blob: 2562e92e3178184246fe0ec4139e523f1bf06de9 [file] [log] [blame]
/*
* USB Host Controller Driver for IMX21
*
* Copyright (C) 2006 Loping Dog Embedded Systems
* Copyright (C) 2009 Martin Fuzzey
* Originally written by Jay Monkman <jtm@lopingdog.com>
* Ported to 2.6.30, debugged and enhanced by Martin Fuzzey
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
* The i.MX21 USB hardware contains
* * 32 transfer descriptors (called ETDs)
* * 4Kb of Data memory
*
* The data memory is shared between the host and function controllers
* (but this driver only supports the host controller)
*
* So setting up a transfer involves:
* * Allocating a ETD
* * Fill in ETD with appropriate information
* * Allocating data memory (and putting the offset in the ETD)
* * Activate the ETD
* * Get interrupt when done.
*
* An ETD is assigned to each active endpoint.
*
* Low resource (ETD and Data memory) situations are handled differently for
* isochronous and non insosynchronous transactions :
*
* Non ISOC transfers are queued if either ETDs or Data memory are unavailable
*
* ISOC transfers use 2 ETDs per endpoint to achieve double buffering.
* They allocate both ETDs and Data memory during URB submission
* (and fail if unavailable).
*/
#include <linux/clk.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/usb.h>
#include <linux/usb/hcd.h>
#include <linux/dma-mapping.h>
#include "imx21-hcd.h"
#ifdef DEBUG
#define DEBUG_LOG_FRAME(imx21, etd, event) \
(etd)->event##_frame = readl((imx21)->regs + USBH_FRMNUB)
#else
#define DEBUG_LOG_FRAME(imx21, etd, event) do { } while (0)
#endif
static const char hcd_name[] = "imx21-hcd";
static inline struct imx21 *hcd_to_imx21(struct usb_hcd *hcd)
{
return (struct imx21 *)hcd->hcd_priv;
}
/* =========================================== */
/* Hardware access helpers */
/* =========================================== */
static inline void set_register_bits(struct imx21 *imx21, u32 offset, u32 mask)
{
void __iomem *reg = imx21->regs + offset;
writel(readl(reg) | mask, reg);
}
static inline void clear_register_bits(struct imx21 *imx21,
u32 offset, u32 mask)
{
void __iomem *reg = imx21->regs + offset;
writel(readl(reg) & ~mask, reg);
}
static inline void clear_toggle_bit(struct imx21 *imx21, u32 offset, u32 mask)
{
void __iomem *reg = imx21->regs + offset;
if (readl(reg) & mask)
writel(mask, reg);
}
static inline void set_toggle_bit(struct imx21 *imx21, u32 offset, u32 mask)
{
void __iomem *reg = imx21->regs + offset;
if (!(readl(reg) & mask))
writel(mask, reg);
}
static void etd_writel(struct imx21 *imx21, int etd_num, int dword, u32 value)
{
writel(value, imx21->regs + USB_ETD_DWORD(etd_num, dword));
}
static u32 etd_readl(struct imx21 *imx21, int etd_num, int dword)
{
return readl(imx21->regs + USB_ETD_DWORD(etd_num, dword));
}
static inline int wrap_frame(int counter)
{
return counter & 0xFFFF;
}
static inline int frame_after(int frame, int after)
{
/* handle wrapping like jiffies time_afer */
return (s16)((s16)after - (s16)frame) < 0;
}
static int imx21_hc_get_frame(struct usb_hcd *hcd)
{
struct imx21 *imx21 = hcd_to_imx21(hcd);
return wrap_frame(readl(imx21->regs + USBH_FRMNUB));
}
static inline bool unsuitable_for_dma(dma_addr_t addr)
{
return (addr & 3) != 0;
}
#include "imx21-dbg.c"
static void nonisoc_urb_completed_for_etd(
struct imx21 *imx21, struct etd_priv *etd, int status);
static void schedule_nonisoc_etd(struct imx21 *imx21, struct urb *urb);
static void free_dmem(struct imx21 *imx21, struct etd_priv *etd);
/* =========================================== */
/* ETD management */
/* =========================================== */
static int alloc_etd(struct imx21 *imx21)
{
int i;
struct etd_priv *etd = imx21->etd;
for (i = 0; i < USB_NUM_ETD; i++, etd++) {
if (etd->alloc == 0) {
memset(etd, 0, sizeof(imx21->etd[0]));
etd->alloc = 1;
debug_etd_allocated(imx21);
return i;
}
}
return -1;
}
static void disactivate_etd(struct imx21 *imx21, int num)
{
int etd_mask = (1 << num);
struct etd_priv *etd = &imx21->etd[num];
writel(etd_mask, imx21->regs + USBH_ETDENCLR);
clear_register_bits(imx21, USBH_ETDDONEEN, etd_mask);
writel(etd_mask, imx21->regs + USB_ETDDMACHANLCLR);
clear_toggle_bit(imx21, USBH_ETDDONESTAT, etd_mask);
etd->active_count = 0;
DEBUG_LOG_FRAME(imx21, etd, disactivated);
}
static void reset_etd(struct imx21 *imx21, int num)
{
struct etd_priv *etd = imx21->etd + num;
int i;
disactivate_etd(imx21, num);
for (i = 0; i < 4; i++)
etd_writel(imx21, num, i, 0);
etd->urb = NULL;
etd->ep = NULL;
etd->td = NULL;
etd->bounce_buffer = NULL;
}
static void free_etd(struct imx21 *imx21, int num)
{
if (num < 0)
return;
if (num >= USB_NUM_ETD) {
dev_err(imx21->dev, "BAD etd=%d!\n", num);
return;
}
if (imx21->etd[num].alloc == 0) {
dev_err(imx21->dev, "ETD %d already free!\n", num);
return;
}
debug_etd_freed(imx21);
reset_etd(imx21, num);
memset(&imx21->etd[num], 0, sizeof(imx21->etd[0]));
}
static void setup_etd_dword0(struct imx21 *imx21,
int etd_num, struct urb *urb, u8 dir, u16 maxpacket)
{
etd_writel(imx21, etd_num, 0,
((u32) usb_pipedevice(urb->pipe)) << DW0_ADDRESS |
((u32) usb_pipeendpoint(urb->pipe) << DW0_ENDPNT) |
((u32) dir << DW0_DIRECT) |
((u32) ((urb->dev->speed == USB_SPEED_LOW) ?
1 : 0) << DW0_SPEED) |
((u32) fmt_urb_to_etd[usb_pipetype(urb->pipe)] << DW0_FORMAT) |
((u32) maxpacket << DW0_MAXPKTSIZ));
}
/**
* Copy buffer to data controller data memory.
