blob: a3309f8690d85f3c00a63e5353a7c37367afcc2a [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2015-2020, The Linux Foundation. All rights reserved.
*/
#define pr_fmt(fmt) "%s: " fmt, __func__
#include <linux/bitops.h>
#include <linux/debugfs.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/ktime.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/pm_opp.h>
#include <linux/slab.h>
#include <linux/sort.h>
#include <linux/string.h>
#include <linux/uaccess.h>
#include <linux/regulator/driver.h>
#include <linux/regulator/machine.h>
#include <linux/regulator/of_regulator.h>
#include <linux/regulator/msm-ldo-regulator.h>
#include <soc/qcom/spm.h>
#include "cpr3-regulator.h"
#define CPR3_REGULATOR_CORNER_INVALID (-1)
#define CPR3_RO_MASK GENMASK(CPR3_RO_COUNT - 1, 0)
/* CPR3 registers */
#define CPR3_REG_CPR_CTL 0x4
#define CPR3_CPR_CTL_LOOP_EN_MASK BIT(0)
#define CPR3_CPR_CTL_LOOP_ENABLE BIT(0)
#define CPR3_CPR_CTL_LOOP_DISABLE 0
#define CPR3_CPR_CTL_IDLE_CLOCKS_MASK GENMASK(5, 1)
#define CPR3_CPR_CTL_IDLE_CLOCKS_SHIFT 1
#define CPR3_CPR_CTL_COUNT_MODE_MASK GENMASK(7, 6)
#define CPR3_CPR_CTL_COUNT_MODE_SHIFT 6
#define CPR3_CPR_CTL_COUNT_MODE_ALL_AT_ONCE_MIN 0
#define CPR3_CPR_CTL_COUNT_MODE_ALL_AT_ONCE_MAX 1
#define CPR3_CPR_CTL_COUNT_MODE_STAGGERED 2
#define CPR3_CPR_CTL_COUNT_MODE_ALL_AT_ONCE_AGE 3
#define CPR3_CPR_CTL_COUNT_REPEAT_MASK GENMASK(31, 9)
#define CPR3_CPR_CTL_COUNT_REPEAT_SHIFT 9
#define CPR3_REG_CPR_STATUS 0x8
#define CPR3_CPR_STATUS_BUSY_MASK BIT(0)
#define CPR3_CPR_STATUS_AGING_MEASUREMENT_MASK BIT(1)
/*
* This register is not present on controllers that support HW closed-loop
* except CPR4 APSS controller.
*/
#define CPR3_REG_CPR_TIMER_AUTO_CONT 0xC
#define CPR3_REG_CPR_STEP_QUOT 0x14
#define CPR3_CPR_STEP_QUOT_MIN_MASK GENMASK(5, 0)
#define CPR3_CPR_STEP_QUOT_MIN_SHIFT 0
#define CPR3_CPR_STEP_QUOT_MAX_MASK GENMASK(11, 6)
#define CPR3_CPR_STEP_QUOT_MAX_SHIFT 6
#define CPR3_REG_GCNT(ro) (0xA0 + 0x4 * (ro))
#define CPR3_REG_SENSOR_BYPASS_WRITE(sensor) (0xE0 + 0x4 * ((sensor) / 32))
#define CPR3_REG_SENSOR_BYPASS_WRITE_BANK(bank) (0xE0 + 0x4 * (bank))
#define CPR3_REG_SENSOR_MASK_WRITE(sensor) (0x120 + 0x4 * ((sensor) / 32))
#define CPR3_REG_SENSOR_MASK_WRITE_BANK(bank) (0x120 + 0x4 * (bank))
#define CPR3_REG_SENSOR_MASK_READ(sensor) (0x140 + 0x4 * ((sensor) / 32))
#define CPR3_REG_SENSOR_OWNER(sensor) (0x200 + 0x4 * (sensor))
#define CPR3_REG_CONT_CMD 0x800
#define CPR3_CONT_CMD_ACK 0x1
#define CPR3_CONT_CMD_NACK 0x0
#define CPR3_REG_THRESH(thread) (0x808 + 0x440 * (thread))
#define CPR3_THRESH_CONS_DOWN_MASK GENMASK(3, 0)
#define CPR3_THRESH_CONS_DOWN_SHIFT 0
#define CPR3_THRESH_CONS_UP_MASK GENMASK(7, 4)
#define CPR3_THRESH_CONS_UP_SHIFT 4
#define CPR3_THRESH_DOWN_THRESH_MASK GENMASK(12, 8)
#define CPR3_THRESH_DOWN_THRESH_SHIFT 8
#define CPR3_THRESH_UP_THRESH_MASK GENMASK(17, 13)
#define CPR3_THRESH_UP_THRESH_SHIFT 13
#define CPR3_REG_RO_MASK(thread) (0x80C + 0x440 * (thread))
#define CPR3_REG_RESULT0(thread) (0x810 + 0x440 * (thread))
#define CPR3_RESULT0_BUSY_MASK BIT(0)
#define CPR3_RESULT0_STEP_DN_MASK BIT(1)
#define CPR3_RESULT0_STEP_UP_MASK BIT(2)
#define CPR3_RESULT0_ERROR_STEPS_MASK GENMASK(7, 3)
#define CPR3_RESULT0_ERROR_STEPS_SHIFT 3
#define CPR3_RESULT0_ERROR_MASK GENMASK(19, 8)
#define CPR3_RESULT0_ERROR_SHIFT 8
#define CPR3_RESULT0_NEGATIVE_MASK BIT(20)
#define CPR3_REG_RESULT1(thread) (0x814 + 0x440 * (thread))
#define CPR3_RESULT1_QUOT_MIN_MASK GENMASK(11, 0)
#define CPR3_RESULT1_QUOT_MIN_SHIFT 0
#define CPR3_RESULT1_QUOT_MAX_MASK GENMASK(23, 12)
#define CPR3_RESULT1_QUOT_MAX_SHIFT 12
#define CPR3_RESULT1_RO_MIN_MASK GENMASK(27, 24)
#define CPR3_RESULT1_RO_MIN_SHIFT 24
#define CPR3_RESULT1_RO_MAX_MASK GENMASK(31, 28)
#define CPR3_RESULT1_RO_MAX_SHIFT 28
#define CPR3_REG_RESULT2(thread) (0x818 + 0x440 * (thread))
#define CPR3_RESULT2_STEP_QUOT_MIN_MASK GENMASK(5, 0)
#define CPR3_RESULT2_STEP_QUOT_MIN_SHIFT 0
#define CPR3_RESULT2_STEP_QUOT_MAX_MASK GENMASK(11, 6)
#define CPR3_RESULT2_STEP_QUOT_MAX_SHIFT 6
#define CPR3_RESULT2_SENSOR_MIN_MASK GENMASK(23, 16)
#define CPR3_RESULT2_SENSOR_MIN_SHIFT 16
#define CPR3_RESULT2_SENSOR_MAX_MASK GENMASK(31, 24)
#define CPR3_RESULT2_SENSOR_MAX_SHIFT 24
#define CPR3_REG_IRQ_EN 0x81C
#define CPR3_REG_IRQ_CLEAR 0x820
#define CPR3_REG_IRQ_STATUS 0x824
#define CPR3_IRQ_UP BIT(3)
#define CPR3_IRQ_MID BIT(2)
#define CPR3_IRQ_DOWN BIT(1)
#define CPR3_REG_TARGET_QUOT(thread, ro) \
(0x840 + 0x440 * (thread) + 0x4 * (ro))
/* Registers found only on controllers that support HW closed-loop. */
#define CPR3_REG_PD_THROTTLE 0xE8
#define CPR3_PD_THROTTLE_DISABLE 0x0
#define CPR3_REG_HW_CLOSED_LOOP 0x3000
#define CPR3_HW_CLOSED_LOOP_ENABLE 0x0
#define CPR3_HW_CLOSED_LOOP_DISABLE 0x1
#define CPR3_REG_CPR_TIMER_MID_CONT 0x3004
#define CPR3_REG_CPR_TIMER_UP_DN_CONT 0x3008
#define CPR3_REG_LAST_MEASUREMENT 0x7F8
#define CPR3_LAST_MEASUREMENT_THREAD_DN_SHIFT 0
#define CPR3_LAST_MEASUREMENT_THREAD_UP_SHIFT 4
#define CPR3_LAST_MEASUREMENT_THREAD_DN(thread) \
(BIT(thread) << CPR3_LAST_MEASUREMENT_THREAD_DN_SHIFT)
#define CPR3_LAST_MEASUREMENT_THREAD_UP(thread) \
(BIT(thread) << CPR3_LAST_MEASUREMENT_THREAD_UP_SHIFT)
#define CPR3_LAST_MEASUREMENT_AGGR_DN BIT(8)
#define CPR3_LAST_MEASUREMENT_AGGR_MID BIT(9)
#define CPR3_LAST_MEASUREMENT_AGGR_UP BIT(10)
#define CPR3_LAST_MEASUREMENT_VALID BIT(11)
#define CPR3_LAST_MEASUREMENT_SAW_ERROR BIT(12)
#define CPR3_LAST_MEASUREMENT_PD_BYPASS_MASK GENMASK(23, 16)
#define CPR3_LAST_MEASUREMENT_PD_BYPASS_SHIFT 16
/* CPR4 controller specific registers and bit definitions */
#define CPR4_REG_CPR_TIMER_CLAMP 0x10
#define CPR4_CPR_TIMER_CLAMP_THREAD_AGGREGATION_EN BIT(27)
#define CPR4_REG_MISC 0x700
#define CPR4_MISC_RESET_STEP_QUOT_LOOP_EN BIT(2)
#define CPR4_MISC_MARGIN_TABLE_ROW_SELECT_MASK GENMASK(23, 20)
#define CPR4_MISC_MARGIN_TABLE_ROW_SELECT_SHIFT 20
#define CPR4_MISC_TEMP_SENSOR_ID_START_MASK GENMASK(27, 24)
#define CPR4_MISC_TEMP_SENSOR_ID_START_SHIFT 24
#define CPR4_MISC_TEMP_SENSOR_ID_END_MASK GENMASK(31, 28)
#define CPR4_MISC_TEMP_SENSOR_ID_END_SHIFT 28
#define CPR4_REG_SAW_ERROR_STEP_LIMIT 0x7A4
#define CPR4_SAW_ERROR_STEP_LIMIT_UP_MASK GENMASK(4, 0)
#define CPR4_SAW_ERROR_STEP_LIMIT_UP_SHIFT 0
#define CPR4_SAW_ERROR_STEP_LIMIT_DN_MASK GENMASK(9, 5)
#define CPR4_SAW_ERROR_STEP_LIMIT_DN_SHIFT 5
#define CPR4_REG_MARGIN_TEMP_CORE_TIMERS 0x7A8
#define CPR4_MARGIN_TEMP_CORE_TIMERS_SETTLE_VOLTAGE_COUNT_MASK GENMASK(28, 18)
#define CPR4_MARGIN_TEMP_CORE_TIMERS_SETTLE_VOLTAGE_COUNT_SHIFT 18
#define CPR4_REG_MARGIN_TEMP_CORE(core) (0x7AC + 0x4 * (core))
#define CPR4_MARGIN_TEMP_CORE_ADJ_MASK GENMASK(7, 0)
#define CPR4_MARGIN_TEMP_CORE_ADJ_SHIFT 8
#define CPR4_REG_MARGIN_TEMP_POINT0N1 0x7F0
#define CPR4_MARGIN_TEMP_POINT0_MASK GENMASK(11, 0)
#define CPR4_MARGIN_TEMP_POINT0_SHIFT 0
#define CPR4_MARGIN_TEMP_POINT1_MASK GENMASK(23, 12)
#define CPR4_MARGIN_TEMP_POINT1_SHIFT 12
#define CPR4_REG_MARGIN_TEMP_POINT2 0x7F4
#define CPR4_MARGIN_TEMP_POINT2_MASK GENMASK(11, 0)
#define CPR4_MARGIN_TEMP_POINT2_SHIFT 0
#define CPR4_REG_MARGIN_ADJ_CTL 0x7F8
#define CPR4_MARGIN_ADJ_CTL_BOOST_EN BIT(0)
#define CPR4_MARGIN_ADJ_CTL_CORE_ADJ_EN BIT(1)
#define CPR4_MARGIN_ADJ_CTL_TEMP_ADJ_EN BIT(2)
#define CPR4_MARGIN_ADJ_CTL_TIMER_SETTLE_VOLTAGE_EN BIT(3)
#define CPR4_MARGIN_ADJ_CTL_HW_CLOSED_LOOP_EN_MASK BIT(4)
#define CPR4_MARGIN_ADJ_CTL_HW_CLOSED_LOOP_ENABLE BIT(4)
#define CPR4_MARGIN_ADJ_CTL_HW_CLOSED_LOOP_DISABLE 0
#define CPR4_MARGIN_ADJ_CTL_PER_RO_KV_MARGIN_EN BIT(7)
#define CPR4_MARGIN_ADJ_CTL_KV_MARGIN_ADJ_EN BIT(8)
#define CPR4_MARGIN_ADJ_CTL_PMIC_STEP_SIZE_MASK GENMASK(16, 12)
#define CPR4_MARGIN_ADJ_CTL_PMIC_STEP_SIZE_SHIFT 12
#define CPR4_MARGIN_ADJ_CTL_INITIAL_TEMP_BAND_MASK GENMASK(21, 19)
#define CPR4_MARGIN_ADJ_CTL_INITIAL_TEMP_BAND_SHIFT 19
#define CPR4_MARGIN_ADJ_CTL_MAX_NUM_CORES_MASK GENMASK(25, 22)
#define CPR4_MARGIN_ADJ_CTL_MAX_NUM_CORES_SHIFT 22
#define CPR4_MARGIN_ADJ_CTL_KV_MARGIN_ADJ_STEP_QUOT_MASK GENMASK(31, 26)
#define CPR4_MARGIN_ADJ_CTL_KV_MARGIN_ADJ_STEP_QUOT_SHIFT 26
#define CPR4_REG_CPR_MASK_THREAD(thread) (0x80C + 0x440 * (thread))
#define CPR4_CPR_MASK_THREAD_DISABLE_THREAD BIT(31)
#define CPR4_CPR_MASK_THREAD_RO_MASK4THREAD_MASK GENMASK(15, 0)
/* CPRh controller specific registers and bit definitions */
#define CPRH_REG_CORNER(corner) (0x3A00 + 0x4 * (corner))
#define CPRH_CORNER_INIT_VOLTAGE_MASK GENMASK(7, 0)
#define CPRH_CORNER_INIT_VOLTAGE_SHIFT 0
#define CPRH_CORNER_FLOOR_VOLTAGE_MASK GENMASK(15, 8)
#define CPRH_CORNER_FLOOR_VOLTAGE_SHIFT 8
#define CPRH_CORNER_QUOT_DELTA_MASK GENMASK(24, 16)
#define CPRH_CORNER_QUOT_DELTA_SHIFT 16
#define CPRH_CORNER_RO_SEL_MASK GENMASK(28, 25)
#define CPRH_CORNER_RO_SEL_SHIFT 25
#define CPRH_CORNER_CPR_CL_DISABLE BIT(29)
#define CPRH_CORNER_CORE_TEMP_MARGIN_DISABLE BIT(30)
#define CPRH_CORNER_LAST_KNOWN_VOLTAGE_ENABLE BIT(31)
#define CPRH_CORNER_INIT_VOLTAGE_MAX_VALUE 255
#define CPRH_CORNER_FLOOR_VOLTAGE_MAX_VALUE 255
#define CPRH_CORNER_QUOT_DELTA_MAX_VALUE 511
#define CPRH_REG_CTL 0x3AA0
#define CPRH_CTL_OSM_ENABLED BIT(0)
#define CPRH_CTL_BASE_VOLTAGE_MASK GENMASK(10, 1)
#define CPRH_CTL_BASE_VOLTAGE_SHIFT 1
#define CPRH_CTL_INIT_MODE_MASK GENMASK(16, 11)
#define CPRH_CTL_INIT_MODE_SHIFT 11
#define CPRH_CTL_MODE_SWITCH_DELAY_MASK GENMASK(24, 17)
#define CPRH_CTL_MODE_SWITCH_DELAY_SHIFT 17
#define CPRH_CTL_VOLTAGE_MULTIPLIER_MASK GENMASK(28, 25)
#define CPRH_CTL_VOLTAGE_MULTIPLIER_SHIFT 25
#define CPRH_CTL_LAST_KNOWN_VOLTAGE_MARGIN_MASK GENMASK(31, 29)
#define CPRH_CTL_LAST_KNOWN_VOLTAGE_MARGIN_SHIFT 29
#define CPRH_REG_STATUS 0x3AA4
#define CPRH_STATUS_CORNER GENMASK(5, 0)
#define CPRH_STATUS_CORNER_LAST_VOLT_MASK GENMASK(17, 6)
#define CPRH_STATUS_CORNER_LAST_VOLT_SHIFT 6
#define CPRH_REG_CORNER_BAND 0x3AA8
#define CPRH_CORNER_BAND_MASK GENMASK(5, 0)
#define CPRH_CORNER_BAND_SHIFT 6
#define CPRH_CORNER_BAND_MAX_COUNT 4
#define CPRH_MARGIN_TEMP_CORE_VBAND(core, vband) \
((vband) == 0 ? CPR4_REG_MARGIN_TEMP_CORE(core) \
: 0x3AB0 + 0x40 * ((vband) - 1) + 0x4 * (core))
/*
* The amount of time to wait for the CPR controller to become idle when
* performing an aging measurement.
*/
#define CPR3_AGING_MEASUREMENT_TIMEOUT_NS 5000000
/*
* The number of individual aging measurements to perform which are then
* averaged together in order to determine the final aging adjustment value.
*/
#define CPR3_AGING_MEASUREMENT_ITERATIONS 16
/*
* Aging measurements for the aged and unaged ring oscillators take place a few
* microseconds apart. If the vdd-supply voltage fluctuates between the two
* measurements, then the difference between them will be incorrect. The
* difference could end up too high or too low. This constant defines the
* number of lowest and highest measurements to ignore when averaging.
*/
#define CPR3_AGING_MEASUREMENT_FILTER 3
/*
* The number of times to attempt the full aging measurement sequence before
* declaring a measurement failure.
*/
#define CPR3_AGING_RETRY_COUNT 5
/*
* The maximum time to wait in microseconds for a CPR register write to
* complete.
*/
#define CPR3_REGISTER_WRITE_DELAY_US 200
/*
* The number of times the CPRh controller multiplies the mode switch
* delay before utilizing it.
*/
#define CPRH_MODE_SWITCH_DELAY_FACTOR 4
/*
* The number of times the CPRh controller multiplies the delta quotient
* steps before utilizing it.
*/
#define CPRH_DELTA_QUOT_STEP_FACTOR 4
/*
* The multiplier applied to scaling factor value used to derive GCNT
* for aging measurements.
*/
#define CPR3_AGING_GCNT_SCALING_UNITY 1000
static DEFINE_MUTEX(cpr3_controller_list_mutex);
static LIST_HEAD(cpr3_controller_list);
static struct dentry *cpr3_debugfs_base;
/**
* cpr3_read() - read four bytes from the memory address specified
* @ctrl: Pointer to the CPR3 controller
* @offset: Offset in bytes from the CPR3 controller's base address
*
* Return: memory address value
*/
static inline u32 cpr3_read(struct cpr3_controller *ctrl, u32 offset)
{
if (!ctrl->cpr_enabled) {
cpr3_err(ctrl, "CPR register reads are not possible when CPR clocks are disabled\n");
return 0;
}
return readl_relaxed(ctrl->cpr_ctrl_base + offset);
}
/**
* cpr3_write() - write four bytes to the memory address specified
* @ctrl: Pointer to the CPR3 controller
* @offset: Offset in bytes from the CPR3 controller's base address
* @value: Value to write to the memory address
*
* Return: none
*/
static inline void cpr3_write(struct cpr3_controller *ctrl, u32 offset,
u32 value)
{
if (!ctrl->cpr_enabled) {
cpr3_err(ctrl, "CPR register writes are not possible when CPR clocks are disabled\n");
return;
}
writel_relaxed(value, ctrl->cpr_ctrl_base + offset);
}
/**
* cpr3_masked_write() - perform a read-modify-write sequence so that only
* masked bits are modified
* @ctrl: Pointer to the CPR3 controller
* @offset: Offset in bytes from the CPR3 controller's base address
* @mask: Mask identifying the bits that should be modified
* @value: Value to write to the memory address
*
* Return: none
*/
static inline void cpr3_masked_write(struct cpr3_controller *ctrl, u32 offset,
u32 mask, u32 value)
{
u32 reg_val, orig_val;
if (!ctrl->cpr_enabled) {
cpr3_err(ctrl, "CPR register writes are not possible when CPR clocks are disabled\n");
return;
}
reg_val = orig_val = readl_relaxed(ctrl->cpr_ctrl_base + offset);
reg_val &= ~mask;
reg_val |= value & mask;
if (reg_val != orig_val)
writel_relaxed(reg_val, ctrl->cpr_ctrl_base + offset);
}
/**
* cpr3_ctrl_loop_enable() - enable the CPR sensing loop for a given controller
* @ctrl: Pointer to the CPR3 controller
*
* Return: none
*/
static inline void cpr3_ctrl_loop_enable(struct cpr3_controller *ctrl)
{
if (ctrl->cpr_enabled && !(ctrl->aggr_corner.sdelta
&& ctrl->aggr_corner.sdelta->allow_boost))
cpr3_masked_write(ctrl, CPR3_REG_CPR_CTL,
CPR3_CPR_CTL_LOOP_EN_MASK, CPR3_CPR_CTL_LOOP_ENABLE);
}
/**
* cpr3_ctrl_loop_disable() - disable the CPR sensing loop for a given
* controller
* @ctrl: Pointer to the CPR3 controller
*
* Return: none
*/
static inline void cpr3_ctrl_loop_disable(struct cpr3_controller *ctrl)
{
if (ctrl->cpr_enabled)
cpr3_masked_write(ctrl, CPR3_REG_CPR_CTL,
CPR3_CPR_CTL_LOOP_EN_MASK, CPR3_CPR_CTL_LOOP_DISABLE);
}
/**
* cpr3_clock_enable() - prepare and enable all clocks used by this CPR3
* controller
* @ctrl: Pointer to the CPR3 controller
*
* Return: 0 on success, errno on failure
*/
static int cpr3_clock_enable(struct cpr3_controller *ctrl)
{
int rc;
rc = clk_prepare_enable(ctrl->bus_clk);
if (rc) {
cpr3_err(ctrl, "failed to enable bus clock, rc=%d\n", rc);
return rc;
}
rc = clk_prepare_enable(ctrl->iface_clk);
if (rc) {
cpr3_err(ctrl, "failed to enable interface clock, rc=%d\n", rc);
clk_disable_unprepare(ctrl->bus_clk);
return rc;
}
rc = clk_prepare_enable(ctrl->core_clk);
if (rc) {
cpr3_err(ctrl, "failed to enable core clock, rc=%d\n", rc);
clk_disable_unprepare(ctrl->iface_clk);
clk_disable_unprepare(ctrl->bus_clk);
return rc;
}
return 0;
}
/**
* cpr3_clock_disable() - disable and unprepare all clocks used by this CPR3
* controller
* @ctrl: Pointer to the CPR3 controller
*
* Return: none
*/
static void cpr3_clock_disable(struct cpr3_controller *ctrl)
{
clk_disable_unprepare(ctrl->core_clk);
clk_disable_unprepare(ctrl->iface_clk);
clk_disable_unprepare(ctrl->bus_clk);
}
/**
* cpr3_ctrl_clear_cpr4_config() - clear the CPR4 register configuration
* programmed for current aggregated corner of a given controller
* @ctrl: Pointer to the CPR3 controller
*
* Return: 0 on success, errno on failure
*/
static inline int cpr3_ctrl_clear_cpr4_config(struct cpr3_controller *ctrl)
{
struct cpr4_sdelta *aggr_sdelta = ctrl->aggr_corner.sdelta;
bool cpr_enabled = ctrl->cpr_enabled;
int i, rc = 0;
if (!aggr_sdelta || !(aggr_sdelta->allow_core_count_adj
|| aggr_sdelta->allow_temp_adj || aggr_sdelta->allow_boost))
/* cpr4 features are not enabled */
return 0;
/* Ensure that CPR clocks are enabled before writing to registers. */
if (!cpr_enabled) {
rc = cpr3_clock_enable(ctrl);
if (rc) {
cpr3_err(ctrl, "clock enable failed, rc=%d\n", rc);
return rc;
}
ctrl->cpr_enabled = true;
}
/*
* Clear feature enable configuration made for current
* aggregated corner.
*/
cpr3_masked_write(ctrl, CPR4_REG_MARGIN_ADJ_CTL,
CPR4_MARGIN_ADJ_CTL_MAX_NUM_CORES_MASK
| CPR4_MARGIN_ADJ_CTL_CORE_ADJ_EN
| CPR4_MARGIN_ADJ_CTL_TEMP_ADJ_EN
| CPR4_MARGIN_ADJ_CTL_KV_MARGIN_ADJ_EN
| CPR4_MARGIN_ADJ_CTL_BOOST_EN
| CPR4_MARGIN_ADJ_CTL_HW_CLOSED_LOOP_EN_MASK, 0);
cpr3_masked_write(ctrl, CPR4_REG_MISC,
CPR4_MISC_MARGIN_TABLE_ROW_SELECT_MASK,
0 << CPR4_MISC_MARGIN_TABLE_ROW_SELECT_SHIFT);
for (i = 0; i <= aggr_sdelta->max_core_count; i++) {
/* Clear voltage margin adjustments programmed in TEMP_COREi */
cpr3_write(ctrl, CPR4_REG_MARGIN_TEMP_CORE(i), 0);
}
/* Turn off CPR clocks if they were off before this function call. */
if (!cpr_enabled) {
cpr3_clock_disable(ctrl);
ctrl->cpr_enabled = false;
}
return 0;
}
/**
* cpr3_closed_loop_enable() - enable logical CPR closed-loop operation
* @ctrl: Pointer to the CPR3 controller
*
* Return: 0 on success, errno on failure
*/
static int cpr3_closed_loop_enable(struct cpr3_controller *ctrl)
{
int rc;
if (!ctrl->cpr_allowed_hw || !ctrl->cpr_allowed_sw) {
cpr3_err(ctrl, "cannot enable closed-loop CPR operation because it is disallowed\n");
return -EPERM;
} else if (ctrl->cpr_enabled) {
/* Already enabled */
return 0;
} else if (ctrl->cpr_suspended) {
/*
* CPR must remain disabled as the system is entering suspend.
*/
return 0;
}
rc = cpr3_clock_enable(ctrl);
if (rc) {
cpr3_err(ctrl, "unable to enable CPR clocks, rc=%d\n", rc);
return rc;
}
ctrl->cpr_enabled = true;
cpr3_debug(ctrl, "CPR closed-loop operation enabled\n");
return 0;
}
/**
* cpr3_closed_loop_disable() - disable logical CPR closed-loop operation
* @ctrl: Pointer to the CPR3 controller
*
* Return: 0 on success, errno on failure
*/
static inline int cpr3_closed_loop_disable(struct cpr3_controller *ctrl)
{
if (!ctrl->cpr_enabled) {
/* Already disabled */
return 0;
}
cpr3_clock_disable(ctrl);
ctrl->cpr_enabled = false;
cpr3_debug(ctrl, "CPR closed-loop operation disabled\n");
return 0;
}
/**
* cpr3_regulator_get_gcnt() - returns the GCNT register value corresponding
* to the clock rate and sensor time of the CPR3 controller
* @ctrl: Pointer to the CPR3 controller
*
* Return: GCNT value
*/
static u32 cpr3_regulator_get_gcnt(struct cpr3_controller *ctrl)
{
u64 temp;
unsigned int remainder;
u32 gcnt;
temp = (u64)ctrl->cpr_clock_rate * (u64)ctrl->sensor_time;
remainder = do_div(temp, 1000000000);
if (remainder)
temp++;
/*
* GCNT == 0 corresponds to a single ref clock measurement interval so
* offset GCNT values by 1.
*/
gcnt = temp - 1;
return gcnt;
}
/**
* cpr3_regulator_init_thread() - performs hardware initialization of CPR
* thread registers
* @thread: Pointer to the CPR3 thread
*
* CPR interface/bus clocks must be enabled before calling this function.
*
* Return: 0 on success, errno on failure
*/
static int cpr3_regulator_init_thread(struct cpr3_thread *thread)
{
u32 reg;
reg = (thread->consecutive_up << CPR3_THRESH_CONS_UP_SHIFT)
& CPR3_THRESH_CONS_UP_MASK;
reg |= (thread->consecutive_down << CPR3_THRESH_CONS_DOWN_SHIFT)
& CPR3_THRESH_CONS_DOWN_MASK;
reg |= (thread->up_threshold << CPR3_THRESH_UP_THRESH_SHIFT)
& CPR3_THRESH_UP_THRESH_MASK;
reg |= (thread->down_threshold << CPR3_THRESH_DOWN_THRESH_SHIFT)
& CPR3_THRESH_DOWN_THRESH_MASK;
cpr3_write(thread->ctrl, CPR3_REG_THRESH(thread->thread_id), reg);
/*
* Mask all RO's initially so that unused thread doesn't contribute
* to closed-loop voltage.
*/
cpr3_write(thread->ctrl, CPR3_REG_RO_MASK(thread->thread_id),
CPR3_RO_MASK);
return 0;
}
/**
* cpr4_regulator_init_temp_points() - performs hardware initialization of CPR4
* registers to track tsen temperature data and also specify the
* temperature band range values to apply different voltage margins
* @ctrl: Pointer to the CPR3 controller
*
* CPR interface/bus clocks must be enabled before calling this function.
