| /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */ |
| #ifndef _BTRFS_CTREE_H_ |
| #define _BTRFS_CTREE_H_ |
| |
| #include <linux/btrfs.h> |
| #include <linux/types.h> |
| |
| /* |
| * This header contains the structure definitions and constants used |
| * by file system objects that can be retrieved using |
| * the BTRFS_IOC_SEARCH_TREE ioctl. That means basically anything that |
| * is needed to describe a leaf node's key or item contents. |
| */ |
| |
| /* holds pointers to all of the tree roots */ |
| #define BTRFS_ROOT_TREE_OBJECTID 1ULL |
| |
| /* stores information about which extents are in use, and reference counts */ |
| #define BTRFS_EXTENT_TREE_OBJECTID 2ULL |
| |
| /* |
| * chunk tree stores translations from logical -> physical block numbering |
| * the super block points to the chunk tree |
| */ |
| #define BTRFS_CHUNK_TREE_OBJECTID 3ULL |
| |
| /* |
| * stores information about which areas of a given device are in use. |
| * one per device. The tree of tree roots points to the device tree |
| */ |
| #define BTRFS_DEV_TREE_OBJECTID 4ULL |
| |
| /* one per subvolume, storing files and directories */ |
| #define BTRFS_FS_TREE_OBJECTID 5ULL |
| |
| /* directory objectid inside the root tree */ |
| #define BTRFS_ROOT_TREE_DIR_OBJECTID 6ULL |
| |
| /* holds checksums of all the data extents */ |
| #define BTRFS_CSUM_TREE_OBJECTID 7ULL |
| |
| /* holds quota configuration and tracking */ |
| #define BTRFS_QUOTA_TREE_OBJECTID 8ULL |
| |
| /* for storing items that use the BTRFS_UUID_KEY* types */ |
| #define BTRFS_UUID_TREE_OBJECTID 9ULL |
| |
| /* tracks free space in block groups. */ |
| #define BTRFS_FREE_SPACE_TREE_OBJECTID 10ULL |
| |
| /* device stats in the device tree */ |
| #define BTRFS_DEV_STATS_OBJECTID 0ULL |
| |
| /* for storing balance parameters in the root tree */ |
| #define BTRFS_BALANCE_OBJECTID -4ULL |
| |
| /* orhpan objectid for tracking unlinked/truncated files */ |
| #define BTRFS_ORPHAN_OBJECTID -5ULL |
| |
| /* does write ahead logging to speed up fsyncs */ |
| #define BTRFS_TREE_LOG_OBJECTID -6ULL |
| #define BTRFS_TREE_LOG_FIXUP_OBJECTID -7ULL |
| |
| /* for space balancing */ |
| #define BTRFS_TREE_RELOC_OBJECTID -8ULL |
| #define BTRFS_DATA_RELOC_TREE_OBJECTID -9ULL |
| |
| /* |
| * extent checksums all have this objectid |
| * this allows them to share the logging tree |
| * for fsyncs |
| */ |
| #define BTRFS_EXTENT_CSUM_OBJECTID -10ULL |
| |
| /* For storing free space cache */ |
| #define BTRFS_FREE_SPACE_OBJECTID -11ULL |
| |
| /* |
| * The inode number assigned to the special inode for storing |
| * free ino cache |
| */ |
| #define BTRFS_FREE_INO_OBJECTID -12ULL |
| |
| /* dummy objectid represents multiple objectids */ |
| #define BTRFS_MULTIPLE_OBJECTIDS -255ULL |
| |
| /* |
| * All files have objectids in this range. |
| */ |
| #define BTRFS_FIRST_FREE_OBJECTID 256ULL |
| #define BTRFS_LAST_FREE_OBJECTID -256ULL |
| #define BTRFS_FIRST_CHUNK_TREE_OBJECTID 256ULL |
| |
| |
| /* |
| * the device items go into the chunk tree. The key is in the form |
| * [ 1 BTRFS_DEV_ITEM_KEY device_id ] |
| */ |
| #define BTRFS_DEV_ITEMS_OBJECTID 1ULL |
| |
| #define BTRFS_BTREE_INODE_OBJECTID 1 |
| |
| #define BTRFS_EMPTY_SUBVOL_DIR_OBJECTID 2 |
| |
| #define BTRFS_DEV_REPLACE_DEVID 0ULL |
| |
| /* |
| * inode items have the data typically returned from stat and store other |
| * info about object characteristics. There is one for every file and dir in |
| * the FS |
| */ |
| #define BTRFS_INODE_ITEM_KEY 1 |