* We cannot use memcpy_toio() because the hardware requires 32bit writes
*/
static void copy_to_dmem(
struct imx21 *imx21, int dmem_offset, void *src, int count)
{
void __iomem *dmem = imx21->regs + USBOTG_DMEM + dmem_offset;
u32 word = 0;
u8 *p = src;
int byte = 0;
int i;
for (i = 0; i < count; i++) {
byte = i % 4;
word += (*p++ << (byte * 8));
if (byte == 3) {
writel(word, dmem);
dmem += 4;
word = 0;
}
}
if (count && byte != 3)
writel(word, dmem);
}
static void activate_etd(struct imx21 *imx21, int etd_num, u8 dir)
{
u32 etd_mask = 1 << etd_num;
struct etd_priv *etd = &imx21->etd[etd_num];
if (etd->dma_handle && unsuitable_for_dma(etd->dma_handle)) {
/* For non aligned isoc the condition below is always true */
if (etd->len <= etd->dmem_size) {
/* Fits into data memory, use PIO */
if (dir != TD_DIR_IN) {
copy_to_dmem(imx21,
etd->dmem_offset,
etd->cpu_buffer, etd->len);
}
etd->dma_handle = 0;
} else {
/* Too big for data memory, use bounce buffer */
enum dma_data_direction dmadir;
if (dir == TD_DIR_IN) {
dmadir = DMA_FROM_DEVICE;
etd->bounce_buffer = kmalloc(etd->len,
GFP_ATOMIC);
} else {
dmadir = DMA_TO_DEVICE;
etd->bounce_buffer = kmemdup(etd->cpu_buffer,
etd->len,
GFP_ATOMIC);
}
if (!etd->bounce_buffer) {
dev_err(imx21->dev, "failed bounce alloc\n");
goto err_bounce_alloc;
}
etd->dma_handle =
dma_map_single(imx21->dev,
etd->bounce_buffer,
etd->len,
dmadir);
if (dma_mapping_error(imx21->dev, etd->dma_handle)) {
dev_err(imx21->dev, "failed bounce map\n");
goto err_bounce_map;
}
}
}
clear_toggle_bit(imx21, USBH_ETDDONESTAT, etd_mask);
set_register_bits(imx21, USBH_ETDDONEEN, etd_mask);
clear_toggle_bit(imx21, USBH_XFILLSTAT, etd_mask);
clear_toggle_bit(imx21, USBH_YFILLSTAT, etd_mask);
if (etd->dma_handle) {
set_register_bits(imx21, USB_ETDDMACHANLCLR, etd_mask);
clear_toggle_bit(imx21, USBH_XBUFSTAT, etd_mask);
clear_toggle_bit(imx21, USBH_YBUFSTAT, etd_mask);
writel(etd->dma_handle, imx21->regs + USB_ETDSMSA(etd_num));
set_register_bits(imx21, USB_ETDDMAEN, etd_mask);
} else {
if (dir != TD_DIR_IN) {
/* need to set for ZLP and PIO */
set_toggle_bit(imx21, USBH_XFILLSTAT, etd_mask);
set_toggle_bit(imx21, USBH_YFILLSTAT, etd_mask);
}
}
DEBUG_LOG_FRAME(imx21, etd, activated);
#ifdef DEBUG
if (!etd->active_count) {
int i;
etd->activated_frame = readl(imx21->regs + USBH_FRMNUB);
etd->disactivated_frame = -1;
etd->last_int_frame = -1;
etd->last_req_frame = -1;
for (i = 0; i < 4; i++)
etd->submitted_dwords[i] = etd_readl(imx21, etd_num, i);
}
#endif
etd->active_count = 1;
writel(etd_mask, imx21->regs + USBH_ETDENSET);
return;
err_bounce_map:
kfree(etd->bounce_buffer);
err_bounce_alloc:
free_dmem(imx21, etd);
nonisoc_urb_completed_for_etd(imx21, etd, -ENOMEM);
}
/* =========================================== */
/* Data memory management */
/* =========================================== */
static int alloc_dmem(struct imx21 *imx21, unsigned int size,
struct usb_host_endpoint *ep)
{
unsigned int offset = 0;
struct imx21_dmem_area *area;
struct imx21_dmem_area *tmp;
size += (~size + 1) & 0x3; /* Round to 4 byte multiple */
if (size > DMEM_SIZE) {
dev_err(imx21->dev, "size=%d > DMEM_SIZE(%d)\n",
size, DMEM_SIZE);
return -EINVAL;
}
list_for_each_entry(tmp, &imx21->dmem_list, list) {
if ((size + offset) < offset)
goto fail;
if ((size + offset) <= tmp->offset)
break;
offset = tmp->size + tmp->offset;
if ((offset + size) > DMEM_SIZE)
goto fail;
}
area = kmalloc(sizeof(struct imx21_dmem_area), GFP_ATOMIC);
if (area == NULL)
return -ENOMEM;
area->ep = ep;
area->offset = offset;
area->size = size;
list_add_tail(&area->list, &tmp->list);
debug_dmem_allocated(imx21, size);
return offset;
fail:
return -ENOMEM;
}
/* Memory now available for a queued ETD - activate it */
static void activate_queued_etd(struct imx21 *imx21,
struct etd_priv *etd, u32 dmem_offset)
{
struct urb_priv *urb_priv = etd->urb->hcpriv;
int etd_num = etd - &imx21->etd[0];
u32 maxpacket = etd_readl(imx21, etd_num, 1) >> DW1_YBUFSRTAD;
u8 dir = (etd_readl(imx21, etd_num, 2) >> DW2_DIRPID) & 0x03;
dev_dbg(imx21->dev, "activating queued ETD %d now DMEM available\n",
etd_num);
etd_writel(imx21, etd_num, 1,
((dmem_offset + maxpacket) << DW1_YBUFSRTAD) | dmem_offset);
etd->dmem_offset = dmem_offset;
urb_priv->active = 1;
activate_etd(imx21, etd_num, dir);
}
static void free_dmem(struct imx21 *imx21, struct etd_priv *etd)
{
struct imx21_dmem_area *area;
struct etd_priv *tmp;
int found = 0;
int offset;
if (!etd->dmem_size)
return;
etd->dmem_size = 0;
offset = etd->dmem_offset;
list_for_each_entry(area, &imx21->dmem_list, list) {
if (area->offset == offset) {
debug_dmem_freed(imx21, area->size);
list_del(&area->list);
kfree(area);
found = 1;
break;
}
}
if (!found) {
dev_err(imx21->dev,
"Trying to free unallocated DMEM %d\n", offset);
return;
}
/* Try again to allocate memory for anything we've queued */
list_for_each_entry_safe(etd, tmp, &imx21->queue_for_dmem, queue) {
offset = alloc_dmem(imx21, etd->dmem_size, etd->ep);
if (offset >= 0) {
list_del(&etd->queue);
activate_queued_etd(imx21, etd, (u32)offset);
}
}
}
static void free_epdmem(struct imx21 *imx21, struct usb_host_endpoint *ep)
{
struct imx21_dmem_area *area, *tmp;
list_for_each_entry_safe(area, tmp, &imx21->dmem_list, list) {
if (area->ep == ep) {
dev_err(imx21->dev,
"Active DMEM %d for disabled ep=%p\n",
area->offset, ep);
list_del(&area->list);
kfree(area);
}
}
}
/* =========================================== */
/* End handling */
/* =========================================== */
/* Endpoint now idle - release it's ETD(s) or asssign to queued request */
static void ep_idle(struct imx21 *imx21, struct ep_priv *ep_priv)
{
int i;
for (i = 0; i < NUM_ISO_ETDS; i++) {
int etd_num = ep_priv->etd[i];
struct etd_priv *etd;
if (etd_num < 0)
continue;
etd = &imx21->etd[etd_num];
ep_priv->etd[i] = -1;
free_dmem(imx21, etd); /* for isoc */
if (list_empty(&imx21->queue_for_etd)) {
free_etd(imx21, etd_num);
continue;
}
