
| |
| WARN_ON(atomic_inc_return(&ksm->slots[slot].slot_refs) < 2); |
| } |
| |
| /** |
| * keyslot_manager_put_slot() - Release a reference to a slot |
| * @ksm: The keyslot manager to release the reference from. |
| * @slot: The slot to release the reference from. |
| * |
| * Context: Any context. |
| */ |
| void keyslot_manager_put_slot(struct keyslot_manager *ksm, unsigned int slot) |
| { |
| unsigned long flags; |
| |
| if (keyslot_manager_is_passthrough(ksm)) |
| return; |
| |
| if (WARN_ON(slot >= ksm->num_slots)) |
| return; |
| |
| if (atomic_dec_and_lock_irqsave(&ksm->slots[slot].slot_refs, |
| &ksm->idle_slots_lock, flags)) { |
| list_add_tail(&ksm->slots[slot].idle_slot_node, |
| &ksm->idle_slots); |
| spin_unlock_irqrestore(&ksm->idle_slots_lock, flags); |
| wake_up(&ksm->idle_slots_wait_queue); |
| } |
| } |
| |
| /** |
| * keyslot_manager_crypto_mode_supported() - Find out if a crypto_mode / |
| * data unit size / is_hw_wrapped_key |
| * combination is supported by a ksm. |
| * @ksm: The keyslot manager to check |
| * @crypto_mode: The crypto mode to check for. |
| * @dun_bytes: The number of bytes that will be used to specify the DUN |
| * @data_unit_size: The data_unit_size for the mode. |
| * @is_hw_wrapped_key: Whether a hardware-wrapped key will be used. |
| * |
| * Calls and returns the result of the crypto_mode_supported function specified |
| * by the ksm. |
| * |
| * Context: Process context. |
| * Return: Whether or not this ksm supports the specified crypto settings. |
| */ |
| bool keyslot_manager_crypto_mode_supported(struct keyslot_manager *ksm, |
| enum blk_crypto_mode_num crypto_mode, |
| unsigned int dun_bytes, |
| unsigned int data_unit_size, |
| bool is_hw_wrapped_key) |
| { |
| if (!ksm) |
| return false; |
| if (WARN_ON(crypto_mode >= BLK_ENCRYPTION_MODE_MAX)) |
| return false; |
| if (WARN_ON(!is_power_of_2(data_unit_size))) |
| return false; |
| if (is_hw_wrapped_key) { |
| if (!(ksm->features & BLK_CRYPTO_FEATURE_WRAPPED_KEYS)) |
| return false; |
| } else { |
| if (!(ksm->features & BLK_CRYPTO_FEATURE_STANDARD_KEYS)) |
| return false; |
| } |
| if (!(ksm->crypto_mode_supported[crypto_mode] & data_unit_size)) |
| return false; |
| |
| return ksm->max_dun_bytes_supported >= dun_bytes; |
| } |
| |
| /** |
| * keyslot_manager_evict_key() - Evict a key from the lower layer device. |
| * @ksm: The keyslot manager to evict from |
| * @key: The key to evict |
| * |
| * Find the keyslot that the specified key was programmed into, and evict that |
| * slot from the lower layer device if that slot is not currently in use. |
| * |
| * Context: Process context. Takes and releases ksm->lock. |
| * Return: 0 on success, -EBUSY if the key is still in use, or another |
| * -errno value on other error. |
| */ |
| int keyslot_manager_evict_key(struct keyslot_manager *ksm, |
| const struct blk_crypto_key *key) |
| { |
| int slot; |
| int err; |
| struct keyslot *slotp; |
| |
| if (keyslot_manager_is_passthrough(ksm)) { |
| if (ksm->ksm_ll_ops.keyslot_evict) { |
| keyslot_manager_hw_enter(ksm); |
| err = ksm->ksm_ll_ops.keyslot_evict(ksm, key, -1); |
| keyslot_manager_hw_exit(ksm); |
| return err; |
| } |
| return 0; |
| } |
| |
| keyslot_manager_hw_enter(ksm); |
| |