*
* Return: 0 on success, errno on failure
*/
static int cpr4_regulator_init_temp_points(struct cpr3_controller *ctrl)
{
if (!ctrl->allow_temp_adj)
return 0;
cpr3_masked_write(ctrl, CPR4_REG_MISC,
CPR4_MISC_TEMP_SENSOR_ID_START_MASK,
ctrl->temp_sensor_id_start
<< CPR4_MISC_TEMP_SENSOR_ID_START_SHIFT);
cpr3_masked_write(ctrl, CPR4_REG_MISC,
CPR4_MISC_TEMP_SENSOR_ID_END_MASK,
ctrl->temp_sensor_id_end
<< CPR4_MISC_TEMP_SENSOR_ID_END_SHIFT);
cpr3_masked_write(ctrl, CPR4_REG_MARGIN_TEMP_POINT2,
CPR4_MARGIN_TEMP_POINT2_MASK,
(ctrl->temp_band_count == 4 ? ctrl->temp_points[2] : 0x7FF)
<< CPR4_MARGIN_TEMP_POINT2_SHIFT);
cpr3_masked_write(ctrl, CPR4_REG_MARGIN_TEMP_POINT0N1,
CPR4_MARGIN_TEMP_POINT1_MASK,
(ctrl->temp_band_count >= 3 ? ctrl->temp_points[1] : 0x7FF)
<< CPR4_MARGIN_TEMP_POINT1_SHIFT);
cpr3_masked_write(ctrl, CPR4_REG_MARGIN_TEMP_POINT0N1,
CPR4_MARGIN_TEMP_POINT0_MASK,
(ctrl->temp_band_count >= 2 ? ctrl->temp_points[0] : 0x7FF)
<< CPR4_MARGIN_TEMP_POINT0_SHIFT);
return 0;
}
/**
* cpr3_regulator_init_cpr4() - performs hardware initialization at the
* controller and thread level required for CPR4 operation.
* @ctrl: Pointer to the CPR3 controller
*
* CPR interface/bus clocks must be enabled before calling this function.
* This function allocates sdelta structures and sdelta tables for aggregated
* corners of the controller and its threads.
*
* Return: 0 on success, errno on failure
*/
static int cpr3_regulator_init_cpr4(struct cpr3_controller *ctrl)
{
struct cpr3_thread *thread;
struct cpr3_regulator *vreg;
struct cpr4_sdelta *sdelta;
int i, j, ctrl_max_core_count, thread_max_core_count, rc = 0;
bool ctrl_valid_sdelta, thread_valid_sdelta;
u32 pmic_step_size = 1;
int thread_id = 0;
u64 temp;
if (ctrl->reset_step_quot_loop_en)
cpr3_masked_write(ctrl, CPR4_REG_MISC,
CPR4_MISC_RESET_STEP_QUOT_LOOP_EN,
CPR4_MISC_RESET_STEP_QUOT_LOOP_EN);
if (ctrl->supports_hw_closed_loop) {
if (ctrl->saw_use_unit_mV)
pmic_step_size = ctrl->step_volt / 1000;
cpr3_masked_write(ctrl, CPR4_REG_MARGIN_ADJ_CTL,
CPR4_MARGIN_ADJ_CTL_PMIC_STEP_SIZE_MASK,
(pmic_step_size
<< CPR4_MARGIN_ADJ_CTL_PMIC_STEP_SIZE_SHIFT));
cpr3_masked_write(ctrl, CPR4_REG_SAW_ERROR_STEP_LIMIT,
CPR4_SAW_ERROR_STEP_LIMIT_DN_MASK,
(ctrl->down_error_step_limit
<< CPR4_SAW_ERROR_STEP_LIMIT_DN_SHIFT));
cpr3_masked_write(ctrl, CPR4_REG_SAW_ERROR_STEP_LIMIT,
CPR4_SAW_ERROR_STEP_LIMIT_UP_MASK,
(ctrl->up_error_step_limit
<< CPR4_SAW_ERROR_STEP_LIMIT_UP_SHIFT));
/*
* Enable thread aggregation regardless of which threads are
* enabled or disabled.
*/
cpr3_masked_write(ctrl, CPR4_REG_CPR_TIMER_CLAMP,
CPR4_CPR_TIMER_CLAMP_THREAD_AGGREGATION_EN,
CPR4_CPR_TIMER_CLAMP_THREAD_AGGREGATION_EN);
switch (ctrl->thread_count) {
case 0:
/* Disable both threads */
cpr3_masked_write(ctrl, CPR4_REG_CPR_MASK_THREAD(0),
CPR4_CPR_MASK_THREAD_DISABLE_THREAD
| CPR4_CPR_MASK_THREAD_RO_MASK4THREAD_MASK,
CPR4_CPR_MASK_THREAD_DISABLE_THREAD
| CPR4_CPR_MASK_THREAD_RO_MASK4THREAD_MASK);
cpr3_masked_write(ctrl, CPR4_REG_CPR_MASK_THREAD(1),
CPR4_CPR_MASK_THREAD_DISABLE_THREAD
| CPR4_CPR_MASK_THREAD_RO_MASK4THREAD_MASK,
CPR4_CPR_MASK_THREAD_DISABLE_THREAD
| CPR4_CPR_MASK_THREAD_RO_MASK4THREAD_MASK);
break;
case 1:
/* Disable unused thread */
thread_id = ctrl->thread[0].thread_id ? 0 : 1;
cpr3_masked_write(ctrl,
CPR4_REG_CPR_MASK_THREAD(thread_id),
CPR4_CPR_MASK_THREAD_DISABLE_THREAD
| CPR4_CPR_MASK_THREAD_RO_MASK4THREAD_MASK,
CPR4_CPR_MASK_THREAD_DISABLE_THREAD
| CPR4_CPR_MASK_THREAD_RO_MASK4THREAD_MASK);
break;
}
}
if (!ctrl->allow_core_count_adj && !ctrl->allow_temp_adj
&& !ctrl->allow_boost) {
/*
* Skip below configuration as none of the features
* are enabled.
*/
return rc;
}
if (ctrl->supports_hw_closed_loop)
cpr3_masked_write(ctrl, CPR4_REG_MARGIN_ADJ_CTL,
CPR4_MARGIN_ADJ_CTL_TIMER_SETTLE_VOLTAGE_EN,
CPR4_MARGIN_ADJ_CTL_TIMER_SETTLE_VOLTAGE_EN);
cpr3_masked_write(ctrl, CPR4_REG_MARGIN_ADJ_CTL,
CPR4_MARGIN_ADJ_CTL_KV_MARGIN_ADJ_STEP_QUOT_MASK,
ctrl->step_quot_fixed
<< CPR4_MARGIN_ADJ_CTL_KV_MARGIN_ADJ_STEP_QUOT_SHIFT);
cpr3_masked_write(ctrl, CPR4_REG_MARGIN_ADJ_CTL,
CPR4_MARGIN_ADJ_CTL_PER_RO_KV_MARGIN_EN,
(ctrl->use_dynamic_step_quot
? CPR4_MARGIN_ADJ_CTL_PER_RO_KV_MARGIN_EN : 0));
cpr3_masked_write(ctrl, CPR4_REG_MARGIN_ADJ_CTL,
CPR4_MARGIN_ADJ_CTL_INITIAL_TEMP_BAND_MASK,
ctrl->initial_temp_band
<< CPR4_MARGIN_ADJ_CTL_INITIAL_TEMP_BAND_SHIFT);
rc = cpr4_regulator_init_temp_points(ctrl);
if (rc) {
cpr3_err(ctrl, "initialize temp points failed, rc=%d\n", rc);
return rc;
}
if (ctrl->voltage_settling_time) {
/*
* Configure the settling timer used to account for
* one VDD supply step.
*/
temp = (u64)ctrl->cpr_clock_rate
* (u64)ctrl->voltage_settling_time;
do_div(temp, 1000000000);
cpr3_masked_write(ctrl, CPR4_REG_MARGIN_TEMP_CORE_TIMERS,
CPR4_MARGIN_TEMP_CORE_TIMERS_SETTLE_VOLTAGE_COUNT_MASK,
temp
<< CPR4_MARGIN_TEMP_CORE_TIMERS_SETTLE_VOLTAGE_COUNT_SHIFT);
}
/*
* Allocate memory for cpr4_sdelta structure and sdelta table for
* controller aggregated corner by finding the maximum core count
* used by any cpr3 regulators.
*/
ctrl_max_core_count = 1;
ctrl_valid_sdelta = false;
for (i = 0; i < ctrl->thread_count; i++) {
thread = &ctrl->thread[i];
/*
* Allocate memory for cpr4_sdelta structure and sdelta table
* for thread aggregated corner by finding the maximum core
* count used by any cpr3 regulators of the thread.
*/
thread_max_core_count = 1;
thread_valid_sdelta = false;
for (j = 0; j < thread->vreg_count; j++) {
vreg = &thread->vreg[j];
thread_max_core_count = max(thread_max_core_count,
vreg->max_core_count);
thread_valid_sdelta |= (vreg->allow_core_count_adj
| vreg->allow_temp_adj
| vreg->allow_boost);
}
if (thread_valid_sdelta) {
sdelta = devm_kzalloc(ctrl->dev, sizeof(*sdelta),
GFP_KERNEL);
if (!sdelta)
return -ENOMEM;
sdelta->table = devm_kcalloc(ctrl->dev,
thread_max_core_count
* ctrl->temp_band_count,
sizeof(*sdelta->table),
GFP_KERNEL);
if (!sdelta->table)
return -ENOMEM;
sdelta->boost_table = devm_kcalloc(ctrl->dev,
ctrl->temp_band_count,
sizeof(*sdelta->boost_table),
GFP_KERNEL);
if (!sdelta->boost_table)
return -ENOMEM;
thread->aggr_corner.sdelta = sdelta;
}
ctrl_valid_sdelta |= thread_valid_sdelta;
ctrl_max_core_count = max(ctrl_max_core_count,
thread_max_core_count);
}
if (ctrl_valid_sdelta) {
sdelta = devm_kzalloc(ctrl->dev, sizeof(*sdelta), GFP_KERNEL);
if (!sdelta)
return -ENOMEM;
sdelta->table = devm_kcalloc(ctrl->dev, ctrl_max_core_count
* ctrl->temp_band_count,
sizeof(*sdelta->table), GFP_KERNEL);
if (!sdelta->table)
return -ENOMEM;
sdelta->boost_table = devm_kcalloc(ctrl->dev,
ctrl->temp_band_count,
sizeof(*sdelta->boost_table),
GFP_KERNEL);
if (!sdelta->boost_table)
return -ENOMEM;
ctrl->aggr_corner.sdelta = sdelta;
}
return 0;
}
/**
* cpr3_write_temp_core_margin() - programs hardware SDELTA registers with
* the voltage margin adjustments that need to be applied for
* different online core-count and temperature bands.
* @ctrl: Pointer to the CPR3 controller
* @addr: SDELTA register address
* @temp_core_adj: Array of voltage margin values for different temperature
* bands.
*
* CPR interface/bus clocks must be enabled before calling this function.
*
* Return: none
*/
static void cpr3_write_temp_core_margin(struct cpr3_controller *ctrl,
int addr, int *temp_core_adj)
{
int i, margin_steps;
u32 reg = 0;
for (i = 0; i < ctrl->temp_band_count; i++) {
margin_steps = max(min(temp_core_adj[i], 127), -128);
reg |= (margin_steps & CPR4_MARGIN_TEMP_CORE_ADJ_MASK) <<
(i * CPR4_MARGIN_TEMP_CORE_ADJ_SHIFT);
}
cpr3_write(ctrl, addr, reg);
cpr3_debug(ctrl, "sdelta offset=0x%08x, val=0x%08x\n", addr, reg);
}
/**
* cpr3_controller_program_sdelta() - programs hardware SDELTA registers with
* the voltage margin adjustments that need to be applied at
* different online core-count and temperature bands. Also,
* programs hardware register configuration for per-online-core
* and per-temperature based adjustments.
* @ctrl: Pointer to the CPR3 controller
*
* CPR interface/bus clocks must be enabled before calling this function.
*
* Return: 0 on success, errno on failure
*/
static int cpr3_controller_program_sdelta(struct cpr3_controller *ctrl)
{
struct cpr3_corner *corner = &ctrl->aggr_corner;
struct cpr4_sdelta *sdelta = corner->sdelta;
int i, index, max_core_count, rc = 0;
bool cpr_enabled = ctrl->cpr_enabled;
if (!sdelta)
/* cpr4_sdelta not defined for current aggregated corner */
return 0;
if (ctrl->supports_hw_closed_loop && ctrl->cpr_enabled) {
cpr3_masked_write(ctrl, CPR4_REG_MARGIN_ADJ_CTL,
CPR4_MARGIN_ADJ_CTL_HW_CLOSED_LOOP_EN_MASK,
(ctrl->use_hw_closed_loop && !sdelta->allow_boost)
? CPR4_MARGIN_ADJ_CTL_HW_CLOSED_LOOP_ENABLE : 0);
}
if (!sdelta->allow_core_count_adj && !sdelta->allow_temp_adj
&& !sdelta->allow_boost) {
/*
* Per-online-core, per-temperature and voltage boost
* adjustments are disabled for this aggregation corner.
*/
return 0;
}
/* Ensure that CPR clocks are enabled before writing to registers. */
if (!cpr_enabled) {
rc = cpr3_clock_enable(ctrl);
if (rc) {
cpr3_err(ctrl, "clock enable failed, rc=%d\n", rc);
return rc;
}
ctrl->cpr_enabled = true;
}
max_core_count = sdelta->max_core_count;
if (sdelta->allow_core_count_adj || sdelta->allow_temp_adj) {
if (sdelta->allow_core_count_adj) {
/* Program TEMP_CORE0 to same margins as TEMP_CORE1 */
cpr3_write_temp_core_margin(ctrl,
CPR4_REG_MARGIN_TEMP_CORE(0),
&sdelta->table[0]);
}
for (i = 0; i < max_core_count; i++) {
index = i * sdelta->temp_band_count;
/*
* Program TEMP_COREi with voltage margin adjustments
* that need to be applied when the number of cores
* becomes i.
*/
cpr3_write_temp_core_margin(ctrl,
CPR4_REG_MARGIN_TEMP_CORE(
sdelta->allow_core_count_adj
? i + 1 : max_core_count),
&sdelta->table[index]);
}
}
if (sdelta->allow_boost) {
/* Program only boost_num_cores row of SDELTA */
cpr3_write_temp_core_margin(ctrl,
CPR4_REG_MARGIN_TEMP_CORE(sdelta->boost_num_cores),
&sdelta->boost_table[0]);
}
if (!sdelta->allow_core_count_adj && !sdelta->allow_boost) {
cpr3_masked_write(ctrl, CPR4_REG_MISC,
CPR4_MISC_MARGIN_TABLE_ROW_SELECT_MASK,
max_core_count
<< CPR4_MISC_MARGIN_TABLE_ROW_SELECT_SHIFT);
}
cpr3_masked_write(ctrl, CPR4_REG_MARGIN_ADJ_CTL,
CPR4_MARGIN_ADJ_CTL_MAX_NUM_CORES_MASK
| CPR4_MARGIN_ADJ_CTL_CORE_ADJ_EN
| CPR4_MARGIN_ADJ_CTL_TEMP_ADJ_EN
| CPR4_MARGIN_ADJ_CTL_KV_MARGIN_ADJ_EN
| CPR4_MARGIN_ADJ_CTL_BOOST_EN,
max_core_count << CPR4_MARGIN_ADJ_CTL_MAX_NUM_CORES_SHIFT
| ((sdelta->allow_core_count_adj || sdelta->allow_boost)
? CPR4_MARGIN_ADJ_CTL_CORE_ADJ_EN : 0)
| ((sdelta->allow_temp_adj && ctrl->supports_hw_closed_loop
&& sdelta->allow_core_count_adj)
? CPR4_MARGIN_ADJ_CTL_TEMP_ADJ_EN : 0)
| (((ctrl->use_hw_closed_loop && !sdelta->allow_boost)
|| !ctrl->supports_hw_closed_loop)
? CPR4_MARGIN_ADJ_CTL_KV_MARGIN_ADJ_EN : 0)
| (sdelta->allow_boost
? CPR4_MARGIN_ADJ_CTL_BOOST_EN : 0));
/*
* Ensure that all previous CPR register writes have completed before
* continuing.
*/
mb();
/* Turn off CPR clocks if they were off before this function call. */
if (!cpr_enabled) {
cpr3_clock_disable(ctrl);
ctrl->cpr_enabled = false;
}
return 0;
}
/**
* cpr3_regulator_set_base_target_quot() - configure the target quotient
* for each RO of the CPR3 regulator for CPRh operation.
* In particular, the quotient of the RO selected for operation
* should correspond to the lowest target quotient across the
* corners supported by the single regulator of the CPR3 thread.
* @vreg: Pointer to the CPR3 regulator
* @base_quots: Pointer to the base quotient array. The array must be
* of size CPR3_RO_COUNT and it is populated with the
* base quotient per-RO.
*
* Return: none
*/
static void cpr3_regulator_set_base_target_quot(struct cpr3_regulator *vreg,
u32 *base_quots)
{
struct cpr3_controller *ctrl = vreg->thread->ctrl;
int i, j, ro_mask = CPR3_RO_MASK;
u32 min_quot;
for (i = 0; i < vreg->corner_count; i++)
ro_mask &= vreg->corner[i].ro_mask;
/* Unmask the ROs selected for active use. */
cpr3_write(ctrl, CPR3_REG_RO_MASK(vreg->thread->thread_id),
ro_mask);
for (i = 0; i < CPR3_RO_COUNT; i++) {
for (j = 0, min_quot = INT_MAX; j < vreg->corner_count; j++)
if (vreg->corner[j].target_quot[i])
min_quot = min(min_quot,
vreg->corner[j].target_quot[i]);
if (min_quot == INT_MAX)
min_quot = 0;
cpr3_write(ctrl,
CPR3_REG_TARGET_QUOT(vreg->thread->thread_id, i),
min_quot);
base_quots[i] = min_quot;
}
}
/**
* cpr3_regulator_init_cprh_corners() - configure the per-corner CPRh registers
* @vreg: Pointer to the CPR3 regulator
*
* This function programs the controller registers which contain all information
* necessary to resolve the closed-loop voltage per-corner at runtime such as
* open-loop and floor voltages, target quotient delta, and RO select value.
* These registers also provide a means to disable closed-loop operation, core
* and temperature adjustments.
*
* Return: 0 on success, errno on failure
*/
static int cpr3_regulator_init_cprh_corners(struct cpr3_regulator *vreg)
{
struct cpr3_controller *ctrl = vreg->thread->ctrl;
struct cpr3_corner *corner;
u32 reg, delta_quot_steps, ro_sel;
u32 *base_quots;
int open_loop_volt_steps, floor_volt_steps, i, j, rc = 0;
base_quots = kcalloc(CPR3_RO_COUNT, sizeof(*base_quots),
GFP_KERNEL);
if (!base_quots)
return -ENOMEM;
cpr3_regulator_set_base_target_quot(vreg, base_quots);
for (i = 0; i < vreg->corner_count; i++) {
corner = &vreg->corner[i];
for (j = 0, ro_sel = INT_MAX; j < CPR3_RO_COUNT; j++) {
if (corner->target_quot[j]) {
ro_sel = j;
break;
}
}
if (ro_sel == INT_MAX) {
if (!corner->proc_freq) {
/*
* Corner is not used as active DCVS set point
* select RO 0 arbitrarily.
*/
ro_sel = 0;
} else {
cpr3_err(vreg, "corner=%d has invalid RO select value\n",
i);
rc = -EINVAL;
goto free_base_quots;
}
}
open_loop_volt_steps = DIV_ROUND_UP(corner->open_loop_volt -
ctrl->base_volt,
ctrl->step_volt);
floor_volt_steps = DIV_ROUND_UP(corner->floor_volt -
ctrl->base_volt,
ctrl->step_volt);
delta_quot_steps = corner->proc_freq ?
DIV_ROUND_UP(corner->target_quot[ro_sel] -
base_quots[ro_sel],
CPRH_DELTA_QUOT_STEP_FACTOR) :
0;
if (open_loop_volt_steps > CPRH_CORNER_INIT_VOLTAGE_MAX_VALUE ||
floor_volt_steps > CPRH_CORNER_FLOOR_VOLTAGE_MAX_VALUE ||
delta_quot_steps > CPRH_CORNER_QUOT_DELTA_MAX_VALUE) {
cpr3_err(ctrl, "invalid CPRh corner configuration: open_loop_volt_steps=%d (%d max.), floor_volt_steps=%d (%d max), delta_quot_steps=%d (%d max)\n",
open_loop_volt_steps,
CPRH_CORNER_INIT_VOLTAGE_MAX_VALUE,
floor_volt_steps,
CPRH_CORNER_FLOOR_VOLTAGE_MAX_VALUE,
delta_quot_steps,
CPRH_CORNER_QUOT_DELTA_MAX_VALUE);
rc = -EINVAL;
goto free_base_quots;
}
reg = (open_loop_volt_steps << CPRH_CORNER_INIT_VOLTAGE_SHIFT)
& CPRH_CORNER_INIT_VOLTAGE_MASK;
reg |= (floor_volt_steps << CPRH_CORNER_FLOOR_VOLTAGE_SHIFT)
& CPRH_CORNER_FLOOR_VOLTAGE_MASK;
reg |= (delta_quot_steps << CPRH_CORNER_QUOT_DELTA_SHIFT)
& CPRH_CORNER_QUOT_DELTA_MASK;
reg |= (ro_sel << CPRH_CORNER_RO_SEL_SHIFT)
& CPRH_CORNER_RO_SEL_MASK;
if (corner->use_open_loop)
reg |= CPRH_CORNER_CPR_CL_DISABLE;
cpr3_debug(ctrl, "corner=%d open_loop_volt_steps=%d, floor_volt_steps=%d, delta_quot_steps=%d, base_volt=%d, step_volt=%d, base_quot=%d\n",
i, open_loop_volt_steps, floor_volt_steps,
delta_quot_steps, ctrl->base_volt,
ctrl->step_volt, base_quots[ro_sel]);
cpr3_write(ctrl, CPRH_REG_CORNER(i), reg);
}
free_base_quots:
kfree(base_quots);
return rc;
}
/**
* cprh_controller_program_sdelta() - programs hardware SDELTA registers with
* the margins that need to be applied at different online
* core-count and temperature bands for each corner band. Also,
* programs hardware register configuration for core-count and
* temp-based adjustments
*
* @ctrl: Pointer to the CPR3 controller
*
* CPR interface/bus clocks must be enabled before calling this function.
*
* Return: none
*/
static void cprh_controller_program_sdelta(
struct cpr3_controller *ctrl)
{
struct cpr3_regulator *vreg = &ctrl->thread[0].vreg[0];
struct cprh_corner_band *corner_band;
struct cpr4_sdelta *sdelta;
int i, j, index;
u32 reg = 0;
if (!vreg->allow_core_count_adj && !vreg->allow_temp_adj)
return;
cpr4_regulator_init_temp_points(ctrl);
for (i = 0; i < CPRH_CORNER_BAND_MAX_COUNT; i++) {
reg |= (i < vreg->corner_band_count ?
vreg->corner_band[i].corner
& CPRH_CORNER_BAND_MASK :
vreg->corner_count + 1)
<< (i * CPRH_CORNER_BAND_SHIFT);
}
cpr3_write(ctrl, CPRH_REG_CORNER_BAND, reg);
for (i = 0; i < vreg->corner_band_count; i++) {
corner_band = &vreg->corner_band[i];
sdelta = corner_band->sdelta;
if (!sdelta->allow_core_count_adj && !sdelta->allow_temp_adj) {
/*
* Per-online-core and per-temperature margin
* adjustments are disabled for this corner band.
*/
continue;
}
if (vreg->allow_core_count_adj)
cpr3_write_temp_core_margin(ctrl,
CPRH_MARGIN_TEMP_CORE_VBAND(0, i),
&sdelta->table[0]);
for (j = 0; j < sdelta->max_core_count; j++) {
index = j * sdelta->temp_band_count;
cpr3_write_temp_core_margin(ctrl,
CPRH_MARGIN_TEMP_CORE_VBAND(
sdelta->allow_core_count_adj
? j + 1 : vreg->max_core_count, i),
&sdelta->table[index]);
}
}
if (!vreg->allow_core_count_adj) {
cpr3_masked_write(ctrl, CPR4_REG_MISC,
CPR4_MISC_MARGIN_TABLE_ROW_SELECT_MASK,
vreg->max_core_count
<< CPR4_MISC_MARGIN_TABLE_ROW_SELECT_SHIFT);
}
cpr3_masked_write(ctrl, CPR4_REG_MARGIN_ADJ_CTL,
CPR4_MARGIN_ADJ_CTL_MAX_NUM_CORES_MASK
| CPR4_MARGIN_ADJ_CTL_CORE_ADJ_EN
| CPR4_MARGIN_ADJ_CTL_TEMP_ADJ_EN
| CPR4_MARGIN_ADJ_CTL_KV_MARGIN_ADJ_EN
| CPR4_MARGIN_ADJ_CTL_HW_CLOSED_LOOP_EN_MASK,
vreg->max_core_count << CPR4_MARGIN_ADJ_CTL_MAX_NUM_CORES_SHIFT
| ((vreg->allow_core_count_adj)
? CPR4_MARGIN_ADJ_CTL_CORE_ADJ_EN : 0)
| (vreg->allow_temp_adj ? CPR4_MARGIN_ADJ_CTL_TEMP_ADJ_EN : 0)
| ((ctrl->use_hw_closed_loop)
? CPR4_MARGIN_ADJ_CTL_KV_MARGIN_ADJ_EN : 0)
| (ctrl->use_hw_closed_loop
? CPR4_MARGIN_ADJ_CTL_HW_CLOSED_LOOP_ENABLE : 0));
/* Ensure that previous CPR register writes complete */
mb();
}
static int cprh_regulator_aging_adjust(struct cpr3_controller *ctrl);
/**
* cpr3_regulator_init_cprh() - performs hardware initialization at the
* controller and thread level required for CPRh operation.
* @ctrl: Pointer to the CPR3 controller
*
* CPR interface/bus clocks must be enabled before calling this function.
*
* Return: 0 on success, errno on failure
*/
static int cpr3_regulator_init_cprh(struct cpr3_controller *ctrl)
{
u32 reg, pmic_step_size = 1;
u64 temp;
int rc;
/* Single thread, single regulator supported */
if (ctrl->thread_count != 1) {
cpr3_err(ctrl, "expected 1 thread but found %d\n",
ctrl->thread_count);
return -EINVAL;
} else if (ctrl->thread[0].vreg_count != 1) {
cpr3_err(ctrl, "expected 1 regulator but found %d\n",
ctrl->thread[0].vreg_count);
return -EINVAL;
}
rc = cprh_regulator_aging_adjust(ctrl);
if (rc && rc != -ETIMEDOUT) {
/*
* Don't fail initialization if the CPR aging measurement
* timed out due to sensors not being available.
*/
cpr3_err(ctrl, "CPR aging adjustment failed, rc=%d\n", rc);
return rc;
}
cprh_controller_program_sdelta(ctrl);
rc = cpr3_regulator_init_cprh_corners(&ctrl->thread[0].vreg[0]);
if (rc) {
cpr3_err(ctrl, "failed to initialize CPRh corner registers\n");
return rc;
}
if (ctrl->reset_step_quot_loop_en)
cpr3_masked_write(ctrl, CPR4_REG_MISC,
CPR4_MISC_RESET_STEP_QUOT_LOOP_EN,
CPR4_MISC_RESET_STEP_QUOT_LOOP_EN);
if (ctrl->saw_use_unit_mV)
pmic_step_size = ctrl->step_volt / 1000;
cpr3_masked_write(ctrl, CPR4_REG_MARGIN_ADJ_CTL,
CPR4_MARGIN_ADJ_CTL_PMIC_STEP_SIZE_MASK,
(pmic_step_size
<< CPR4_MARGIN_ADJ_CTL_PMIC_STEP_SIZE_SHIFT));
cpr3_masked_write(ctrl, CPR4_REG_SAW_ERROR_STEP_LIMIT,
CPR4_SAW_ERROR_STEP_LIMIT_DN_MASK,
(ctrl->down_error_step_limit
<< CPR4_SAW_ERROR_STEP_LIMIT_DN_SHIFT));
cpr3_masked_write(ctrl, CPR4_REG_SAW_ERROR_STEP_LIMIT,
CPR4_SAW_ERROR_STEP_LIMIT_UP_MASK,
(ctrl->up_error_step_limit
<< CPR4_SAW_ERROR_STEP_LIMIT_UP_SHIFT));
cpr3_masked_write(ctrl, CPR4_REG_MARGIN_ADJ_CTL,
CPR4_MARGIN_ADJ_CTL_KV_MARGIN_ADJ_STEP_QUOT_MASK,
ctrl->step_quot_fixed
<< CPR4_MARGIN_ADJ_CTL_KV_MARGIN_ADJ_STEP_QUOT_SHIFT);
cpr3_masked_write(ctrl, CPR4_REG_MARGIN_ADJ_CTL,
CPR4_MARGIN_ADJ_CTL_PER_RO_KV_MARGIN_EN,
(ctrl->use_dynamic_step_quot
? CPR4_MARGIN_ADJ_CTL_PER_RO_KV_MARGIN_EN : 0));
if (ctrl->voltage_settling_time) {
/*
* Configure the settling timer used to account for
* one VDD supply step.
*/
temp = (u64)ctrl->cpr_clock_rate
* (u64)ctrl->voltage_settling_time;
do_div(temp, 1000000000);
cpr3_masked_write(ctrl, CPR4_REG_MARGIN_TEMP_CORE_TIMERS,
CPR4_MARGIN_TEMP_CORE_TIMERS_SETTLE_VOLTAGE_COUNT_MASK,
temp
<< CPR4_MARGIN_TEMP_CORE_TIMERS_SETTLE_VOLTAGE_COUNT_SHIFT);
}
if (ctrl->corner_switch_delay_time) {
/*
* Configure the settling timer used to delay
* following SAW requests
*/
temp = (u64)ctrl->cpr_clock_rate
* (u64)ctrl->corner_switch_delay_time;
do_div(temp, 1000000000);
do_div(temp, CPRH_MODE_SWITCH_DELAY_FACTOR);
cpr3_masked_write(ctrl, CPRH_REG_CTL,
CPRH_CTL_MODE_SWITCH_DELAY_MASK,
temp << CPRH_CTL_MODE_SWITCH_DELAY_SHIFT);
}
/*
* Program base voltage and voltage multiplier values which
* are used for floor and initial voltage calculations by the
* CPRh controller.