dev_dbg(imx21->dev,
"assigning idle etd %d for queued request\n", etd_num);
ep_priv = list_first_entry(&imx21->queue_for_etd,
struct ep_priv, queue);
list_del(&ep_priv->queue);
reset_etd(imx21, etd_num);
ep_priv->waiting_etd = 0;
ep_priv->etd[i] = etd_num;
if (list_empty(&ep_priv->ep->urb_list)) {
dev_err(imx21->dev, "No urb for queued ep!\n");
continue;
}
schedule_nonisoc_etd(imx21, list_first_entry(
&ep_priv->ep->urb_list, struct urb, urb_list));
}
}
static void urb_done(struct usb_hcd *hcd, struct urb *urb, int status)
__releases(imx21->lock)
__acquires(imx21->lock)
{
struct imx21 *imx21 = hcd_to_imx21(hcd);
struct ep_priv *ep_priv = urb->ep->hcpriv;
struct urb_priv *urb_priv = urb->hcpriv;
debug_urb_completed(imx21, urb, status);
dev_vdbg(imx21->dev, "urb %p done %d\n", urb, status);
kfree(urb_priv->isoc_td);
kfree(urb->hcpriv);
urb->hcpriv = NULL;
usb_hcd_unlink_urb_from_ep(hcd, urb);
spin_unlock(&imx21->lock);
usb_hcd_giveback_urb(hcd, urb, status);
spin_lock(&imx21->lock);
if (list_empty(&ep_priv->ep->urb_list))
ep_idle(imx21, ep_priv);
}
static void nonisoc_urb_completed_for_etd(
struct imx21 *imx21, struct etd_priv *etd, int status)
{
struct usb_host_endpoint *ep = etd->ep;
urb_done(imx21->hcd, etd->urb, status);
etd->urb = NULL;
if (!list_empty(&ep->urb_list)) {
struct urb *urb = list_first_entry(
&ep->urb_list, struct urb, urb_list);
dev_vdbg(imx21->dev, "next URB %p\n", urb);
schedule_nonisoc_etd(imx21, urb);
}
}
/* =========================================== */
/* ISOC Handling ... */
/* =========================================== */
static void schedule_isoc_etds(struct usb_hcd *hcd,
struct usb_host_endpoint *ep)
{
struct imx21 *imx21 = hcd_to_imx21(hcd);
struct ep_priv *ep_priv = ep->hcpriv;
struct etd_priv *etd;
struct urb_priv *urb_priv;
struct td *td;
int etd_num;
int i;
int cur_frame;
u8 dir;
for (i = 0; i < NUM_ISO_ETDS; i++) {
too_late:
if (list_empty(&ep_priv->td_list))
break;
etd_num = ep_priv->etd[i];
if (etd_num < 0)
break;
etd = &imx21->etd[etd_num];
if (etd->urb)
continue;
td = list_entry(ep_priv->td_list.next, struct td, list);
list_del(&td->list);
urb_priv = td->urb->hcpriv;
cur_frame = imx21_hc_get_frame(hcd);
if (frame_after(cur_frame, td->frame)) {
dev_dbg(imx21->dev, "isoc too late frame %d > %d\n",
cur_frame, td->frame);
urb_priv->isoc_status = -EXDEV;
td->urb->iso_frame_desc[
td->isoc_index].actual_length = 0;
td->urb->iso_frame_desc[td->isoc_index].status = -EXDEV;
if (--urb_priv->isoc_remaining == 0)
urb_done(hcd, td->urb, urb_priv->isoc_status);
goto too_late;
}
urb_priv->active = 1;
etd->td = td;
etd->ep = td->ep;
etd->urb = td->urb;
etd->len = td->len;
etd->dma_handle = td->dma_handle;
etd->cpu_buffer = td->cpu_buffer;
debug_isoc_submitted(imx21, cur_frame, td);
dir = usb_pipeout(td->urb->pipe) ? TD_DIR_OUT : TD_DIR_IN;
setup_etd_dword0(imx21, etd_num, td->urb, dir, etd->dmem_size);
etd_writel(imx21, etd_num, 1, etd->dmem_offset);
etd_writel(imx21, etd_num, 2,
(TD_NOTACCESSED << DW2_COMPCODE) |
((td->frame & 0xFFFF) << DW2_STARTFRM));
etd_writel(imx21, etd_num, 3,
(TD_NOTACCESSED << DW3_COMPCODE0) |
(td->len << DW3_PKTLEN0));
activate_etd(imx21, etd_num, dir);
}
}
static void isoc_etd_done(struct usb_hcd *hcd, int etd_num)
{
struct imx21 *imx21 = hcd_to_imx21(hcd);
int etd_mask = 1 << etd_num;
struct etd_priv *etd = imx21->etd + etd_num;
struct urb *urb = etd->urb;
struct urb_priv *urb_priv = urb->hcpriv;
struct td *td = etd->td;
struct usb_host_endpoint *ep = etd->ep;
int isoc_index = td->isoc_index;
unsigned int pipe = urb->pipe;
int dir_in = usb_pipein(pipe);
int cc;
int bytes_xfrd;
disactivate_etd(imx21, etd_num);
cc = (etd_readl(imx21, etd_num, 3) >> DW3_COMPCODE0) & 0xf;
bytes_xfrd = etd_readl(imx21, etd_num, 3) & 0x3ff;
/* Input doesn't always fill the buffer, don't generate an error
* when this happens.
*/
if (dir_in && (cc == TD_DATAUNDERRUN))
cc = TD_CC_NOERROR;
if (cc == TD_NOTACCESSED)
bytes_xfrd = 0;
debug_isoc_completed(imx21,
imx21_hc_get_frame(hcd), td, cc, bytes_xfrd);
if (cc) {
urb_priv->isoc_status = -EXDEV;
dev_dbg(imx21->dev,
"bad iso cc=0x%X frame=%d sched frame=%d "
"cnt=%d len=%d urb=%p etd=%d index=%d\n",
cc, imx21_hc_get_frame(hcd), td->frame,
bytes_xfrd, td->len, urb, etd_num, isoc_index);
}
if (dir_in) {
clear_toggle_bit(imx21, USBH_XFILLSTAT, etd_mask);
if (!etd->dma_handle)
memcpy_fromio(etd->cpu_buffer,
imx21->regs + USBOTG_DMEM + etd->dmem_offset,
bytes_xfrd);
}
urb->actual_length += bytes_xfrd;
urb->iso_frame_desc[isoc_index].actual_length = bytes_xfrd;
urb->iso_frame_desc[isoc_index].status = cc_to_error[cc];
etd->td = NULL;
etd->urb = NULL;
etd->ep = NULL;
if (--urb_priv->isoc_remaining == 0)
urb_done(hcd, urb, urb_priv->isoc_status);
schedule_isoc_etds(hcd, ep);
}
static struct ep_priv *alloc_isoc_ep(
struct imx21 *imx21, struct usb_host_endpoint *ep)
{
struct ep_priv *ep_priv;
int i;
ep_priv = kzalloc(sizeof(struct ep_priv), GFP_ATOMIC);
if (!ep_priv)
return NULL;
for (i = 0; i < NUM_ISO_ETDS; i++)
ep_priv->etd[i] = -1;
INIT_LIST_HEAD(&ep_priv->td_list);
ep_priv->ep = ep;
ep->hcpriv = ep_priv;
return ep_priv;
}
static int alloc_isoc_etds(struct imx21 *imx21, struct ep_priv *ep_priv)
{
int i, j;
int etd_num;
/* Allocate the ETDs if required */
for (i = 0; i < NUM_ISO_ETDS; i++) {
if (ep_priv->etd[i] < 0) {
etd_num = alloc_etd(imx21);
if (etd_num < 0)
goto alloc_etd_failed;
ep_priv->etd[i] = etd_num;
imx21->etd[etd_num].ep = ep_priv->ep;
}
}
return 0;
alloc_etd_failed:
dev_err(imx21->dev, "isoc: Couldn't allocate etd\n");
for (j = 0; j < i; j++) {
free_etd(imx21, ep_priv->etd[j]);
ep_priv->etd[j] = -1;
}
return -ENOMEM;
}
static int imx21_hc_urb_enqueue_isoc(struct usb_hcd *hcd,
struct usb_host_endpoint *ep,
struct urb *urb, gfp_t mem_flags)
{
struct imx21 *imx21 = hcd_to_imx21(hcd);
struct urb_priv *urb_priv;
unsigned long flags;
struct ep_priv *ep_priv;
struct td *td = NULL;
int i;
int ret;
int cur_frame;
u16 maxpacket;
