blob: 8d47d1bf7b8533841ed8c776d22098dfd8faa042 [file] [log] [blame]
/*
* Copyright © 2008 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Eric Anholt <eric@anholt.net>
* Keith Packard <keithp@keithp.com>
*
*/
#include <linux/seq_file.h>
#include <linux/circ_buf.h>
#include <linux/ctype.h>
#include <linux/debugfs.h>
#include <linux/slab.h>
#include <linux/export.h>
#include <linux/list_sort.h>
#include <asm/msr-index.h>
#include <drm/drmP.h>
#include "intel_drv.h"
#include "intel_ringbuffer.h"
#include <drm/i915_drm.h>
#include "i915_drv.h"
enum {
ACTIVE_LIST,
INACTIVE_LIST,
PINNED_LIST,
};
/* As the drm_debugfs_init() routines are called before dev->dev_private is
* allocated we need to hook into the minor for release. */
static int
drm_add_fake_info_node(struct drm_minor *minor,
struct dentry *ent,
const void *key)
{
struct drm_info_node *node;
node = kmalloc(sizeof(*node), GFP_KERNEL);
if (node == NULL) {
debugfs_remove(ent);
return -ENOMEM;
}
node->minor = minor;
node->dent = ent;
node->info_ent = (void *) key;
mutex_lock(&minor->debugfs_lock);
list_add(&node->list, &minor->debugfs_list);
mutex_unlock(&minor->debugfs_lock);
return 0;
}
static int i915_capabilities(struct seq_file *m, void *data)
{
struct drm_info_node *node = m->private;
struct drm_device *dev = node->minor->dev;
const struct intel_device_info *info = INTEL_INFO(dev);
seq_printf(m, "gen: %d\n", info->gen);
seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev));
#define PRINT_FLAG(x) seq_printf(m, #x ": %s\n", yesno(info->x))
#define SEP_SEMICOLON ;
DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG, SEP_SEMICOLON);
#undef PRINT_FLAG
#undef SEP_SEMICOLON
return 0;
}
static char get_active_flag(struct drm_i915_gem_object *obj)
{
return obj->active ? '*' : ' ';
}
static char get_pin_flag(struct drm_i915_gem_object *obj)
{
return obj->pin_display ? 'p' : ' ';
}
static char get_tiling_flag(struct drm_i915_gem_object *obj)
{
switch (obj->tiling_mode) {
default:
case I915_TILING_NONE: return ' ';
case I915_TILING_X: return 'X';
case I915_TILING_Y: return 'Y';
}
}
static char get_global_flag(struct drm_i915_gem_object *obj)
{
return i915_gem_obj_to_ggtt(obj) ? 'g' : ' ';
}
static char get_pin_mapped_flag(struct drm_i915_gem_object *obj)
{
return obj->mapping ? 'M' : ' ';
}
static u64 i915_gem_obj_total_ggtt_size(struct drm_i915_gem_object *obj)
{
u64 size = 0;
struct i915_vma *vma;
list_for_each_entry(vma, &obj->vma_list, obj_link) {
if (i915_vma_is_ggtt(vma) && drm_mm_node_allocated(&vma->node))
size += vma->node.size;
}
return size;
}
static void
describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
{
struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
struct intel_engine_cs *engine;
struct i915_vma *vma;
int pin_count = 0;
enum intel_engine_id id;
lockdep_assert_held(&obj->base.dev->struct_mutex);
seq_printf(m, "%pK: %c%c%c%c%c %8zdKiB %02x %02x [ ",
&obj->base,
get_active_flag(obj),
get_pin_flag(obj),
get_tiling_flag(obj),
get_global_flag(obj),
get_pin_mapped_flag(obj),
obj->base.size / 1024,
obj->base.read_domains,
obj->base.write_domain);
for_each_engine_id(engine, dev_priv, id)
seq_printf(m, "%x ",
i915_gem_active_get_seqno(&obj->last_read[id],
&obj->base.dev->struct_mutex));
seq_printf(m, "] %x %x%s%s%s",
i915_gem_active_get_seqno(&obj->last_write,
&obj->base.dev->struct_mutex),
i915_gem_active_get_seqno(&obj->last_fence,
&obj->base.dev->struct_mutex),
i915_cache_level_str(to_i915(obj->base.dev), obj->cache_level),
obj->dirty ? " dirty" : "",