| #define BTRFS_INODE_REF_KEY 12 |
| #define BTRFS_INODE_EXTREF_KEY 13 |
| #define BTRFS_XATTR_ITEM_KEY 24 |
| #define BTRFS_ORPHAN_ITEM_KEY 48 |
| /* reserve 2-15 close to the inode for later flexibility */ |
| |
| /* |
| * dir items are the name -> inode pointers in a directory. There is one |
| * for every name in a directory. |
| */ |
| #define BTRFS_DIR_LOG_ITEM_KEY 60 |
| #define BTRFS_DIR_LOG_INDEX_KEY 72 |
| #define BTRFS_DIR_ITEM_KEY 84 |
| #define BTRFS_DIR_INDEX_KEY 96 |
| /* |
| * extent data is for file data |
| */ |
| #define BTRFS_EXTENT_DATA_KEY 108 |
| |
| /* |
| * extent csums are stored in a separate tree and hold csums for |
| * an entire extent on disk. |
| */ |
| #define BTRFS_EXTENT_CSUM_KEY 128 |
| |
| /* |
| * root items point to tree roots. They are typically in the root |
| * tree used by the super block to find all the other trees |
| */ |
| #define BTRFS_ROOT_ITEM_KEY 132 |
| |
| /* |
| * root backrefs tie subvols and snapshots to the directory entries that |
| * reference them |
| */ |
| #define BTRFS_ROOT_BACKREF_KEY 144 |
| |
| /* |
| * root refs make a fast index for listing all of the snapshots and |
| * subvolumes referenced by a given root. They point directly to the |
| * directory item in the root that references the subvol |
| */ |
| #define BTRFS_ROOT_REF_KEY 156 |
| |
| /* |
| * extent items are in the extent map tree. These record which blocks |
| * are used, and how many references there are to each block |
| */ |
| #define BTRFS_EXTENT_ITEM_KEY 168 |
| |
| /* |
| * The same as the BTRFS_EXTENT_ITEM_KEY, except it's metadata we already know |
| * the length, so we save the level in key->offset instead of the length. |
| */ |
| #define BTRFS_METADATA_ITEM_KEY 169 |
| |
| #define BTRFS_TREE_BLOCK_REF_KEY 176 |
| |
| #define BTRFS_EXTENT_DATA_REF_KEY 178 |
| |
| #define BTRFS_EXTENT_REF_V0_KEY 180 |
| |
| #define BTRFS_SHARED_BLOCK_REF_KEY 182 |
| |
| #define BTRFS_SHARED_DATA_REF_KEY 184 |
| |
| /* |
| * block groups give us hints into the extent allocation trees. Which |
| * blocks are free etc etc |
| */ |
| #define BTRFS_BLOCK_GROUP_ITEM_KEY 192 |
| |
| /* |
| * Every block group is represented in the free space tree by a free space info |
| * item, which stores some accounting information. It is keyed on |
| * (block_group_start, FREE_SPACE_INFO, block_group_length). |
| */ |
| #define BTRFS_FREE_SPACE_INFO_KEY 198 |
| |
| /* |
| * A free space extent tracks an extent of space that is free in a block group. |
| * It is keyed on (start, FREE_SPACE_EXTENT, length). |
| */ |
| #define BTRFS_FREE_SPACE_EXTENT_KEY 199 |
| |
| /* |
| * When a block group becomes very fragmented, we convert it to use bitmaps |
| * instead of extents. A free space bitmap is keyed on |
| * (start, FREE_SPACE_BITMAP, length); the corresponding item is a bitmap with |
| * (length / sectorsize) bits. |
| */ |
| #define BTRFS_FREE_SPACE_BITMAP_KEY 200 |
| |
| #define BTRFS_DEV_EXTENT_KEY 204 |
| #define BTRFS_DEV_ITEM_KEY 216 |
| #define BTRFS_CHUNK_ITEM_KEY 228 |
| |
| /* |
| * Records the overall state of the qgroups. |
| * There's only one instance of this key present, |
| * (0, BTRFS_QGROUP_STATUS_KEY, 0) |
| */ |
| #define BTRFS_QGROUP_STATUS_KEY 240 |
| /* |
| * Records the currently used space of the qgroup. |
| * One key per qgroup, (0, BTRFS_QGROUP_INFO_KEY, qgroupid). |
| */ |
| #define BTRFS_QGROUP_INFO_KEY 242 |
| /* |
| * Contains the user configured limits for the qgroup. |
| * One key per qgroup, (0, BTRFS_QGROUP_LIMIT_KEY, qgroupid). |