urb_priv = kzalloc(sizeof(struct urb_priv), mem_flags);
if (urb_priv == NULL)
return -ENOMEM;
urb_priv->isoc_td = kzalloc(
sizeof(struct td) * urb->number_of_packets, mem_flags);
if (urb_priv->isoc_td == NULL) {
ret = -ENOMEM;
goto alloc_td_failed;
}
spin_lock_irqsave(&imx21->lock, flags);
if (ep->hcpriv == NULL) {
ep_priv = alloc_isoc_ep(imx21, ep);
if (ep_priv == NULL) {
ret = -ENOMEM;
goto alloc_ep_failed;
}
} else {
ep_priv = ep->hcpriv;
}
ret = alloc_isoc_etds(imx21, ep_priv);
if (ret)
goto alloc_etd_failed;
ret = usb_hcd_link_urb_to_ep(hcd, urb);
if (ret)
goto link_failed;
urb->status = -EINPROGRESS;
urb->actual_length = 0;
urb->error_count = 0;
urb->hcpriv = urb_priv;
urb_priv->ep = ep;
/* allocate data memory for largest packets if not already done */
maxpacket = usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe));
for (i = 0; i < NUM_ISO_ETDS; i++) {
struct etd_priv *etd = &imx21->etd[ep_priv->etd[i]];
if (etd->dmem_size > 0 && etd->dmem_size < maxpacket) {
/* not sure if this can really occur.... */
dev_err(imx21->dev, "increasing isoc buffer %d->%d\n",
etd->dmem_size, maxpacket);
ret = -EMSGSIZE;
goto alloc_dmem_failed;
}
if (etd->dmem_size == 0) {
etd->dmem_offset = alloc_dmem(imx21, maxpacket, ep);
if (etd->dmem_offset < 0) {
dev_dbg(imx21->dev, "failed alloc isoc dmem\n");
ret = -EAGAIN;
goto alloc_dmem_failed;
}
etd->dmem_size = maxpacket;
}
}
/* calculate frame */
cur_frame = imx21_hc_get_frame(hcd);
if (urb->transfer_flags & URB_ISO_ASAP) {
if (list_empty(&ep_priv->td_list))
urb->start_frame = cur_frame + 5;
else
urb->start_frame = list_entry(
ep_priv->td_list.prev,
struct td, list)->frame + urb->interval;
}
urb->start_frame = wrap_frame(urb->start_frame);
if (frame_after(cur_frame, urb->start_frame)) {
dev_dbg(imx21->dev,
"enqueue: adjusting iso start %d (cur=%d) asap=%d\n",
urb->start_frame, cur_frame,
(urb->transfer_flags & URB_ISO_ASAP) != 0);
urb->start_frame = wrap_frame(cur_frame + 1);
}
/* set up transfers */
td = urb_priv->isoc_td;
for (i = 0; i < urb->number_of_packets; i++, td++) {
unsigned int offset = urb->iso_frame_desc[i].offset;
td->ep = ep;
td->urb = urb;
td->len = urb->iso_frame_desc[i].length;
td->isoc_index = i;
td->frame = wrap_frame(urb->start_frame + urb->interval * i);
td->dma_handle = urb->transfer_dma + offset;
td->cpu_buffer = urb->transfer_buffer + offset;
list_add_tail(&td->list, &ep_priv->td_list);
}
urb_priv->isoc_remaining = urb->number_of_packets;
dev_vdbg(imx21->dev, "setup %d packets for iso frame %d->%d\n",
urb->number_of_packets, urb->start_frame, td->frame);
debug_urb_submitted(imx21, urb);
schedule_isoc_etds(hcd, ep);
spin_unlock_irqrestore(&imx21->lock, flags);
return 0;
alloc_dmem_failed:
usb_hcd_unlink_urb_from_ep(hcd, urb);
link_failed:
alloc_etd_failed:
alloc_ep_failed:
spin_unlock_irqrestore(&imx21->lock, flags);
kfree(urb_priv->isoc_td);
alloc_td_failed:
kfree(urb_priv);
return ret;
}
static void dequeue_isoc_urb(struct imx21 *imx21,
struct urb *urb, struct ep_priv *ep_priv)
{
struct urb_priv *urb_priv = urb->hcpriv;
struct td *td, *tmp;
int i;
if (urb_priv->active) {
for (i = 0; i < NUM_ISO_ETDS; i++) {
int etd_num = ep_priv->etd[i];
if (etd_num != -1 && imx21->etd[etd_num].urb == urb) {
struct etd_priv *etd = imx21->etd + etd_num;
reset_etd(imx21, etd_num);
free_dmem(imx21, etd);
}
}
}
list_for_each_entry_safe(td, tmp, &ep_priv->td_list, list) {
if (td->urb == urb) {
dev_vdbg(imx21->dev, "removing td %p\n", td);
list_del(&td->list);
}
}
}
/* =========================================== */
/* NON ISOC Handling ... */
/* =========================================== */
static void schedule_nonisoc_etd(struct imx21 *imx21, struct urb *urb)
{
unsigned int pipe = urb->pipe;
struct urb_priv *urb_priv = urb->hcpriv;
struct ep_priv *ep_priv = urb_priv->ep->hcpriv;
int state = urb_priv->state;
int etd_num = ep_priv->etd[0];
struct etd_priv *etd;
u32 count;
u16 etd_buf_size;
u16 maxpacket;
u8 dir;
u8 bufround;
u8 datatoggle;
u8 interval = 0;
u8 relpolpos = 0;
if (etd_num < 0) {
dev_err(imx21->dev, "No valid ETD\n");
return;
}
if (readl(imx21->regs + USBH_ETDENSET) & (1 << etd_num))
dev_err(imx21->dev, "submitting to active ETD %d\n", etd_num);
etd = &imx21->etd[etd_num];
maxpacket = usb_maxpacket(urb->dev, pipe, usb_pipeout(pipe));
if (!maxpacket)
maxpacket = 8;
if (usb_pipecontrol(pipe) && (state != US_CTRL_DATA)) {
if (state == US_CTRL_SETUP) {
dir = TD_DIR_SETUP;
if (unsuitable_for_dma(urb->setup_dma))
usb_hcd_unmap_urb_setup_for_dma(imx21->hcd,
urb);
etd->dma_handle = urb->setup_dma;
etd->cpu_buffer = urb->setup_packet;
bufround = 0;
count = 8;
datatoggle = TD_TOGGLE_DATA0;
} else { /* US_CTRL_ACK */
dir = usb_pipeout(pipe) ? TD_DIR_IN : TD_DIR_OUT;
bufround = 0;
count = 0;
datatoggle = TD_TOGGLE_DATA1;
}
} else {
dir = usb_pipeout(pipe) ? TD_DIR_OUT : TD_DIR_IN;
bufround = (dir == TD_DIR_IN) ? 1 : 0;
if (unsuitable_for_dma(urb->transfer_dma))
usb_hcd_unmap_urb_for_dma(imx21->hcd, urb);
etd->dma_handle = urb->transfer_dma;
etd->cpu_buffer = urb->transfer_buffer;
if (usb_pipebulk(pipe) && (state == US_BULK0))
count = 0;
else
count = urb->transfer_buffer_length;
if (usb_pipecontrol(pipe)) {
datatoggle = TD_TOGGLE_DATA1;
} else {
if (usb_gettoggle(
urb->dev,
usb_pipeendpoint(urb->pipe),
usb_pipeout(urb->pipe)))
datatoggle = TD_TOGGLE_DATA1;
else
datatoggle = TD_TOGGLE_DATA0;
}
}
etd->urb = urb;
etd->ep = urb_priv->ep;
etd->len = count;
if (usb_pipeint(pipe)) {
interval = urb->interval;
relpolpos = (readl(imx21->regs + USBH_FRMNUB) + 1) & 0xff;
}
/* Write ETD to device memory */
setup_etd_dword0(imx21, etd_num, urb, dir, maxpacket);
etd_writel(imx21, etd_num, 2,
(u32) interval << DW2_POLINTERV |
((u32) relpolpos << DW2_RELPOLPOS) |
((u32) dir << DW2_DIRPID) |
((u32) bufround << DW2_BUFROUND) |
((u32) datatoggle << DW2_DATATOG) |
((u32) TD_NOTACCESSED << DW2_COMPCODE));
/* DMA will always transfer buffer size even if TOBYCNT in DWORD3
is smaller. Make sure we don't overrun the buffer!