| slot = find_keyslot(ksm, key); |
| if (slot < 0) { |
| err = slot; |
| goto out_unlock; |
| } |
| slotp = &ksm->slots[slot]; |
| |
| if (atomic_read(&slotp->slot_refs) != 0) { |
| err = -EBUSY; |
| goto out_unlock; |
| } |
| err = ksm->ksm_ll_ops.keyslot_evict(ksm, key, slot); |
| if (err) |
| goto out_unlock; |
| |
| hlist_del(&slotp->hash_node); |
| memzero_explicit(&slotp->key, sizeof(slotp->key)); |
| err = 0; |
| out_unlock: |
| keyslot_manager_hw_exit(ksm); |
| return err; |
| } |
| |
| /** |
| * keyslot_manager_reprogram_all_keys() - Re-program all keyslots. |
| * @ksm: The keyslot manager |
| * |
| * Re-program all keyslots that are supposed to have a key programmed. This is |
| * intended only for use by drivers for hardware that loses its keys on reset. |
| * |
| * Context: Process context. Takes and releases ksm->lock. |
| */ |
| void keyslot_manager_reprogram_all_keys(struct keyslot_manager *ksm) |
| { |
| unsigned int slot; |
| |
| if (WARN_ON(keyslot_manager_is_passthrough(ksm))) |
| return; |
| |
| /* This is for device initialization, so don't resume the device */ |
| down_write(&ksm->lock); |
| for (slot = 0; slot < ksm->num_slots; slot++) { |
| const struct keyslot *slotp = &ksm->slots[slot]; |
| int err; |
| |
| if (slotp->key.crypto_mode == BLK_ENCRYPTION_MODE_INVALID) |
| continue; |
| |
| err = ksm->ksm_ll_ops.keyslot_program(ksm, &slotp->key, slot); |
| WARN_ON(err); |
| } |
| up_write(&ksm->lock); |
| } |
| EXPORT_SYMBOL_GPL(keyslot_manager_reprogram_all_keys); |
| |
| /** |
| * keyslot_manager_private() - return the private data stored with ksm |
| * @ksm: The keyslot manager |
| * |
| * Returns the private data passed to the ksm when it was created. |
| */ |
| void *keyslot_manager_private(struct keyslot_manager *ksm) |
| { |
| return ksm->ll_priv_data; |
| } |
| EXPORT_SYMBOL_GPL(keyslot_manager_private); |
| |
| void keyslot_manager_destroy(struct keyslot_manager *ksm) |
| { |
| if (ksm) { |
| kvfree(ksm->slot_hashtable); |
| memzero_explicit(ksm, struct_size(ksm, slots, ksm->num_slots)); |
| kvfree(ksm); |
| } |
| } |
| EXPORT_SYMBOL_GPL(keyslot_manager_destroy); |
| |
| /** |
| * keyslot_manager_create_passthrough() - Create a passthrough keyslot manager |
| * @dev: Device for runtime power management (NULL if none) |
| * @ksm_ll_ops: The struct keyslot_mgmt_ll_ops |
| * @features: Bitmask of BLK_CRYPTO_FEATURE_* flags |
| * @crypto_mode_supported: Bitmasks for supported encryption modes |
| * @ll_priv_data: Private data passed as is to the functions in ksm_ll_ops. |
| * |
| * Allocate memory for and initialize a passthrough keyslot manager. |
| * Called by e.g. storage drivers to set up a keyslot manager in their |
| * request_queue, when the storage driver wants to manage its keys by itself. |
| * This is useful for inline encryption hardware that don't have a small fixed |
| * number of keyslots, and for layered devices. |
| * |
| * See keyslot_manager_create() for more details about the parameters. |
| * |
| * Context: This function may sleep |
| * Return: Pointer to constructed keyslot manager or NULL on error. |
| */ |
| struct keyslot_manager *keyslot_manager_create_passthrough( |
| struct device *dev, |
| const struct keyslot_mgmt_ll_ops *ksm_ll_ops, |