| */ |
| #define BTRFS_QGROUP_LIMIT_KEY 244 |
| /* |
| * Records the child-parent relationship of qgroups. For |
| * each relation, 2 keys are present: |
| * (childid, BTRFS_QGROUP_RELATION_KEY, parentid) |
| * (parentid, BTRFS_QGROUP_RELATION_KEY, childid) |
| */ |
| #define BTRFS_QGROUP_RELATION_KEY 246 |
| |
| /* |
| * Obsolete name, see BTRFS_TEMPORARY_ITEM_KEY. |
| */ |
| #define BTRFS_BALANCE_ITEM_KEY 248 |
| |
| /* |
| * The key type for tree items that are stored persistently, but do not need to |
| * exist for extended period of time. The items can exist in any tree. |
| * |
| * [subtype, BTRFS_TEMPORARY_ITEM_KEY, data] |
| * |
| * Existing items: |
| * |
| * - balance status item |
| * (BTRFS_BALANCE_OBJECTID, BTRFS_TEMPORARY_ITEM_KEY, 0) |
| */ |
| #define BTRFS_TEMPORARY_ITEM_KEY 248 |
| |
| /* |
| * Obsolete name, see BTRFS_PERSISTENT_ITEM_KEY |
| */ |
| #define BTRFS_DEV_STATS_KEY 249 |
| |
| /* |
| * The key type for tree items that are stored persistently and usually exist |
| * for a long period, eg. filesystem lifetime. The item kinds can be status |
| * information, stats or preference values. The item can exist in any tree. |
| * |
| * [subtype, BTRFS_PERSISTENT_ITEM_KEY, data] |
| * |
| * Existing items: |
| * |
| * - device statistics, store IO stats in the device tree, one key for all |
| * stats |
| * (BTRFS_DEV_STATS_OBJECTID, BTRFS_DEV_STATS_KEY, 0) |
| */ |
| #define BTRFS_PERSISTENT_ITEM_KEY 249 |
| |
| /* |
| * Persistantly stores the device replace state in the device tree. |
| * The key is built like this: (0, BTRFS_DEV_REPLACE_KEY, 0). |
| */ |
| #define BTRFS_DEV_REPLACE_KEY 250 |
| |
| /* |
| * Stores items that allow to quickly map UUIDs to something else. |
| * These items are part of the filesystem UUID tree. |
| * The key is built like this: |
| * (UUID_upper_64_bits, BTRFS_UUID_KEY*, UUID_lower_64_bits). |
| */ |
| #if BTRFS_UUID_SIZE != 16 |
| #error "UUID items require BTRFS_UUID_SIZE == 16!" |
| #endif |
| #define BTRFS_UUID_KEY_SUBVOL 251 /* for UUIDs assigned to subvols */ |
| #define BTRFS_UUID_KEY_RECEIVED_SUBVOL 252 /* for UUIDs assigned to |
| * received subvols */ |
| |
| /* |
| * string items are for debugging. They just store a short string of |
| * data in the FS |
| */ |
| #define BTRFS_STRING_ITEM_KEY 253 |
| |
| |
| |
| /* 32 bytes in various csum fields */ |
| #define BTRFS_CSUM_SIZE 32 |
| |
| /* csum types */ |
| #define BTRFS_CSUM_TYPE_CRC32 0 |
| |
| /* |
| * flags definitions for directory entry item type |
| * |
| * Used by: |
| * struct btrfs_dir_item.type |
| */ |
| #define BTRFS_FT_UNKNOWN 0 |
| #define BTRFS_FT_REG_FILE 1 |
| #define BTRFS_FT_DIR 2 |
| #define BTRFS_FT_CHRDEV 3 |
| #define BTRFS_FT_BLKDEV 4 |
| #define BTRFS_FT_FIFO 5 |
| #define BTRFS_FT_SOCK 6 |
| #define BTRFS_FT_SYMLINK 7 |
| #define BTRFS_FT_XATTR 8 |
| #define BTRFS_FT_MAX 9 |
| |
| /* |
| * The key defines the order in the tree, and so it also defines (optimal) |
| * block layout. |
| * |
| * objectid corresponds to the inode number. |
| * |
| * type tells us things about the object, and is a kind of stream selector. |
| * so for a given inode, keys with type of 1 might refer to the inode data, |
| * type of 2 may point to file data in the btree and type == 3 may point to |
| * extents. |
| * |
| * offset is the starting byte offset for this key in the stream. |
| * |
| * btrfs_disk_key is in disk byte order. struct btrfs_key is always |
| * in cpu native order. Otherwise they are identical and their sizes |