obj->madv == I915_MADV_DONTNEED ? " purgeable" : "");
if (obj->base.name)
seq_printf(m, " (name: %d)", obj->base.name);
list_for_each_entry(vma, &obj->vma_list, obj_link) {
if (i915_vma_is_pinned(vma))
pin_count++;
}
seq_printf(m, " (pinned x %d)", pin_count);
if (obj->pin_display)
seq_printf(m, " (display)");
if (obj->fence_reg != I915_FENCE_REG_NONE)
seq_printf(m, " (fence: %d)", obj->fence_reg);
list_for_each_entry(vma, &obj->vma_list, obj_link) {
if (!drm_mm_node_allocated(&vma->node))
continue;
seq_printf(m, " (%sgtt offset: %08llx, size: %08llx",
i915_vma_is_ggtt(vma) ? "g" : "pp",
vma->node.start, vma->node.size);
if (i915_vma_is_ggtt(vma))
seq_printf(m, ", type: %u", vma->ggtt_view.type);
seq_puts(m, ")");
}
if (obj->stolen)
seq_printf(m, " (stolen: %08llx)", obj->stolen->start);
if (obj->pin_display || obj->fault_mappable) {
char s[3], *t = s;
if (obj->pin_display)
*t++ = 'p';
if (obj->fault_mappable)
*t++ = 'f';
*t = '\0';
seq_printf(m, " (%s mappable)", s);
}
engine = i915_gem_active_get_engine(&obj->last_write,
&obj->base.dev->struct_mutex);
if (engine)
seq_printf(m, " (%s)", engine->name);
if (obj->frontbuffer_bits)
seq_printf(m, " (frontbuffer: 0x%03x)", obj->frontbuffer_bits);
}
static int i915_gem_object_list_info(struct seq_file *m, void *data)
{
struct drm_info_node *node = m->private;
uintptr_t list = (uintptr_t) node->info_ent->data;
struct list_head *head;
struct drm_device *dev = node->minor->dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct i915_ggtt *ggtt = &dev_priv->ggtt;
struct i915_vma *vma;
u64 total_obj_size, total_gtt_size;
int count, ret;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
/* FIXME: the user of this interface might want more than just GGTT */
switch (list) {
case ACTIVE_LIST:
seq_puts(m, "Active:\n");
head = &ggtt->base.active_list;
break;
case INACTIVE_LIST:
seq_puts(m, "Inactive:\n");
head = &ggtt->base.inactive_list;
break;
default:
mutex_unlock(&dev->struct_mutex);
return -EINVAL;
}
total_obj_size = total_gtt_size = count = 0;
list_for_each_entry(vma, head, vm_link) {
seq_printf(m, " ");
describe_obj(m, vma->obj);
seq_printf(m, "\n");
total_obj_size += vma->obj->base.size;
total_gtt_size += vma->node.size;
count++;
}
mutex_unlock(&dev->struct_mutex);
seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
count, total_obj_size, total_gtt_size);
return 0;
}
static int obj_rank_by_stolen(void *priv,
struct list_head *A, struct list_head *B)
{
struct drm_i915_gem_object *a =
container_of(A, struct drm_i915_gem_object, obj_exec_link);
struct drm_i915_gem_object *b =
container_of(B, struct drm_i915_gem_object, obj_exec_link);
if (a->stolen->start < b->stolen->start)
return -1;
if (a->stolen->start > b->stolen->start)
return 1;
return 0;
}
static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
{
struct drm_info_node *node = m->private;
struct drm_device *dev = node->minor->dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct drm_i915_gem_object *obj;
u64 total_obj_size, total_gtt_size;
LIST_HEAD(stolen);
int count, ret;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
total_obj_size = total_gtt_size = count = 0;
list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
if (obj->stolen == NULL)
continue;
list_add(&obj->obj_exec_link, &stolen);
total_obj_size += obj->base.size;
total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
count++;
}
list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
if (obj->stolen == NULL)
continue;
list_add(&obj->obj_exec_link, &stolen);
total_obj_size += obj->base.size;