*/
if (count && count < maxpacket)
etd_buf_size = count;
else
etd_buf_size = maxpacket;
etd_writel(imx21, etd_num, 3,
((u32) (etd_buf_size - 1) << DW3_BUFSIZE) | (u32) count);
if (!count)
etd->dma_handle = 0;
/* allocate x and y buffer space at once */
etd->dmem_size = (count > maxpacket) ? maxpacket * 2 : maxpacket;
etd->dmem_offset = alloc_dmem(imx21, etd->dmem_size, urb_priv->ep);
if (etd->dmem_offset < 0) {
/* Setup everything we can in HW and update when we get DMEM */
etd_writel(imx21, etd_num, 1, (u32)maxpacket << 16);
dev_dbg(imx21->dev, "Queuing etd %d for DMEM\n", etd_num);
debug_urb_queued_for_dmem(imx21, urb);
list_add_tail(&etd->queue, &imx21->queue_for_dmem);
return;
}
etd_writel(imx21, etd_num, 1,
(((u32) etd->dmem_offset + (u32) maxpacket) << DW1_YBUFSRTAD) |
(u32) etd->dmem_offset);
urb_priv->active = 1;
/* enable the ETD to kick off transfer */
dev_vdbg(imx21->dev, "Activating etd %d for %d bytes %s\n",
etd_num, count, dir != TD_DIR_IN ? "out" : "in");
activate_etd(imx21, etd_num, dir);
}
static void nonisoc_etd_done(struct usb_hcd *hcd, int etd_num)
{
struct imx21 *imx21 = hcd_to_imx21(hcd);
struct etd_priv *etd = &imx21->etd[etd_num];
struct urb *urb = etd->urb;
u32 etd_mask = 1 << etd_num;
struct urb_priv *urb_priv = urb->hcpriv;
int dir;
int cc;
u32 bytes_xfrd;
int etd_done;
disactivate_etd(imx21, etd_num);
dir = (etd_readl(imx21, etd_num, 0) >> DW0_DIRECT) & 0x3;
cc = (etd_readl(imx21, etd_num, 2) >> DW2_COMPCODE) & 0xf;
bytes_xfrd = etd->len - (etd_readl(imx21, etd_num, 3) & 0x1fffff);
/* save toggle carry */
usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe),
usb_pipeout(urb->pipe),
(etd_readl(imx21, etd_num, 0) >> DW0_TOGCRY) & 0x1);
if (dir == TD_DIR_IN) {
clear_toggle_bit(imx21, USBH_XFILLSTAT, etd_mask);
clear_toggle_bit(imx21, USBH_YFILLSTAT, etd_mask);
if (etd->bounce_buffer) {
memcpy(etd->cpu_buffer, etd->bounce_buffer, bytes_xfrd);
dma_unmap_single(imx21->dev,
etd->dma_handle, etd->len, DMA_FROM_DEVICE);
} else if (!etd->dma_handle && bytes_xfrd) {/* PIO */
memcpy_fromio(etd->cpu_buffer,
imx21->regs + USBOTG_DMEM + etd->dmem_offset,
bytes_xfrd);
}
}
kfree(etd->bounce_buffer);
etd->bounce_buffer = NULL;
free_dmem(imx21, etd);
urb->error_count = 0;
if (!(urb->transfer_flags & URB_SHORT_NOT_OK)
&& (cc == TD_DATAUNDERRUN))
cc = TD_CC_NOERROR;
if (cc != 0)
dev_vdbg(imx21->dev, "cc is 0x%x\n", cc);
etd_done = (cc_to_error[cc] != 0); /* stop if error */
switch (usb_pipetype(urb->pipe)) {
case PIPE_CONTROL:
switch (urb_priv->state) {
case US_CTRL_SETUP:
if (urb->transfer_buffer_length > 0)
urb_priv->state = US_CTRL_DATA;
else
urb_priv->state = US_CTRL_ACK;
break;
case US_CTRL_DATA:
urb->actual_length += bytes_xfrd;
urb_priv->state = US_CTRL_ACK;
break;
case US_CTRL_ACK:
etd_done = 1;
break;
default:
dev_err(imx21->dev,
"Invalid pipe state %d\n", urb_priv->state);
etd_done = 1;
break;
}
break;
case PIPE_BULK:
urb->actual_length += bytes_xfrd;
if ((urb_priv->state == US_BULK)
&& (urb->transfer_flags & URB_ZERO_PACKET)
&& urb->transfer_buffer_length > 0
&& ((urb->transfer_buffer_length %
usb_maxpacket(urb->dev, urb->pipe,
usb_pipeout(urb->pipe))) == 0)) {
/* need a 0-packet */
urb_priv->state = US_BULK0;
} else {
etd_done = 1;
}
break;
case PIPE_INTERRUPT:
urb->actual_length += bytes_xfrd;
etd_done = 1;
break;
}
if (etd_done)
nonisoc_urb_completed_for_etd(imx21, etd, cc_to_error[cc]);
else {
dev_vdbg(imx21->dev, "next state=%d\n", urb_priv->state);
schedule_nonisoc_etd(imx21, urb);
}
}
static struct ep_priv *alloc_ep(void)
{
int i;
struct ep_priv *ep_priv;
ep_priv = kzalloc(sizeof(struct ep_priv), GFP_ATOMIC);
if (!ep_priv)
return NULL;
for (i = 0; i < NUM_ISO_ETDS; ++i)
ep_priv->etd[i] = -1;
return ep_priv;
}
static int imx21_hc_urb_enqueue(struct usb_hcd *hcd,
struct urb *urb, gfp_t mem_flags)
{
struct imx21 *imx21 = hcd_to_imx21(hcd);
struct usb_host_endpoint *ep = urb->ep;
struct urb_priv *urb_priv;
struct ep_priv *ep_priv;
struct etd_priv *etd;
int ret;
unsigned long flags;
dev_vdbg(imx21->dev,
"enqueue urb=%p ep=%p len=%d "
"buffer=%p dma=%08X setupBuf=%p setupDma=%08X\n",
urb, ep,
urb->transfer_buffer_length,
urb->transfer_buffer, urb->transfer_dma,
urb->setup_packet, urb->setup_dma);
if (usb_pipeisoc(urb->pipe))
return imx21_hc_urb_enqueue_isoc(hcd, ep, urb, mem_flags);
urb_priv = kzalloc(sizeof(struct urb_priv), mem_flags);
if (!urb_priv)
return -ENOMEM;
spin_lock_irqsave(&imx21->lock, flags);
ep_priv = ep->hcpriv;
if (ep_priv == NULL) {
ep_priv = alloc_ep();
if (!ep_priv) {
ret = -ENOMEM;
goto failed_alloc_ep;
}
ep->hcpriv = ep_priv;
ep_priv->ep = ep;
}
ret = usb_hcd_link_urb_to_ep(hcd, urb);
if (ret)
goto failed_link;
urb->status = -EINPROGRESS;
urb->actual_length = 0;
urb->error_count = 0;
urb->hcpriv = urb_priv;
urb_priv->ep = ep;
switch (usb_pipetype(urb->pipe)) {
case PIPE_CONTROL:
urb_priv->state = US_CTRL_SETUP;
break;
case PIPE_BULK:
urb_priv->state = US_BULK;
break;
}
debug_urb_submitted(imx21, urb);
if (ep_priv->etd[0] < 0) {
if (ep_priv->waiting_etd) {
dev_dbg(imx21->dev,
"no ETD available already queued %p\n",
ep_priv);
debug_urb_queued_for_etd(imx21, urb);
goto out;
}
ep_priv->etd[0] = alloc_etd(imx21);
if (ep_priv->etd[0] < 0) {
dev_dbg(imx21->dev,
"no ETD available queueing %p\n", ep_priv);
debug_urb_queued_for_etd(imx21, urb);
list_add_tail(&ep_priv->queue, &imx21->queue_for_etd);
ep_priv->waiting_etd = 1;
goto out;
}
}
/* Schedule if no URB already active for this endpoint */
etd = &imx21->etd[ep_priv->etd[0]];
if (etd->urb == NULL) {