| * should be the same (ie both packed) |
| */ |
| struct btrfs_disk_key { |
| __le64 objectid; |
| __u8 type; |
| __le64 offset; |
| } __attribute__ ((__packed__)); |
| |
| struct btrfs_key { |
| __u64 objectid; |
| __u8 type; |
| __u64 offset; |
| } __attribute__ ((__packed__)); |
| |
| struct btrfs_dev_item { |
| /* the internal btrfs device id */ |
| __le64 devid; |
| |
| /* size of the device */ |
| __le64 total_bytes; |
| |
| /* bytes used */ |
| __le64 bytes_used; |
| |
| /* optimal io alignment for this device */ |
| __le32 io_align; |
| |
| /* optimal io width for this device */ |
| __le32 io_width; |
| |
| /* minimal io size for this device */ |
| __le32 sector_size; |
| |
| /* type and info about this device */ |
| __le64 type; |
| |
| /* expected generation for this device */ |
| __le64 generation; |
| |
| /* |
| * starting byte of this partition on the device, |
| * to allow for stripe alignment in the future |
| */ |
| __le64 start_offset; |
| |
| /* grouping information for allocation decisions */ |
| __le32 dev_group; |
| |
| /* seek speed 0-100 where 100 is fastest */ |
| __u8 seek_speed; |
| |
| /* bandwidth 0-100 where 100 is fastest */ |
| __u8 bandwidth; |
| |
| /* btrfs generated uuid for this device */ |
| __u8 uuid[BTRFS_UUID_SIZE]; |
| |
| /* uuid of FS who owns this device */ |
| __u8 fsid[BTRFS_UUID_SIZE]; |
| } __attribute__ ((__packed__)); |
| |
| struct btrfs_stripe { |
| __le64 devid; |
| __le64 offset; |
| __u8 dev_uuid[BTRFS_UUID_SIZE]; |
| } __attribute__ ((__packed__)); |
| |
| struct btrfs_chunk { |
| /* size of this chunk in bytes */ |
| __le64 length; |
| |
| /* objectid of the root referencing this chunk */ |
| __le64 owner; |
| |
| __le64 stripe_len; |
| __le64 type; |
| |
| /* optimal io alignment for this chunk */ |
| __le32 io_align; |
| |
| /* optimal io width for this chunk */ |
| __le32 io_width; |
| |
| /* minimal io size for this chunk */ |
| __le32 sector_size; |
| |
| /* 2^16 stripes is quite a lot, a second limit is the size of a single |
| * item in the btree |
| */ |
| __le16 num_stripes; |
| |
| /* sub stripes only matter for raid10 */ |
| __le16 sub_stripes; |
| struct btrfs_stripe stripe; |
| /* additional stripes go here */ |
| } __attribute__ ((__packed__)); |
| |
| #define BTRFS_FREE_SPACE_EXTENT 1 |
| #define BTRFS_FREE_SPACE_BITMAP 2 |
| |
| struct btrfs_free_space_entry { |
| __le64 offset; |
| __le64 bytes; |
| __u8 type; |
| } __attribute__ ((__packed__)); |
| |
| struct btrfs_free_space_header { |
| struct btrfs_disk_key location; |
| __le64 generation; |
| __le64 num_entries; |
| __le64 num_bitmaps; |
| } __attribute__ ((__packed__)); |
| |
| #define BTRFS_HEADER_FLAG_WRITTEN (1ULL << 0) |
| #define BTRFS_HEADER_FLAG_RELOC (1ULL << 1) |
| |
| /* Super block flags */ |
| /* Errors detected */ |
| #define BTRFS_SUPER_FLAG_ERROR (1ULL << 2) |
| |
| #define BTRFS_SUPER_FLAG_SEEDING (1ULL << 32) |
| #define BTRFS_SUPER_FLAG_METADUMP (1ULL << 33) |
| |
| |
| /* |
| * items in the extent btree are used to record the objectid of the |
| * owner of the block and the number of references |
| */ |
| |
| struct btrfs_extent_item { |
| __le64 refs; |
| __le64 generation; |
| __le64 flags; |
| } __attribute__ ((__packed__)); |
| |
| struct btrfs_extent_item_v0 { |
| __le32 refs; |
| } __attribute__ ((__packed__)); |
| |
| |
| #define BTRFS_EXTENT_FLAG_DATA (1ULL << 0) |
| #define BTRFS_EXTENT_FLAG_TREE_BLOCK (1ULL << 1) |
| |
| /* following flags only apply to tree blocks */ |
| |