count++;
}
list_sort(NULL, &stolen, obj_rank_by_stolen);
seq_puts(m, "Stolen:\n");
while (!list_empty(&stolen)) {
obj = list_first_entry(&stolen, typeof(*obj), obj_exec_link);
seq_puts(m, " ");
describe_obj(m, obj);
seq_putc(m, '\n');
list_del_init(&obj->obj_exec_link);
}
mutex_unlock(&dev->struct_mutex);
seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
count, total_obj_size, total_gtt_size);
return 0;
}
#define count_objects(list, member) do { \
list_for_each_entry(obj, list, member) { \
size += i915_gem_obj_total_ggtt_size(obj); \
++count; \
if (obj->map_and_fenceable) { \
mappable_size += i915_gem_obj_ggtt_size(obj); \
++mappable_count; \
} \
} \
} while (0)
struct file_stats {
struct drm_i915_file_private *file_priv;
unsigned long count;
u64 total, unbound;
u64 global, shared;
u64 active, inactive;
};
static int per_file_stats(int id, void *ptr, void *data)
{
struct drm_i915_gem_object *obj = ptr;
struct file_stats *stats = data;
struct i915_vma *vma;
stats->count++;
stats->total += obj->base.size;
if (!obj->bind_count)
stats->unbound += obj->base.size;
if (obj->base.name || obj->base.dma_buf)
stats->shared += obj->base.size;
list_for_each_entry(vma, &obj->vma_list, obj_link) {
if (!drm_mm_node_allocated(&vma->node))
continue;
if (i915_vma_is_ggtt(vma)) {
stats->global += vma->node.size;
} else {
struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vma->vm);
if (ppgtt->base.file != stats->file_priv)
continue;
}
if (i915_vma_is_active(vma))
stats->active += vma->node.size;
else
stats->inactive += vma->node.size;
}
return 0;
}
#define print_file_stats(m, name, stats) do { \
if (stats.count) \
seq_printf(m, "%s: %lu objects, %llu bytes (%llu active, %llu inactive, %llu global, %llu shared, %llu unbound)\n", \
name, \
stats.count, \
stats.total, \
stats.active, \
stats.inactive, \
stats.global, \
stats.shared, \
stats.unbound); \
} while (0)
static void print_batch_pool_stats(struct seq_file *m,
struct drm_i915_private *dev_priv)
{
struct drm_i915_gem_object *obj;
struct file_stats stats;
struct intel_engine_cs *engine;
int j;
memset(&stats, 0, sizeof(stats));
for_each_engine(engine, dev_priv) {
for (j = 0; j < ARRAY_SIZE(engine->batch_pool.cache_list); j++) {
list_for_each_entry(obj,
&engine->batch_pool.cache_list[j],
batch_pool_link)
per_file_stats(0, obj, &stats);
}
}
print_file_stats(m, "[k]batch pool", stats);
}
static int per_file_ctx_stats(int id, void *ptr, void *data)
{
struct i915_gem_context *ctx = ptr;
int n;
for (n = 0; n < ARRAY_SIZE(ctx->engine); n++) {
if (ctx->engine[n].state)
per_file_stats(0, ctx->engine[n].state, data);
if (ctx->engine[n].ring)
per_file_stats(0, ctx->engine[n].ring->obj, data);
}
return 0;
}
static void print_context_stats(struct seq_file *m,
struct drm_i915_private *dev_priv)
{
struct file_stats stats;
struct drm_file *file;
memset(&stats, 0, sizeof(stats));
mutex_lock(&dev_priv->drm.struct_mutex);
if (dev_priv->kernel_context)
per_file_ctx_stats(0, dev_priv->kernel_context, &stats);
list_for_each_entry(file, &dev_priv->drm.filelist, lhead) {
struct drm_i915_file_private *fpriv = file->driver_priv;
idr_for_each(&fpriv->context_idr, per_file_ctx_stats, &stats);
}
mutex_unlock(&dev_priv->drm.struct_mutex);
print_file_stats(m, "[k]contexts", stats);
}
#define count_vmas(list, member) do { \
list_for_each_entry(vma, list, member) { \
size += i915_gem_obj_total_ggtt_size(vma->obj); \
++count; \
if (vma->obj->map_and_fenceable) { \
mappable_size += i915_gem_obj_ggtt_size(vma->obj); \
++mappable_count; \
} \
} \