*/
reg = (DIV_ROUND_UP(ctrl->base_volt, ctrl->step_volt)
<< CPRH_CTL_BASE_VOLTAGE_SHIFT)
& CPRH_CTL_BASE_VOLTAGE_MASK;
reg |= (DIV_ROUND_UP(ctrl->step_volt, 1000)
<< CPRH_CTL_VOLTAGE_MULTIPLIER_SHIFT)
& CPRH_CTL_VOLTAGE_MULTIPLIER_MASK;
/* Enable OSM block interface with CPR */
reg |= CPRH_CTL_OSM_ENABLED;
cpr3_masked_write(ctrl, CPRH_REG_CTL, CPRH_CTL_BASE_VOLTAGE_MASK
| CPRH_CTL_VOLTAGE_MULTIPLIER_MASK
| CPRH_CTL_OSM_ENABLED, reg);
/* Enable loop_en */
cpr3_ctrl_loop_enable(ctrl);
return 0;
}
/**
* cpr3_regulator_init_ctrl() - performs hardware initialization of CPR
* controller registers
* @ctrl: Pointer to the CPR3 controller
*
* Return: 0 on success, errno on failure
*/
static int cpr3_regulator_init_ctrl(struct cpr3_controller *ctrl)
{
int i, j, k, m, rc;
u32 ro_used = 0;
u32 gcnt, cont_dly, up_down_dly, val;
u64 temp;
char *mode;
if (ctrl->core_clk) {
rc = clk_set_rate(ctrl->core_clk, ctrl->cpr_clock_rate);
if (rc) {
cpr3_err(ctrl, "clk_set_rate(core_clk, %u) failed, rc=%d\n",
ctrl->cpr_clock_rate, rc);
return rc;
}
}
rc = cpr3_clock_enable(ctrl);
if (rc) {
cpr3_err(ctrl, "clock enable failed, rc=%d\n", rc);
return rc;
}
ctrl->cpr_enabled = true;
/* Find all RO's used by any corner of any regulator. */
for (i = 0; i < ctrl->thread_count; i++)
for (j = 0; j < ctrl->thread[i].vreg_count; j++)
for (k = 0; k < ctrl->thread[i].vreg[j].corner_count;
k++)
for (m = 0; m < CPR3_RO_COUNT; m++)
if (ctrl->thread[i].vreg[j].corner[k].target_quot[m])
ro_used |= BIT(m);
/* Configure the GCNT of the RO's that will be used */
gcnt = cpr3_regulator_get_gcnt(ctrl);
for (i = 0; i < CPR3_RO_COUNT; i++)
if (ro_used & BIT(i))
cpr3_write(ctrl, CPR3_REG_GCNT(i), gcnt);
/* Configure the loop delay time */
temp = (u64)ctrl->cpr_clock_rate * (u64)ctrl->loop_time;
do_div(temp, 1000000000);
cont_dly = temp;
if (ctrl->supports_hw_closed_loop
&& ctrl->ctrl_type == CPR_CTRL_TYPE_CPR3)
cpr3_write(ctrl, CPR3_REG_CPR_TIMER_MID_CONT, cont_dly);
else
cpr3_write(ctrl, CPR3_REG_CPR_TIMER_AUTO_CONT, cont_dly);
if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR3) {
temp = (u64)ctrl->cpr_clock_rate *
(u64)ctrl->up_down_delay_time;
do_div(temp, 1000000000);
up_down_dly = temp;
if (ctrl->supports_hw_closed_loop)
cpr3_write(ctrl, CPR3_REG_CPR_TIMER_UP_DN_CONT,
up_down_dly);
cpr3_debug(ctrl, "up_down_dly=%u, up_down_delay_time=%u ns\n",
up_down_dly, ctrl->up_down_delay_time);
}
cpr3_debug(ctrl, "cpr_clock_rate=%u HZ, sensor_time=%u ns, loop_time=%u ns, gcnt=%u, cont_dly=%u\n",
ctrl->cpr_clock_rate, ctrl->sensor_time, ctrl->loop_time,
gcnt, cont_dly);
/* Configure CPR sensor operation */
val = (ctrl->idle_clocks << CPR3_CPR_CTL_IDLE_CLOCKS_SHIFT)
& CPR3_CPR_CTL_IDLE_CLOCKS_MASK;
val |= (ctrl->count_mode << CPR3_CPR_CTL_COUNT_MODE_SHIFT)
& CPR3_CPR_CTL_COUNT_MODE_MASK;
val |= (ctrl->count_repeat << CPR3_CPR_CTL_COUNT_REPEAT_SHIFT)
& CPR3_CPR_CTL_COUNT_REPEAT_MASK;
cpr3_write(ctrl, CPR3_REG_CPR_CTL, val);
cpr3_debug(ctrl, "idle_clocks=%u, count_mode=%u, count_repeat=%u; CPR_CTL=0x%08X\n",
ctrl->idle_clocks, ctrl->count_mode, ctrl->count_repeat, val);
/* Configure CPR default step quotients */
val = (ctrl->step_quot_init_min << CPR3_CPR_STEP_QUOT_MIN_SHIFT)
& CPR3_CPR_STEP_QUOT_MIN_MASK;
val |= (ctrl->step_quot_init_max << CPR3_CPR_STEP_QUOT_MAX_SHIFT)
& CPR3_CPR_STEP_QUOT_MAX_MASK;
cpr3_write(ctrl, CPR3_REG_CPR_STEP_QUOT, val);
cpr3_debug(ctrl, "step_quot_min=%u, step_quot_max=%u; STEP_QUOT=0x%08X\n",
ctrl->step_quot_init_min, ctrl->step_quot_init_max, val);
/* Configure the CPR sensor ownership */
for (i = 0; i < ctrl->sensor_count; i++)
cpr3_write(ctrl, CPR3_REG_SENSOR_OWNER(i),
ctrl->sensor_owner[i]);
/* Configure per-thread registers */
for (i = 0; i < ctrl->thread_count; i++) {
rc = cpr3_regulator_init_thread(&ctrl->thread[i]);
if (rc) {
cpr3_err(ctrl, "CPR thread register initialization failed, rc=%d\n",
rc);
return rc;
}
}
if (ctrl->supports_hw_closed_loop) {
if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR4 ||
ctrl->ctrl_type == CPR_CTRL_TYPE_CPRH) {
cpr3_masked_write(ctrl, CPR4_REG_MARGIN_ADJ_CTL,
CPR4_MARGIN_ADJ_CTL_HW_CLOSED_LOOP_EN_MASK,
ctrl->use_hw_closed_loop
? CPR4_MARGIN_ADJ_CTL_HW_CLOSED_LOOP_ENABLE
: CPR4_MARGIN_ADJ_CTL_HW_CLOSED_LOOP_DISABLE);
} else if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR3) {
cpr3_write(ctrl, CPR3_REG_HW_CLOSED_LOOP,
ctrl->use_hw_closed_loop
? CPR3_HW_CLOSED_LOOP_ENABLE
: CPR3_HW_CLOSED_LOOP_DISABLE);
cpr3_debug(ctrl, "PD_THROTTLE=0x%08X\n",
ctrl->proc_clock_throttle);
}
if ((ctrl->use_hw_closed_loop ||
ctrl->ctrl_type == CPR_CTRL_TYPE_CPR4) &&
ctrl->ctrl_type != CPR_CTRL_TYPE_CPRH) {
rc = regulator_enable(ctrl->vdd_limit_regulator);
if (rc) {
cpr3_err(ctrl, "CPR limit regulator enable failed, rc=%d\n",
rc);
return rc;
}
if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR3) {
rc = msm_spm_avs_enable_irq(0,
MSM_SPM_AVS_IRQ_MAX);
if (rc) {
cpr3_err(ctrl, "could not enable max IRQ, rc=%d\n",
rc);
return rc;
}
}
}
}
if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR4) {
rc = cpr3_regulator_init_cpr4(ctrl);
if (rc) {
cpr3_err(ctrl, "CPR4-specific controller initialization failed, rc=%d\n",
rc);
return rc;
}
} else if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPRH) {
rc = cpr3_regulator_init_cprh(ctrl);
if (rc) {
cpr3_err(ctrl, "CPRh-specific controller initialization failed, rc=%d\n",
rc);
return rc;
}
}
/* Ensure that all register writes complete before disabling clocks. */
wmb();
/* Keep CPR clocks on for CPRh full HW closed-loop operation */
if (ctrl->ctrl_type != CPR_CTRL_TYPE_CPRH) {
cpr3_clock_disable(ctrl);
ctrl->cpr_enabled = false;
}
if (!ctrl->cpr_allowed_sw || !ctrl->cpr_allowed_hw)
mode = "open-loop";
else if (ctrl->supports_hw_closed_loop &&
ctrl->ctrl_type != CPR_CTRL_TYPE_CPRH)
mode = ctrl->use_hw_closed_loop
? "HW closed-loop" : "SW closed-loop";
else if (ctrl->supports_hw_closed_loop &&
ctrl->ctrl_type == CPR_CTRL_TYPE_CPRH)
mode = ctrl->use_hw_closed_loop
? "full HW closed-loop" : "open-loop";
else
mode = "closed-loop";
cpr3_info(ctrl, "Default CPR mode = %s", mode);
return 0;
}
/**
* cpr3_regulator_set_target_quot() - configure the target quotient for each
* RO of the CPR3 thread and set the RO mask
* @thread: Pointer to the CPR3 thread
*
* Return: none
*/
static void cpr3_regulator_set_target_quot(struct cpr3_thread *thread)
{
u32 new_quot, last_quot;
int i;
if (thread->aggr_corner.ro_mask == CPR3_RO_MASK
&& thread->last_closed_loop_aggr_corner.ro_mask == CPR3_RO_MASK) {
/* Avoid writing target quotients since all RO's are masked. */
return;
} else if (thread->aggr_corner.ro_mask == CPR3_RO_MASK) {
cpr3_write(thread->ctrl, CPR3_REG_RO_MASK(thread->thread_id),
CPR3_RO_MASK);
thread->last_closed_loop_aggr_corner.ro_mask = CPR3_RO_MASK;
/*
* Only the RO_MASK register needs to be written since all
* RO's are masked.
*/
return;
} else if (thread->aggr_corner.ro_mask
!= thread->last_closed_loop_aggr_corner.ro_mask) {
cpr3_write(thread->ctrl, CPR3_REG_RO_MASK(thread->thread_id),
thread->aggr_corner.ro_mask);
}
for (i = 0; i < CPR3_RO_COUNT; i++) {
new_quot = thread->aggr_corner.target_quot[i];
last_quot = thread->last_closed_loop_aggr_corner.target_quot[i];
if (new_quot != last_quot)
cpr3_write(thread->ctrl,
CPR3_REG_TARGET_QUOT(thread->thread_id, i),
new_quot);
}
thread->last_closed_loop_aggr_corner = thread->aggr_corner;
}
/**
* cpr3_update_vreg_closed_loop_volt() - update the last known settled
* closed loop voltage for a CPR3 regulator
* @vreg: Pointer to the CPR3 regulator
* @vdd_volt: Last known settled voltage in microvolts for the
* VDD supply
* @reg_last_measurement: Value read from the LAST_MEASUREMENT register
*
* Return: none
*/
static void cpr3_update_vreg_closed_loop_volt(struct cpr3_regulator *vreg,
int vdd_volt, u32 reg_last_measurement)
{
bool step_dn, step_up, aggr_step_up, aggr_step_dn, aggr_step_mid;
bool valid, pd_valid, saw_error;
struct cpr3_controller *ctrl = vreg->thread->ctrl;
struct cpr3_corner *corner;
u32 id;
if (vreg->last_closed_loop_corner == CPR3_REGULATOR_CORNER_INVALID)
return;
corner = &vreg->corner[vreg->last_closed_loop_corner];
if (vreg->thread->last_closed_loop_aggr_corner.ro_mask
== CPR3_RO_MASK || !vreg->aggregated) {
return;
} else if (!ctrl->cpr_enabled || !ctrl->last_corner_was_closed_loop) {
return;
} else if (ctrl->thread_count == 1
&& vdd_volt >= corner->floor_volt
&& vdd_volt <= corner->ceiling_volt) {
corner->last_volt = vdd_volt;
cpr3_debug(vreg, "last_volt updated: last_volt[%d]=%d, ceiling_volt[%d]=%d, floor_volt[%d]=%d\n",
vreg->last_closed_loop_corner, corner->last_volt,
vreg->last_closed_loop_corner,
corner->ceiling_volt,
vreg->last_closed_loop_corner,
corner->floor_volt);
return;
} else if (!ctrl->supports_hw_closed_loop) {
return;
} else if (ctrl->ctrl_type != CPR_CTRL_TYPE_CPR3) {
corner->last_volt = vdd_volt;
cpr3_debug(vreg, "last_volt updated: last_volt[%d]=%d, ceiling_volt[%d]=%d, floor_volt[%d]=%d\n",
vreg->last_closed_loop_corner, corner->last_volt,
vreg->last_closed_loop_corner,
corner->ceiling_volt,
vreg->last_closed_loop_corner,
corner->floor_volt);
return;
}
/* CPR clocks are on and HW closed loop is supported */
valid = !!(reg_last_measurement & CPR3_LAST_MEASUREMENT_VALID);
if (!valid) {
cpr3_debug(vreg, "CPR_LAST_VALID_MEASUREMENT=0x%X valid bit not set\n",
reg_last_measurement);
return;
}
id = vreg->thread->thread_id;
step_dn
= !!(reg_last_measurement & CPR3_LAST_MEASUREMENT_THREAD_DN(id));
step_up
= !!(reg_last_measurement & CPR3_LAST_MEASUREMENT_THREAD_UP(id));
aggr_step_dn = !!(reg_last_measurement & CPR3_LAST_MEASUREMENT_AGGR_DN);
aggr_step_mid
= !!(reg_last_measurement & CPR3_LAST_MEASUREMENT_AGGR_MID);
aggr_step_up = !!(reg_last_measurement & CPR3_LAST_MEASUREMENT_AGGR_UP);
saw_error = !!(reg_last_measurement & CPR3_LAST_MEASUREMENT_SAW_ERROR);
pd_valid
= !((((reg_last_measurement & CPR3_LAST_MEASUREMENT_PD_BYPASS_MASK)
>> CPR3_LAST_MEASUREMENT_PD_BYPASS_SHIFT)
& vreg->pd_bypass_mask) == vreg->pd_bypass_mask);
if (!pd_valid) {
cpr3_debug(vreg, "CPR_LAST_VALID_MEASUREMENT=0x%X, all power domains bypassed\n",
reg_last_measurement);
return;
} else if (step_dn && step_up) {
cpr3_err(vreg, "both up and down status bits set, CPR_LAST_VALID_MEASUREMENT=0x%X\n",
reg_last_measurement);
return;
} else if (aggr_step_dn && step_dn && vdd_volt < corner->last_volt
&& vdd_volt >= corner->floor_volt) {
corner->last_volt = vdd_volt;
} else if (aggr_step_up && step_up && vdd_volt > corner->last_volt
&& vdd_volt <= corner->ceiling_volt) {
corner->last_volt = vdd_volt;
} else if (aggr_step_mid
&& vdd_volt >= corner->floor_volt
&& vdd_volt <= corner->ceiling_volt) {
corner->last_volt = vdd_volt;
} else if (saw_error && (vdd_volt == corner->ceiling_volt
|| vdd_volt == corner->floor_volt)) {
corner->last_volt = vdd_volt;
} else {
cpr3_debug(vreg, "last_volt not updated: last_volt[%d]=%d, ceiling_volt[%d]=%d, floor_volt[%d]=%d, vdd_volt=%d, CPR_LAST_VALID_MEASUREMENT=0x%X\n",
vreg->last_closed_loop_corner, corner->last_volt,
vreg->last_closed_loop_corner,
corner->ceiling_volt,
vreg->last_closed_loop_corner, corner->floor_volt,
vdd_volt, reg_last_measurement);
return;
}
cpr3_debug(vreg, "last_volt updated: last_volt[%d]=%d, ceiling_volt[%d]=%d, floor_volt[%d]=%d, CPR_LAST_VALID_MEASUREMENT=0x%X\n",
vreg->last_closed_loop_corner, corner->last_volt,
vreg->last_closed_loop_corner, corner->ceiling_volt,
vreg->last_closed_loop_corner, corner->floor_volt,
reg_last_measurement);
}
/**
* cpr3_regulator_config_ldo_retention() - configure per-regulator LDO retention
* mode
* @vreg: Pointer to the CPR3 regulator to configure
* @ref_volt: Reference voltage used to determine if LDO retention
* mode can be allowed. It corresponds either to the
* aggregated floor voltage or the next VDD supply setpoint
*
* This function determines if a CPR3 regulator's configuration satisfies safe
* operating voltages for LDO retention and uses the regulator_allow_bypass()
* interface on the LDO retention regulator to enable or disable such feature
* accordingly.
*
* Return: 0 on success, errno on failure
*/
static int cpr3_regulator_config_ldo_retention(struct cpr3_regulator *vreg,
int ref_volt)
{
struct regulator *ldo_ret_reg = vreg->ldo_ret_regulator;
int retention_volt, rc;
enum msm_ldo_supply_mode mode;
if (!ldo_ret_reg) {
/* LDO retention regulator is not defined */
return 0;
}
retention_volt = regulator_get_voltage(ldo_ret_reg);
if (retention_volt < 0) {
cpr3_err(vreg, "regulator_get_voltage(ldo_ret) failed, rc=%d\n",
retention_volt);
return retention_volt;
}
mode = ref_volt >= retention_volt + vreg->ldo_min_headroom_volt
? LDO_MODE : BHS_MODE;
rc = regulator_allow_bypass(ldo_ret_reg, mode);
if (rc)
cpr3_err(vreg, "regulator_allow_bypass(ldo_ret) == %s failed, rc=%d\n",
mode ? "true" : "false", rc);
return rc;
}
/**
* cpr3_regulator_config_kryo_ldo_mem_acc() - configure the mem-acc regulator
* corner based upon a future Kryo LDO regulator voltage setpoint
* @vreg: Pointer to the CPR3 regulator
* @new_volt: New voltage in microvolts that the LDO regulator needs
* to end up at
*
* This function determines if a new LDO regulator set point will result
* in crossing the voltage threshold that requires reconfiguration of
* the mem-acc regulator associated with a CPR3 regulator and if so, performs
* the correct sequence to select the correct mem-acc corner.
*
* Return: 0 on success, errno on failure
*/
static int cpr3_regulator_config_kryo_ldo_mem_acc(struct cpr3_regulator *vreg,
int new_volt)
{
struct cpr3_controller *ctrl = vreg->thread->ctrl;
struct regulator *ldo_reg = vreg->ldo_regulator;
struct regulator *mem_acc_reg = vreg->mem_acc_regulator;
int mem_acc_volt = ctrl->mem_acc_threshold_volt;
int last_volt, safe_volt, mem_acc_corn, rc;
enum msm_apm_supply apm_mode;
if (!mem_acc_reg || !mem_acc_volt || !ldo_reg)
return 0;
apm_mode = msm_apm_get_supply(ctrl->apm);
if (apm_mode < 0) {
cpr3_err(ctrl, "APM get supply failed, rc=%d\n",
apm_mode);
return apm_mode;
}
last_volt = regulator_get_voltage(ldo_reg);
if (last_volt < 0) {
cpr3_err(vreg, "regulator_get_voltage(ldo) failed, rc=%d\n",
last_volt);
return last_volt;
}
if (((last_volt < mem_acc_volt && mem_acc_volt <= new_volt)
|| (last_volt >= mem_acc_volt && mem_acc_volt > new_volt))) {
if (apm_mode == ctrl->apm_high_supply)
safe_volt = min(vreg->ldo_max_volt, mem_acc_volt);
else
safe_volt = min(max(ctrl->system_supply_max_volt -
vreg->ldo_max_headroom_volt,
mem_acc_volt), vreg->ldo_max_volt);
rc = regulator_set_voltage(ldo_reg, safe_volt,
max(new_volt, last_volt));
if (rc) {
cpr3_err(ctrl, "regulator_set_voltage(ldo) == %d failed, rc=%d\n",
mem_acc_volt, rc);
return rc;
}
mem_acc_corn = new_volt < mem_acc_volt ?
ctrl->mem_acc_corner_map[CPR3_MEM_ACC_LOW_CORNER] :
ctrl->mem_acc_corner_map[CPR3_MEM_ACC_HIGH_CORNER];
rc = regulator_set_voltage(mem_acc_reg, mem_acc_corn,
mem_acc_corn);
if (rc) {
cpr3_err(ctrl, "regulator_set_voltage(mem_acc) == %d failed, rc=%d\n",
0, rc);
return rc;
}
}
return 0;
}
/**
* cpr3_regulator_kryo_bhs_prepare() - configure the Kryo LDO regulator
* associated with a CPR3 regulator in preparation for BHS
* mode switch.
* @vreg: Pointer to the CPR3 regulator
* @vdd_volt: Last known settled voltage in microvolts for the VDD
* supply
* @vdd_ceiling_volt: Last known aggregated ceiling voltage in microvolts for
* the VDD supply
*
* This function performs the necessary steps prior to switching a Kryo LDO
* regulator to BHS mode (LDO bypassed mode).
*
* Return: 0 on success, errno on failure
*/
static int cpr3_regulator_kryo_bhs_prepare(struct cpr3_regulator *vreg,
int vdd_volt, int vdd_ceiling_volt)
{
struct regulator *ldo_reg = vreg->ldo_regulator;
int bhs_volt, rc;
bhs_volt = vdd_volt - vreg->ldo_min_headroom_volt;
if (bhs_volt > vreg->ldo_max_volt) {
cpr3_debug(vreg, "limited to LDO output of %d uV when switching to BHS mode\n",
vreg->ldo_max_volt);
bhs_volt = vreg->ldo_max_volt;
}
rc = cpr3_regulator_config_kryo_ldo_mem_acc(vreg, bhs_volt);
if (rc) {
cpr3_err(vreg, "failed to configure mem-acc settings\n");
return rc;
}
rc = regulator_set_voltage(ldo_reg, bhs_volt, min(vdd_ceiling_volt,
vreg->ldo_max_volt));
if (rc) {
cpr3_err(vreg, "regulator_set_voltage(ldo) == %d failed, rc=%d\n",
bhs_volt, rc);
return rc;
}
return rc;
}
/**
* cpr3_regulator_set_bhs_mode() - configure the LDO regulator associated with
* a CPR3 regulator to BHS mode
* @vreg: Pointer to the CPR3 regulator
* @vdd_volt: Last known settled voltage in microvolts for the VDD
* supply
* @vdd_ceiling_volt: Last known aggregated ceiling voltage in microvolts for
* the VDD supply
*
* This function performs the necessary steps to switch an LDO regulator
* to BHS mode (LDO bypassed mode).
*/
static int cpr3_regulator_set_bhs_mode(struct cpr3_regulator *vreg,
int vdd_volt, int vdd_ceiling_volt)
{
struct regulator *ldo_reg = vreg->ldo_regulator;
int rc;
if (vreg->ldo_type == CPR3_LDO_KRYO) {
rc = cpr3_regulator_kryo_bhs_prepare(vreg, vdd_volt,
vdd_ceiling_volt);
if (rc) {
cpr3_err(vreg, "cpr3 regulator bhs mode prepare failed, rc=%d\n",
rc);
return rc;
}
}
rc = regulator_allow_bypass(ldo_reg, BHS_MODE);
if (rc) {
cpr3_err(vreg, "regulator_allow_bypass(bhs) == %s failed, rc=%d\n",
BHS_MODE ? "true" : "false", rc);
return rc;
}
vreg->ldo_regulator_bypass = BHS_MODE;
return rc;
}
/**
* cpr3_regulator_ldo_apm_prepare() - configure LDO regulators associated
* with each CPR3 regulator of a CPR3 controller in preparation
* for an APM switch.
* @ctrl: Pointer to the CPR3 controller
* @new_volt: New voltage in microvolts that the VDD supply
* needs to end up at
* @last_volt: Last known voltage in microvolts for the VDD supply
* @aggr_corner: Pointer to the CPR3 corner which corresponds to the max
* corner aggregated from all CPR3 threads managed by the
* CPR3 controller
*
* This function ensures LDO regulator hardware requirements are met before
* an APM switch is requested. The function must be called as the last step
* before switching the APM mode.
*
* Return: 0 on success, errno on failure
*/
static int cpr3_regulator_ldo_apm_prepare(struct cpr3_controller *ctrl,
int new_volt, int last_volt,
struct cpr3_corner *aggr_corner)
{
struct cpr3_regulator *vreg;
struct cpr3_corner *current_corner;
enum msm_apm_supply apm_mode;
int i, j, safe_volt, max_volt, ldo_volt, ref_volt, rc;
apm_mode = msm_apm_get_supply(ctrl->apm);
if (apm_mode < 0) {
cpr3_err(ctrl, "APM get supply failed, rc=%d\n", apm_mode);
return apm_mode;
}
if (apm_mode == ctrl->apm_low_supply ||
new_volt >= ctrl->apm_threshold_volt)
return 0;
/*
* Guarantee LDO maximum headroom is not violated when the APM is
* switched to the system-supply source.
*/
for (i = 0; i < ctrl->thread_count; i++) {
for (j = 0; j < ctrl->thread[i].vreg_count; j++) {
vreg = &ctrl->thread[i].vreg[j];
if (!vreg->vreg_enabled || vreg->current_corner
== CPR3_REGULATOR_CORNER_INVALID)
continue;
if (!vreg->ldo_regulator || !vreg->ldo_mode_allowed ||
vreg->ldo_regulator_bypass == BHS_MODE)
continue;
/*
* If the new VDD configuration does not satisfy
* requirements for LDO usage, switch the regulator
* to BHS mode. By doing so, the LDO maximum headroom
* does not need to be enforced.
*/
current_corner = &vreg->corner[vreg->current_corner];
ldo_volt = current_corner->open_loop_volt
- vreg->ldo_adjust_volt;
ref_volt = ctrl->use_hw_closed_loop ?
aggr_corner->floor_volt :
new_volt;
if (ref_volt < ldo_volt + vreg->ldo_min_headroom_volt
|| ldo_volt < ctrl->system_supply_max_volt -
vreg->ldo_max_headroom_volt ||
ldo_volt > vreg->ldo_max_volt) {
rc = cpr3_regulator_set_bhs_mode(vreg,
last_volt, aggr_corner->ceiling_volt);
if (rc)
return rc;
/*
* Do not enforce LDO maximum headroom since the
* regulator is now configured to BHS mode.
*/
continue;
}
safe_volt = min(max(ldo_volt,
ctrl->system_supply_max_volt
- vreg->ldo_max_headroom_volt),
vreg->ldo_max_volt);
max_volt = min(ctrl->system_supply_max_volt,
vreg->ldo_max_volt);
rc = regulator_set_voltage(vreg->ldo_regulator,
safe_volt, max_volt);
if (rc) {
cpr3_err(vreg, "regulator_set_voltage(ldo) == %d failed, rc=%d\n",
safe_volt, rc);
return rc;
}
}
}
return 0;
}
/**
* cpr3_regulator_config_vreg_kryo_ldo() - configure the voltage and bypass
* state for the Kryo LDO regulator associated with a single CPR3
* regulator.
*
* @vreg: Pointer to the CPR3 regulator
* @vdd_floor_volt: Last known aggregated floor voltage in microvolts for
* the VDD supply
* @vdd_ceiling_volt: Last known aggregated ceiling voltage in microvolts for
* the VDD supply
* @ref_volt: Reference voltage in microvolts corresponds either to
* the aggregated floor voltage or the next VDD supply
* setpoint.
* @last_volt: Last known voltage in microvolts for the VDD supply
*
* This function performs all relevant LDO or BHS configurations if a Kryo LDO
* regulator is specified.
*
* Return: 0 on success, errno on failure
*/
static int cpr3_regulator_config_vreg_kryo_ldo(struct cpr3_regulator *vreg,
int vdd_floor_volt, int vdd_ceiling_volt,
int ref_volt, int last_volt)
{
struct cpr3_controller *ctrl = vreg->thread->ctrl;
struct regulator *ldo_reg = vreg->ldo_regulator;
struct cpr3_corner *current_corner;
enum msm_apm_supply apm_mode;
int rc, ldo_volt, final_ldo_volt, bhs_volt, max_volt, safe_volt;
current_corner = &vreg->corner[vreg->current_corner];
ldo_volt = current_corner->open_loop_volt
- vreg->ldo_adjust_volt;
bhs_volt = last_volt - vreg->ldo_min_headroom_volt;
max_volt = min(vdd_ceiling_volt, vreg->ldo_max_volt);
if (ref_volt >= ldo_volt + vreg->ldo_min_headroom_volt &&
ldo_volt >= ctrl->system_supply_max_volt -
vreg->ldo_max_headroom_volt &&
bhs_volt >= ctrl->system_supply_max_volt -
vreg->ldo_max_headroom_volt &&
ldo_volt <= vreg->ldo_max_volt) {
/* LDO minimum and maximum headrooms satisfied */
apm_mode = msm_apm_get_supply(ctrl->apm);
if (apm_mode < 0) {
cpr3_err(ctrl, "APM get supply failed, rc=%d\n",
apm_mode);
return apm_mode;
}
if (vreg->ldo_regulator_bypass == BHS_MODE) {
/*
* BHS to LDO transition. Configure LDO output
* to min(max LDO output, VDD - LDO headroom)
* voltage if APM is on high supply source or
* min(max(system-supply ceiling - LDO max headroom,
* VDD - LDO headroom), max LDO output) if
* APM is on low supply source, then switch
* regulator mode.
*/
if (apm_mode == ctrl->apm_high_supply)
safe_volt = min(vreg->ldo_max_volt, bhs_volt);
else
safe_volt =
min(max(ctrl->system_supply_max_volt -
vreg->ldo_max_headroom_volt,
bhs_volt),
vreg->ldo_max_volt);
rc = cpr3_regulator_config_kryo_ldo_mem_acc(vreg,
safe_volt);
if (rc) {
cpr3_err(vreg, "failed to configure mem-acc settings\n");
return rc;
}
rc = regulator_set_voltage(ldo_reg, safe_volt,
max_volt);
if (rc) {
cpr3_err(vreg, "regulator_set_voltage(ldo) == %d failed, rc=%d\n",
safe_volt, rc);
return rc;
}
rc = regulator_allow_bypass(ldo_reg, LDO_MODE);
if (rc) {
cpr3_err(vreg, "regulator_allow_bypass(ldo) == %s failed, rc=%d\n",
LDO_MODE ? "true" : "false", rc);
return rc;
}
vreg->ldo_regulator_bypass = LDO_MODE;
}
/* Configure final LDO output voltage */
if (apm_mode == ctrl->apm_high_supply)
final_ldo_volt = max(ldo_volt,
vdd_ceiling_volt -
vreg->ldo_max_headroom_volt);
else
final_ldo_volt = ldo_volt;
rc = cpr3_regulator_config_kryo_ldo_mem_acc(vreg,
final_ldo_volt);
if (rc) {
cpr3_err(vreg, "failed to configure mem-acc settings\n");
return rc;
}
rc = regulator_set_voltage(ldo_reg, final_ldo_volt, max_volt);
if (rc) {
cpr3_err(vreg, "regulator_set_voltage(ldo) == %d failed, rc=%d\n",
final_ldo_volt, rc);
return rc;
}
} else {
if (vreg->ldo_regulator_bypass == LDO_MODE) {
/* LDO to BHS transition */
rc = cpr3_regulator_set_bhs_mode(vreg, last_volt,
vdd_ceiling_volt);
if (rc)
return rc;
}
}
return 0;
}
/**
* cpr3_regulator_config_vreg_ldo300() - configure the voltage and bypass state
* for the LDO300 regulator associated with a single CPR3
* regulator.