DEBUG_LOG_FRAME(imx21, etd, last_req);
schedule_nonisoc_etd(imx21, urb);
}
out:
spin_unlock_irqrestore(&imx21->lock, flags);
return 0;
failed_link:
failed_alloc_ep:
spin_unlock_irqrestore(&imx21->lock, flags);
kfree(urb_priv);
return ret;
}
static int imx21_hc_urb_dequeue(struct usb_hcd *hcd, struct urb *urb,
int status)
{
struct imx21 *imx21 = hcd_to_imx21(hcd);
unsigned long flags;
struct usb_host_endpoint *ep;
struct ep_priv *ep_priv;
struct urb_priv *urb_priv = urb->hcpriv;
int ret = -EINVAL;
dev_vdbg(imx21->dev, "dequeue urb=%p iso=%d status=%d\n",
urb, usb_pipeisoc(urb->pipe), status);
spin_lock_irqsave(&imx21->lock, flags);
ret = usb_hcd_check_unlink_urb(hcd, urb, status);
if (ret)
goto fail;
ep = urb_priv->ep;
ep_priv = ep->hcpriv;
debug_urb_unlinked(imx21, urb);
if (usb_pipeisoc(urb->pipe)) {
dequeue_isoc_urb(imx21, urb, ep_priv);
schedule_isoc_etds(hcd, ep);
} else if (urb_priv->active) {
int etd_num = ep_priv->etd[0];
if (etd_num != -1) {
struct etd_priv *etd = &imx21->etd[etd_num];
disactivate_etd(imx21, etd_num);
free_dmem(imx21, etd);
etd->urb = NULL;
kfree(etd->bounce_buffer);
etd->bounce_buffer = NULL;
}
}
urb_done(hcd, urb, status);
spin_unlock_irqrestore(&imx21->lock, flags);
return 0;
fail:
spin_unlock_irqrestore(&imx21->lock, flags);
return ret;
}
/* =========================================== */
/* Interrupt dispatch */
/* =========================================== */
static void process_etds(struct usb_hcd *hcd, struct imx21 *imx21, int sof)
{
int etd_num;
int enable_sof_int = 0;
unsigned long flags;
spin_lock_irqsave(&imx21->lock, flags);
for (etd_num = 0; etd_num < USB_NUM_ETD; etd_num++) {
u32 etd_mask = 1 << etd_num;
u32 enabled = readl(imx21->regs + USBH_ETDENSET) & etd_mask;
u32 done = readl(imx21->regs + USBH_ETDDONESTAT) & etd_mask;
struct etd_priv *etd = &imx21->etd[etd_num];
if (done) {
DEBUG_LOG_FRAME(imx21, etd, last_int);
} else {
/*
* Kludge warning!
*
* When multiple transfers are using the bus we sometimes get into a state
* where the transfer has completed (the CC field of the ETD is != 0x0F),
* the ETD has self disabled but the ETDDONESTAT flag is not set
* (and hence no interrupt occurs).
* This causes the transfer in question to hang.
* The kludge below checks for this condition at each SOF and processes any
* blocked ETDs (after an arbitary 10 frame wait)
*
* With a single active transfer the usbtest test suite will run for days
* without the kludge.
* With other bus activity (eg mass storage) even just test1 will hang without
* the kludge.
*/
u32 dword0;
int cc;
if (etd->active_count && !enabled) /* suspicious... */
enable_sof_int = 1;
if (!sof || enabled || !etd->active_count)
continue;
cc = etd_readl(imx21, etd_num, 2) >> DW2_COMPCODE;
if (cc == TD_NOTACCESSED)
continue;
if (++etd->active_count < 10)
continue;
dword0 = etd_readl(imx21, etd_num, 0);
dev_dbg(imx21->dev,
"unblock ETD %d dev=0x%X ep=0x%X cc=0x%02X!\n",
etd_num, dword0 & 0x7F,
(dword0 >> DW0_ENDPNT) & 0x0F,
cc);
#ifdef DEBUG
dev_dbg(imx21->dev,
"frame: act=%d disact=%d"
" int=%d req=%d cur=%d\n",
etd->activated_frame,
etd->disactivated_frame,
etd->last_int_frame,
etd->last_req_frame,
readl(imx21->regs + USBH_FRMNUB));
imx21->debug_unblocks++;
#endif
etd->active_count = 0;
/* End of kludge */
}
if (etd->ep == NULL || etd->urb == NULL) {
dev_dbg(imx21->dev,
"Interrupt for unexpected etd %d"
" ep=%p urb=%p\n",
etd_num, etd->ep, etd->urb);
disactivate_etd(imx21, etd_num);
continue;
}
if (usb_pipeisoc(etd->urb->pipe))
isoc_etd_done(hcd, etd_num);
else
nonisoc_etd_done(hcd, etd_num);
}
/* only enable SOF interrupt if it may be needed for the kludge */
if (enable_sof_int)
set_register_bits(imx21, USBH_SYSIEN, USBH_SYSIEN_SOFINT);
else
clear_register_bits(imx21, USBH_SYSIEN, USBH_SYSIEN_SOFINT);
spin_unlock_irqrestore(&imx21->lock, flags);
}
static irqreturn_t imx21_irq(struct usb_hcd *hcd)
{
struct imx21 *imx21 = hcd_to_imx21(hcd);
u32 ints = readl(imx21->regs + USBH_SYSISR);
if (ints & USBH_SYSIEN_HERRINT)
dev_dbg(imx21->dev, "Scheduling error\n");
if (ints & USBH_SYSIEN_SORINT)
dev_dbg(imx21->dev, "Scheduling overrun\n");
if (ints & (USBH_SYSISR_DONEINT | USBH_SYSISR_SOFINT))
process_etds(hcd, imx21, ints & USBH_SYSISR_SOFINT);
writel(ints, imx21->regs + USBH_SYSISR);
return IRQ_HANDLED;
}
static void imx21_hc_endpoint_disable(struct usb_hcd *hcd,
struct usb_host_endpoint *ep)
{
struct imx21 *imx21 = hcd_to_imx21(hcd);
unsigned long flags;
struct ep_priv *ep_priv;
int i;
if (ep == NULL)
return;
spin_lock_irqsave(&imx21->lock, flags);
ep_priv = ep->hcpriv;
dev_vdbg(imx21->dev, "disable ep=%p, ep->hcpriv=%p\n", ep, ep_priv);
if (!list_empty(&ep->urb_list))
dev_dbg(imx21->dev, "ep's URB list is not empty\n");
if (ep_priv != NULL) {
for (i = 0; i < NUM_ISO_ETDS; i++) {
if (ep_priv->etd[i] > -1)
dev_dbg(imx21->dev, "free etd %d for disable\n",
ep_priv->etd[i]);
free_etd(imx21, ep_priv->etd[i]);
}
kfree(ep_priv);
ep->hcpriv = NULL;
}
for (i = 0; i < USB_NUM_ETD; i++) {
if (imx21->etd[i].alloc && imx21->etd[i].ep == ep) {
dev_err(imx21->dev,
"Active etd %d for disabled ep=%p!\n", i, ep);
free_etd(imx21, i);
}
}
free_epdmem(imx21, ep);
spin_unlock_irqrestore(&imx21->lock, flags);
}
/* =========================================== */
/* Hub handling */
/* =========================================== */
static int get_hub_descriptor(struct usb_hcd *hcd,
struct usb_hub_descriptor *desc)
{
struct imx21 *imx21 = hcd_to_imx21(hcd);
desc->bDescriptorType = 0x29; /* HUB descriptor */
desc->bHubContrCurrent = 0;