} while (0)
static int i915_gem_object_info(struct seq_file *m, void* data)
{
struct drm_info_node *node = m->private;
struct drm_device *dev = node->minor->dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct i915_ggtt *ggtt = &dev_priv->ggtt;
u32 count, mappable_count, purgeable_count;
u64 size, mappable_size, purgeable_size;
unsigned long pin_mapped_count = 0, pin_mapped_purgeable_count = 0;
u64 pin_mapped_size = 0, pin_mapped_purgeable_size = 0;
struct drm_i915_gem_object *obj;
struct drm_file *file;
struct i915_vma *vma;
int ret;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
seq_printf(m, "%u objects, %zu bytes\n",
dev_priv->mm.object_count,
dev_priv->mm.object_memory);
size = count = mappable_size = mappable_count = 0;
count_objects(&dev_priv->mm.bound_list, global_list);
seq_printf(m, "%u [%u] objects, %llu [%llu] bytes in gtt\n",
count, mappable_count, size, mappable_size);
size = count = mappable_size = mappable_count = 0;
count_vmas(&ggtt->base.active_list, vm_link);
seq_printf(m, " %u [%u] active objects, %llu [%llu] bytes\n",
count, mappable_count, size, mappable_size);
size = count = mappable_size = mappable_count = 0;
count_vmas(&ggtt->base.inactive_list, vm_link);
seq_printf(m, " %u [%u] inactive objects, %llu [%llu] bytes\n",
count, mappable_count, size, mappable_size);
size = count = purgeable_size = purgeable_count = 0;
list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
size += obj->base.size, ++count;
if (obj->madv == I915_MADV_DONTNEED)
purgeable_size += obj->base.size, ++purgeable_count;
if (obj->mapping) {
pin_mapped_count++;
pin_mapped_size += obj->base.size;
if (obj->pages_pin_count == 0) {
pin_mapped_purgeable_count++;
pin_mapped_purgeable_size += obj->base.size;
}
}
}
seq_printf(m, "%u unbound objects, %llu bytes\n", count, size);
size = count = mappable_size = mappable_count = 0;
list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
if (obj->fault_mappable) {
size += i915_gem_obj_ggtt_size(obj);
++count;
}
if (obj->pin_display) {
mappable_size += i915_gem_obj_ggtt_size(obj);
++mappable_count;
}
if (obj->madv == I915_MADV_DONTNEED) {
purgeable_size += obj->base.size;
++purgeable_count;
}
if (obj->mapping) {
pin_mapped_count++;
pin_mapped_size += obj->base.size;
if (obj->pages_pin_count == 0) {
pin_mapped_purgeable_count++;
pin_mapped_purgeable_size += obj->base.size;
}
}
}
seq_printf(m, "%u purgeable objects, %llu bytes\n",
purgeable_count, purgeable_size);
seq_printf(m, "%u pinned mappable objects, %llu bytes\n",
mappable_count, mappable_size);
seq_printf(m, "%u fault mappable objects, %llu bytes\n",
count, size);
seq_printf(m,
"%lu [%lu] pin mapped objects, %llu [%llu] bytes [purgeable]\n",
pin_mapped_count, pin_mapped_purgeable_count,
pin_mapped_size, pin_mapped_purgeable_size);
seq_printf(m, "%llu [%llu] gtt total\n",
ggtt->base.total, ggtt->mappable_end - ggtt->base.start);
seq_putc(m, '\n');
print_batch_pool_stats(m, dev_priv);
mutex_unlock(&dev->struct_mutex);
mutex_lock(&dev->filelist_mutex);
print_context_stats(m, dev_priv);
list_for_each_entry_reverse(file, &dev->filelist, lhead) {
struct file_stats stats;
struct task_struct *task;
memset(&stats, 0, sizeof(stats));
stats.file_priv = file->driver_priv;
spin_lock(&file->table_lock);
idr_for_each(&file->object_idr, per_file_stats, &stats);
spin_unlock(&file->table_lock);
/*
* Although we have a valid reference on file->pid, that does
* not guarantee that the task_struct who called get_pid() is
* still alive (e.g. get_pid(current) => fork() => exit()).