*
* @vreg: Pointer to the CPR3 regulator
* @new_volt: New voltage in microvolts that VDD supply needs to
* end up at
* @vdd_ceiling_volt: Last known aggregated ceiling voltage in microvolts for
* the VDD supply
*
* This function performs all relevant LDO or BHS configurations for an LDO300
* type regulator.
*
* Return: 0 on success, errno on failure
*/
static int cpr3_regulator_config_vreg_ldo300(struct cpr3_regulator *vreg,
int new_volt, int vdd_ceiling_volt)
{
struct regulator *ldo_reg = vreg->ldo_regulator;
struct cpr3_corner *corner;
bool mode;
int rc = 0;
corner = &vreg->corner[vreg->current_corner];
mode = corner->ldo_mode_allowed ? LDO_MODE : BHS_MODE;
if (mode == LDO_MODE) {
rc = regulator_set_voltage(ldo_reg, new_volt, vdd_ceiling_volt);
if (rc) {
cpr3_err(vreg, "regulator_set_voltage(ldo) == %d failed, rc=%d\n",
new_volt, rc);
return rc;
}
}
if (vreg->ldo_regulator_bypass != mode) {
rc = regulator_allow_bypass(ldo_reg, mode);
if (rc) {
cpr3_err(vreg, "regulator_allow_bypass(%s) is failed, rc=%d\n",
mode == LDO_MODE ? "ldo" : "bhs", rc);
return rc;
}
vreg->ldo_regulator_bypass = mode;
}
return rc;
}
/**
* cpr3_regulator_config_vreg_ldo() - configure the voltage and bypass state for
* the LDO regulator associated with a single CPR3 regulator.
*
* @vreg: Pointer to the CPR3 regulator
* @vdd_floor_volt: Last known aggregated floor voltage in microvolts for
* the VDD supply
* @vdd_ceiling_volt: Last known aggregated ceiling voltage in microvolts for
* the VDD supply
* @new_volt: New voltage in microvolts that VDD supply needs to
* end up at
* @last_volt: Last known voltage in microvolts for the VDD supply
*
* This function identifies the type of LDO regulator associated with a CPR3
* regulator and invokes the LDO specific configuration functions.
*
* Return: 0 on success, errno on failure
*/
static int cpr3_regulator_config_vreg_ldo(struct cpr3_regulator *vreg,
int vdd_floor_volt, int vdd_ceiling_volt,
int new_volt, int last_volt)
{
struct cpr3_controller *ctrl = vreg->thread->ctrl;
int ref_volt, rc;
ref_volt = ctrl->use_hw_closed_loop ? vdd_floor_volt :
new_volt;
rc = cpr3_regulator_config_ldo_retention(vreg, ref_volt);
if (rc)
return rc;
if (!vreg->vreg_enabled ||
vreg->current_corner == CPR3_REGULATOR_CORNER_INVALID)
return 0;
switch (vreg->ldo_type) {
case CPR3_LDO_KRYO:
rc = cpr3_regulator_config_vreg_kryo_ldo(vreg, vdd_floor_volt,
vdd_ceiling_volt, ref_volt, last_volt);
if (rc)
cpr3_err(vreg, "kryo ldo regulator config failed, rc=%d\n",
rc);
break;
case CPR3_LDO300:
rc = cpr3_regulator_config_vreg_ldo300(vreg, new_volt,
vdd_ceiling_volt);
if (rc)
cpr3_err(vreg, "ldo300 regulator config failed, rc=%d\n",
rc);
break;
default:
cpr3_err(vreg, "invalid ldo regulator type = %d\n",
vreg->ldo_type);
rc = -EINVAL;
}
return rc;
}
/**
* cpr3_regulator_config_ldo() - configure the voltage and bypass state for the
* LDO regulator associated with each CPR3 regulator of a CPR3
* controller
* @ctrl: Pointer to the CPR3 controller
* @vdd_floor_volt: Last known aggregated floor voltage in microvolts for
* the VDD supply
* @vdd_ceiling_volt: Last known aggregated ceiling voltage in microvolts for
* the VDD supply
* @new_volt: New voltage in microvolts that VDD supply needs to
* end up at
* @last_volt: Last known voltage in microvolts for the VDD supply
*
* Return: 0 on success, errno on failure
*/
static int cpr3_regulator_config_ldo(struct cpr3_controller *ctrl,
int vdd_floor_volt, int vdd_ceiling_volt,
int new_volt, int last_volt)
{
struct cpr3_regulator *vreg;
int i, j, rc;
for (i = 0; i < ctrl->thread_count; i++) {
for (j = 0; j < ctrl->thread[i].vreg_count; j++) {
vreg = &ctrl->thread[i].vreg[j];
if (!vreg->ldo_regulator || !vreg->ldo_mode_allowed)
continue;
rc = cpr3_regulator_config_vreg_ldo(vreg,
vdd_floor_volt, vdd_ceiling_volt,
new_volt, last_volt);
if (rc)
return rc;
}
}
return 0;
}
/**
* cpr3_regulator_mem_acc_bhs_used() - determines if mem-acc regulators powered
* through a BHS are associated with the CPR3 controller or any of
* the CPR3 regulators it controls.
* @ctrl: Pointer to the CPR3 controller
*
* This function determines if the CPR3 controller or any of its CPR3 regulators
* need to manage mem-acc regulators that are currently powered through a BHS
* and whose corner selection is based upon a particular voltage threshold.
*
* Return: true or false
*/
static bool cpr3_regulator_mem_acc_bhs_used(struct cpr3_controller *ctrl)
{
struct cpr3_regulator *vreg;
int i, j;
if (!ctrl->mem_acc_threshold_volt)
return false;
if (ctrl->mem_acc_regulator)
return true;
for (i = 0; i < ctrl->thread_count; i++) {
for (j = 0; j < ctrl->thread[i].vreg_count; j++) {
vreg = &ctrl->thread[i].vreg[j];
if (vreg->mem_acc_regulator &&
(!vreg->ldo_regulator ||
vreg->ldo_regulator_bypass
== BHS_MODE))
return true;
}
}
return false;
}
/**
* cpr3_regulator_config_bhs_mem_acc() - configure the mem-acc regulator
* settings for hardware blocks currently powered through the BHS.
* @ctrl: Pointer to the CPR3 controller
* @new_volt: New voltage in microvolts that VDD supply needs to
* end up at
* @last_volt: Pointer to the last known voltage in microvolts for the
* VDD supply
* @aggr_corner: Pointer to the CPR3 corner which corresponds to the max
* corner aggregated from all CPR3 threads managed by the
* CPR3 controller
*
* This function programs the mem-acc regulator corners for CPR3 regulators
* whose LDO regulators are in bypassed state. The function also handles
* CPR3 controllers which utilize mem-acc regulators that operate independently
* from the LDO hardware and that must be programmed when the VDD supply
* crosses a particular voltage threshold.
*
* Return: 0 on success, errno on failure. If the VDD supply voltage is
* modified, last_volt is updated to reflect the new voltage setpoint.
*/
static int cpr3_regulator_config_bhs_mem_acc(struct cpr3_controller *ctrl,
int new_volt, int *last_volt,
struct cpr3_corner *aggr_corner)
{
struct cpr3_regulator *vreg;
int i, j, rc, mem_acc_corn, safe_volt;
int mem_acc_volt = ctrl->mem_acc_threshold_volt;
int ref_volt;
if (!cpr3_regulator_mem_acc_bhs_used(ctrl))
return 0;
ref_volt = ctrl->use_hw_closed_loop ? aggr_corner->floor_volt :
new_volt;
if (((*last_volt < mem_acc_volt && mem_acc_volt <= ref_volt) ||
(*last_volt >= mem_acc_volt && mem_acc_volt > ref_volt))) {
if (ref_volt < *last_volt)
safe_volt = max(mem_acc_volt, aggr_corner->last_volt);
else
safe_volt = max(mem_acc_volt, *last_volt);
rc = regulator_set_voltage(ctrl->vdd_regulator, safe_volt,
new_volt < *last_volt ?
ctrl->aggr_corner.ceiling_volt :
new_volt);
if (rc) {
cpr3_err(ctrl, "regulator_set_voltage(vdd) == %d failed, rc=%d\n",
safe_volt, rc);
return rc;
}
*last_volt = safe_volt;
mem_acc_corn = ref_volt < mem_acc_volt ?
ctrl->mem_acc_corner_map[CPR3_MEM_ACC_LOW_CORNER] :
ctrl->mem_acc_corner_map[CPR3_MEM_ACC_HIGH_CORNER];
if (ctrl->mem_acc_regulator) {
rc = regulator_set_voltage(ctrl->mem_acc_regulator,
mem_acc_corn, mem_acc_corn);
if (rc) {
cpr3_err(ctrl, "regulator_set_voltage(mem_acc) == %d failed, rc=%d\n",
mem_acc_corn, rc);
return rc;
}
}
for (i = 0; i < ctrl->thread_count; i++) {
for (j = 0; j < ctrl->thread[i].vreg_count; j++) {
vreg = &ctrl->thread[i].vreg[j];
if (!vreg->mem_acc_regulator ||
(vreg->ldo_regulator &&
vreg->ldo_regulator_bypass
== LDO_MODE))
continue;
rc = regulator_set_voltage(
vreg->mem_acc_regulator, mem_acc_corn,
mem_acc_corn);
if (rc) {
cpr3_err(vreg, "regulator_set_voltage(mem_acc) == %d failed, rc=%d\n",
mem_acc_corn, rc);
return rc;
}
}
}
}
return 0;
}
/**
* cpr3_regulator_switch_apm_mode() - switch the mode of the APM controller
* associated with a given CPR3 controller
* @ctrl: Pointer to the CPR3 controller
* @new_volt: New voltage in microvolts that VDD supply needs to
* end up at
* @last_volt: Pointer to the last known voltage in microvolts for the
* VDD supply
* @aggr_corner: Pointer to the CPR3 corner which corresponds to the max
* corner aggregated from all CPR3 threads managed by the
* CPR3 controller
*
* This function requests a switch of the APM mode while guaranteeing
* any LDO regulator hardware requirements are satisfied. The function must
* be called once it is known a new VDD supply setpoint crosses the APM
* voltage threshold.
*
* Return: 0 on success, errno on failure. If the VDD supply voltage is
* modified, last_volt is updated to reflect the new voltage setpoint.
*/
static int cpr3_regulator_switch_apm_mode(struct cpr3_controller *ctrl,
int new_volt, int *last_volt,
struct cpr3_corner *aggr_corner)
{
struct regulator *vdd = ctrl->vdd_regulator;
int apm_volt = ctrl->apm_threshold_volt;
int orig_last_volt = *last_volt;
int rc;
rc = regulator_set_voltage(vdd, apm_volt, apm_volt);
if (rc) {
cpr3_err(ctrl, "regulator_set_voltage(vdd) == %d failed, rc=%d\n",
apm_volt, rc);
return rc;
}
*last_volt = apm_volt;
rc = cpr3_regulator_ldo_apm_prepare(ctrl, new_volt, *last_volt,
aggr_corner);
if (rc) {
cpr3_err(ctrl, "unable to prepare LDO state for APM switch, rc=%d\n",
rc);
return rc;
}
rc = msm_apm_set_supply(ctrl->apm, new_volt >= apm_volt
? ctrl->apm_high_supply : ctrl->apm_low_supply);
if (rc) {
cpr3_err(ctrl, "APM switch failed, rc=%d\n", rc);
/* Roll back the voltage. */
regulator_set_voltage(vdd, orig_last_volt, INT_MAX);
*last_volt = orig_last_volt;
return rc;
}
return 0;
}
/**
* cpr3_regulator_config_voltage_crossings() - configure APM and mem-acc
* settings depending upon a new VDD supply setpoint
*
* @ctrl: Pointer to the CPR3 controller
* @new_volt: New voltage in microvolts that VDD supply needs to
* end up at
* @last_volt: Pointer to the last known voltage in microvolts for the
* VDD supply
* @aggr_corner: Pointer to the CPR3 corner which corresponds to the max
* corner aggregated from all CPR3 threads managed by the
* CPR3 controller
*
* This function handles the APM and mem-acc regulator reconfiguration if
* the new VDD supply voltage will result in crossing their respective voltage
* thresholds.
*
* Return: 0 on success, errno on failure. If the VDD supply voltage is
* modified, last_volt is updated to reflect the new voltage setpoint.
*/
static int cpr3_regulator_config_voltage_crossings(struct cpr3_controller *ctrl,
int new_volt, int *last_volt,
struct cpr3_corner *aggr_corner)
{
bool apm_crossing = false, mem_acc_crossing = false;
bool mem_acc_bhs_used;
int apm_volt = ctrl->apm_threshold_volt;
int mem_acc_volt = ctrl->mem_acc_threshold_volt;
int ref_volt, rc;
if (ctrl->apm && apm_volt > 0
&& ((*last_volt < apm_volt && apm_volt <= new_volt)
|| (*last_volt >= apm_volt && apm_volt > new_volt)))
apm_crossing = true;
mem_acc_bhs_used = cpr3_regulator_mem_acc_bhs_used(ctrl);
ref_volt = ctrl->use_hw_closed_loop ? aggr_corner->floor_volt :
new_volt;
if (mem_acc_bhs_used &&
(((*last_volt < mem_acc_volt && mem_acc_volt <= ref_volt) ||
(*last_volt >= mem_acc_volt && mem_acc_volt > ref_volt))))
mem_acc_crossing = true;
if (apm_crossing && mem_acc_crossing) {
if ((new_volt < *last_volt && apm_volt >= mem_acc_volt) ||
(new_volt >= *last_volt && apm_volt < mem_acc_volt)) {
rc = cpr3_regulator_switch_apm_mode(ctrl, new_volt,
last_volt,
aggr_corner);
if (rc) {
cpr3_err(ctrl, "unable to switch APM mode\n");
return rc;
}
rc = cpr3_regulator_config_bhs_mem_acc(ctrl, new_volt,
last_volt, aggr_corner);
if (rc) {
cpr3_err(ctrl, "unable to configure BHS mem-acc settings\n");
return rc;
}
} else {
rc = cpr3_regulator_config_bhs_mem_acc(ctrl, new_volt,
last_volt, aggr_corner);
if (rc) {
cpr3_err(ctrl, "unable to configure BHS mem-acc settings\n");
return rc;
}
rc = cpr3_regulator_switch_apm_mode(ctrl, new_volt,
last_volt,
aggr_corner);
if (rc) {
cpr3_err(ctrl, "unable to switch APM mode\n");
return rc;
}
}
} else if (apm_crossing) {
rc = cpr3_regulator_switch_apm_mode(ctrl, new_volt, last_volt,
aggr_corner);
if (rc) {
cpr3_err(ctrl, "unable to switch APM mode\n");
return rc;
}
} else if (mem_acc_crossing) {
rc = cpr3_regulator_config_bhs_mem_acc(ctrl, new_volt,
last_volt, aggr_corner);
if (rc) {
cpr3_err(ctrl, "unable to configure BHS mem-acc settings\n");
return rc;
}
}
return 0;
}
/**
* cpr3_regulator_config_mem_acc() - configure the corner of the mem-acc
* regulator associated with the CPR3 controller
* @ctrl: Pointer to the CPR3 controller
* @aggr_corner: Pointer to the CPR3 corner which corresponds to the max
* corner aggregated from all CPR3 threads managed by the
* CPR3 controller
*
* Return: 0 on success, errno on failure
*/
static int cpr3_regulator_config_mem_acc(struct cpr3_controller *ctrl,
struct cpr3_corner *aggr_corner)
{
int rc;
if (ctrl->mem_acc_regulator && aggr_corner->mem_acc_volt) {
rc = regulator_set_voltage(ctrl->mem_acc_regulator,
aggr_corner->mem_acc_volt,
aggr_corner->mem_acc_volt);
if (rc) {
cpr3_err(ctrl, "regulator_set_voltage(mem_acc) == %d failed, rc=%d\n",
aggr_corner->mem_acc_volt, rc);
return rc;
}
}
return 0;
}
/**
* cpr3_regulator_scale_vdd_voltage() - scale the CPR controlled VDD supply
* voltage to the new level while satisfying any other hardware
* requirements
* @ctrl: Pointer to the CPR3 controller
* @new_volt: New voltage in microvolts that VDD supply needs to end
* up at
* @last_volt: Last known voltage in microvolts for the VDD supply
* @aggr_corner: Pointer to the CPR3 corner which corresponds to the max
* corner aggregated from all CPR3 threads managed by the
* CPR3 controller
*
* This function scales the CPR controlled VDD supply voltage from its
* current level to the new voltage that is specified. If the supply is
* configured to use the APM and the APM threshold is crossed as a result of
* the voltage scaling, then this function also stops at the APM threshold,
* switches the APM source, and finally sets the final new voltage.
*
* Return: 0 on success, errno on failure
*/
static int cpr3_regulator_scale_vdd_voltage(struct cpr3_controller *ctrl,
int new_volt, int last_volt,
struct cpr3_corner *aggr_corner)
{
struct regulator *vdd = ctrl->vdd_regulator;
int rc;
if (new_volt < last_volt) {
if (ctrl->support_ldo300_vreg) {
rc = cpr3_regulator_config_mem_acc(ctrl, aggr_corner);
if (rc)
return rc;
}
/* Decreasing VDD voltage */
rc = cpr3_regulator_config_ldo(ctrl, aggr_corner->floor_volt,
ctrl->aggr_corner.ceiling_volt,
new_volt, last_volt);
if (rc) {
cpr3_err(ctrl, "unable to configure LDO state, rc=%d\n",
rc);
return rc;
}
if (!ctrl->support_ldo300_vreg) {
rc = cpr3_regulator_config_mem_acc(ctrl, aggr_corner);
if (rc)
return rc;
}
} else {
/* Increasing VDD voltage */
if (ctrl->system_regulator) {
rc = regulator_set_voltage(ctrl->system_regulator,
aggr_corner->system_volt, INT_MAX);
if (rc) {
cpr3_err(ctrl, "regulator_set_voltage(system) == %d failed, rc=%d\n",
aggr_corner->system_volt, rc);
return rc;
}
}
}
rc = cpr3_regulator_config_voltage_crossings(ctrl, new_volt, &last_volt,
aggr_corner);
if (rc) {
cpr3_err(ctrl, "unable to handle voltage threshold crossing configurations, rc=%d\n",
rc);
return rc;
}
/*
* Subtract a small amount from the min_uV parameter so that the
* set voltage request is not dropped by the framework due to being
* duplicate. This is needed in order to switch from hardware
* closed-loop to open-loop successfully.
*/
rc = regulator_set_voltage(vdd, new_volt - (ctrl->cpr_enabled ? 0 : 1),
aggr_corner->ceiling_volt);
if (rc) {
cpr3_err(ctrl, "regulator_set_voltage(vdd) == %d failed, rc=%d\n",
new_volt, rc);
return rc;
}
if (new_volt == last_volt && ctrl->supports_hw_closed_loop
&& ctrl->ctrl_type == CPR_CTRL_TYPE_CPR4) {
/*
* CPR4 features enforce voltage reprogramming when the last
* set voltage and new set voltage are same. This way, we can
* ensure that SAW PMIC STATUS register is updated with newly
* programmed voltage.
*/
rc = regulator_sync_voltage(vdd);
if (rc) {
cpr3_err(ctrl, "regulator_sync_voltage(vdd) == %d failed, rc=%d\n",
new_volt, rc);
return rc;
}
}
if (new_volt >= last_volt) {
/* Increasing VDD voltage */
rc = cpr3_regulator_config_ldo(ctrl, aggr_corner->floor_volt,
aggr_corner->ceiling_volt,
new_volt, new_volt);
if (rc) {
cpr3_err(ctrl, "unable to configure LDO state, rc=%d\n",
rc);
return rc;
}
rc = cpr3_regulator_config_mem_acc(ctrl, aggr_corner);
if (rc)
return rc;
} else {
/* Decreasing VDD voltage */
if (ctrl->system_regulator) {
rc = regulator_set_voltage(ctrl->system_regulator,
aggr_corner->system_volt, INT_MAX);
if (rc) {
cpr3_err(ctrl, "regulator_set_voltage(system) == %d failed, rc=%d\n",
aggr_corner->system_volt, rc);
return rc;
}
}
}
return 0;
}
/**
* cpr3_regulator_get_dynamic_floor_volt() - returns the current dynamic floor
* voltage based upon static configurations and the state of all
* power domains during the last CPR measurement
* @ctrl: Pointer to the CPR3 controller
* @reg_last_measurement: Value read from the LAST_MEASUREMENT register
*
* When using HW closed-loop, the dynamic floor voltage is always returned
* regardless of the current state of the power domains.
*
* Return: dynamic floor voltage in microvolts or 0 if dynamic floor is not
* currently required
*/
static int cpr3_regulator_get_dynamic_floor_volt(struct cpr3_controller *ctrl,
u32 reg_last_measurement)
{
int dynamic_floor_volt = 0;
struct cpr3_regulator *vreg;
bool valid, pd_valid;
u32 bypass_bits;
int i, j;
if (!ctrl->supports_hw_closed_loop)
return 0;
if (likely(!ctrl->use_hw_closed_loop)) {
valid = !!(reg_last_measurement & CPR3_LAST_MEASUREMENT_VALID);
bypass_bits
= (reg_last_measurement & CPR3_LAST_MEASUREMENT_PD_BYPASS_MASK)
>> CPR3_LAST_MEASUREMENT_PD_BYPASS_SHIFT;
} else {
/*
* Ensure that the dynamic floor voltage is always used for
* HW closed-loop since the conditions below cannot be evaluated
* after each CPR measurement.
*/
valid = false;
bypass_bits = 0;
}
for (i = 0; i < ctrl->thread_count; i++) {
for (j = 0; j < ctrl->thread[i].vreg_count; j++) {
vreg = &ctrl->thread[i].vreg[j];
if (!vreg->uses_dynamic_floor)
continue;
pd_valid = !((bypass_bits & vreg->pd_bypass_mask)
== vreg->pd_bypass_mask);
if (!valid || !pd_valid)
dynamic_floor_volt = max(dynamic_floor_volt,
vreg->corner[
vreg->dynamic_floor_corner].last_volt);
}
}
return dynamic_floor_volt;
}
/**
* cpr3_regulator_max_sdelta_diff() - returns the maximum voltage difference in
* microvolts that can result from different operating conditions
* for the specified sdelta struct
* @sdelta: Pointer to the sdelta structure
* @step_volt: Step size in microvolts between available set
* points of the VDD supply.
*
* Return: voltage difference between the highest and lowest adjustments if
* sdelta and sdelta->table are valid, else 0.
*/
static int cpr3_regulator_max_sdelta_diff(const struct cpr4_sdelta *sdelta,
int step_volt)
{
int i, j, index, sdelta_min = INT_MAX, sdelta_max = INT_MIN;
if (!sdelta || !sdelta->table)
return 0;
for (i = 0; i < sdelta->max_core_count; i++) {
for (j = 0; j < sdelta->temp_band_count; j++) {
index = i * sdelta->temp_band_count + j;
sdelta_min = min(sdelta_min, sdelta->table[index]);
sdelta_max = max(sdelta_max, sdelta->table[index]);
}
}
return (sdelta_max - sdelta_min) * step_volt;
}
/**
* cpr3_regulator_aggregate_sdelta() - check open-loop voltages of current
* aggregated corner and current corner of a given regulator
* and adjust the sdelta structure data of aggregate corner.
* @aggr_corner: Pointer to accumulated aggregated corner which
* is both an input and an output
* @corner: Pointer to the corner to be aggregated with
* aggr_corner
* @step_volt: Step size in microvolts between available set
* points of the VDD supply.
*
* Return: none
*/
static void cpr3_regulator_aggregate_sdelta(
struct cpr3_corner *aggr_corner,
const struct cpr3_corner *corner, int step_volt)
{
struct cpr4_sdelta *aggr_sdelta, *sdelta;
int aggr_core_count, core_count, temp_band_count;
u32 aggr_index, index;
int i, j, sdelta_size, cap_steps, adjust_sdelta;
aggr_sdelta = aggr_corner->sdelta;
sdelta = corner->sdelta;
if (aggr_corner->open_loop_volt < corner->open_loop_volt) {
/*
* Found the new dominant regulator as its open-loop requirement
* is higher than previous dominant regulator. Calculate cap
* voltage to limit the SDELTA values to make sure the runtime
* (Core-count/temp) adjustments do not violate other
* regulators' voltage requirements. Use cpr4_sdelta values of
* new dominant regulator.
*/
aggr_sdelta->cap_volt = min(aggr_sdelta->cap_volt,
(corner->open_loop_volt -
aggr_corner->open_loop_volt));
/* Clear old data in the sdelta table */
sdelta_size = aggr_sdelta->max_core_count
* aggr_sdelta->temp_band_count;
if (aggr_sdelta->allow_core_count_adj
|| aggr_sdelta->allow_temp_adj)
memset(aggr_sdelta->table, 0, sdelta_size
* sizeof(*aggr_sdelta->table));
if (sdelta->allow_temp_adj || sdelta->allow_core_count_adj) {
/* Copy new data in sdelta table */
sdelta_size = sdelta->max_core_count
* sdelta->temp_band_count;
if (sdelta->table)
memcpy(aggr_sdelta->table, sdelta->table,
sdelta_size * sizeof(*sdelta->table));
}
if (sdelta->allow_boost) {
memcpy(aggr_sdelta->boost_table, sdelta->boost_table,
sdelta->temp_band_count
* sizeof(*sdelta->boost_table));
aggr_sdelta->boost_num_cores = sdelta->boost_num_cores;
} else if (aggr_sdelta->allow_boost) {
for (i = 0; i < aggr_sdelta->temp_band_count; i++) {
adjust_sdelta = (corner->open_loop_volt
- aggr_corner->open_loop_volt)
/ step_volt;
aggr_sdelta->boost_table[i] += adjust_sdelta;
aggr_sdelta->boost_table[i]
= min(aggr_sdelta->boost_table[i], 0);
}
}
aggr_corner->open_loop_volt = corner->open_loop_volt;
aggr_sdelta->allow_temp_adj = sdelta->allow_temp_adj;
aggr_sdelta->allow_core_count_adj
= sdelta->allow_core_count_adj;
aggr_sdelta->max_core_count = sdelta->max_core_count;
aggr_sdelta->temp_band_count = sdelta->temp_band_count;
} else if (aggr_corner->open_loop_volt > corner->open_loop_volt) {
/*
* Adjust the cap voltage if the open-loop requirement of new
* regulator is the next highest.
*/
aggr_sdelta->cap_volt = min(aggr_sdelta->cap_volt,
(aggr_corner->open_loop_volt
- corner->open_loop_volt));
if (sdelta->allow_boost) {
for (i = 0; i < aggr_sdelta->temp_band_count; i++) {
adjust_sdelta = (aggr_corner->open_loop_volt
- corner->open_loop_volt)
/ step_volt;
aggr_sdelta->boost_table[i] =
sdelta->boost_table[i] + adjust_sdelta;
aggr_sdelta->boost_table[i]
= min(aggr_sdelta->boost_table[i], 0);
}
aggr_sdelta->boost_num_cores = sdelta->boost_num_cores;
}
} else {
/*
* Found another dominant regulator with same open-loop
* requirement. Make cap voltage to '0'. Disable core-count
* adjustments as we couldn't support for both regulators.
* Keep enable temp based adjustments if enabled for both
* regulators and choose mininum margin adjustment values
* between them.
*/
aggr_sdelta->cap_volt = 0;
aggr_sdelta->allow_core_count_adj = false;
if (aggr_sdelta->allow_temp_adj
&& sdelta->allow_temp_adj) {
aggr_core_count = aggr_sdelta->max_core_count - 1;
core_count = sdelta->max_core_count - 1;
temp_band_count = sdelta->temp_band_count;
for (j = 0; j < temp_band_count; j++) {
aggr_index = aggr_core_count * temp_band_count
+ j;
index = core_count * temp_band_count + j;
aggr_sdelta->table[aggr_index] =
min(aggr_sdelta->table[aggr_index],
sdelta->table[index]);
}
} else {
aggr_sdelta->allow_temp_adj = false;
}
if (sdelta->allow_boost) {
memcpy(aggr_sdelta->boost_table, sdelta->boost_table,
sdelta->temp_band_count
* sizeof(*sdelta->boost_table));
aggr_sdelta->boost_num_cores = sdelta->boost_num_cores;
}
}
/* Keep non-dominant clients boost enable state */
aggr_sdelta->allow_boost |= sdelta->allow_boost;
if (aggr_sdelta->allow_boost)
aggr_sdelta->allow_core_count_adj = false;
if (aggr_sdelta->cap_volt && !(aggr_sdelta->cap_volt == INT_MAX)) {
core_count = aggr_sdelta->max_core_count;
temp_band_count = aggr_sdelta->temp_band_count;
/*
* Convert cap voltage from uV to PMIC steps and use to limit
* sdelta margin adjustments.
*/
cap_steps = aggr_sdelta->cap_volt / step_volt;
for (i = 0; i < core_count; i++)
for (j = 0; j < temp_band_count; j++) {
index = i * temp_band_count + j;
aggr_sdelta->table[index] =
min(aggr_sdelta->table[index],
cap_steps);
}
}
}
/**
* cpr3_regulator_aggregate_corners() - aggregate two corners together
* @aggr_corner: Pointer to accumulated aggregated corner which
* is both an input and an output
* @corner: Pointer to the corner to be aggregated with
* aggr_corner
* @aggr_quot: Flag indicating that target quotients should be
* aggregated as well.
* @step_volt: Step size in microvolts between available set
* points of the VDD supply.