desc->bNbrPorts = readl(imx21->regs + USBH_ROOTHUBA)
& USBH_ROOTHUBA_NDNSTMPRT_MASK;
desc->bDescLength = 9;
desc->bPwrOn2PwrGood = 0;
desc->wHubCharacteristics = (__force __u16) cpu_to_le16(
0x0002 | /* No power switching */
0x0010 | /* No over current protection */
0);
desc->u.hs.DeviceRemovable[0] = 1 << 1;
desc->u.hs.DeviceRemovable[1] = ~0;
return 0;
}
static int imx21_hc_hub_status_data(struct usb_hcd *hcd, char *buf)
{
struct imx21 *imx21 = hcd_to_imx21(hcd);
int ports;
int changed = 0;
int i;
unsigned long flags;
spin_lock_irqsave(&imx21->lock, flags);
ports = readl(imx21->regs + USBH_ROOTHUBA)
& USBH_ROOTHUBA_NDNSTMPRT_MASK;
if (ports > 7) {
ports = 7;
dev_err(imx21->dev, "ports %d > 7\n", ports);
}
for (i = 0; i < ports; i++) {
if (readl(imx21->regs + USBH_PORTSTAT(i)) &
(USBH_PORTSTAT_CONNECTSC |
USBH_PORTSTAT_PRTENBLSC |
USBH_PORTSTAT_PRTSTATSC |
USBH_PORTSTAT_OVRCURIC |
USBH_PORTSTAT_PRTRSTSC)) {
changed = 1;
buf[0] |= 1 << (i + 1);
}
}
spin_unlock_irqrestore(&imx21->lock, flags);
if (changed)
dev_info(imx21->dev, "Hub status changed\n");
return changed;
}
static int imx21_hc_hub_control(struct usb_hcd *hcd,
u16 typeReq,
u16 wValue, u16 wIndex, char *buf, u16 wLength)
{
struct imx21 *imx21 = hcd_to_imx21(hcd);
int rc = 0;
u32 status_write = 0;
switch (typeReq) {
case ClearHubFeature:
dev_dbg(imx21->dev, "ClearHubFeature\n");
switch (wValue) {
case C_HUB_OVER_CURRENT:
dev_dbg(imx21->dev, " OVER_CURRENT\n");
break;
case C_HUB_LOCAL_POWER:
dev_dbg(imx21->dev, " LOCAL_POWER\n");
break;
default:
dev_dbg(imx21->dev, " unknown\n");
rc = -EINVAL;
break;
}
break;
case ClearPortFeature:
dev_dbg(imx21->dev, "ClearPortFeature\n");
switch (wValue) {
case USB_PORT_FEAT_ENABLE:
dev_dbg(imx21->dev, " ENABLE\n");
status_write = USBH_PORTSTAT_CURCONST;
break;
case USB_PORT_FEAT_SUSPEND:
dev_dbg(imx21->dev, " SUSPEND\n");
status_write = USBH_PORTSTAT_PRTOVRCURI;
break;
case USB_PORT_FEAT_POWER:
dev_dbg(imx21->dev, " POWER\n");
status_write = USBH_PORTSTAT_LSDEVCON;
break;
case USB_PORT_FEAT_C_ENABLE:
dev_dbg(imx21->dev, " C_ENABLE\n");
status_write = USBH_PORTSTAT_PRTENBLSC;
break;
case USB_PORT_FEAT_C_SUSPEND:
dev_dbg(imx21->dev, " C_SUSPEND\n");
status_write = USBH_PORTSTAT_PRTSTATSC;
break;
case USB_PORT_FEAT_C_CONNECTION:
dev_dbg(imx21->dev, " C_CONNECTION\n");
status_write = USBH_PORTSTAT_CONNECTSC;
break;
case USB_PORT_FEAT_C_OVER_CURRENT:
dev_dbg(imx21->dev, " C_OVER_CURRENT\n");
status_write = USBH_PORTSTAT_OVRCURIC;
break;
case USB_PORT_FEAT_C_RESET:
dev_dbg(imx21->dev, " C_RESET\n");
status_write = USBH_PORTSTAT_PRTRSTSC;
break;
default:
dev_dbg(imx21->dev, " unknown\n");
rc = -EINVAL;
break;
}
break;
case GetHubDescriptor:
dev_dbg(imx21->dev, "GetHubDescriptor\n");
rc = get_hub_descriptor(hcd, (void *)buf);
break;
case GetHubStatus:
dev_dbg(imx21->dev, " GetHubStatus\n");
*(__le32 *) buf = 0;
break;
case GetPortStatus:
dev_dbg(imx21->dev, "GetPortStatus: port: %d, 0x%x\n",
wIndex, USBH_PORTSTAT(wIndex - 1));
*(__le32 *) buf = readl(imx21->regs +
USBH_PORTSTAT(wIndex - 1));
break;
case SetHubFeature:
dev_dbg(imx21->dev, "SetHubFeature\n");
switch (wValue) {
case C_HUB_OVER_CURRENT:
dev_dbg(imx21->dev, " OVER_CURRENT\n");
break;
case C_HUB_LOCAL_POWER:
dev_dbg(imx21->dev, " LOCAL_POWER\n");
break;
default:
dev_dbg(imx21->dev, " unknown\n");
rc = -EINVAL;
break;
}
break;
case SetPortFeature:
dev_dbg(imx21->dev, "SetPortFeature\n");
switch (wValue) {
case USB_PORT_FEAT_SUSPEND:
dev_dbg(imx21->dev, " SUSPEND\n");
status_write = USBH_PORTSTAT_PRTSUSPST;
break;
case USB_PORT_FEAT_POWER:
dev_dbg(imx21->dev, " POWER\n");
status_write = USBH_PORTSTAT_PRTPWRST;
break;
case USB_PORT_FEAT_RESET:
dev_dbg(imx21->dev, " RESET\n");
status_write = USBH_PORTSTAT_PRTRSTST;
break;
default:
dev_dbg(imx21->dev, " unknown\n");
rc = -EINVAL;
break;
}
break;
default:
dev_dbg(imx21->dev, " unknown\n");
rc = -EINVAL;
break;
}
if (status_write)
writel(status_write, imx21->regs + USBH_PORTSTAT(wIndex - 1));
return rc;
}
/* =========================================== */
/* Host controller management */
/* =========================================== */
static int imx21_hc_reset(struct usb_hcd *hcd)
{
struct imx21 *imx21 = hcd_to_imx21(hcd);
unsigned long timeout;
unsigned long flags;
spin_lock_irqsave(&imx21->lock, flags);
/* Reset the Host controller modules */
writel(USBOTG_RST_RSTCTRL | USBOTG_RST_RSTRH |
USBOTG_RST_RSTHSIE | USBOTG_RST_RSTHC,
imx21->regs + USBOTG_RST_CTRL);
/* Wait for reset to finish */
timeout = jiffies + HZ;
while (readl(imx21->regs + USBOTG_RST_CTRL) != 0) {
if (time_after(jiffies, timeout)) {
spin_unlock_irqrestore(&imx21->lock, flags);
dev_err(imx21->dev, "timeout waiting for reset\n");
return -ETIMEDOUT;
}
spin_unlock_irq(&imx21->lock);
schedule_timeout_uninterruptible(1);
spin_lock_irq(&imx21->lock);
}
spin_unlock_irqrestore(&imx21->lock, flags);
return 0;
}
static int __devinit imx21_hc_start(struct usb_hcd *hcd)
{
struct imx21 *imx21 = hcd_to_imx21(hcd);
unsigned long flags;
int i, j;
u32 hw_mode = USBOTG_HWMODE_CRECFG_HOST;
u32 usb_control = 0;
hw_mode |= ((imx21->pdata->host_xcvr << USBOTG_HWMODE_HOSTXCVR_SHIFT) &
USBOTG_HWMODE_HOSTXCVR_MASK);
hw_mode |= ((imx21->pdata->otg_xcvr << USBOTG_HWMODE_OTGXCVR_SHIFT) &
USBOTG_HWMODE_OTGXCVR_MASK);
if (imx21->pdata->host1_txenoe)
usb_control |= USBCTRL_HOST1_TXEN_OE;
if (!imx21->pdata->host1_xcverless)
usb_control |= USBCTRL_HOST1_BYP_TLL;
if (imx21->pdata->otg_ext_xcvr)
usb_control |= USBCTRL_OTC_RCV_RXDP;
spin_lock_irqsave(&imx21->lock, flags);