| /* use full backrefs for extent pointers in the block */ |
| #define BTRFS_BLOCK_FLAG_FULL_BACKREF (1ULL << 8) |
| |
| /* |
| * this flag is only used internally by scrub and may be changed at any time |
| * it is only declared here to avoid collisions |
| */ |
| #define BTRFS_EXTENT_FLAG_SUPER (1ULL << 48) |
| |
| struct btrfs_tree_block_info { |
| struct btrfs_disk_key key; |
| __u8 level; |
| } __attribute__ ((__packed__)); |
| |
| struct btrfs_extent_data_ref { |
| __le64 root; |
| __le64 objectid; |
| __le64 offset; |
| __le32 count; |
| } __attribute__ ((__packed__)); |
| |
| struct btrfs_shared_data_ref { |
| __le32 count; |
| } __attribute__ ((__packed__)); |
| |
| struct btrfs_extent_inline_ref { |
| __u8 type; |
| __le64 offset; |
| } __attribute__ ((__packed__)); |
| |
| /* old style backrefs item */ |
| struct btrfs_extent_ref_v0 { |
| __le64 root; |
| __le64 generation; |
| __le64 objectid; |
| __le32 count; |
| } __attribute__ ((__packed__)); |
| |
| |
| /* dev extents record free space on individual devices. The owner |
| * field points back to the chunk allocation mapping tree that allocated |
| * the extent. The chunk tree uuid field is a way to double check the owner |
| */ |
| struct btrfs_dev_extent { |
| __le64 chunk_tree; |
| __le64 chunk_objectid; |
| __le64 chunk_offset; |
| __le64 length; |
| __u8 chunk_tree_uuid[BTRFS_UUID_SIZE]; |
| } __attribute__ ((__packed__)); |
| |
| struct btrfs_inode_ref { |
| __le64 index; |
| __le16 name_len; |
| /* name goes here */ |
| } __attribute__ ((__packed__)); |
| |
| struct btrfs_inode_extref { |
| __le64 parent_objectid; |
| __le64 index; |
| __le16 name_len; |
| __u8 name[0]; |
| /* name goes here */ |
| } __attribute__ ((__packed__)); |
| |
| struct btrfs_timespec { |
| __le64 sec; |
| __le32 nsec; |
| } __attribute__ ((__packed__)); |
| |
| struct btrfs_inode_item { |
| /* nfs style generation number */ |
| __le64 generation; |
| /* transid that last touched this inode */ |
| __le64 transid; |
| __le64 size; |
| __le64 nbytes; |
| __le64 block_group; |
| __le32 nlink; |
| __le32 uid; |
| __le32 gid; |
| __le32 mode; |
| __le64 rdev; |
| __le64 flags; |
| |
| /* modification sequence number for NFS */ |
| __le64 sequence; |
| |
| /* |
| * a little future expansion, for more than this we can |
| * just grow the inode item and version it |
| */ |
| __le64 reserved[4]; |
| struct btrfs_timespec atime; |
| struct btrfs_timespec ctime; |
| struct btrfs_timespec mtime; |
| struct btrfs_timespec otime; |
| } __attribute__ ((__packed__)); |
| |
| struct btrfs_dir_log_item { |
| __le64 end; |
| } __attribute__ ((__packed__)); |
| |
| struct btrfs_dir_item { |
| struct btrfs_disk_key location; |
| __le64 transid; |
| __le16 data_len; |
| __le16 name_len; |
| __u8 type; |
| } __attribute__ ((__packed__)); |
| |
| #define BTRFS_ROOT_SUBVOL_RDONLY (1ULL << 0) |
| |
| /* |
| * Internal in-memory flag that a subvolume has been marked for deletion but |
| * still visible as a directory |
| */ |
| #define BTRFS_ROOT_SUBVOL_DEAD (1ULL << 48) |
| |
| struct btrfs_root_item { |
| struct btrfs_inode_item inode; |
| __le64 generation; |
| __le64 root_dirid; |
| __le64 bytenr; |
| __le64 byte_limit; |
| __le64 bytes_used; |
| __le64 last_snapshot; |
| __le64 flags; |
| __le32 refs; |
| struct btrfs_disk_key drop_progress; |
| __u8 drop_level; |
| __u8 level; |
| |
| /* |
| * The following fields appear after subvol_uuids+subvol_times |
| * were introduced. |
| */ |
| |
| /* |