*
* Return: none
*/
static void cpr3_regulator_aggregate_corners(struct cpr3_corner *aggr_corner,
const struct cpr3_corner *corner, bool aggr_quot,
int step_volt)
{
int i;
aggr_corner->ceiling_volt
= max(aggr_corner->ceiling_volt, corner->ceiling_volt);
aggr_corner->floor_volt
= max(aggr_corner->floor_volt, corner->floor_volt);
aggr_corner->last_volt
= max(aggr_corner->last_volt, corner->last_volt);
aggr_corner->system_volt
= max(aggr_corner->system_volt, corner->system_volt);
aggr_corner->mem_acc_volt
= max(aggr_corner->mem_acc_volt, corner->mem_acc_volt);
aggr_corner->irq_en |= corner->irq_en;
aggr_corner->use_open_loop |= corner->use_open_loop;
aggr_corner->ldo_mode_allowed |= corner->ldo_mode_allowed;
if (aggr_quot) {
aggr_corner->ro_mask &= corner->ro_mask;
for (i = 0; i < CPR3_RO_COUNT; i++)
aggr_corner->target_quot[i]
= max(aggr_corner->target_quot[i],
corner->target_quot[i]);
}
if (aggr_corner->sdelta && corner->sdelta
&& (aggr_corner->sdelta->table
|| aggr_corner->sdelta->boost_table)) {
cpr3_regulator_aggregate_sdelta(aggr_corner, corner, step_volt);
} else {
aggr_corner->open_loop_volt
= max(aggr_corner->open_loop_volt,
corner->open_loop_volt);
}
}
/**
* cpr3_regulator_update_ctrl_state() - update the state of the CPR controller
* to reflect the corners used by all CPR3 regulators as well as
* the CPR operating mode
* @ctrl: Pointer to the CPR3 controller
*
* This function aggregates the CPR parameters for all CPR3 regulators
* associated with the VDD supply. Upon success, it sets the aggregated last
* known good voltage.
*
* The VDD supply voltage will not be physically configured unless this
* condition is met by at least one of the regulators of the controller:
* regulator->vreg_enabled == true &&
* regulator->current_corner != CPR3_REGULATOR_CORNER_INVALID
*
* CPR registers for the controller and each thread are updated as long as
* ctrl->cpr_enabled == true.
*
* Note, CPR3 controller lock must be held by the caller.
*
* Return: 0 on success, errno on failure
*/
static int _cpr3_regulator_update_ctrl_state(struct cpr3_controller *ctrl)
{
struct cpr3_corner aggr_corner = {};
struct cpr3_thread *thread;
struct cpr3_regulator *vreg;
struct cpr4_sdelta *sdelta;
bool valid = false;
bool thread_valid;
int i, j, rc;
int new_volt, vdd_volt, dynamic_floor_volt, last_corner_volt = 0;
u32 reg_last_measurement = 0, sdelta_size;
int *sdelta_table, *boost_table;
if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR4) {
rc = cpr3_ctrl_clear_cpr4_config(ctrl);
if (rc) {
cpr3_err(ctrl, "failed to clear CPR4 configuration,rc=%d\n",
rc);
return rc;
}
}
cpr3_ctrl_loop_disable(ctrl);
vdd_volt = regulator_get_voltage(ctrl->vdd_regulator);
if (vdd_volt < 0) {
cpr3_err(ctrl, "regulator_get_voltage(vdd) failed, rc=%d\n",
vdd_volt);
return vdd_volt;
}
if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR4) {
/*
* Save aggregated corner open-loop voltage which was programmed
* during last corner switch which is used when programming new
* aggregated corner open-loop voltage.
*/
last_corner_volt = ctrl->aggr_corner.open_loop_volt;
}
if (ctrl->cpr_enabled && ctrl->use_hw_closed_loop &&
ctrl->ctrl_type == CPR_CTRL_TYPE_CPR3)
reg_last_measurement
= cpr3_read(ctrl, CPR3_REG_LAST_MEASUREMENT);
aggr_corner.sdelta = ctrl->aggr_corner.sdelta;
if (aggr_corner.sdelta) {
sdelta = aggr_corner.sdelta;
sdelta_table = sdelta->table;
if (sdelta_table) {
sdelta_size = sdelta->max_core_count *
sdelta->temp_band_count;
memset(sdelta_table, 0, sdelta_size
* sizeof(*sdelta_table));
}
boost_table = sdelta->boost_table;
if (boost_table)
memset(boost_table, 0, sdelta->temp_band_count
* sizeof(*boost_table));
memset(sdelta, 0, sizeof(*sdelta));
sdelta->table = sdelta_table;
sdelta->cap_volt = INT_MAX;
sdelta->boost_table = boost_table;
}
/* Aggregate the requests of all threads */
for (i = 0; i < ctrl->thread_count; i++) {
thread = &ctrl->thread[i];
thread_valid = false;
sdelta = thread->aggr_corner.sdelta;
if (sdelta) {
sdelta_table = sdelta->table;
if (sdelta_table) {
sdelta_size = sdelta->max_core_count *
sdelta->temp_band_count;
memset(sdelta_table, 0, sdelta_size
* sizeof(*sdelta_table));
}
boost_table = sdelta->boost_table;
if (boost_table)
memset(boost_table, 0, sdelta->temp_band_count
* sizeof(*boost_table));
memset(sdelta, 0, sizeof(*sdelta));
sdelta->table = sdelta_table;
sdelta->cap_volt = INT_MAX;
sdelta->boost_table = boost_table;
}
memset(&thread->aggr_corner, 0, sizeof(thread->aggr_corner));
thread->aggr_corner.sdelta = sdelta;
thread->aggr_corner.ro_mask = CPR3_RO_MASK;
for (j = 0; j < thread->vreg_count; j++) {
vreg = &thread->vreg[j];
if (ctrl->cpr_enabled && ctrl->use_hw_closed_loop)
cpr3_update_vreg_closed_loop_volt(vreg,
vdd_volt, reg_last_measurement);
if (!vreg->vreg_enabled
|| vreg->current_corner
== CPR3_REGULATOR_CORNER_INVALID) {
/* Cannot participate in aggregation. */
vreg->aggregated = false;
continue;
} else {
vreg->aggregated = true;
thread_valid = true;
}
cpr3_regulator_aggregate_corners(&thread->aggr_corner,
&vreg->corner[vreg->current_corner],
true, ctrl->step_volt);
}
valid |= thread_valid;
if (thread_valid)
cpr3_regulator_aggregate_corners(&aggr_corner,
&thread->aggr_corner,
false, ctrl->step_volt);
}
if (valid && ctrl->cpr_allowed_hw && ctrl->cpr_allowed_sw) {
rc = cpr3_closed_loop_enable(ctrl);
if (rc) {
cpr3_err(ctrl, "could not enable CPR, rc=%d\n", rc);
return rc;
}
} else {
rc = cpr3_closed_loop_disable(ctrl);
if (rc) {
cpr3_err(ctrl, "could not disable CPR, rc=%d\n", rc);
return rc;
}
}
/* No threads are enabled with a valid corner so exit. */
if (!valid)
return 0;
/*
* When using CPR hardware closed-loop, the voltage may vary anywhere
* between the floor and ceiling voltage without software notification.
* Therefore, it is required that the floor to ceiling range for the
* aggregated corner not intersect the APM threshold voltage. Adjust
* the floor to ceiling range if this requirement is violated.
*
* The following algorithm is applied in the case that
* floor < threshold <= ceiling:
* if open_loop >= threshold - adj, then floor = threshold
* else ceiling = threshold - step
* where adj = an adjustment factor to ensure sufficient voltage margin
* and step = VDD output step size
*
* The open-loop and last known voltages are also bounded by the new
* floor or ceiling value as needed.
*/
if (ctrl->use_hw_closed_loop
&& aggr_corner.ceiling_volt >= ctrl->apm_threshold_volt
&& aggr_corner.floor_volt < ctrl->apm_threshold_volt) {
if (aggr_corner.open_loop_volt
>= ctrl->apm_threshold_volt - ctrl->apm_adj_volt)
aggr_corner.floor_volt = ctrl->apm_threshold_volt;
else
aggr_corner.ceiling_volt
= ctrl->apm_threshold_volt - ctrl->step_volt;
aggr_corner.last_volt
= max(aggr_corner.last_volt, aggr_corner.floor_volt);
aggr_corner.last_volt
= min(aggr_corner.last_volt, aggr_corner.ceiling_volt);
aggr_corner.open_loop_volt
= max(aggr_corner.open_loop_volt, aggr_corner.floor_volt);
aggr_corner.open_loop_volt
= min(aggr_corner.open_loop_volt, aggr_corner.ceiling_volt);
}
if (ctrl->use_hw_closed_loop
&& aggr_corner.ceiling_volt >= ctrl->mem_acc_threshold_volt
&& aggr_corner.floor_volt < ctrl->mem_acc_threshold_volt) {
aggr_corner.floor_volt = ctrl->mem_acc_threshold_volt;
aggr_corner.last_volt = max(aggr_corner.last_volt,
aggr_corner.floor_volt);
aggr_corner.open_loop_volt = max(aggr_corner.open_loop_volt,
aggr_corner.floor_volt);
}
if (ctrl->use_hw_closed_loop) {
dynamic_floor_volt
= cpr3_regulator_get_dynamic_floor_volt(ctrl,
reg_last_measurement);
if (aggr_corner.floor_volt < dynamic_floor_volt) {
aggr_corner.floor_volt = dynamic_floor_volt;
aggr_corner.last_volt = max(aggr_corner.last_volt,
aggr_corner.floor_volt);
aggr_corner.open_loop_volt
= max(aggr_corner.open_loop_volt,
aggr_corner.floor_volt);
aggr_corner.ceiling_volt = max(aggr_corner.ceiling_volt,
aggr_corner.floor_volt);
}
}
if (ctrl->cpr_enabled && ctrl->last_corner_was_closed_loop) {
/*
* Always program open-loop voltage for CPR4 controllers which
* support hardware closed-loop. Storing the last closed loop
* voltage in corner structure can still help with debugging.
*/
if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR3)
new_volt = aggr_corner.last_volt;
else if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR4
&& ctrl->supports_hw_closed_loop)
new_volt = aggr_corner.open_loop_volt;
else
new_volt = min(aggr_corner.last_volt +
cpr3_regulator_max_sdelta_diff(aggr_corner.sdelta,
ctrl->step_volt),
aggr_corner.ceiling_volt);
} else {
new_volt = aggr_corner.open_loop_volt;
aggr_corner.last_volt = aggr_corner.open_loop_volt;
}
if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR4
&& ctrl->supports_hw_closed_loop) {
/*
* Store last aggregated corner open-loop voltage in vdd_volt
* which is used when programming current aggregated corner
* required voltage.
*/
vdd_volt = last_corner_volt;
}
cpr3_debug(ctrl, "setting new voltage=%d uV\n", new_volt);
rc = cpr3_regulator_scale_vdd_voltage(ctrl, new_volt,
vdd_volt, &aggr_corner);
if (rc) {
cpr3_err(ctrl, "vdd voltage scaling failed, rc=%d\n", rc);
return rc;
}
/* Only update registers if CPR is enabled. */
if (ctrl->cpr_enabled) {
if (ctrl->use_hw_closed_loop) {
/* Hardware closed-loop */
/* Set ceiling and floor limits in hardware */
rc = regulator_set_voltage(ctrl->vdd_limit_regulator,
aggr_corner.floor_volt,
aggr_corner.ceiling_volt);
if (rc) {
cpr3_err(ctrl, "could not configure HW closed-loop voltage limits, rc=%d\n",
rc);
return rc;
}
} else {
/* Software closed-loop */
/*
* Disable UP or DOWN interrupts when at ceiling or
* floor respectively.
*/
if (new_volt == aggr_corner.floor_volt)
aggr_corner.irq_en &= ~CPR3_IRQ_DOWN;
if (new_volt == aggr_corner.ceiling_volt)
aggr_corner.irq_en &= ~CPR3_IRQ_UP;
cpr3_write(ctrl, CPR3_REG_IRQ_CLEAR,
CPR3_IRQ_UP | CPR3_IRQ_DOWN);
cpr3_write(ctrl, CPR3_REG_IRQ_EN, aggr_corner.irq_en);
}
for (i = 0; i < ctrl->thread_count; i++) {
cpr3_regulator_set_target_quot(&ctrl->thread[i]);
for (j = 0; j < ctrl->thread[i].vreg_count; j++) {
vreg = &ctrl->thread[i].vreg[j];
if (vreg->vreg_enabled)
vreg->last_closed_loop_corner
= vreg->current_corner;
}
}
if (ctrl->proc_clock_throttle) {
if (aggr_corner.ceiling_volt > aggr_corner.floor_volt
&& (ctrl->use_hw_closed_loop
|| new_volt < aggr_corner.ceiling_volt))
cpr3_write(ctrl, CPR3_REG_PD_THROTTLE,
ctrl->proc_clock_throttle);
else
cpr3_write(ctrl, CPR3_REG_PD_THROTTLE,
CPR3_PD_THROTTLE_DISABLE);
}
/*
* Ensure that all CPR register writes complete before
* re-enabling CPR loop operation.
*/
wmb();
} else if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR4
&& ctrl->vdd_limit_regulator) {
/* Set ceiling and floor limits in hardware */
rc = regulator_set_voltage(ctrl->vdd_limit_regulator,
aggr_corner.floor_volt,
aggr_corner.ceiling_volt);
if (rc) {
cpr3_err(ctrl, "could not configure HW closed-loop voltage limits, rc=%d\n",
rc);
return rc;
}
}
ctrl->aggr_corner = aggr_corner;
if (ctrl->allow_core_count_adj || ctrl->allow_temp_adj
|| ctrl->allow_boost) {
rc = cpr3_controller_program_sdelta(ctrl);
if (rc) {
cpr3_err(ctrl, "failed to program sdelta, rc=%d\n", rc);
return rc;
}
}
/*
* Only enable the CPR controller if it is possible to set more than
* one vdd-supply voltage.
*/
if (aggr_corner.ceiling_volt > aggr_corner.floor_volt &&
!aggr_corner.use_open_loop)
cpr3_ctrl_loop_enable(ctrl);
ctrl->last_corner_was_closed_loop = ctrl->cpr_enabled;
cpr3_debug(ctrl, "CPR configuration updated\n");
return 0;
}
/**
* cpr3_regulator_wait_for_idle() - wait for the CPR controller to no longer be
* busy
* @ctrl: Pointer to the CPR3 controller
* @max_wait_ns: Max wait time in nanoseconds
*
* Return: 0 on success or -ETIMEDOUT if the controller was still busy after
* the maximum delay time
*/
static int cpr3_regulator_wait_for_idle(struct cpr3_controller *ctrl,
s64 max_wait_ns)
{
ktime_t start, end;
s64 time_ns;
u32 reg;
/*
* Ensure that all previous CPR register writes have completed before
* checking the status register.
*/
mb();
start = ktime_get();
do {
end = ktime_get();
time_ns = ktime_to_ns(ktime_sub(end, start));
if (time_ns > max_wait_ns) {
cpr3_err(ctrl, "CPR controller still busy after %lld us\n",
div_s64(time_ns, 1000));
return -ETIMEDOUT;
}
usleep_range(50, 100);
reg = cpr3_read(ctrl, CPR3_REG_CPR_STATUS);
} while (reg & CPR3_CPR_STATUS_BUSY_MASK);
return 0;
}
/**
* cmp_int() - int comparison function to be passed into the sort() function
* which leads to ascending sorting
* @a: First int value
* @b: Second int value
*
* Return: >0 if a > b, 0 if a == b, <0 if a < b
*/
static int cmp_int(const void *a, const void *b)
{
return *(int *)a - *(int *)b;
}
/**
* cpr3_regulator_measure_aging() - measure the quotient difference for the
* specified CPR aging sensor
* @ctrl: Pointer to the CPR3 controller
* @aging_sensor: Aging sensor to measure
*
* Note that vdd-supply must be configured to the aging reference voltage before
* calling this function.
*
* Return: 0 on success, errno on failure
*/
static int cpr3_regulator_measure_aging(struct cpr3_controller *ctrl,
struct cpr3_aging_sensor_info *aging_sensor)
{
u32 mask, reg, result, quot_min, quot_max, sel_min, sel_max;
u32 quot_min_scaled, quot_max_scaled;
u32 gcnt, gcnt_ref, gcnt0_restore, gcnt1_restore, irq_restore;
u32 ro_mask_restore, cont_dly_restore, up_down_dly_restore = 0;
int quot_delta, quot_delta_scaled, quot_delta_scaled_sum;
int *quot_delta_results;
int rc, rc2, i, aging_measurement_count, filtered_count;
bool is_aging_measurement;
quot_delta_results = kcalloc(CPR3_AGING_MEASUREMENT_ITERATIONS,
sizeof(*quot_delta_results), GFP_KERNEL);
if (!quot_delta_results)
return -ENOMEM;
if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR4) {
rc = cpr3_ctrl_clear_cpr4_config(ctrl);
if (rc) {
cpr3_err(ctrl, "failed to clear CPR4 configuration,rc=%d\n",
rc);
kfree(quot_delta_results);
return rc;
}
}
cpr3_ctrl_loop_disable(ctrl);
/* Enable up, down, and mid CPR interrupts */
irq_restore = cpr3_read(ctrl, CPR3_REG_IRQ_EN);
cpr3_write(ctrl, CPR3_REG_IRQ_EN,
CPR3_IRQ_UP | CPR3_IRQ_DOWN | CPR3_IRQ_MID);
/* Ensure that the aging sensor is assigned to CPR thread 0 */
cpr3_write(ctrl, CPR3_REG_SENSOR_OWNER(aging_sensor->sensor_id), 0);
/* Switch from HW to SW closed-loop if necessary */
if (ctrl->supports_hw_closed_loop) {
if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR4 ||
ctrl->ctrl_type == CPR_CTRL_TYPE_CPRH) {
cpr3_masked_write(ctrl, CPR4_REG_MARGIN_ADJ_CTL,
CPR4_MARGIN_ADJ_CTL_HW_CLOSED_LOOP_EN_MASK,
CPR4_MARGIN_ADJ_CTL_HW_CLOSED_LOOP_DISABLE);
} else if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR3) {
cpr3_write(ctrl, CPR3_REG_HW_CLOSED_LOOP,
CPR3_HW_CLOSED_LOOP_DISABLE);
}
}
/* Configure the GCNT for RO0 and RO1 that are used for aging */
gcnt0_restore = cpr3_read(ctrl, CPR3_REG_GCNT(0));
gcnt1_restore = cpr3_read(ctrl, CPR3_REG_GCNT(1));
gcnt_ref = cpr3_regulator_get_gcnt(ctrl);
gcnt = gcnt_ref;
if (ctrl->aging_gcnt_scaling_factor)
gcnt = gcnt_ref * ctrl->aging_gcnt_scaling_factor
/ CPR3_AGING_GCNT_SCALING_UNITY;
cpr3_write(ctrl, CPR3_REG_GCNT(0), gcnt);
cpr3_write(ctrl, CPR3_REG_GCNT(1), gcnt);
/* Unmask all RO's */
ro_mask_restore = cpr3_read(ctrl, CPR3_REG_RO_MASK(0));
cpr3_write(ctrl, CPR3_REG_RO_MASK(0), 0);
/*
* Mask all sensors except for the one to measure and bypass all
* sensors in collapsible domains.
*/
for (i = 0; i <= ctrl->sensor_count / 32; i++) {
mask = GENMASK(min(31, ctrl->sensor_count - i * 32), 0);
if (aging_sensor->sensor_id / 32 >= i
&& aging_sensor->sensor_id / 32 < (i + 1))
mask &= ~BIT(aging_sensor->sensor_id % 32);
cpr3_write(ctrl, CPR3_REG_SENSOR_MASK_WRITE_BANK(i), mask);
cpr3_write(ctrl, CPR3_REG_SENSOR_BYPASS_WRITE_BANK(i),
aging_sensor->bypass_mask[i]);
}
/* Set CPR loop delays to 0 us */
if (ctrl->supports_hw_closed_loop
&& ctrl->ctrl_type == CPR_CTRL_TYPE_CPR3) {
cont_dly_restore = cpr3_read(ctrl, CPR3_REG_CPR_TIMER_MID_CONT);
up_down_dly_restore = cpr3_read(ctrl,
CPR3_REG_CPR_TIMER_UP_DN_CONT);
cpr3_write(ctrl, CPR3_REG_CPR_TIMER_MID_CONT, 0);
cpr3_write(ctrl, CPR3_REG_CPR_TIMER_UP_DN_CONT, 0);
} else {
cont_dly_restore = cpr3_read(ctrl,
CPR3_REG_CPR_TIMER_AUTO_CONT);
cpr3_write(ctrl, CPR3_REG_CPR_TIMER_AUTO_CONT, 0);
}
/* Set count mode to all-at-once min with no repeat */
cpr3_masked_write(ctrl, CPR3_REG_CPR_CTL,
CPR3_CPR_CTL_COUNT_MODE_MASK | CPR3_CPR_CTL_COUNT_REPEAT_MASK,
CPR3_CPR_CTL_COUNT_MODE_ALL_AT_ONCE_MIN
<< CPR3_CPR_CTL_COUNT_MODE_SHIFT);
cpr3_ctrl_loop_enable(ctrl);
rc = cpr3_regulator_wait_for_idle(ctrl,
CPR3_AGING_MEASUREMENT_TIMEOUT_NS);
if (rc)
goto cleanup;
/* Set count mode to all-at-once aging */
cpr3_masked_write(ctrl, CPR3_REG_CPR_CTL, CPR3_CPR_CTL_COUNT_MODE_MASK,
CPR3_CPR_CTL_COUNT_MODE_ALL_AT_ONCE_AGE
<< CPR3_CPR_CTL_COUNT_MODE_SHIFT);
aging_measurement_count = 0;
for (i = 0; i < CPR3_AGING_MEASUREMENT_ITERATIONS; i++) {
/* Send CONT_NACK */
cpr3_write(ctrl, CPR3_REG_CONT_CMD, CPR3_CONT_CMD_NACK);
rc = cpr3_regulator_wait_for_idle(ctrl,
CPR3_AGING_MEASUREMENT_TIMEOUT_NS);
if (rc)
goto cleanup;
/* Check for PAGE_IS_AGE flag in status register */
reg = cpr3_read(ctrl, CPR3_REG_CPR_STATUS);
is_aging_measurement
= reg & CPR3_CPR_STATUS_AGING_MEASUREMENT_MASK;
/* Read CPR measurement results */
result = cpr3_read(ctrl, CPR3_REG_RESULT1(0));
quot_min = (result & CPR3_RESULT1_QUOT_MIN_MASK)
>> CPR3_RESULT1_QUOT_MIN_SHIFT;
quot_max = (result & CPR3_RESULT1_QUOT_MAX_MASK)
>> CPR3_RESULT1_QUOT_MAX_SHIFT;
sel_min = (result & CPR3_RESULT1_RO_MIN_MASK)
>> CPR3_RESULT1_RO_MIN_SHIFT;
sel_max = (result & CPR3_RESULT1_RO_MAX_MASK)
>> CPR3_RESULT1_RO_MAX_SHIFT;
/*
* Scale the quotients so that they are equivalent to the fused
* values. This accounts for the difference in measurement
* interval times.
*/
quot_min_scaled = quot_min * (gcnt_ref + 1) / (gcnt + 1);
quot_max_scaled = quot_max * (gcnt_ref + 1) / (gcnt + 1);
if (sel_max == 1) {
quot_delta = quot_max - quot_min;
quot_delta_scaled = quot_max_scaled - quot_min_scaled;
} else {
quot_delta = quot_min - quot_max;
quot_delta_scaled = quot_min_scaled - quot_max_scaled;
}
if (is_aging_measurement)
quot_delta_results[aging_measurement_count++]
= quot_delta_scaled;
cpr3_debug(ctrl, "aging results: page_is_age=%u, sel_min=%u, sel_max=%u, quot_min=%u, quot_max=%u, quot_delta=%d, quot_min_scaled=%u, quot_max_scaled=%u, quot_delta_scaled=%d\n",
is_aging_measurement, sel_min, sel_max, quot_min,
quot_max, quot_delta, quot_min_scaled, quot_max_scaled,
quot_delta_scaled);
}
filtered_count
= aging_measurement_count - CPR3_AGING_MEASUREMENT_FILTER * 2;
if (filtered_count > 0) {
sort(quot_delta_results, aging_measurement_count,
sizeof(*quot_delta_results), cmp_int, NULL);
quot_delta_scaled_sum = 0;
for (i = 0; i < filtered_count; i++)
quot_delta_scaled_sum
+= quot_delta_results[i
+ CPR3_AGING_MEASUREMENT_FILTER];
aging_sensor->measured_quot_diff
= quot_delta_scaled_sum / filtered_count;
cpr3_info(ctrl, "average quotient delta=%d (count=%d)\n",
aging_sensor->measured_quot_diff,
filtered_count);
} else {
cpr3_err(ctrl, "%d aging measurements completed after %d iterations\n",
aging_measurement_count,
CPR3_AGING_MEASUREMENT_ITERATIONS);
rc = -EBUSY;
}
cleanup:
kfree(quot_delta_results);
if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR4) {
rc2 = cpr3_ctrl_clear_cpr4_config(ctrl);
if (rc2) {
cpr3_err(ctrl, "failed to clear CPR4 configuration,rc=%d\n",
rc2);
rc = rc2;
}
}
cpr3_ctrl_loop_disable(ctrl);
cpr3_write(ctrl, CPR3_REG_IRQ_EN, irq_restore);
cpr3_write(ctrl, CPR3_REG_RO_MASK(0), ro_mask_restore);
cpr3_write(ctrl, CPR3_REG_GCNT(0), gcnt0_restore);
cpr3_write(ctrl, CPR3_REG_GCNT(1), gcnt1_restore);
if (ctrl->supports_hw_closed_loop
&& ctrl->ctrl_type == CPR_CTRL_TYPE_CPR3) {
cpr3_write(ctrl, CPR3_REG_CPR_TIMER_MID_CONT, cont_dly_restore);
cpr3_write(ctrl, CPR3_REG_CPR_TIMER_UP_DN_CONT,
up_down_dly_restore);
} else {
cpr3_write(ctrl, CPR3_REG_CPR_TIMER_AUTO_CONT,
cont_dly_restore);
}
for (i = 0; i <= ctrl->sensor_count / 32; i++) {
cpr3_write(ctrl, CPR3_REG_SENSOR_MASK_WRITE_BANK(i), 0);
cpr3_write(ctrl, CPR3_REG_SENSOR_BYPASS_WRITE_BANK(i), 0);
}
cpr3_masked_write(ctrl, CPR3_REG_CPR_CTL,
CPR3_CPR_CTL_COUNT_MODE_MASK | CPR3_CPR_CTL_COUNT_REPEAT_MASK,
(ctrl->count_mode << CPR3_CPR_CTL_COUNT_MODE_SHIFT)
| (ctrl->count_repeat << CPR3_CPR_CTL_COUNT_REPEAT_SHIFT));
cpr3_write(ctrl, CPR3_REG_SENSOR_OWNER(aging_sensor->sensor_id),
ctrl->sensor_owner[aging_sensor->sensor_id]);
cpr3_write(ctrl, CPR3_REG_IRQ_CLEAR,
CPR3_IRQ_UP | CPR3_IRQ_DOWN | CPR3_IRQ_MID);
if (ctrl->supports_hw_closed_loop) {
if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR4 ||
ctrl->ctrl_type == CPR_CTRL_TYPE_CPRH) {
cpr3_masked_write(ctrl, CPR4_REG_MARGIN_ADJ_CTL,
CPR4_MARGIN_ADJ_CTL_HW_CLOSED_LOOP_EN_MASK,
ctrl->use_hw_closed_loop
? CPR4_MARGIN_ADJ_CTL_HW_CLOSED_LOOP_ENABLE
: CPR4_MARGIN_ADJ_CTL_HW_CLOSED_LOOP_DISABLE);
} else if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR3) {
cpr3_write(ctrl, CPR3_REG_HW_CLOSED_LOOP,
ctrl->use_hw_closed_loop
? CPR3_HW_CLOSED_LOOP_ENABLE
: CPR3_HW_CLOSED_LOOP_DISABLE);
}
}
return rc;
}
/**
* cpr3_regulator_readjust_volt_and_quot() - readjust the target quotients as
* well as the floor, ceiling, and open-loop voltages for the
* regulator by removing the old adjustment and adding the new one
* @vreg: Pointer to the CPR3 regulator
* @old_adjust_volt: Old aging adjustment voltage in microvolts
* @new_adjust_volt: New aging adjustment voltage in microvolts
*
* Also reset the cached closed loop voltage (last_volt) to equal the open-loop
* voltage for each corner.
*
* Return: None
*/
static void cpr3_regulator_readjust_volt_and_quot(struct cpr3_regulator *vreg,
int old_adjust_volt, int new_adjust_volt)
{
unsigned long long temp;
int i, j, old_volt, new_volt, rounded_volt;
if (!vreg->aging_allowed)
return;
for (i = 0; i < vreg->corner_count; i++) {
temp = (unsigned long long)old_adjust_volt
* (unsigned long long)vreg->corner[i].aging_derate;
do_div(temp, 1000);
old_volt = temp;
temp = (unsigned long long)new_adjust_volt
* (unsigned long long)vreg->corner[i].aging_derate;
do_div(temp, 1000);
new_volt = temp;
old_volt = min(vreg->aging_max_adjust_volt, old_volt);
new_volt = min(vreg->aging_max_adjust_volt, new_volt);
for (j = 0; j < CPR3_RO_COUNT; j++) {
if (vreg->corner[i].target_quot[j] != 0) {
vreg->corner[i].target_quot[j]
+= cpr3_quot_adjustment(
vreg->corner[i].ro_scale[j],
new_volt)
- cpr3_quot_adjustment(
vreg->corner[i].ro_scale[j],
old_volt);
}
}
rounded_volt = CPR3_ROUND(new_volt,
vreg->thread->ctrl->step_volt);
if (!vreg->aging_allow_open_loop_adj)
rounded_volt = 0;
vreg->corner[i].ceiling_volt
= vreg->corner[i].unaged_ceiling_volt + rounded_volt;
vreg->corner[i].ceiling_volt = min(vreg->corner[i].ceiling_volt,
vreg->corner[i].abs_ceiling_volt);
vreg->corner[i].floor_volt
= vreg->corner[i].unaged_floor_volt + rounded_volt;
vreg->corner[i].floor_volt = min(vreg->corner[i].floor_volt,
vreg->corner[i].ceiling_volt);
vreg->corner[i].open_loop_volt
= vreg->corner[i].unaged_open_loop_volt + rounded_volt;
vreg->corner[i].open_loop_volt
= min(vreg->corner[i].open_loop_volt,
vreg->corner[i].ceiling_volt);
vreg->corner[i].last_volt = vreg->corner[i].open_loop_volt;
cpr3_debug(vreg, "corner %d: applying %d uV closed-loop and %d uV open-loop voltage margin adjustment\n",
i, new_volt, rounded_volt);
}
}
/**
* cpr3_regulator_set_aging_ref_adjustment() - adjust target quotients for the
* regulators managed by this CPR controller to account for aging
* @ctrl: Pointer to the CPR3 controller
* @ref_adjust_volt: New aging reference adjustment voltage in microvolts to
* apply to all regulators managed by this CPR controller
*
* The existing aging adjustment as defined by ctrl->aging_ref_adjust_volt is
* first removed and then the adjustment is applied. Lastly, the value of
* ctrl->aging_ref_adjust_volt is updated to ref_adjust_volt.