| unsigned int features, |
| const unsigned int crypto_mode_supported[BLK_ENCRYPTION_MODE_MAX], |
| void *ll_priv_data) |
| { |
| struct keyslot_manager *ksm; |
| |
| ksm = kzalloc(sizeof(*ksm), GFP_KERNEL); |
| if (!ksm) |
| return NULL; |
| |
| ksm->ksm_ll_ops = *ksm_ll_ops; |
| ksm->features = features; |
| memcpy(ksm->crypto_mode_supported, crypto_mode_supported, |
| sizeof(ksm->crypto_mode_supported)); |
| ksm->max_dun_bytes_supported = BLK_CRYPTO_MAX_IV_SIZE; |
| ksm->ll_priv_data = ll_priv_data; |
| keyslot_manager_set_dev(ksm, dev); |
| |
| init_rwsem(&ksm->lock); |
| |
| return ksm; |
| } |
| EXPORT_SYMBOL_GPL(keyslot_manager_create_passthrough); |
| |
| /** |
| * keyslot_manager_intersect_modes() - restrict supported modes by child device |
| * @parent: The keyslot manager for parent device |
| * @child: The keyslot manager for child device, or NULL |
| * |
| * Clear any crypto mode support bits in @parent that aren't set in @child. |
| * If @child is NULL, then all parent bits are cleared. |
| * |
| * Only use this when setting up the keyslot manager for a layered device, |
| * before it's been exposed yet. |
| */ |
| void keyslot_manager_intersect_modes(struct keyslot_manager *parent, |
| const struct keyslot_manager *child) |
| { |
| if (child) { |
| unsigned int i; |
| |
| parent->features &= child->features; |
| parent->max_dun_bytes_supported = |
| min(parent->max_dun_bytes_supported, |
| child->max_dun_bytes_supported); |
| for (i = 0; i < ARRAY_SIZE(child->crypto_mode_supported); i++) { |
| parent->crypto_mode_supported[i] &= |
| child->crypto_mode_supported[i]; |
| } |
| } else { |
| parent->features = 0; |
| parent->max_dun_bytes_supported = 0; |
| memset(parent->crypto_mode_supported, 0, |
| sizeof(parent->crypto_mode_supported)); |
| } |
| } |
| EXPORT_SYMBOL_GPL(keyslot_manager_intersect_modes); |
| |
| /** |
| * keyslot_manager_derive_raw_secret() - Derive software secret from wrapped key |
| * @ksm: The keyslot manager |
| * @wrapped_key: The wrapped key |
| * @wrapped_key_size: Size of the wrapped key in bytes |
| * @secret: (output) the software secret |
| * @secret_size: (output) the number of secret bytes to derive |
| * |
| * Given a hardware-wrapped key, ask the hardware to derive a secret which |
| * software can use for cryptographic tasks other than inline encryption. The |
| * derived secret is guaranteed to be cryptographically isolated from the key |
| * with which any inline encryption with this wrapped key would actually be |
| * done. I.e., both will be derived from the unwrapped key. |
| * |
| * Return: 0 on success, -EOPNOTSUPP if hardware-wrapped keys are unsupported, |
| * or another -errno code. |
| */ |
| int keyslot_manager_derive_raw_secret(struct keyslot_manager *ksm, |
| const u8 *wrapped_key, |
| unsigned int wrapped_key_size, |
| u8 *secret, unsigned int secret_size) |
| { |
| int err; |
| |
| if (ksm->ksm_ll_ops.derive_raw_secret) { |
| keyslot_manager_hw_enter(ksm); |
| err = ksm->ksm_ll_ops.derive_raw_secret(ksm, wrapped_key, |
| wrapped_key_size, |
| secret, secret_size); |
| keyslot_manager_hw_exit(ksm); |
| } else { |
| err = -EOPNOTSUPP; |
| } |
| |
| return err; |
| } |
| EXPORT_SYMBOL_GPL(keyslot_manager_derive_raw_secret); |