| * This generation number is used to test if the new fields are valid |
| * and up to date while reading the root item. Every time the root item |
| * is written out, the "generation" field is copied into this field. If |
| * anyone ever mounted the fs with an older kernel, we will have |
| * mismatching generation values here and thus must invalidate the |
| * new fields. See btrfs_update_root and btrfs_find_last_root for |
| * details. |
| * the offset of generation_v2 is also used as the start for the memset |
| * when invalidating the fields. |
| */ |
| __le64 generation_v2; |
| __u8 uuid[BTRFS_UUID_SIZE]; |
| __u8 parent_uuid[BTRFS_UUID_SIZE]; |
| __u8 received_uuid[BTRFS_UUID_SIZE]; |
| __le64 ctransid; /* updated when an inode changes */ |
| __le64 otransid; /* trans when created */ |
| __le64 stransid; /* trans when sent. non-zero for received subvol */ |
| __le64 rtransid; /* trans when received. non-zero for received subvol */ |
| struct btrfs_timespec ctime; |
| struct btrfs_timespec otime; |
| struct btrfs_timespec stime; |
| struct btrfs_timespec rtime; |
| __le64 reserved[8]; /* for future */ |
| } __attribute__ ((__packed__)); |
| |
| /* |
| * this is used for both forward and backward root refs |
| */ |
| struct btrfs_root_ref { |
| __le64 dirid; |
| __le64 sequence; |
| __le16 name_len; |
| } __attribute__ ((__packed__)); |
| |
| struct btrfs_disk_balance_args { |
| /* |
| * profiles to operate on, single is denoted by |
| * BTRFS_AVAIL_ALLOC_BIT_SINGLE |
| */ |
| __le64 profiles; |
| |
| /* |
| * usage filter |
| * BTRFS_BALANCE_ARGS_USAGE with a single value means '0..N' |
| * BTRFS_BALANCE_ARGS_USAGE_RANGE - range syntax, min..max |
| */ |
| union { |
| __le64 usage; |
| struct { |
| __le32 usage_min; |
| __le32 usage_max; |
| }; |
| }; |
| |
| /* devid filter */ |
| __le64 devid; |
| |
| /* devid subset filter [pstart..pend) */ |
| __le64 pstart; |
| __le64 pend; |
| |
| /* btrfs virtual address space subset filter [vstart..vend) */ |
| __le64 vstart; |
| __le64 vend; |
| |
| /* |
| * profile to convert to, single is denoted by |
| * BTRFS_AVAIL_ALLOC_BIT_SINGLE |
| */ |
| __le64 target; |
| |
| /* BTRFS_BALANCE_ARGS_* */ |
| __le64 flags; |
| |
| /* |
| * BTRFS_BALANCE_ARGS_LIMIT with value 'limit' |
| * BTRFS_BALANCE_ARGS_LIMIT_RANGE - the extend version can use minimum |
| * and maximum |
| */ |
| union { |
| __le64 limit; |
| struct { |
| __le32 limit_min; |
| __le32 limit_max; |
| }; |
| }; |
| |
| /* |
| * Process chunks that cross stripes_min..stripes_max devices, |
| * BTRFS_BALANCE_ARGS_STRIPES_RANGE |
| */ |
| __le32 stripes_min; |
| __le32 stripes_max; |
| |
| __le64 unused[6]; |
| } __attribute__ ((__packed__)); |
| |
| /* |
| * store balance parameters to disk so that balance can be properly |
| * resumed after crash or unmount |
| */ |
| struct btrfs_balance_item { |
| /* BTRFS_BALANCE_* */ |
| __le64 flags; |
| |
| struct btrfs_disk_balance_args data; |
| struct btrfs_disk_balance_args meta; |
| struct btrfs_disk_balance_args sys; |
| |
| __le64 unused[4]; |
| } __attribute__ ((__packed__)); |
| |
| #define BTRFS_FILE_EXTENT_INLINE 0 |
| #define BTRFS_FILE_EXTENT_REG 1 |
| #define BTRFS_FILE_EXTENT_PREALLOC 2 |
| #define BTRFS_FILE_EXTENT_TYPES 2 |
| |
| struct btrfs_file_extent_item { |
| /* |
| * transaction id that created this extent |
| */ |
| __le64 generation; |
| /* |
| * max number of bytes to hold this extent in ram |
| * when we split a compressed extent we can't know how big |
| * each of the resulting pieces will be. So, this is |