*/
static void cpr3_regulator_set_aging_ref_adjustment(
struct cpr3_controller *ctrl, int ref_adjust_volt)
{
struct cpr3_regulator *vreg;
int i, j;
for (i = 0; i < ctrl->thread_count; i++) {
for (j = 0; j < ctrl->thread[i].vreg_count; j++) {
vreg = &ctrl->thread[i].vreg[j];
cpr3_regulator_readjust_volt_and_quot(vreg,
ctrl->aging_ref_adjust_volt, ref_adjust_volt);
if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPRH)
cprh_adjust_voltages_for_apm(vreg);
}
}
ctrl->aging_ref_adjust_volt = ref_adjust_volt;
}
/**
* cpr3_regulator_aging_adjust() - adjust the target quotients for regulators
* based on the output of CPR aging sensors
* @ctrl: Pointer to the CPR3 controller
*
* Return: 0 on success, errno on failure
*/
static int cpr3_regulator_aging_adjust(struct cpr3_controller *ctrl)
{
struct cpr3_regulator *vreg;
struct cpr3_corner restore_aging_corner;
struct cpr3_corner *corner;
int *restore_current_corner;
bool *restore_vreg_enabled;
int i, j, id, rc, rc2, vreg_count, aging_volt, max_aging_volt = 0;
u32 reg;
if (!ctrl->aging_required || !ctrl->cpr_enabled
|| ctrl->aggr_corner.ceiling_volt == 0
|| ctrl->aggr_corner.ceiling_volt > ctrl->aging_ref_volt)
return 0;
for (i = 0, vreg_count = 0; i < ctrl->thread_count; i++) {
for (j = 0; j < ctrl->thread[i].vreg_count; j++) {
vreg = &ctrl->thread[i].vreg[j];
vreg_count++;
if (vreg->aging_allowed && vreg->vreg_enabled
&& vreg->current_corner > vreg->aging_corner)
return 0;
}
}
/* Verify that none of the aging sensors are currently masked. */
for (i = 0; i < ctrl->aging_sensor_count; i++) {
id = ctrl->aging_sensor[i].sensor_id;
reg = cpr3_read(ctrl, CPR3_REG_SENSOR_MASK_READ(id));
if (reg & BIT(id % 32))
return 0;
}
/*
* Verify that the aging possible register (if specified) has an
* acceptable value.
*/
if (ctrl->aging_possible_reg) {
reg = readl_relaxed(ctrl->aging_possible_reg);
reg &= ctrl->aging_possible_mask;
if (reg != ctrl->aging_possible_val)
return 0;
}
restore_current_corner = kcalloc(vreg_count,
sizeof(*restore_current_corner), GFP_KERNEL);
restore_vreg_enabled = kcalloc(vreg_count,
sizeof(*restore_vreg_enabled), GFP_KERNEL);
if (!restore_current_corner || !restore_vreg_enabled) {
kfree(restore_current_corner);
kfree(restore_vreg_enabled);
return -ENOMEM;
}
/* Force all regulators to the aging corner */
for (i = 0, vreg_count = 0; i < ctrl->thread_count; i++) {
for (j = 0; j < ctrl->thread[i].vreg_count; j++, vreg_count++) {
vreg = &ctrl->thread[i].vreg[j];
restore_current_corner[vreg_count]
= vreg->current_corner;
restore_vreg_enabled[vreg_count]
= vreg->vreg_enabled;
vreg->current_corner = vreg->aging_corner;
vreg->vreg_enabled = true;
}
}
/* Force one of the regulators to require the aging reference voltage */
vreg = &ctrl->thread[0].vreg[0];
corner = &vreg->corner[vreg->current_corner];
restore_aging_corner = *corner;
corner->ceiling_volt = ctrl->aging_ref_volt;
corner->floor_volt = ctrl->aging_ref_volt;
corner->open_loop_volt = ctrl->aging_ref_volt;
corner->last_volt = ctrl->aging_ref_volt;
/* Skip last_volt caching */
ctrl->last_corner_was_closed_loop = false;
/* Set the vdd supply voltage to the aging reference voltage */
rc = _cpr3_regulator_update_ctrl_state(ctrl);
if (rc) {
cpr3_err(ctrl, "unable to force vdd-supply to the aging reference voltage=%d uV, rc=%d\n",
ctrl->aging_ref_volt, rc);
goto cleanup;
}
if (ctrl->aging_vdd_mode) {
rc = regulator_set_mode(ctrl->vdd_regulator,
ctrl->aging_vdd_mode);
if (rc) {
cpr3_err(ctrl, "unable to configure vdd-supply for mode=%u, rc=%d\n",
ctrl->aging_vdd_mode, rc);
goto cleanup;
}
}
/* Perform aging measurement on all aging sensors */
for (i = 0; i < ctrl->aging_sensor_count; i++) {
for (j = 0; j < CPR3_AGING_RETRY_COUNT; j++) {
rc = cpr3_regulator_measure_aging(ctrl,
&ctrl->aging_sensor[i]);
if (!rc)
break;
}
if (!rc) {
aging_volt =
cpr3_voltage_adjustment(
ctrl->aging_sensor[i].ro_scale,
ctrl->aging_sensor[i].measured_quot_diff
- ctrl->aging_sensor[i].init_quot_diff);
max_aging_volt = max(max_aging_volt, aging_volt);
} else {
cpr3_err(ctrl, "CPR aging measurement failed after %d tries, rc=%d\n",
j, rc);
ctrl->aging_failed = true;
ctrl->aging_required = false;
goto cleanup;
}
}
cleanup:
vreg = &ctrl->thread[0].vreg[0];
vreg->corner[vreg->current_corner] = restore_aging_corner;
for (i = 0, vreg_count = 0; i < ctrl->thread_count; i++) {
for (j = 0; j < ctrl->thread[i].vreg_count; j++, vreg_count++) {
vreg = &ctrl->thread[i].vreg[j];
vreg->current_corner
= restore_current_corner[vreg_count];
vreg->vreg_enabled = restore_vreg_enabled[vreg_count];
}
}
kfree(restore_current_corner);
kfree(restore_vreg_enabled);
/* Adjust the CPR target quotients according to the aging measurement */
if (!rc) {
cpr3_regulator_set_aging_ref_adjustment(ctrl, max_aging_volt);
cpr3_info(ctrl, "aging measurement successful; aging reference adjustment voltage=%d uV\n",
ctrl->aging_ref_adjust_volt);
ctrl->aging_succeeded = true;
ctrl->aging_required = false;
}
if (ctrl->aging_complete_vdd_mode) {
rc = regulator_set_mode(ctrl->vdd_regulator,
ctrl->aging_complete_vdd_mode);
if (rc)
cpr3_err(ctrl, "unable to configure vdd-supply for mode=%u, rc=%d\n",
ctrl->aging_complete_vdd_mode, rc);
}
/* Skip last_volt caching */
ctrl->last_corner_was_closed_loop = false;
/*
* Restore vdd-supply to the voltage before the aging measurement and
* restore the CPR3 controller hardware state.
*/
rc2 = _cpr3_regulator_update_ctrl_state(ctrl);
/* Stop last_volt caching on for the next request */
ctrl->last_corner_was_closed_loop = false;
return rc ? rc : rc2;
}
/**
* cprh_regulator_aging_adjust() - adjust the target quotients and open-loop
* voltages for CPRh regulators based on the output of CPR aging
* sensors
* @ctrl: Pointer to the CPR3 controller
*
* Return: 0 on success, errno on failure
*/
static int cprh_regulator_aging_adjust(struct cpr3_controller *ctrl)
{
int i, j, id, rc, rc2, aging_volt, init_volt;
int max_aging_volt = 0;
u32 reg;
if (!ctrl->aging_required || !ctrl->cpr_enabled)
return 0;
if (!ctrl->vdd_regulator) {
cpr3_err(ctrl, "vdd-supply regulator missing\n");
return -ENODEV;
}
init_volt = regulator_get_voltage(ctrl->vdd_regulator);
if (init_volt < 0) {
cpr3_err(ctrl, "could not get vdd-supply voltage, rc=%d\n",
init_volt);
return init_volt;
}
if (init_volt > ctrl->aging_ref_volt) {
cpr3_info(ctrl, "unable to perform CPR aging measurement as vdd=%d uV > aging voltage=%d uV\n",
init_volt, ctrl->aging_ref_volt);
return 0;
}
/* Verify that none of the aging sensors are currently masked. */
for (i = 0; i < ctrl->aging_sensor_count; i++) {
id = ctrl->aging_sensor[i].sensor_id;
reg = cpr3_read(ctrl, CPR3_REG_SENSOR_MASK_READ(id));
if (reg & BIT(id % 32)) {
cpr3_info(ctrl, "unable to perform CPR aging measurement as CPR sensor %d is masked\n",
id);
return 0;
}
}
rc = regulator_set_voltage(ctrl->vdd_regulator, ctrl->aging_ref_volt,
INT_MAX);
if (rc) {
cpr3_err(ctrl, "unable to set vdd-supply to aging voltage=%d uV, rc=%d\n",
ctrl->aging_ref_volt, rc);
return rc;
}
if (ctrl->aging_vdd_mode) {
rc = regulator_set_mode(ctrl->vdd_regulator,
ctrl->aging_vdd_mode);
if (rc) {
cpr3_err(ctrl, "unable to configure vdd-supply for mode=%u, rc=%d\n",
ctrl->aging_vdd_mode, rc);
goto cleanup;
}
}
/* Perform aging measurement on all aging sensors */
for (i = 0; i < ctrl->aging_sensor_count; i++) {
for (j = 0; j < CPR3_AGING_RETRY_COUNT; j++) {
rc = cpr3_regulator_measure_aging(ctrl,
&ctrl->aging_sensor[i]);
if (!rc)
break;
}
if (!rc) {
aging_volt =
cpr3_voltage_adjustment(
ctrl->aging_sensor[i].ro_scale,
ctrl->aging_sensor[i].measured_quot_diff
- ctrl->aging_sensor[i].init_quot_diff);
max_aging_volt = max(max_aging_volt, aging_volt);
} else {
cpr3_err(ctrl, "CPR aging measurement failed after %d tries, rc=%d\n",
j, rc);
ctrl->aging_failed = true;
ctrl->aging_required = false;
goto cleanup;
}
}
cleanup:
/* Adjust the CPR target quotients according to the aging measurement */
if (!rc) {
cpr3_regulator_set_aging_ref_adjustment(ctrl, max_aging_volt);
cpr3_info(ctrl, "aging measurement successful; aging reference adjustment voltage=%d uV\n",
ctrl->aging_ref_adjust_volt);
ctrl->aging_succeeded = true;
ctrl->aging_required = false;
}
rc2 = regulator_set_voltage(ctrl->vdd_regulator, init_volt, INT_MAX);
if (rc2) {
cpr3_err(ctrl, "unable to reset vdd-supply to initial voltage=%d uV, rc=%d\n",
init_volt, rc2);
return rc2;
}
if (ctrl->aging_complete_vdd_mode) {
rc2 = regulator_set_mode(ctrl->vdd_regulator,
ctrl->aging_complete_vdd_mode);
if (rc2) {
cpr3_err(ctrl, "unable to configure vdd-supply for mode=%u, rc=%d\n",
ctrl->aging_complete_vdd_mode, rc2);
return rc2;
}
}
return rc;
}
/**
* cpr3_regulator_update_ctrl_state() - update the state of the CPR controller
* to reflect the corners used by all CPR3 regulators as well as
* the CPR operating mode and perform aging adjustments if needed
* @ctrl: Pointer to the CPR3 controller
*
* Note, CPR3 controller lock must be held by the caller.
*
* Return: 0 on success, errno on failure
*/
static int cpr3_regulator_update_ctrl_state(struct cpr3_controller *ctrl)
{
int rc;
rc = _cpr3_regulator_update_ctrl_state(ctrl);
if (rc)
return rc;
return cpr3_regulator_aging_adjust(ctrl);
}
/**
* cpr3_regulator_set_voltage() - set the voltage corner for the CPR3 regulator
* associated with the regulator device
* @rdev: Regulator device pointer for the cpr3-regulator
* @corner: New voltage corner to set (offset by CPR3_CORNER_OFFSET)
* @corner_max: Maximum voltage corner allowed (offset by
* CPR3_CORNER_OFFSET)
* @selector: Pointer which is filled with the selector value for the
* corner
*
* This function is passed as a callback function into the regulator ops that
* are registered for each cpr3-regulator device. The VDD voltage will not be
* physically configured until both this function and cpr3_regulator_enable()
* are called.
*
* Return: 0 on success, errno on failure
*/
static int cpr3_regulator_set_voltage(struct regulator_dev *rdev,
int corner, int corner_max, unsigned int *selector)
{
struct cpr3_regulator *vreg = rdev_get_drvdata(rdev);
struct cpr3_controller *ctrl = vreg->thread->ctrl;
int rc = 0;
int last_corner;
corner -= CPR3_CORNER_OFFSET;
corner_max -= CPR3_CORNER_OFFSET;
*selector = corner;
mutex_lock(&ctrl->lock);
if (!vreg->vreg_enabled) {
vreg->current_corner = corner;
cpr3_debug(vreg, "stored corner=%d\n", corner);
goto done;
} else if (vreg->current_corner == corner) {
goto done;
}
last_corner = vreg->current_corner;
vreg->current_corner = corner;
rc = cpr3_regulator_update_ctrl_state(ctrl);
if (rc) {
cpr3_err(vreg, "could not update CPR state, rc=%d\n", rc);
vreg->current_corner = last_corner;
}
cpr3_debug(vreg, "set corner=%d\n", corner);
done:
mutex_unlock(&ctrl->lock);
return rc;
}
/**
* cpr3_regulator_get_voltage() - get the voltage corner for the CPR3 regulator
* associated with the regulator device
* @rdev: Regulator device pointer for the cpr3-regulator
*
* This function is passed as a callback function into the regulator ops that
* are registered for each cpr3-regulator device.
*
* Return: voltage corner value offset by CPR3_CORNER_OFFSET
*/
static int cpr3_regulator_get_voltage(struct regulator_dev *rdev)
{
struct cpr3_regulator *vreg = rdev_get_drvdata(rdev);
if (vreg->current_corner == CPR3_REGULATOR_CORNER_INVALID)
return CPR3_CORNER_OFFSET;
else
return vreg->current_corner + CPR3_CORNER_OFFSET;
}
/**
* cpr3_regulator_list_voltage() - return the voltage corner mapped to the
* specified selector
* @rdev: Regulator device pointer for the cpr3-regulator
* @selector: Regulator selector
*
* This function is passed as a callback function into the regulator ops that
* are registered for each cpr3-regulator device.
*
* Return: voltage corner value offset by CPR3_CORNER_OFFSET
*/
static int cpr3_regulator_list_voltage(struct regulator_dev *rdev,
unsigned int selector)
{
struct cpr3_regulator *vreg = rdev_get_drvdata(rdev);
if (selector < vreg->corner_count)
return selector + CPR3_CORNER_OFFSET;
else
return 0;
}
/**
* cpr3_regulator_list_corner_voltage() - return the ceiling voltage mapped to
* the specified voltage corner
* @rdev: Regulator device pointer for the cpr3-regulator
* @corner: Voltage corner
*
* This function is passed as a callback function into the regulator ops that
* are registered for each cpr3-regulator device.
*
* Return: voltage value in microvolts or -EINVAL if the corner is out of range
*/
static int cpr3_regulator_list_corner_voltage(struct regulator_dev *rdev,
int corner)
{
struct cpr3_regulator *vreg = rdev_get_drvdata(rdev);
corner -= CPR3_CORNER_OFFSET;
if (corner >= 0 && corner < vreg->corner_count)
return vreg->corner[corner].ceiling_volt;
else
return -EINVAL;
}
/**
* cpr3_regulator_is_enabled() - return the enable state of the CPR3 regulator
* @rdev: Regulator device pointer for the cpr3-regulator
*
* This function is passed as a callback function into the regulator ops that
* are registered for each cpr3-regulator device.
*
* Return: true if regulator is enabled, false if regulator is disabled
*/
static int cpr3_regulator_is_enabled(struct regulator_dev *rdev)
{
struct cpr3_regulator *vreg = rdev_get_drvdata(rdev);
return vreg->vreg_enabled;
}
/**
* cpr3_regulator_enable() - enable the CPR3 regulator
* @rdev: Regulator device pointer for the cpr3-regulator
*
* This function is passed as a callback function into the regulator ops that
* are registered for each cpr3-regulator device.
*
* Return: 0 on success, errno on failure
*/
static int cpr3_regulator_enable(struct regulator_dev *rdev)
{
struct cpr3_regulator *vreg = rdev_get_drvdata(rdev);
struct cpr3_controller *ctrl = vreg->thread->ctrl;
int rc = 0;
if (vreg->vreg_enabled)
return 0;
mutex_lock(&ctrl->lock);
if (ctrl->system_regulator) {
rc = regulator_enable(ctrl->system_regulator);
if (rc) {
cpr3_err(ctrl, "regulator_enable(system) failed, rc=%d\n",
rc);
goto done;
}
}
rc = regulator_enable(ctrl->vdd_regulator);
if (rc) {
cpr3_err(vreg, "regulator_enable(vdd) failed, rc=%d\n", rc);
goto done;
}
if (vreg->ldo_regulator) {
rc = regulator_enable(vreg->ldo_regulator);
if (rc) {
cpr3_err(vreg, "regulator_enable(ldo) failed, rc=%d\n",
rc);
goto done;
}
}
vreg->vreg_enabled = true;
rc = cpr3_regulator_update_ctrl_state(ctrl);
if (rc) {
cpr3_err(vreg, "could not update CPR state, rc=%d\n", rc);
regulator_disable(ctrl->vdd_regulator);
vreg->vreg_enabled = false;
goto done;
}
cpr3_debug(vreg, "Enabled\n");
done:
mutex_unlock(&ctrl->lock);
return rc;
}
/**
* cpr3_regulator_disable() - disable the CPR3 regulator
* @rdev: Regulator device pointer for the cpr3-regulator
*
* This function is passed as a callback function into the regulator ops that
* are registered for each cpr3-regulator device.
*
* Return: 0 on success, errno on failure
*/
static int cpr3_regulator_disable(struct regulator_dev *rdev)
{
struct cpr3_regulator *vreg = rdev_get_drvdata(rdev);
struct cpr3_controller *ctrl = vreg->thread->ctrl;
int rc, rc2;
if (!vreg->vreg_enabled)
return 0;
mutex_lock(&ctrl->lock);
if (vreg->ldo_regulator && vreg->ldo_regulator_bypass == LDO_MODE) {
rc = regulator_get_voltage(ctrl->vdd_regulator);
if (rc < 0) {
cpr3_err(vreg, "regulator_get_voltage(vdd) failed, rc=%d\n",
rc);
goto done;
}
/* Switch back to BHS for safe operation */
rc = cpr3_regulator_set_bhs_mode(vreg, rc,
ctrl->aggr_corner.ceiling_volt);
if (rc) {
cpr3_err(vreg, "unable to switch to BHS mode, rc=%d\n",
rc);
goto done;
}
}
if (vreg->ldo_regulator) {
rc = regulator_disable(vreg->ldo_regulator);
if (rc) {
cpr3_err(vreg, "regulator_disable(ldo) failed, rc=%d\n",
rc);
goto done;
}
}
rc = regulator_disable(ctrl->vdd_regulator);
if (rc) {
cpr3_err(vreg, "regulator_disable(vdd) failed, rc=%d\n", rc);
goto done;
}
vreg->vreg_enabled = false;
rc = cpr3_regulator_update_ctrl_state(ctrl);
if (rc) {
cpr3_err(vreg, "could not update CPR state, rc=%d\n", rc);
rc2 = regulator_enable(ctrl->vdd_regulator);
vreg->vreg_enabled = true;
goto done;
}
if (ctrl->system_regulator) {
rc = regulator_disable(ctrl->system_regulator);
if (rc) {
cpr3_err(ctrl, "regulator_disable(system) failed, rc=%d\n",
rc);
goto done;
}
if (ctrl->support_ldo300_vreg) {
rc = regulator_set_voltage(ctrl->system_regulator, 0,
INT_MAX);
if (rc)
cpr3_err(ctrl, "failed to set voltage on system rc=%d\n",
rc);
goto done;
}
}
cpr3_debug(vreg, "Disabled\n");
done:
mutex_unlock(&ctrl->lock);
return rc;
}
static struct regulator_ops cpr3_regulator_ops = {
.enable = cpr3_regulator_enable,
.disable = cpr3_regulator_disable,
.is_enabled = cpr3_regulator_is_enabled,
.set_voltage = cpr3_regulator_set_voltage,
.get_voltage = cpr3_regulator_get_voltage,
.list_voltage = cpr3_regulator_list_voltage,
.list_corner_voltage = cpr3_regulator_list_corner_voltage,
};
/**
* cprh_regulator_get_voltage() - get the voltage corner for the CPR3 regulator
* associated with the regulator device
* @rdev: Regulator device pointer for the cpr3-regulator
*
* This function is passed as a callback function into the regulator ops that
* are registered for each cpr3-regulator device of a CPRh controller. The
* corner is read directly from CPRh hardware register.
*
* Return: voltage corner value offset by CPR3_CORNER_OFFSET
*/
static int cprh_regulator_get_voltage(struct regulator_dev *rdev)
{
struct cpr3_regulator *vreg = rdev_get_drvdata(rdev);
struct cpr3_controller *ctrl = vreg->thread->ctrl;
bool cpr_enabled;
u32 reg, rc;
mutex_lock(&ctrl->lock);
cpr_enabled = ctrl->cpr_enabled;
if (!cpr_enabled) {
rc = cpr3_clock_enable(ctrl);
if (rc) {
cpr3_err(ctrl, "clock enable failed, rc=%d\n", rc);
mutex_unlock(&ctrl->lock);
return CPR3_REGULATOR_CORNER_INVALID;
}
ctrl->cpr_enabled = true;
}
reg = cpr3_read(vreg->thread->ctrl, CPRH_REG_STATUS);
if (!cpr_enabled) {
cpr3_clock_disable(ctrl);
ctrl->cpr_enabled = false;
}
mutex_unlock(&ctrl->lock);
return (reg & CPRH_STATUS_CORNER)
+ CPR3_CORNER_OFFSET;
}
static struct regulator_ops cprh_regulator_ops = {
.get_voltage = cprh_regulator_get_voltage,
.list_corner_voltage = cpr3_regulator_list_corner_voltage,
};
/**
* cpr3_print_result() - print CPR measurement results to the kernel log for
* debugging purposes
* @thread: Pointer to the CPR3 thread
*
* Return: None
*/
static void cpr3_print_result(struct cpr3_thread *thread)
{
struct cpr3_controller *ctrl = thread->ctrl;
u32 result[3], busy, step_dn, step_up, error_steps, error, negative;
u32 quot_min, quot_max, ro_min, ro_max, step_quot_min, step_quot_max;
u32 sensor_min, sensor_max;
char *sign;
result[0] = cpr3_read(ctrl, CPR3_REG_RESULT0(thread->thread_id));
result[1] = cpr3_read(ctrl, CPR3_REG_RESULT1(thread->thread_id));
result[2] = cpr3_read(ctrl, CPR3_REG_RESULT2(thread->thread_id));
busy = !!(result[0] & CPR3_RESULT0_BUSY_MASK);
step_dn = !!(result[0] & CPR3_RESULT0_STEP_DN_MASK);
step_up = !!(result[0] & CPR3_RESULT0_STEP_UP_MASK);
error_steps = (result[0] & CPR3_RESULT0_ERROR_STEPS_MASK)
>> CPR3_RESULT0_ERROR_STEPS_SHIFT;
error = (result[0] & CPR3_RESULT0_ERROR_MASK)
>> CPR3_RESULT0_ERROR_SHIFT;
negative = !!(result[0] & CPR3_RESULT0_NEGATIVE_MASK);
quot_min = (result[1] & CPR3_RESULT1_QUOT_MIN_MASK)
>> CPR3_RESULT1_QUOT_MIN_SHIFT;
quot_max = (result[1] & CPR3_RESULT1_QUOT_MAX_MASK)
>> CPR3_RESULT1_QUOT_MAX_SHIFT;
ro_min = (result[1] & CPR3_RESULT1_RO_MIN_MASK)
>> CPR3_RESULT1_RO_MIN_SHIFT;
ro_max = (result[1] & CPR3_RESULT1_RO_MAX_MASK)
>> CPR3_RESULT1_RO_MAX_SHIFT;
step_quot_min = (result[2] & CPR3_RESULT2_STEP_QUOT_MIN_MASK)
>> CPR3_RESULT2_STEP_QUOT_MIN_SHIFT;
step_quot_max = (result[2] & CPR3_RESULT2_STEP_QUOT_MAX_MASK)
>> CPR3_RESULT2_STEP_QUOT_MAX_SHIFT;
sensor_min = (result[2] & CPR3_RESULT2_SENSOR_MIN_MASK)
>> CPR3_RESULT2_SENSOR_MIN_SHIFT;
sensor_max = (result[2] & CPR3_RESULT2_SENSOR_MAX_MASK)
>> CPR3_RESULT2_SENSOR_MAX_SHIFT;
sign = negative ? "-" : "";
cpr3_debug(ctrl, "thread %u: busy=%u, step_dn=%u, step_up=%u, error_steps=%s%u, error=%s%u\n",
thread->thread_id, busy, step_dn, step_up, sign, error_steps,
sign, error);
cpr3_debug(ctrl, "thread %u: quot_min=%u, quot_max=%u, ro_min=%u, ro_max=%u\n",
thread->thread_id, quot_min, quot_max, ro_min, ro_max);
cpr3_debug(ctrl, "thread %u: step_quot_min=%u, step_quot_max=%u, sensor_min=%u, sensor_max=%u\n",
thread->thread_id, step_quot_min, step_quot_max, sensor_min,
sensor_max);
}
/**
* cpr3_thread_busy() - returns if the specified CPR3 thread is busy taking
* a measurement
* @thread: Pointer to the CPR3 thread
*
* Return: CPR3 busy status
*/
static bool cpr3_thread_busy(struct cpr3_thread *thread)
{
u32 result;
result = cpr3_read(thread->ctrl, CPR3_REG_RESULT0(thread->thread_id));
return !!(result & CPR3_RESULT0_BUSY_MASK);
}
/**
* cpr3_irq_handler() - CPR interrupt handler callback function used for
* software closed-loop operation
* @irq: CPR interrupt number
* @data: Private data corresponding to the CPR3 controller
* pointer
*
* This function increases or decreases the vdd supply voltage based upon the
* CPR controller recommendation.
*
* Return: IRQ_HANDLED
*/
static irqreturn_t cpr3_irq_handler(int irq, void *data)
{
struct cpr3_controller *ctrl = data;
struct cpr3_corner *aggr = &ctrl->aggr_corner;
u32 cont = CPR3_CONT_CMD_NACK;
u32 reg_last_measurement = 0;
struct cpr3_regulator *vreg;
struct cpr3_corner *corner;
unsigned long flags;
int i, j, new_volt, last_volt, dynamic_floor_volt, rc;
u32 irq_en, status, cpr_status, ctl;
bool up, down;
mutex_lock(&ctrl->lock);
if (!ctrl->cpr_enabled) {
cpr3_debug(ctrl, "CPR interrupt received but CPR is disabled\n");
mutex_unlock(&ctrl->lock);
return IRQ_HANDLED;
} else if (ctrl->use_hw_closed_loop) {
cpr3_debug(ctrl, "CPR interrupt received but CPR is using HW closed-loop\n");
goto done;
}
/*
* CPR IRQ status checking and CPR controller disabling must happen
* atomically and without invening delay in order to avoid an interrupt
* storm caused by the handler racing with the CPR controller.
*/
local_irq_save(flags);
preempt_disable();
status = cpr3_read(ctrl, CPR3_REG_IRQ_STATUS);
up = status & CPR3_IRQ_UP;
down = status & CPR3_IRQ_DOWN;
if (!up && !down) {
/*
* Toggle the CPR controller off and then back on since the
* hardware and software states are out of sync. This condition
* occurs after an aging measurement completes as the CPR IRQ
* physically triggers during the aging measurement but the
* handler is stuck waiting on the mutex lock.