writel((USBOTG_CLK_CTRL_HST | USBOTG_CLK_CTRL_MAIN),
imx21->regs + USBOTG_CLK_CTRL);
writel(hw_mode, imx21->regs + USBOTG_HWMODE);
writel(usb_control, imx21->regs + USBCTRL);
writel(USB_MISCCONTROL_SKPRTRY | USB_MISCCONTROL_ARBMODE,
imx21->regs + USB_MISCCONTROL);
/* Clear the ETDs */
for (i = 0; i < USB_NUM_ETD; i++)
for (j = 0; j < 4; j++)
etd_writel(imx21, i, j, 0);
/* Take the HC out of reset */
writel(USBH_HOST_CTRL_HCUSBSTE_OPERATIONAL | USBH_HOST_CTRL_CTLBLKSR_1,
imx21->regs + USBH_HOST_CTRL);
/* Enable ports */
if (imx21->pdata->enable_otg_host)
writel(USBH_PORTSTAT_PRTPWRST | USBH_PORTSTAT_PRTENABST,
imx21->regs + USBH_PORTSTAT(0));
if (imx21->pdata->enable_host1)
writel(USBH_PORTSTAT_PRTPWRST | USBH_PORTSTAT_PRTENABST,
imx21->regs + USBH_PORTSTAT(1));
if (imx21->pdata->enable_host2)
writel(USBH_PORTSTAT_PRTPWRST | USBH_PORTSTAT_PRTENABST,
imx21->regs + USBH_PORTSTAT(2));
hcd->state = HC_STATE_RUNNING;
/* Enable host controller interrupts */
set_register_bits(imx21, USBH_SYSIEN,
USBH_SYSIEN_HERRINT |
USBH_SYSIEN_DONEINT | USBH_SYSIEN_SORINT);
set_register_bits(imx21, USBOTG_CINT_STEN, USBOTG_HCINT);
spin_unlock_irqrestore(&imx21->lock, flags);
return 0;
}
static void imx21_hc_stop(struct usb_hcd *hcd)
{
struct imx21 *imx21 = hcd_to_imx21(hcd);
unsigned long flags;
spin_lock_irqsave(&imx21->lock, flags);
writel(0, imx21->regs + USBH_SYSIEN);
clear_register_bits(imx21, USBOTG_CINT_STEN, USBOTG_HCINT);
clear_register_bits(imx21, USBOTG_CLK_CTRL_HST | USBOTG_CLK_CTRL_MAIN,
USBOTG_CLK_CTRL);
spin_unlock_irqrestore(&imx21->lock, flags);
}
/* =========================================== */
/* Driver glue */
/* =========================================== */
static struct hc_driver imx21_hc_driver = {
.description = hcd_name,
.product_desc = "IMX21 USB Host Controller",
.hcd_priv_size = sizeof(struct imx21),
.flags = HCD_USB11,
.irq = imx21_irq,
.reset = imx21_hc_reset,
.start = imx21_hc_start,
.stop = imx21_hc_stop,
/* I/O requests */
.urb_enqueue = imx21_hc_urb_enqueue,
.urb_dequeue = imx21_hc_urb_dequeue,
.endpoint_disable = imx21_hc_endpoint_disable,
/* scheduling support */
.get_frame_number = imx21_hc_get_frame,
/* Root hub support */
.hub_status_data = imx21_hc_hub_status_data,
.hub_control = imx21_hc_hub_control,
};
static struct mx21_usbh_platform_data default_pdata = {
.host_xcvr = MX21_USBXCVR_TXDIF_RXDIF,
.otg_xcvr = MX21_USBXCVR_TXDIF_RXDIF,
.enable_host1 = 1,
.enable_host2 = 1,
.enable_otg_host = 1,
};
static int imx21_remove(struct platform_device *pdev)
{
struct usb_hcd *hcd = platform_get_drvdata(pdev);
struct imx21 *imx21 = hcd_to_imx21(hcd);
struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
remove_debug_files(imx21);
usb_remove_hcd(hcd);
if (res != NULL) {
clk_disable(imx21->clk);
clk_put(imx21->clk);
iounmap(imx21->regs);
release_mem_region(res->start, resource_size(res));
}
kfree(hcd);
return 0;
}
static int imx21_probe(struct platform_device *pdev)
{
struct usb_hcd *hcd;
struct imx21 *imx21;
struct resource *res;
int ret;
int irq;
printk(KERN_INFO "%s\n", imx21_hc_driver.product_desc);
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res)
return -ENODEV;
irq = platform_get_irq(pdev, 0);
if (irq < 0)
return -ENXIO;
hcd = usb_create_hcd(&imx21_hc_driver,
&pdev->dev, dev_name(&pdev->dev));
if (hcd == NULL) {
dev_err(&pdev->dev, "Cannot create hcd (%s)\n",
dev_name(&pdev->dev));
return -ENOMEM;
}
imx21 = hcd_to_imx21(hcd);
imx21->hcd = hcd;
imx21->dev = &pdev->dev;
imx21->pdata = pdev->dev.platform_data;
if (!imx21->pdata)
imx21->pdata = &default_pdata;
spin_lock_init(&imx21->lock);
INIT_LIST_HEAD(&imx21->dmem_list);
INIT_LIST_HEAD(&imx21->queue_for_etd);
INIT_LIST_HEAD(&imx21->queue_for_dmem);
create_debug_files(imx21);
res = request_mem_region(res->start, resource_size(res), hcd_name);
if (!res) {
ret = -EBUSY;
goto failed_request_mem;
}
imx21->regs = ioremap(res->start, resource_size(res));
if (imx21->regs == NULL) {
dev_err(imx21->dev, "Cannot map registers\n");
ret = -ENOMEM;
goto failed_ioremap;
}
/* Enable clocks source */
imx21->clk = clk_get(imx21->dev, NULL);
if (IS_ERR(imx21->clk)) {
dev_err(imx21->dev, "no clock found\n");
ret = PTR_ERR(imx21->clk);
goto failed_clock_get;
}
ret = clk_set_rate(imx21->clk, clk_round_rate(imx21->clk, 48000000));
if (ret)
goto failed_clock_set;
ret = clk_enable(imx21->clk);
if (ret)
goto failed_clock_enable;
dev_info(imx21->dev, "Hardware HC revision: 0x%02X\n",
(readl(imx21->regs + USBOTG_HWMODE) >> 16) & 0xFF);
ret = usb_add_hcd(hcd, irq, IRQF_DISABLED);
if (ret != 0) {
dev_err(imx21->dev, "usb_add_hcd() returned %d\n", ret);
goto failed_add_hcd;
}
return 0;
failed_add_hcd:
clk_disable(imx21->clk);
failed_clock_enable:
failed_clock_set:
clk_put(imx21->clk);
failed_clock_get:
iounmap(imx21->regs);
failed_ioremap:
release_mem_region(res->start, resource_size(res));
failed_request_mem:
remove_debug_files(imx21);
usb_put_hcd(hcd);
return ret;
}
static struct platform_driver imx21_hcd_driver = {
.driver = {
.name = (char *)hcd_name,
},
.probe = imx21_probe,
.remove = imx21_remove,
.suspend = NULL,
.resume = NULL,
};
static int __init imx21_hcd_init(void)
{
return platform_driver_register(&imx21_hcd_driver);
}
static void __exit imx21_hcd_cleanup(void)
{
platform_driver_unregister(&imx21_hcd_driver);
}
module_init(imx21_hcd_init);
module_exit(imx21_hcd_cleanup);
MODULE_DESCRIPTION("i.MX21 USB Host controller");
MODULE_AUTHOR("Martin Fuzzey");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:imx21-hcd");