| * an upper limit on the size of the extent in ram instead of |
| * an exact limit. |
| */ |
| __le64 ram_bytes; |
| |
| /* |
| * 32 bits for the various ways we might encode the data, |
| * including compression and encryption. If any of these |
| * are set to something a given disk format doesn't understand |
| * it is treated like an incompat flag for reading and writing, |
| * but not for stat. |
| */ |
| __u8 compression; |
| __u8 encryption; |
| __le16 other_encoding; /* spare for later use */ |
| |
| /* are we inline data or a real extent? */ |
| __u8 type; |
| |
| /* |
| * disk space consumed by the extent, checksum blocks are included |
| * in these numbers |
| * |
| * At this offset in the structure, the inline extent data start. |
| */ |
| __le64 disk_bytenr; |
| __le64 disk_num_bytes; |
| /* |
| * the logical offset in file blocks (no csums) |
| * this extent record is for. This allows a file extent to point |
| * into the middle of an existing extent on disk, sharing it |
| * between two snapshots (useful if some bytes in the middle of the |
| * extent have changed |
| */ |
| __le64 offset; |
| /* |
| * the logical number of file blocks (no csums included). This |
| * always reflects the size uncompressed and without encoding. |
| */ |
| __le64 num_bytes; |
| |
| } __attribute__ ((__packed__)); |
| |
| struct btrfs_csum_item { |
| __u8 csum; |
| } __attribute__ ((__packed__)); |
| |
| struct btrfs_dev_stats_item { |
| /* |
| * grow this item struct at the end for future enhancements and keep |
| * the existing values unchanged |
| */ |
| __le64 values[BTRFS_DEV_STAT_VALUES_MAX]; |
| } __attribute__ ((__packed__)); |
| |
| #define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_ALWAYS 0 |
| #define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID 1 |
| #define BTRFS_DEV_REPLACE_ITEM_STATE_NEVER_STARTED 0 |
| #define BTRFS_DEV_REPLACE_ITEM_STATE_STARTED 1 |
| #define BTRFS_DEV_REPLACE_ITEM_STATE_SUSPENDED 2 |
| #define BTRFS_DEV_REPLACE_ITEM_STATE_FINISHED 3 |
| #define BTRFS_DEV_REPLACE_ITEM_STATE_CANCELED 4 |
| |
| struct btrfs_dev_replace_item { |
| /* |
| * grow this item struct at the end for future enhancements and keep |
| * the existing values unchanged |
| */ |
| __le64 src_devid; |
| __le64 cursor_left; |
| __le64 cursor_right; |
| __le64 cont_reading_from_srcdev_mode; |
| |
| __le64 replace_state; |
| __le64 time_started; |
| __le64 time_stopped; |
| __le64 num_write_errors; |
| __le64 num_uncorrectable_read_errors; |
| } __attribute__ ((__packed__)); |
| |
| /* different types of block groups (and chunks) */ |
| #define BTRFS_BLOCK_GROUP_DATA (1ULL << 0) |
| #define BTRFS_BLOCK_GROUP_SYSTEM (1ULL << 1) |
| #define BTRFS_BLOCK_GROUP_METADATA (1ULL << 2) |
| #define BTRFS_BLOCK_GROUP_RAID0 (1ULL << 3) |
| #define BTRFS_BLOCK_GROUP_RAID1 (1ULL << 4) |
| #define BTRFS_BLOCK_GROUP_DUP (1ULL << 5) |
| #define BTRFS_BLOCK_GROUP_RAID10 (1ULL << 6) |
| #define BTRFS_BLOCK_GROUP_RAID5 (1ULL << 7) |
| #define BTRFS_BLOCK_GROUP_RAID6 (1ULL << 8) |
| #define BTRFS_BLOCK_GROUP_RESERVED (BTRFS_AVAIL_ALLOC_BIT_SINGLE | \ |
| BTRFS_SPACE_INFO_GLOBAL_RSV) |
| |
| enum btrfs_raid_types { |
| BTRFS_RAID_RAID10, |
| BTRFS_RAID_RAID1, |
| BTRFS_RAID_DUP, |
| BTRFS_RAID_RAID0, |
| BTRFS_RAID_SINGLE, |
| BTRFS_RAID_RAID5, |
| BTRFS_RAID_RAID6, |
| BTRFS_NR_RAID_TYPES |
| }; |
| |
| #define BTRFS_BLOCK_GROUP_TYPE_MASK (BTRFS_BLOCK_GROUP_DATA | \ |
| BTRFS_BLOCK_GROUP_SYSTEM | \ |
| BTRFS_BLOCK_GROUP_METADATA) |
| |