*/
cpr3_ctrl_loop_disable(ctrl);
local_irq_restore(flags);
preempt_enable();
/* Wait for the loop disable write to complete */
mb();
/* Wait for BUSY=1 and LOOP_EN=0 in CPR controller registers. */
for (i = 0; i < CPR3_REGISTER_WRITE_DELAY_US / 10; i++) {
cpr_status = cpr3_read(ctrl, CPR3_REG_CPR_STATUS);
ctl = cpr3_read(ctrl, CPR3_REG_CPR_CTL);
if (cpr_status & CPR3_CPR_STATUS_BUSY_MASK
&& (ctl & CPR3_CPR_CTL_LOOP_EN_MASK)
== CPR3_CPR_CTL_LOOP_DISABLE)
break;
udelay(10);
}
if (i == CPR3_REGISTER_WRITE_DELAY_US / 10)
cpr3_debug(ctrl, "CPR controller not disabled after %d us\n",
CPR3_REGISTER_WRITE_DELAY_US);
/* Clear interrupt status */
cpr3_write(ctrl, CPR3_REG_IRQ_CLEAR,
CPR3_IRQ_UP | CPR3_IRQ_DOWN);
/* Wait for the interrupt clearing write to complete */
mb();
/* Wait for IRQ_STATUS register to be cleared. */
for (i = 0; i < CPR3_REGISTER_WRITE_DELAY_US / 10; i++) {
status = cpr3_read(ctrl, CPR3_REG_IRQ_STATUS);
if (!(status & (CPR3_IRQ_UP | CPR3_IRQ_DOWN)))
break;
udelay(10);
}
if (i == CPR3_REGISTER_WRITE_DELAY_US / 10)
cpr3_debug(ctrl, "CPR interrupts not cleared after %d us\n",
CPR3_REGISTER_WRITE_DELAY_US);
cpr3_ctrl_loop_enable(ctrl);
cpr3_debug(ctrl, "CPR interrupt received but no up or down status bit is set\n");
mutex_unlock(&ctrl->lock);
return IRQ_HANDLED;
} else if (up && down) {
cpr3_debug(ctrl, "both up and down status bits set\n");
/* The up flag takes precedence over the down flag. */
down = false;
}
if (ctrl->supports_hw_closed_loop)
reg_last_measurement
= cpr3_read(ctrl, CPR3_REG_LAST_MEASUREMENT);
dynamic_floor_volt = cpr3_regulator_get_dynamic_floor_volt(ctrl,
reg_last_measurement);
local_irq_restore(flags);
preempt_enable();
irq_en = aggr->irq_en;
last_volt = aggr->last_volt;
for (i = 0; i < ctrl->thread_count; i++) {
if (cpr3_thread_busy(&ctrl->thread[i])) {
cpr3_debug(ctrl, "CPR thread %u busy when it should be waiting for SW cont\n",
ctrl->thread[i].thread_id);
goto done;
}
}
new_volt = up ? last_volt + ctrl->step_volt
: last_volt - ctrl->step_volt;
/* Re-enable UP/DOWN interrupt when its opposite is received. */
irq_en |= up ? CPR3_IRQ_DOWN : CPR3_IRQ_UP;
if (new_volt > aggr->ceiling_volt) {
new_volt = aggr->ceiling_volt;
irq_en &= ~CPR3_IRQ_UP;
cpr3_debug(ctrl, "limiting to ceiling=%d uV\n",
aggr->ceiling_volt);
} else if (new_volt < aggr->floor_volt) {
new_volt = aggr->floor_volt;
irq_en &= ~CPR3_IRQ_DOWN;
cpr3_debug(ctrl, "limiting to floor=%d uV\n", aggr->floor_volt);
}
if (down && new_volt < dynamic_floor_volt) {
/*
* The vdd-supply voltage should not be decreased below the
* dynamic floor voltage. However, it is not necessary (and
* counter productive) to force the voltage up to this level
* if it happened to be below it since the closed-loop voltage
* must have gotten there in a safe manner while the power
* domains for the CPR3 regulator imposing the dynamic floor
* were not bypassed.
*/
new_volt = last_volt;
irq_en &= ~CPR3_IRQ_DOWN;
cpr3_debug(ctrl, "limiting to dynamic floor=%d uV\n",
dynamic_floor_volt);
}
for (i = 0; i < ctrl->thread_count; i++)
cpr3_print_result(&ctrl->thread[i]);
cpr3_debug(ctrl, "%s: new_volt=%d uV, last_volt=%d uV\n",
up ? "UP" : "DN", new_volt, last_volt);
if (ctrl->proc_clock_throttle && last_volt == aggr->ceiling_volt
&& new_volt < last_volt)
cpr3_write(ctrl, CPR3_REG_PD_THROTTLE,
ctrl->proc_clock_throttle);
if (new_volt != last_volt) {
rc = cpr3_regulator_scale_vdd_voltage(ctrl, new_volt,
last_volt,
aggr);
if (rc) {
cpr3_err(ctrl, "scale_vdd() failed to set vdd=%d uV, rc=%d\n",
new_volt, rc);
goto done;
}
cont = CPR3_CONT_CMD_ACK;
/*
* Update the closed-loop voltage for all regulators managed
* by this CPR controller.
*/
for (i = 0; i < ctrl->thread_count; i++) {
for (j = 0; j < ctrl->thread[i].vreg_count; j++) {
vreg = &ctrl->thread[i].vreg[j];
cpr3_update_vreg_closed_loop_volt(vreg,
new_volt, reg_last_measurement);
}
}
}
if (ctrl->proc_clock_throttle && new_volt == aggr->ceiling_volt)
cpr3_write(ctrl, CPR3_REG_PD_THROTTLE,
CPR3_PD_THROTTLE_DISABLE);
corner = &ctrl->thread[0].vreg[0].corner[
ctrl->thread[0].vreg[0].current_corner];
if (irq_en != aggr->irq_en) {
aggr->irq_en = irq_en;
cpr3_write(ctrl, CPR3_REG_IRQ_EN, irq_en);
}
aggr->last_volt = new_volt;
done:
/* Clear interrupt status */
cpr3_write(ctrl, CPR3_REG_IRQ_CLEAR, CPR3_IRQ_UP | CPR3_IRQ_DOWN);
/* ACK or NACK the CPR controller */
cpr3_write(ctrl, CPR3_REG_CONT_CMD, cont);
mutex_unlock(&ctrl->lock);
return IRQ_HANDLED;
}
/**
* cpr3_ceiling_irq_handler() - CPR ceiling reached interrupt handler callback
* function used for hardware closed-loop operation
* @irq: CPR ceiling interrupt number
* @data: Private data corresponding to the CPR3 controller
* pointer
*
* This function disables processor clock throttling and closed-loop operation
* when the ceiling voltage is reached.
*
* Return: IRQ_HANDLED
*/
static irqreturn_t cpr3_ceiling_irq_handler(int irq, void *data)
{
struct cpr3_controller *ctrl = data;
int rc, volt;
mutex_lock(&ctrl->lock);
if (!ctrl->cpr_enabled) {
cpr3_debug(ctrl, "CPR ceiling interrupt received but CPR is disabled\n");
goto done;
} else if (!ctrl->use_hw_closed_loop) {
cpr3_debug(ctrl, "CPR ceiling interrupt received but CPR is using SW closed-loop\n");
goto done;
}
volt = regulator_get_voltage(ctrl->vdd_regulator);
if (volt < 0) {
cpr3_err(ctrl, "could not get vdd voltage, rc=%d\n", volt);
goto done;
} else if (volt != ctrl->aggr_corner.ceiling_volt) {
cpr3_debug(ctrl, "CPR ceiling interrupt received but vdd voltage: %d uV != ceiling voltage: %d uV\n",
volt, ctrl->aggr_corner.ceiling_volt);
goto done;
}
if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR3) {
/*
* Since the ceiling voltage has been reached, disable processor
* clock throttling as well as CPR closed-loop operation.
*/
cpr3_write(ctrl, CPR3_REG_PD_THROTTLE,
CPR3_PD_THROTTLE_DISABLE);
cpr3_ctrl_loop_disable(ctrl);
cpr3_debug(ctrl, "CPR closed-loop and throttling disabled\n");
}
done:
rc = msm_spm_avs_clear_irq(0, MSM_SPM_AVS_IRQ_MAX);
if (rc)
cpr3_err(ctrl, "could not clear max IRQ, rc=%d\n", rc);
mutex_unlock(&ctrl->lock);
return IRQ_HANDLED;
}
/**
* cpr3_regulator_vreg_register() - register a regulator device for a CPR3
* regulator
* @vreg: Pointer to the CPR3 regulator
*
* This function initializes all regulator framework related structures and then
* calls regulator_register() for the CPR3 regulator.
*
* Return: 0 on success, errno on failure
*/
static int cpr3_regulator_vreg_register(struct cpr3_regulator *vreg)
{
struct regulator_config config = {};
struct regulator_desc *rdesc;
struct regulator_init_data *init_data;
int rc;
init_data = of_get_regulator_init_data(vreg->thread->ctrl->dev,
vreg->of_node, &vreg->rdesc);
if (!init_data) {
cpr3_err(vreg, "regulator init data is missing\n");
return -EINVAL;
}
init_data->constraints.input_uV = init_data->constraints.max_uV;
rdesc = &vreg->rdesc;
if (vreg->thread->ctrl->ctrl_type == CPR_CTRL_TYPE_CPRH) {
/* CPRh regulators are treated as always-on regulators */
rdesc->ops = &cprh_regulator_ops;
} else {
init_data->constraints.valid_ops_mask
|= REGULATOR_CHANGE_VOLTAGE | REGULATOR_CHANGE_STATUS;
rdesc->ops = &cpr3_regulator_ops;
}
rdesc->n_voltages = vreg->corner_count;
rdesc->name = init_data->constraints.name;
rdesc->owner = THIS_MODULE;
rdesc->type = REGULATOR_VOLTAGE;
config.dev = vreg->thread->ctrl->dev;
config.driver_data = vreg;
config.init_data = init_data;
config.of_node = vreg->of_node;
vreg->rdev = regulator_register(rdesc, &config);
if (IS_ERR(vreg->rdev)) {
rc = PTR_ERR(vreg->rdev);
cpr3_err(vreg, "regulator_register failed, rc=%d\n", rc);
return rc;
}
return 0;
}
static int debugfs_int_set(void *data, u64 val)
{
*(int *)data = val;
return 0;
}
static int debugfs_int_get(void *data, u64 *val)
{
*val = *(int *)data;
return 0;
}
DEFINE_DEBUGFS_ATTRIBUTE(fops_int, debugfs_int_get, debugfs_int_set, "%lld\n");
DEFINE_DEBUGFS_ATTRIBUTE(fops_int_ro, debugfs_int_get, NULL, "%lld\n");
DEFINE_DEBUGFS_ATTRIBUTE(fops_int_wo, NULL, debugfs_int_set, "%lld\n");
/**
* debugfs_create_int - create a debugfs file that is used to read and write a
* signed int value
* @name: Pointer to a string containing the name of the file to
* create
* @mode: The permissions that the file should have
* @parent: Pointer to the parent dentry for this file. This should
* be a directory dentry if set. If this parameter is
* %NULL, then the file will be created in the root of the
* debugfs filesystem.
* @value: Pointer to the variable that the file should read to and
* write from
*
* This function creates a file in debugfs with the given name that
* contains the value of the variable @value. If the @mode variable is so
* set, it can be read from, and written to.
*
* This function will return a pointer to a dentry if it succeeds. This
* pointer must be passed to the debugfs_remove() function when the file is
* to be removed. If an error occurs, %NULL will be returned.
*/
static struct dentry *debugfs_create_int(const char *name, umode_t mode,
struct dentry *parent, int *value)
{
/* if there are no write bits set, make read only */
if (!(mode & 0222))
return debugfs_create_file(name, mode, parent, value,
&fops_int_ro);
/* if there are no read bits set, make write only */
if (!(mode & 0444))
return debugfs_create_file(name, mode, parent, value,
&fops_int_wo);
return debugfs_create_file(name, mode, parent, value, &fops_int);
}
static int debugfs_bool_get(void *data, u64 *val)
{
*val = *(bool *)data;
return 0;
}
DEFINE_DEBUGFS_ATTRIBUTE(fops_bool_ro, debugfs_bool_get, NULL, "%lld\n");
/**
* cpr3_debug_ldo_mode_allowed_set() - debugfs callback used to change the
* value of the CPR3 regulator ldo_mode_allowed flag
* @data: Pointer to private data which is equal to the CPR3
* regulator pointer
* @val: New value for ldo_mode_allowed
*
* Return: 0 on success, errno on failure
*/
static int cpr3_debug_ldo_mode_allowed_set(void *data, u64 val)
{
struct cpr3_regulator *vreg = data;
struct cpr3_controller *ctrl = vreg->thread->ctrl;
bool allow = !!val;
int rc, vdd_volt;
mutex_lock(&ctrl->lock);
if (vreg->ldo_mode_allowed == allow)
goto done;
vreg->ldo_mode_allowed = allow;
if (!allow && vreg->ldo_regulator_bypass == LDO_MODE) {
vdd_volt = regulator_get_voltage(ctrl->vdd_regulator);
if (vdd_volt < 0) {
cpr3_err(vreg, "regulator_get_voltage(vdd) failed, rc=%d\n",
vdd_volt);
goto done;
}
/* Switch back to BHS */
rc = cpr3_regulator_set_bhs_mode(vreg, vdd_volt,
ctrl->aggr_corner.ceiling_volt);
if (rc) {
cpr3_err(vreg, "unable to switch to BHS mode, rc=%d\n",
rc);
goto done;
}
} else {
rc = cpr3_regulator_update_ctrl_state(ctrl);
if (rc) {
cpr3_err(vreg, "could not change LDO mode=%s, rc=%d\n",
allow ? "allowed" : "disallowed", rc);
goto done;
}
}
cpr3_debug(vreg, "LDO mode=%s\n", allow ? "allowed" : "disallowed");
done:
mutex_unlock(&ctrl->lock);
return 0;
}
/**
* cpr3_debug_ldo_mode_allowed_get() - debugfs callback used to retrieve the
* value of the CPR3 regulator ldo_mode_allowed flag
* @data: Pointer to private data which is equal to the CPR3
* regulator pointer
* @val: Output parameter written with a value of the
* ldo_mode_allowed flag
*
* Return: 0 on success, errno on failure
*/
static int cpr3_debug_ldo_mode_allowed_get(void *data, u64 *val)
{
struct cpr3_regulator *vreg = data;
*val = vreg->ldo_mode_allowed;
return 0;
}
DEFINE_DEBUGFS_ATTRIBUTE(cpr3_debug_ldo_mode_allowed_fops,
cpr3_debug_ldo_mode_allowed_get,
cpr3_debug_ldo_mode_allowed_set,
"%llu\n");
/**
* cpr3_debug_ldo_mode_get() - debugfs callback used to retrieve the state of
* the CPR3 regulator's LDO
* @data: Pointer to private data which is equal to the CPR3
* regulator pointer
* @val: Output parameter written with a value of 1 if using
* LDO mode or 0 if the LDO is bypassed
*
* Return: 0 on success, errno on failure
*/
static int cpr3_debug_ldo_mode_get(void *data, u64 *val)
{
struct cpr3_regulator *vreg = data;
*val = (vreg->ldo_regulator_bypass == LDO_MODE);
return 0;
}
DEFINE_DEBUGFS_ATTRIBUTE(cpr3_debug_ldo_mode_fops, cpr3_debug_ldo_mode_get,
NULL, "%llu\n");
/**
* struct cpr3_debug_corner_info - data structure used by the
* cpr3_debugfs_create_corner_int function
* @vreg: Pointer to the CPR3 regulator
* @index: Pointer to the corner array index
* @member_offset: Offset in bytes from the beginning of struct cpr3_corner
* to the beginning of the value to be read from
* @corner: Pointer to the CPR3 corner array
*/
struct cpr3_debug_corner_info {
struct cpr3_regulator *vreg;
int *index;
size_t member_offset;
struct cpr3_corner *corner;
};
static int cpr3_debug_corner_int_get(void *data, u64 *val)
{
struct cpr3_debug_corner_info *info = data;
struct cpr3_controller *ctrl = info->vreg->thread->ctrl;
int i;
mutex_lock(&ctrl->lock);
i = *info->index;
if (i < 0)
i = 0;
*val = *(int *)((char *)&info->vreg->corner[i] + info->member_offset);
mutex_unlock(&ctrl->lock);
return 0;
}
DEFINE_DEBUGFS_ATTRIBUTE(cpr3_debug_corner_int_fops, cpr3_debug_corner_int_get,
NULL, "%lld\n");
/**
* cpr3_debugfs_create_corner_int - create a debugfs file that is used to read
* a signed int value out of a CPR3 regulator's corner array
* @vreg: Pointer to the CPR3 regulator
* @name: Pointer to a string containing the name of the file to
* create
* @mode: The permissions that the file should have
* @parent: Pointer to the parent dentry for this file. This should
* be a directory dentry if set. If this parameter is
* %NULL, then the file will be created in the root of the
* debugfs filesystem.
* @index: Pointer to the corner array index
* @member_offset: Offset in bytes from the beginning of struct cpr3_corner
* to the beginning of the value to be read from
*
* This function creates a file in debugfs with the given name that
* contains the value of the int type variable vreg->corner[index].member
* where member_offset == offsetof(struct cpr3_corner, member).
*/
static struct dentry *cpr3_debugfs_create_corner_int(
struct cpr3_regulator *vreg, const char *name, umode_t mode,
struct dentry *parent, int *index, size_t member_offset)
{
struct cpr3_debug_corner_info *info;
info = devm_kzalloc(vreg->thread->ctrl->dev, sizeof(*info), GFP_KERNEL);
if (!info)
return NULL;
info->vreg = vreg;
info->index = index;
info->member_offset = member_offset;
return debugfs_create_file(name, mode, parent, info,
&cpr3_debug_corner_int_fops);
}
static int cpr3_debug_quot_open(struct inode *inode, struct file *file)
{
struct cpr3_debug_corner_info *info = inode->i_private;
struct cpr3_thread *thread = info->vreg->thread;
int size, i, pos;
u32 *quot;
char *buf;
/*
* Max size:
* - 10 digits + ' ' or '\n' = 11 bytes per number
* - terminating '\0'
*/
size = CPR3_RO_COUNT * 11;
buf = kzalloc(size + 1, GFP_KERNEL);
if (!buf)
return -ENOMEM;
file->private_data = buf;
mutex_lock(&thread->ctrl->lock);
quot = info->corner[*info->index].target_quot;
for (i = 0, pos = 0; i < CPR3_RO_COUNT; i++)
pos += scnprintf(buf + pos, size - pos, "%u%c",
quot[i], i < CPR3_RO_COUNT - 1 ? ' ' : '\n');
mutex_unlock(&thread->ctrl->lock);
return nonseekable_open(inode, file);
}
static ssize_t cpr3_debug_quot_read(struct file *file, char __user *buf,
size_t len, loff_t *ppos)
{
return simple_read_from_buffer(buf, len, ppos, file->private_data,
strlen(file->private_data));
}
static int cpr3_debug_quot_release(struct inode *inode, struct file *file)
{
kfree(file->private_data);
return 0;
}
static const struct file_operations cpr3_debug_quot_fops = {
.owner = THIS_MODULE,
.open = cpr3_debug_quot_open,
.release = cpr3_debug_quot_release,
.read = cpr3_debug_quot_read,
.llseek = no_llseek,
};
/**
* cpr3_regulator_debugfs_corner_add() - add debugfs files to expose
* configuration data for the CPR corner
* @vreg: Pointer to the CPR3 regulator
* @corner_dir: Pointer to the parent corner dentry for the new files
* @index: Pointer to the corner array index
*
* Return: none
*/
static void cpr3_regulator_debugfs_corner_add(struct cpr3_regulator *vreg,
struct dentry *corner_dir, int *index)
{
struct cpr3_debug_corner_info *info;
struct dentry *temp;
temp = cpr3_debugfs_create_corner_int(vreg, "floor_volt", 0444,
corner_dir, index, offsetof(struct cpr3_corner, floor_volt));
if (IS_ERR_OR_NULL(temp)) {
cpr3_err(vreg, "floor_volt debugfs file creation failed\n");
return;
}
temp = cpr3_debugfs_create_corner_int(vreg, "ceiling_volt", 0444,
corner_dir, index, offsetof(struct cpr3_corner, ceiling_volt));
if (IS_ERR_OR_NULL(temp)) {
cpr3_err(vreg, "ceiling_volt debugfs file creation failed\n");
return;
}
temp = cpr3_debugfs_create_corner_int(vreg, "open_loop_volt", 0444,
corner_dir, index,
offsetof(struct cpr3_corner, open_loop_volt));
if (IS_ERR_OR_NULL(temp)) {
cpr3_err(vreg, "open_loop_volt debugfs file creation failed\n");
return;
}
temp = cpr3_debugfs_create_corner_int(vreg, "last_volt", 0444,
corner_dir, index, offsetof(struct cpr3_corner, last_volt));
if (IS_ERR_OR_NULL(temp)) {
cpr3_err(vreg, "last_volt debugfs file creation failed\n");
return;
}
info = devm_kzalloc(vreg->thread->ctrl->dev, sizeof(*info), GFP_KERNEL);
if (!info)
return;
info->vreg = vreg;
info->index = index;
info->corner = vreg->corner;
temp = debugfs_create_file("target_quots", 0444, corner_dir, info,
&cpr3_debug_quot_fops);
if (IS_ERR_OR_NULL(temp)) {
cpr3_err(vreg, "target_quots debugfs file creation failed\n");
return;
}
}
/**
* cpr3_debug_corner_index_set() - debugfs callback used to change the
* value of the CPR3 regulator debug_corner index
* @data: Pointer to private data which is equal to the CPR3
* regulator pointer
* @val: New value for debug_corner
*
* Return: 0 on success, errno on failure
*/
static int cpr3_debug_corner_index_set(void *data, u64 val)
{
struct cpr3_regulator *vreg = data;
if (val < CPR3_CORNER_OFFSET || val > vreg->corner_count) {
cpr3_err(vreg, "invalid corner index %llu; allowed values: %d-%d\n",
val, CPR3_CORNER_OFFSET, vreg->corner_count);
return -EINVAL;
}
mutex_lock(&vreg->thread->ctrl->lock);
vreg->debug_corner = val - CPR3_CORNER_OFFSET;
mutex_unlock(&vreg->thread->ctrl->lock);
return 0;
}
/**
* cpr3_debug_corner_index_get() - debugfs callback used to retrieve
* the value of the CPR3 regulator debug_corner index
* @data: Pointer to private data which is equal to the CPR3
* regulator pointer
* @val: Output parameter written with the value of
* debug_corner
*
* Return: 0 on success, errno on failure
*/
static int cpr3_debug_corner_index_get(void *data, u64 *val)
{
struct cpr3_regulator *vreg = data;
*val = vreg->debug_corner + CPR3_CORNER_OFFSET;
return 0;
}
DEFINE_DEBUGFS_ATTRIBUTE(cpr3_debug_corner_index_fops,
cpr3_debug_corner_index_get,
cpr3_debug_corner_index_set,
"%llu\n");
/**
* cpr3_debug_current_corner_index_get() - debugfs callback used to retrieve
* the value of the CPR3 regulator current_corner index
* @data: Pointer to private data which is equal to the CPR3
* regulator pointer
* @val: Output parameter written with the value of
* current_corner
*
* Return: 0 on success, errno on failure
*/
static int cpr3_debug_current_corner_index_get(void *data, u64 *val)
{
struct cpr3_regulator *vreg = data;
*val = vreg->current_corner + CPR3_CORNER_OFFSET;
return 0;
}
DEFINE_DEBUGFS_ATTRIBUTE(cpr3_debug_current_corner_index_fops,
cpr3_debug_current_corner_index_get,
NULL, "%llu\n");
/**
* cpr3_regulator_debugfs_vreg_add() - add debugfs files to expose configuration
* data for the CPR3 regulator
* @vreg: Pointer to the CPR3 regulator
* @thread_dir CPR3 thread debugfs directory handle
*
* Return: none
*/
static void cpr3_regulator_debugfs_vreg_add(struct cpr3_regulator *vreg,
struct dentry *thread_dir)
{
struct dentry *temp, *corner_dir, *vreg_dir;
vreg_dir = debugfs_create_dir(vreg->name, thread_dir);
if (IS_ERR_OR_NULL(vreg_dir)) {
cpr3_err(vreg, "%s debugfs directory creation failed\n",
vreg->name);
return;
}
temp = debugfs_create_int("speed_bin_fuse", 0444, vreg_dir,
&vreg->speed_bin_fuse);
if (IS_ERR_OR_NULL(temp)) {
cpr3_err(vreg, "speed_bin_fuse debugfs file creation failed\n");
return;
}
temp = debugfs_create_int("cpr_rev_fuse", 0444, vreg_dir,
&vreg->cpr_rev_fuse);
if (IS_ERR_OR_NULL(temp)) {
cpr3_err(vreg, "cpr_rev_fuse debugfs file creation failed\n");
return;
}
temp = debugfs_create_int("fuse_combo", 0444, vreg_dir,
&vreg->fuse_combo);
if (IS_ERR_OR_NULL(temp)) {
cpr3_err(vreg, "fuse_combo debugfs file creation failed\n");
return;
}
if (vreg->ldo_regulator) {
temp = debugfs_create_file("ldo_mode", 0444, vreg_dir, vreg,
&cpr3_debug_ldo_mode_fops);
if (IS_ERR_OR_NULL(temp)) {
cpr3_err(vreg, "ldo_mode debugfs file creation failed\n");
return;
}
temp = debugfs_create_file("ldo_mode_allowed",
0644, vreg_dir, vreg,
&cpr3_debug_ldo_mode_allowed_fops);
if (IS_ERR_OR_NULL(temp)) {
cpr3_err(vreg, "ldo_mode_allowed debugfs file creation failed\n");
return;
}
}
temp = debugfs_create_int("corner_count", 0444, vreg_dir,
&vreg->corner_count);
if (IS_ERR_OR_NULL(temp)) {
cpr3_err(vreg, "corner_count debugfs file creation failed\n");
return;
}
corner_dir = debugfs_create_dir("corner", vreg_dir);
if (IS_ERR_OR_NULL(corner_dir)) {
cpr3_err(vreg, "corner debugfs directory creation failed\n");
return;
}
temp = debugfs_create_file("index", 0644, corner_dir, vreg,
&cpr3_debug_corner_index_fops);
if (IS_ERR_OR_NULL(temp)) {
cpr3_err(vreg, "index debugfs file creation failed\n");
return;
}
cpr3_regulator_debugfs_corner_add(vreg, corner_dir,
&vreg->debug_corner);
corner_dir = debugfs_create_dir("current_corner", vreg_dir);
if (IS_ERR_OR_NULL(corner_dir)) {
cpr3_err(vreg, "current_corner debugfs directory creation failed\n");
return;
}
temp = debugfs_create_file("index", 0444, corner_dir, vreg,
&cpr3_debug_current_corner_index_fops);
if (IS_ERR_OR_NULL(temp)) {
cpr3_err(vreg, "index debugfs file creation failed\n");
return;
}
cpr3_regulator_debugfs_corner_add(vreg, corner_dir,
&vreg->current_corner);
}
/**
* cpr3_regulator_debugfs_thread_add() - add debugfs files to expose
* configuration data for the CPR thread
* @thread: Pointer to the CPR3 thread
*
* Return: none
*/
static void cpr3_regulator_debugfs_thread_add(struct cpr3_thread *thread)
{
struct cpr3_controller *ctrl = thread->ctrl;
struct dentry *aggr_dir, *temp, *thread_dir;
struct cpr3_debug_corner_info *info;
char buf[20];
int *index;
int i;
scnprintf(buf, sizeof(buf), "thread%u", thread->thread_id);
thread_dir = debugfs_create_dir(buf, thread->ctrl->debugfs);
if (IS_ERR_OR_NULL(thread_dir)) {
cpr3_err(ctrl, "thread %u %s debugfs directory creation failed\n",
thread->thread_id, buf);
return;
}
aggr_dir = debugfs_create_dir("max_aggregated_params", thread_dir);
if (IS_ERR_OR_NULL(aggr_dir)) {
cpr3_err(ctrl, "thread %u max_aggregated_params debugfs directory creation failed\n",
thread->thread_id);
return;
}
temp = debugfs_create_int("floor_volt", 0444, aggr_dir,
&thread->aggr_corner.floor_volt);
if (IS_ERR_OR_NULL(temp)) {
cpr3_err(ctrl, "thread %u aggr floor_volt debugfs file creation failed\n",
thread->thread_id);
return;
}
temp = debugfs_create_int("ceiling_volt", 0444, aggr_dir,
&thread->aggr_corner.ceiling_volt);
if (IS_ERR_OR_NULL(temp)) {
cpr3_err(ctrl, "thread %u aggr ceiling_volt debugfs file creation failed\n",
thread->thread_id);
return;
}
temp = debugfs_create_int("open_loop_volt", 0444, aggr_dir,
&thread->aggr_corner.open_loop_volt);
if (IS_ERR_OR_NULL(temp)) {
cpr3_err(ctrl, "thread %u aggr open_loop_volt debugfs file creation failed\n",
thread->thread_id);
return;
}
temp = debugfs_create_int("last_volt", 0444, aggr_dir,
&thread->aggr_corner.last_volt);
if (IS_ERR_OR_NULL(temp)) {
cpr3_err(ctrl, "thread %u aggr last_volt debugfs file creation failed\n",
thread->thread_id);
return;
}
info = devm_kzalloc(thread->ctrl->dev, sizeof(*info), GFP_KERNEL);
index = devm_kzalloc(thread->ctrl->dev, sizeof(*index), GFP_KERNEL);
if (!info || !index)
return;
*index = 0;
info->vreg = &thread->vreg[0];
info->index = index;
info->corner = &thread->aggr_corner;
temp = debugfs_create_file("target_quots", 0444, aggr_dir, info,
&cpr3_debug_quot_fops);
if (IS_ERR_OR_NULL(temp)) {
cpr3_err(ctrl, "thread %u target_quots debugfs file creation failed\n",
thread->thread_id);
return;
}
for (i = 0; i < thread->vreg_count; i++)
cpr3_regulator_debugfs_vreg_add(&thread->vreg[i], thread_dir);
}
/**
* cpr3_debug_closed_loop_enable_set() - debugfs callback used to change the
* value of the CPR controller cpr_allowed_sw flag which enables or
* disables closed-loop operation
* @data: Pointer to private data which is equal to the CPR
* controller pointer
* @val: New value for cpr_allowed_sw
*
* Return: 0 on success, errno on failure
*/
static int cpr3_debug_closed_loop_enable_set(void *data, u64 val)
{
struct cpr3_controller *ctrl = data;
bool enable = !!val;
int rc;
mutex_lock(&ctrl->lock);
if (ctrl->cpr_allowed_sw == enable)
goto done;
if (enable && !ctrl->cpr_allowed_hw) {
cpr3_err(ctrl, "CPR closed-loop operation is not allowed\n");
goto done;
}
ctrl->cpr_allowed_sw = enable;
if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPRH) {
cpr3_masked_write(ctrl, CPR4_REG_MARGIN_ADJ_CTL,
CPR4_MARGIN_ADJ_CTL_HW_CLOSED_LOOP_EN_MASK,
ctrl->cpr_allowed_sw && ctrl->use_hw_closed_loop
? CPR4_MARGIN_ADJ_CTL_HW_CLOSED_LOOP_ENABLE
: CPR4_MARGIN_ADJ_CTL_HW_CLOSED_LOOP_DISABLE);
} else {
rc = cpr3_regulator_update_ctrl_state(ctrl);
if (rc) {
cpr3_err(ctrl, "could not change CPR enable state=%u, rc=%d\n",
enable, rc);
goto done;
}
if (ctrl->proc_clock_throttle && !ctrl->cpr_enabled) {
rc = cpr3_clock_enable(ctrl);
if (rc) {
cpr3_err(ctrl, "clock enable failed, rc=%d\n",
rc);
goto done;
}
ctrl->cpr_enabled = true;
cpr3_write(ctrl, CPR3_REG_PD_THROTTLE,
CPR3_PD_THROTTLE_DISABLE);
cpr3_clock_disable(ctrl);
ctrl->cpr_enabled = false;
}
}
if (ctrl->ctrl_type != CPR_CTRL_TYPE_CPRH) {
cpr3_debug(ctrl, "closed-loop=%s\n", enable ?