| #define BTRFS_BLOCK_GROUP_PROFILE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \ |
| BTRFS_BLOCK_GROUP_RAID1 | \ |
| BTRFS_BLOCK_GROUP_RAID5 | \ |
| BTRFS_BLOCK_GROUP_RAID6 | \ |
| BTRFS_BLOCK_GROUP_DUP | \ |
| BTRFS_BLOCK_GROUP_RAID10) |
| #define BTRFS_BLOCK_GROUP_RAID56_MASK (BTRFS_BLOCK_GROUP_RAID5 | \ |
| BTRFS_BLOCK_GROUP_RAID6) |
| |
| /* |
| * We need a bit for restriper to be able to tell when chunks of type |
| * SINGLE are available. This "extended" profile format is used in |
| * fs_info->avail_*_alloc_bits (in-memory) and balance item fields |
| * (on-disk). The corresponding on-disk bit in chunk.type is reserved |
| * to avoid remappings between two formats in future. |
| */ |
| #define BTRFS_AVAIL_ALLOC_BIT_SINGLE (1ULL << 48) |
| |
| /* |
| * A fake block group type that is used to communicate global block reserve |
| * size to userspace via the SPACE_INFO ioctl. |
| */ |
| #define BTRFS_SPACE_INFO_GLOBAL_RSV (1ULL << 49) |
| |
| #define BTRFS_EXTENDED_PROFILE_MASK (BTRFS_BLOCK_GROUP_PROFILE_MASK | \ |
| BTRFS_AVAIL_ALLOC_BIT_SINGLE) |
| |
| static inline __u64 chunk_to_extended(__u64 flags) |
| { |
| if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0) |
| flags |= BTRFS_AVAIL_ALLOC_BIT_SINGLE; |
| |
| return flags; |
| } |
| static inline __u64 extended_to_chunk(__u64 flags) |
| { |
| return flags & ~BTRFS_AVAIL_ALLOC_BIT_SINGLE; |
| } |
| |
| struct btrfs_block_group_item { |
| __le64 used; |
| __le64 chunk_objectid; |
| __le64 flags; |
| } __attribute__ ((__packed__)); |
| |
| struct btrfs_free_space_info { |
| __le32 extent_count; |
| __le32 flags; |
| } __attribute__ ((__packed__)); |
| |
| #define BTRFS_FREE_SPACE_USING_BITMAPS (1ULL << 0) |
| |
| #define BTRFS_QGROUP_LEVEL_SHIFT 48 |
| static inline __u64 btrfs_qgroup_level(__u64 qgroupid) |
| { |
| return qgroupid >> BTRFS_QGROUP_LEVEL_SHIFT; |
| } |
| |
| /* |
| * is subvolume quota turned on? |
| */ |
| #define BTRFS_QGROUP_STATUS_FLAG_ON (1ULL << 0) |
| /* |
| * RESCAN is set during the initialization phase |
| */ |
| #define BTRFS_QGROUP_STATUS_FLAG_RESCAN (1ULL << 1) |
| /* |
| * Some qgroup entries are known to be out of date, |
| * either because the configuration has changed in a way that |
| * makes a rescan necessary, or because the fs has been mounted |
| * with a non-qgroup-aware version. |
| * Turning qouta off and on again makes it inconsistent, too. |
| */ |
| #define BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT (1ULL << 2) |
| |
| #define BTRFS_QGROUP_STATUS_VERSION 1 |
| |
| struct btrfs_qgroup_status_item { |
| __le64 version; |
| /* |
| * the generation is updated during every commit. As older |
| * versions of btrfs are not aware of qgroups, it will be |
| * possible to detect inconsistencies by checking the |
| * generation on mount time |
| */ |
| __le64 generation; |
| |
| /* flag definitions see above */ |
| __le64 flags; |
| |
| /* |
| * only used during scanning to record the progress |
| * of the scan. It contains a logical address |
| */ |
| __le64 rescan; |
| } __attribute__ ((__packed__)); |
| |
| struct btrfs_qgroup_info_item { |
| __le64 generation; |
| __le64 rfer; |
| __le64 rfer_cmpr; |
| __le64 excl; |
| __le64 excl_cmpr; |
| } __attribute__ ((__packed__)); |
| |
| struct btrfs_qgroup_limit_item { |
| /* |
| * only updated when any of the other values change |
| */ |
| __le64 flags; |
| __le64 max_rfer; |
| __le64 max_excl; |
| __le64 rsv_rfer; |
| __le64 rsv_excl; |
| } __attribute__ ((__packed__)); |
| |
| #endif /* _BTRFS_CTREE_H_ */ |