"enabled" : "disabled");
} else {
cpr3_debug(ctrl, "closed-loop=%s\n", enable &&
ctrl->use_hw_closed_loop ? "enabled" : "disabled");
}
done:
mutex_unlock(&ctrl->lock);
return 0;
}
/**
* cpr3_debug_closed_loop_enable_get() - debugfs callback used to retrieve
* the value of the CPR controller cpr_allowed_sw flag which
* indicates if closed-loop operation is enabled
* @data: Pointer to private data which is equal to the CPR
* controller pointer
* @val: Output parameter written with the value of
* cpr_allowed_sw
*
* Return: 0 on success, errno on failure
*/
static int cpr3_debug_closed_loop_enable_get(void *data, u64 *val)
{
struct cpr3_controller *ctrl = data;
*val = ctrl->cpr_allowed_sw;
return 0;
}
DEFINE_DEBUGFS_ATTRIBUTE(cpr3_debug_closed_loop_enable_fops,
cpr3_debug_closed_loop_enable_get,
cpr3_debug_closed_loop_enable_set,
"%llu\n");
/**
* cpr3_debug_hw_closed_loop_enable_set() - debugfs callback used to change the
* value of the CPR controller use_hw_closed_loop flag which
* switches between software closed-loop and hardware closed-loop
* operation for CPR3 and CPR4 controllers and between open-loop
* and full hardware closed-loop operation for CPRh controllers.
* @data: Pointer to private data which is equal to the CPR
* controller pointer
* @val: New value for use_hw_closed_loop
*
* Return: 0 on success, errno on failure
*/
static int cpr3_debug_hw_closed_loop_enable_set(void *data, u64 val)
{
struct cpr3_controller *ctrl = data;
bool use_hw_closed_loop = !!val;
struct cpr3_regulator *vreg;
bool cpr_enabled;
int i, j, k, rc;
mutex_lock(&ctrl->lock);
if (ctrl->use_hw_closed_loop == use_hw_closed_loop)
goto done;
if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR4) {
rc = cpr3_ctrl_clear_cpr4_config(ctrl);
if (rc) {
cpr3_err(ctrl, "failed to clear CPR4 configuration,rc=%d\n",
rc);
goto done;
}
}
if (ctrl->ctrl_type != CPR_CTRL_TYPE_CPRH)
cpr3_ctrl_loop_disable(ctrl);
ctrl->use_hw_closed_loop = use_hw_closed_loop;
cpr_enabled = ctrl->cpr_enabled;
/* Ensure that CPR clocks are enabled before writing to registers. */
if (!cpr_enabled) {
rc = cpr3_clock_enable(ctrl);
if (rc) {
cpr3_err(ctrl, "clock enable failed, rc=%d\n", rc);
goto done;
}
ctrl->cpr_enabled = true;
}
if (ctrl->use_hw_closed_loop && ctrl->ctrl_type != CPR_CTRL_TYPE_CPRH)
cpr3_write(ctrl, CPR3_REG_IRQ_EN, 0);
if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR4) {
cpr3_masked_write(ctrl, CPR4_REG_MARGIN_ADJ_CTL,
CPR4_MARGIN_ADJ_CTL_HW_CLOSED_LOOP_EN_MASK,
ctrl->use_hw_closed_loop
? CPR4_MARGIN_ADJ_CTL_HW_CLOSED_LOOP_ENABLE
: CPR4_MARGIN_ADJ_CTL_HW_CLOSED_LOOP_DISABLE);
} else if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPRH) {
cpr3_masked_write(ctrl, CPR4_REG_MARGIN_ADJ_CTL,
CPR4_MARGIN_ADJ_CTL_HW_CLOSED_LOOP_EN_MASK,
ctrl->cpr_allowed_sw && ctrl->use_hw_closed_loop
? CPR4_MARGIN_ADJ_CTL_HW_CLOSED_LOOP_ENABLE
: CPR4_MARGIN_ADJ_CTL_HW_CLOSED_LOOP_DISABLE);
} else if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR3) {
cpr3_write(ctrl, CPR3_REG_HW_CLOSED_LOOP,
ctrl->use_hw_closed_loop
? CPR3_HW_CLOSED_LOOP_ENABLE
: CPR3_HW_CLOSED_LOOP_DISABLE);
}
/* Turn off CPR clocks if they were off before this function call. */
if (!cpr_enabled) {
cpr3_clock_disable(ctrl);
ctrl->cpr_enabled = false;
}
if (ctrl->use_hw_closed_loop && ctrl->ctrl_type == CPR_CTRL_TYPE_CPR3) {
rc = regulator_enable(ctrl->vdd_limit_regulator);
if (rc) {
cpr3_err(ctrl, "CPR limit regulator enable failed, rc=%d\n",
rc);
goto done;
}
rc = msm_spm_avs_enable_irq(0, MSM_SPM_AVS_IRQ_MAX);
if (rc) {
cpr3_err(ctrl, "could not enable max IRQ, rc=%d\n", rc);
goto done;
}
} else if (!ctrl->use_hw_closed_loop
&& ctrl->ctrl_type == CPR_CTRL_TYPE_CPR3) {
rc = regulator_disable(ctrl->vdd_limit_regulator);
if (rc) {
cpr3_err(ctrl, "CPR limit regulator disable failed, rc=%d\n",
rc);
goto done;
}
rc = msm_spm_avs_disable_irq(0, MSM_SPM_AVS_IRQ_MAX);
if (rc) {
cpr3_err(ctrl, "could not disable max IRQ, rc=%d\n",
rc);
goto done;
}
}
if (ctrl->ctrl_type != CPR_CTRL_TYPE_CPRH) {
/*
* Due to APM and mem-acc floor restriction constraints,
* the closed-loop voltage may be different when using
* software closed-loop vs hardware closed-loop. Therefore,
* reset the cached closed-loop voltage for all corners to the
* corresponding open-loop voltage when switching between
* SW and HW closed-loop mode.
*/
for (i = 0; i < ctrl->thread_count; i++) {
for (j = 0; j < ctrl->thread[i].vreg_count; j++) {
vreg = &ctrl->thread[i].vreg[j];
for (k = 0; k < vreg->corner_count; k++)
vreg->corner[k].last_volt
= vreg->corner[k].open_loop_volt;
}
}
/* Skip last_volt caching */
ctrl->last_corner_was_closed_loop = false;
rc = cpr3_regulator_update_ctrl_state(ctrl);
if (rc) {
cpr3_err(ctrl, "could not change CPR HW closed-loop enable state=%u, rc=%d\n",
use_hw_closed_loop, rc);
goto done;
}
cpr3_debug(ctrl, "CPR mode=%s\n",
use_hw_closed_loop ?
"HW closed-loop" : "SW closed-loop");
} else {
cpr3_debug(ctrl, "CPR mode=%s\n",
ctrl->cpr_allowed_sw && use_hw_closed_loop ?
"full HW closed-loop" : "open-loop");
}
done:
mutex_unlock(&ctrl->lock);
return 0;
}
/**
* cpr3_debug_hw_closed_loop_enable_get() - debugfs callback used to retrieve
* the value of the CPR controller use_hw_closed_loop flag which
* indicates if hardware closed-loop operation is being used in
* place of software closed-loop operation
* @data: Pointer to private data which is equal to the CPR
* controller pointer
* @val: Output parameter written with the value of
* use_hw_closed_loop
*
* Return: 0 on success, errno on failure
*/
static int cpr3_debug_hw_closed_loop_enable_get(void *data, u64 *val)
{
struct cpr3_controller *ctrl = data;
*val = ctrl->use_hw_closed_loop;
return 0;
}
DEFINE_DEBUGFS_ATTRIBUTE(cpr3_debug_hw_closed_loop_enable_fops,
cpr3_debug_hw_closed_loop_enable_get,
cpr3_debug_hw_closed_loop_enable_set,
"%llu\n");
/**
* cpr3_debug_trigger_aging_measurement_set() - debugfs callback used to trigger
* another CPR measurement
* @data: Pointer to private data which is equal to the CPR
* controller pointer
* @val: Unused
*
* Return: 0 on success, errno on failure
*/
static int cpr3_debug_trigger_aging_measurement_set(void *data, u64 val)
{
struct cpr3_controller *ctrl = data;
int rc;
mutex_lock(&ctrl->lock);
if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR4) {
rc = cpr3_ctrl_clear_cpr4_config(ctrl);
if (rc) {
cpr3_err(ctrl, "failed to clear CPR4 configuration,rc=%d\n",
rc);
goto done;
}
}
cpr3_ctrl_loop_disable(ctrl);
cpr3_regulator_set_aging_ref_adjustment(ctrl, INT_MAX);
ctrl->aging_required = true;
ctrl->aging_succeeded = false;
ctrl->aging_failed = false;
rc = cpr3_regulator_update_ctrl_state(ctrl);
if (rc) {
cpr3_err(ctrl, "could not update the CPR controller state, rc=%d\n",
rc);
goto done;
}
done:
mutex_unlock(&ctrl->lock);
return 0;
}
DEFINE_DEBUGFS_ATTRIBUTE(cpr3_debug_trigger_aging_measurement_fops,
NULL,
cpr3_debug_trigger_aging_measurement_set,
"%llu\n");
/**
* cpr3_regulator_debugfs_ctrl_add() - add debugfs files to expose configuration
* data for the CPR controller
* @ctrl: Pointer to the CPR3 controller
*
* Return: none
*/
static void cpr3_regulator_debugfs_ctrl_add(struct cpr3_controller *ctrl)
{
struct dentry *temp, *aggr_dir;
int i;
/* Add cpr3-regulator base directory if it isn't present already. */
if (cpr3_debugfs_base == NULL) {
cpr3_debugfs_base = debugfs_create_dir("cpr3-regulator", NULL);
if (IS_ERR_OR_NULL(cpr3_debugfs_base)) {
cpr3_err(ctrl, "cpr3-regulator debugfs base directory creation failed\n");
cpr3_debugfs_base = NULL;
return;
}
}
ctrl->debugfs = debugfs_create_dir(ctrl->name, cpr3_debugfs_base);
if (IS_ERR_OR_NULL(ctrl->debugfs)) {
cpr3_err(ctrl, "cpr3-regulator controller debugfs directory creation failed\n");
return;
}
temp = debugfs_create_file("cpr_closed_loop_enable", 0644,
ctrl->debugfs, ctrl,
&cpr3_debug_closed_loop_enable_fops);
if (IS_ERR_OR_NULL(temp)) {
cpr3_err(ctrl, "cpr_closed_loop_enable debugfs file creation failed\n");
return;
}
if (ctrl->supports_hw_closed_loop) {
temp = debugfs_create_file("use_hw_closed_loop", 0644,
ctrl->debugfs, ctrl,
&cpr3_debug_hw_closed_loop_enable_fops);
if (IS_ERR_OR_NULL(temp)) {
cpr3_err(ctrl, "use_hw_closed_loop debugfs file creation failed\n");
return;
}
}
temp = debugfs_create_int("thread_count", 0444, ctrl->debugfs,
&ctrl->thread_count);
if (IS_ERR_OR_NULL(temp)) {
cpr3_err(ctrl, "thread_count debugfs file creation failed\n");
return;
}
if (ctrl->apm) {
temp = debugfs_create_int("apm_threshold_volt", 0444,
ctrl->debugfs, &ctrl->apm_threshold_volt);
if (IS_ERR_OR_NULL(temp)) {
cpr3_err(ctrl, "apm_threshold_volt debugfs file creation failed\n");
return;
}
}
if (ctrl->aging_required || ctrl->aging_succeeded
|| ctrl->aging_failed) {
temp = debugfs_create_int("aging_adj_volt", 0444,
ctrl->debugfs, &ctrl->aging_ref_adjust_volt);
if (IS_ERR_OR_NULL(temp)) {
cpr3_err(ctrl, "aging_adj_volt debugfs file creation failed\n");
return;
}
temp = debugfs_create_file("aging_succeeded", 0444,
ctrl->debugfs, &ctrl->aging_succeeded, &fops_bool_ro);
if (IS_ERR_OR_NULL(temp)) {
cpr3_err(ctrl, "aging_succeeded debugfs file creation failed\n");
return;
}
temp = debugfs_create_file("aging_failed", 0444,
ctrl->debugfs, &ctrl->aging_failed, &fops_bool_ro);
if (IS_ERR_OR_NULL(temp)) {
cpr3_err(ctrl, "aging_failed debugfs file creation failed\n");
return;
}
temp = debugfs_create_file("aging_trigger", 0200,
ctrl->debugfs, ctrl,
&cpr3_debug_trigger_aging_measurement_fops);
if (IS_ERR_OR_NULL(temp)) {
cpr3_err(ctrl, "aging_trigger debugfs file creation failed\n");
return;
}
}
aggr_dir = debugfs_create_dir("max_aggregated_voltages", ctrl->debugfs);
if (IS_ERR_OR_NULL(aggr_dir)) {
cpr3_err(ctrl, "max_aggregated_voltages debugfs directory creation failed\n");
return;
}
temp = debugfs_create_int("floor_volt", 0444, aggr_dir,
&ctrl->aggr_corner.floor_volt);
if (IS_ERR_OR_NULL(temp)) {
cpr3_err(ctrl, "aggr floor_volt debugfs file creation failed\n");
return;
}
temp = debugfs_create_int("ceiling_volt", 0444, aggr_dir,
&ctrl->aggr_corner.ceiling_volt);
if (IS_ERR_OR_NULL(temp)) {
cpr3_err(ctrl, "aggr ceiling_volt debugfs file creation failed\n");
return;
}
temp = debugfs_create_int("open_loop_volt", 0444, aggr_dir,
&ctrl->aggr_corner.open_loop_volt);
if (IS_ERR_OR_NULL(temp)) {
cpr3_err(ctrl, "aggr open_loop_volt debugfs file creation failed\n");
return;
}
temp = debugfs_create_int("last_volt", 0444, aggr_dir,
&ctrl->aggr_corner.last_volt);
if (IS_ERR_OR_NULL(temp)) {
cpr3_err(ctrl, "aggr last_volt debugfs file creation failed\n");
return;
}
for (i = 0; i < ctrl->thread_count; i++)
cpr3_regulator_debugfs_thread_add(&ctrl->thread[i]);
}
/**
* cpr3_regulator_debugfs_ctrl_remove() - remove debugfs files for the CPR
* controller
* @ctrl: Pointer to the CPR3 controller
*
* Note, this function must be called after the controller has been removed from
* cpr3_controller_list and while the cpr3_controller_list_mutex lock is held.
*
* Return: none
*/
static void cpr3_regulator_debugfs_ctrl_remove(struct cpr3_controller *ctrl)
{
if (list_empty(&cpr3_controller_list)) {
debugfs_remove_recursive(cpr3_debugfs_base);
cpr3_debugfs_base = NULL;
} else {
debugfs_remove_recursive(ctrl->debugfs);
}
}
/**
* cpr3_regulator_init_ctrl_data() - performs initialization of CPR controller
* elements
* @ctrl: Pointer to the CPR3 controller
*
* Return: 0 on success, errno on failure
*/
static int cpr3_regulator_init_ctrl_data(struct cpr3_controller *ctrl)
{
/* Read the initial vdd voltage from hardware. */
ctrl->aggr_corner.last_volt
= regulator_get_voltage(ctrl->vdd_regulator);
if (ctrl->aggr_corner.last_volt < 0) {
cpr3_err(ctrl, "regulator_get_voltage(vdd) failed, rc=%d\n",
ctrl->aggr_corner.last_volt);
return ctrl->aggr_corner.last_volt;
}
ctrl->aggr_corner.open_loop_volt = ctrl->aggr_corner.last_volt;
return 0;
}
/**
* cpr3_regulator_init_vreg_data() - performs initialization of common CPR3
* regulator elements and validate aging configurations
* @vreg: Pointer to the CPR3 regulator
*
* Return: 0 on success, errno on failure
*/
static int cpr3_regulator_init_vreg_data(struct cpr3_regulator *vreg)
{
int i, j;
bool init_aging;
vreg->current_corner = CPR3_REGULATOR_CORNER_INVALID;
vreg->last_closed_loop_corner = CPR3_REGULATOR_CORNER_INVALID;
init_aging = vreg->aging_allowed && vreg->thread->ctrl->aging_required;
for (i = 0; i < vreg->corner_count; i++) {
vreg->corner[i].last_volt = vreg->corner[i].open_loop_volt;
vreg->corner[i].irq_en = CPR3_IRQ_UP | CPR3_IRQ_DOWN;
vreg->corner[i].ro_mask = 0;
for (j = 0; j < CPR3_RO_COUNT; j++) {
if (vreg->corner[i].target_quot[j] == 0)
vreg->corner[i].ro_mask |= BIT(j);
}
if (init_aging) {
vreg->corner[i].unaged_floor_volt
= vreg->corner[i].floor_volt;
vreg->corner[i].unaged_ceiling_volt
= vreg->corner[i].ceiling_volt;
vreg->corner[i].unaged_open_loop_volt
= vreg->corner[i].open_loop_volt;
}
if (vreg->aging_allowed) {
if (vreg->corner[i].unaged_floor_volt <= 0) {
cpr3_err(vreg, "invalid unaged_floor_volt[%d] = %d\n",
i, vreg->corner[i].unaged_floor_volt);
return -EINVAL;
}
if (vreg->corner[i].unaged_ceiling_volt <= 0) {
cpr3_err(vreg, "invalid unaged_ceiling_volt[%d] = %d\n",
i, vreg->corner[i].unaged_ceiling_volt);
return -EINVAL;
}
if (vreg->corner[i].unaged_open_loop_volt <= 0) {
cpr3_err(vreg, "invalid unaged_open_loop_volt[%d] = %d\n",
i, vreg->corner[i].unaged_open_loop_volt);
return -EINVAL;
}
}
}
if (vreg->aging_allowed && vreg->corner[vreg->aging_corner].ceiling_volt
> vreg->thread->ctrl->aging_ref_volt) {
cpr3_err(vreg, "aging corner %d ceiling voltage = %d > aging ref voltage = %d uV\n",
vreg->aging_corner,
vreg->corner[vreg->aging_corner].ceiling_volt,
vreg->thread->ctrl->aging_ref_volt);
return -EINVAL;
}
return 0;
}
/**
* cpr3_regulator_suspend() - perform common required CPR3 power down steps
* before the system enters suspend
* @ctrl: Pointer to the CPR3 controller
*
* Return: 0 on success, errno on failure
*/
int cpr3_regulator_suspend(struct cpr3_controller *ctrl)
{
int rc;
mutex_lock(&ctrl->lock);
if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR4) {
rc = cpr3_ctrl_clear_cpr4_config(ctrl);
if (rc) {
cpr3_err(ctrl, "failed to clear CPR4 configuration,rc=%d\n",
rc);
mutex_unlock(&ctrl->lock);
return rc;
}
}
cpr3_ctrl_loop_disable(ctrl);
if (ctrl->ctrl_type != CPR_CTRL_TYPE_CPRH) {
rc = cpr3_closed_loop_disable(ctrl);
if (rc)
cpr3_err(ctrl, "could not disable CPR, rc=%d\n", rc);
ctrl->cpr_suspended = true;
}
mutex_unlock(&ctrl->lock);
return 0;
}
/**
* cpr3_regulator_resume() - perform common required CPR3 power up steps after
* the system resumes from suspend
* @ctrl: Pointer to the CPR3 controller
*
* Return: 0 on success, errno on failure
*/
int cpr3_regulator_resume(struct cpr3_controller *ctrl)
{
int rc;
mutex_lock(&ctrl->lock);
if (ctrl->ctrl_type != CPR_CTRL_TYPE_CPRH) {
ctrl->cpr_suspended = false;
rc = cpr3_regulator_update_ctrl_state(ctrl);
if (rc)
cpr3_err(ctrl, "could not enable CPR, rc=%d\n", rc);
} else {
cpr3_ctrl_loop_enable(ctrl);
}
mutex_unlock(&ctrl->lock);
return 0;
}
/**
* cpr3_regulator_validate_controller() - verify the data passed in via the
* cpr3_controller data structure
* @ctrl: Pointer to the CPR3 controller
*
* Return: 0 on success, errno on failure
*/
static int cpr3_regulator_validate_controller(struct cpr3_controller *ctrl)
{
struct cpr3_thread *thread;
struct cpr3_regulator *vreg;
int i, j, allow_boost_vreg_count = 0;
if (!ctrl->vdd_regulator && ctrl->ctrl_type != CPR_CTRL_TYPE_CPRH) {
cpr3_err(ctrl, "vdd regulator missing\n");
return -EINVAL;
} else if (ctrl->sensor_count <= 0
|| ctrl->sensor_count > CPR3_MAX_SENSOR_COUNT) {
cpr3_err(ctrl, "invalid CPR sensor count=%d\n",
ctrl->sensor_count);
return -EINVAL;
} else if (!ctrl->sensor_owner) {
cpr3_err(ctrl, "CPR sensor ownership table missing\n");
return -EINVAL;
}
if (ctrl->aging_required) {
for (i = 0; i < ctrl->aging_sensor_count; i++) {
if (ctrl->aging_sensor[i].sensor_id
>= ctrl->sensor_count) {
cpr3_err(ctrl, "aging_sensor[%d] id=%u is not in the value range 0-%d",
i, ctrl->aging_sensor[i].sensor_id,
ctrl->sensor_count - 1);
return -EINVAL;
}
}
}
for (i = 0; i < ctrl->thread_count; i++) {
thread = &ctrl->thread[i];
for (j = 0; j < thread->vreg_count; j++) {
vreg = &thread->vreg[j];
if (vreg->allow_boost)
allow_boost_vreg_count++;
}
}
if (allow_boost_vreg_count > 1) {
/*
* Boost feature is not allowed to be used for more
* than one CPR3 regulator of a CPR3 controller.
*/
cpr3_err(ctrl, "Boost feature is enabled for more than one regulator\n");
return -EINVAL;
}
return 0;
}
/**
* cpr3_panic_callback() - panic notification callback function. This function
* is invoked when a kernel panic occurs.
* @nfb: Notifier block pointer of CPR3 controller
* @event: Value passed unmodified to notifier function
* @data: Pointer passed unmodified to notifier function
*
* Return: NOTIFY_OK
*/
static int cpr3_panic_callback(struct notifier_block *nfb,
unsigned long event, void *data)
{
struct cpr3_controller *ctrl = container_of(nfb,
struct cpr3_controller, panic_notifier);
struct cpr3_panic_regs_info *regs_info = ctrl->panic_regs_info;
struct cpr3_reg_info *reg;
int i = 0;
for (i = 0; i < regs_info->reg_count; i++) {
reg = &(regs_info->regs[i]);
reg->value = readl_relaxed(reg->virt_addr);
pr_err("%s[0x%08x] = 0x%08x\n", reg->name, reg->addr,
reg->value);
}
/*
* Barrier to ensure that the information has been updated in the
* structure.
*/
mb();
return NOTIFY_OK;
}
/**
* cpr3_regulator_register() - register the regulators for a CPR3 controller and
* perform CPR hardware initialization
* @pdev: Platform device pointer for the CPR3 controller
* @ctrl: Pointer to the CPR3 controller
*
* Return: 0 on success, errno on failure
*/
int cpr3_regulator_register(struct platform_device *pdev,
struct cpr3_controller *ctrl)
{
struct device *dev = &pdev->dev;
struct resource *res;
int i, j, rc;
if (!dev->of_node) {
dev_err(dev, "%s: Device tree node is missing\n", __func__);
return -EINVAL;
}
if (!ctrl || !ctrl->name) {
dev_err(dev, "%s: CPR controller data is missing\n", __func__);
return -EINVAL;
}
rc = cpr3_regulator_validate_controller(ctrl);
if (rc) {
cpr3_err(ctrl, "controller validation failed, rc=%d\n", rc);
return rc;
}
mutex_init(&ctrl->lock);
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "cpr_ctrl");
if (!res || !res->start) {
cpr3_err(ctrl, "CPR controller address is missing\n");
return -ENXIO;
}
ctrl->cpr_ctrl_base = devm_ioremap(dev, res->start, resource_size(res));
if (ctrl->aging_possible_mask) {
/*
* Aging possible register address is required if an aging
* possible mask has been specified.
*/
res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
"aging_allowed");
if (!res || !res->start) {
cpr3_err(ctrl, "CPR aging allowed address is missing\n");
return -ENXIO;
}
ctrl->aging_possible_reg = devm_ioremap(dev, res->start,
resource_size(res));
}
if (ctrl->ctrl_type != CPR_CTRL_TYPE_CPRH) {
ctrl->irq = platform_get_irq_byname(pdev, "cpr");
if (ctrl->irq < 0) {
cpr3_err(ctrl, "missing CPR interrupt\n");
return ctrl->irq;
}
}
if (ctrl->supports_hw_closed_loop) {
rc = msm_spm_probe_done();
if (rc) {
if (rc != -EPROBE_DEFER)
cpr3_err(ctrl, "spm unavailable, rc=%d\n", rc);
return rc;
}
if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR3) {
ctrl->ceiling_irq = platform_get_irq_byname(pdev,
"ceiling");
if (ctrl->ceiling_irq < 0) {
cpr3_err(ctrl, "missing ceiling interrupt\n");
return ctrl->ceiling_irq;
}
}
}
if (ctrl->ctrl_type != CPR_CTRL_TYPE_CPRH) {
rc = cpr3_regulator_init_ctrl_data(ctrl);
if (rc) {
cpr3_err(ctrl, "CPR controller data initialization failed, rc=%d\n",
rc);
return rc;
}
}
for (i = 0; i < ctrl->thread_count; i++) {
for (j = 0; j < ctrl->thread[i].vreg_count; j++) {
rc = cpr3_regulator_init_vreg_data(
&ctrl->thread[i].vreg[j]);
if (rc)
return rc;
cpr3_print_quots(&ctrl->thread[i].vreg[j]);
}
}
/*
* Add the maximum possible aging voltage margin until it is possible
* to perform an aging measurement.
*/
if (ctrl->aging_required)
cpr3_regulator_set_aging_ref_adjustment(ctrl, INT_MAX);
rc = cpr3_regulator_init_ctrl(ctrl);
if (rc) {
cpr3_err(ctrl, "CPR controller initialization failed, rc=%d\n",
rc);
return rc;
}
/* Register regulator devices for all threads. */
for (i = 0; i < ctrl->thread_count; i++) {
for (j = 0; j < ctrl->thread[i].vreg_count; j++) {
rc = cpr3_regulator_vreg_register(
&ctrl->thread[i].vreg[j]);
if (rc) {
cpr3_err(&ctrl->thread[i].vreg[j], "failed to register regulator, rc=%d\n",
rc);
goto free_regulators;
}
}
}
if (ctrl->ctrl_type != CPR_CTRL_TYPE_CPRH) {
rc = devm_request_threaded_irq(dev, ctrl->irq, NULL,
cpr3_irq_handler,
IRQF_ONESHOT |
IRQF_TRIGGER_RISING,
"cpr3", ctrl);
if (rc) {
cpr3_err(ctrl, "could not request IRQ %d, rc=%d\n",
ctrl->irq, rc);
goto free_regulators;
}
}
if (ctrl->supports_hw_closed_loop &&
ctrl->ctrl_type == CPR_CTRL_TYPE_CPR3) {
rc = devm_request_threaded_irq(dev, ctrl->ceiling_irq, NULL,
cpr3_ceiling_irq_handler,
IRQF_ONESHOT | IRQF_TRIGGER_RISING,
"cpr3_ceiling", ctrl);
if (rc) {
cpr3_err(ctrl, "could not request ceiling IRQ %d, rc=%d\n",
ctrl->ceiling_irq, rc);
goto free_regulators;
}
}
mutex_lock(&cpr3_controller_list_mutex);
cpr3_regulator_debugfs_ctrl_add(ctrl);
list_add(&ctrl->list, &cpr3_controller_list);
mutex_unlock(&cpr3_controller_list_mutex);
if (ctrl->panic_regs_info) {
/* Register panic notification call back */
ctrl->panic_notifier.notifier_call = cpr3_panic_callback;
atomic_notifier_chain_register(&panic_notifier_list,
&ctrl->panic_notifier);
}
return 0;
free_regulators:
for (i = 0; i < ctrl->thread_count; i++)
for (j = 0; j < ctrl->thread[i].vreg_count; j++)
if (!IS_ERR_OR_NULL(ctrl->thread[i].vreg[j].rdev))
regulator_unregister(
ctrl->thread[i].vreg[j].rdev);
return rc;
}
/**
* cpr3_regulator_unregister() - unregister the regulators for a CPR3 controller
* and perform CPR hardware shutdown
* @ctrl: Pointer to the CPR3 controller
*
* Return: 0 on success, errno on failure
*/
int cpr3_regulator_unregister(struct cpr3_controller *ctrl)
{
int i, j, rc = 0;
mutex_lock(&cpr3_controller_list_mutex);
list_del(&ctrl->list);
cpr3_regulator_debugfs_ctrl_remove(ctrl);
mutex_unlock(&cpr3_controller_list_mutex);
if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR4)
rc = cpr3_ctrl_clear_cpr4_config(ctrl);
if (rc)
cpr3_err(ctrl, "failed to clear CPR4 configuration,rc=%d\n",
rc);
cpr3_ctrl_loop_disable(ctrl);
cpr3_closed_loop_disable(ctrl);
if (ctrl->vdd_limit_regulator) {
regulator_disable(ctrl->vdd_limit_regulator);
if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR3)
msm_spm_avs_disable_irq(0, MSM_SPM_AVS_IRQ_MAX);
}
for (i = 0; i < ctrl->thread_count; i++)
for (j = 0; j < ctrl->thread[i].vreg_count; j++)
regulator_unregister(ctrl->thread[i].vreg[j].rdev);
if (ctrl->panic_notifier.notifier_call)
atomic_notifier_chain_unregister(&panic_notifier_list,
&ctrl->panic_notifier);
return 0;
}