* Therefore, we need to protect this ->comm access using RCU.
*/
rcu_read_lock();
task = pid_task(file->pid, PIDTYPE_PID);
print_file_stats(m, task ? task->comm : "<unknown>", stats);
rcu_read_unlock();
}
mutex_unlock(&dev->filelist_mutex);
return 0;
}
static int i915_gem_gtt_info(struct seq_file *m, void *data)
{
struct drm_info_node *node = m->private;
struct drm_device *dev = node->minor->dev;
uintptr_t list = (uintptr_t) node->info_ent->data;
struct drm_i915_private *dev_priv = to_i915(dev);
struct drm_i915_gem_object *obj;
u64 total_obj_size, total_gtt_size;
int count, ret;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
total_obj_size = total_gtt_size = count = 0;
list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
if (list == PINNED_LIST && !i915_gem_obj_is_pinned(obj))
continue;
seq_puts(m, " ");
describe_obj(m, obj);
seq_putc(m, '\n');
total_obj_size += obj->base.size;
total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
count++;
}
mutex_unlock(&dev->struct_mutex);
seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
count, total_obj_size, total_gtt_size);
return 0;
}
static int i915_gem_pageflip_info(struct seq_file *m, void *data)
{
struct drm_info_node *node = m->private;
struct drm_device *dev = node->minor->dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct intel_crtc *crtc;
int ret;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
for_each_intel_crtc(dev, crtc) {
const char pipe = pipe_name(crtc->pipe);
const char plane = plane_name(crtc->plane);
struct intel_flip_work *work;
spin_lock_irq(&dev->event_lock);
work = crtc->flip_work;
if (work == NULL) {
seq_printf(m, "No flip due on pipe %c (plane %c)\n",
pipe, plane);
} else {
u32 pending;
u32 addr;
pending = atomic_read(&work->pending);
if (pending) {
seq_printf(m, "Flip ioctl preparing on pipe %c (plane %c)\n",
pipe, plane);
} else {
seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n",
pipe, plane);
}
if (work->flip_queued_req) {
struct intel_engine_cs *engine = i915_gem_request_get_engine(work->flip_queued_req);
seq_printf(m, "Flip queued on %s at seqno %x, next seqno %x [current breadcrumb %x], completed? %d\n",
engine->name,
i915_gem_request_get_seqno(work->flip_queued_req),
dev_priv->next_seqno,
intel_engine_get_seqno(engine),
i915_gem_request_completed(work->flip_queued_req));
} else
seq_printf(m, "Flip not associated with any ring\n");
seq_printf(m, "Flip queued on frame %d, (was ready on frame %d), now %d\n",
work->flip_queued_vblank,
work->flip_ready_vblank,
intel_crtc_get_vblank_counter(crtc));
seq_printf(m, "%d prepares\n", atomic_read(&work->pending));
if (INTEL_INFO(dev)->gen >= 4)
addr = I915_HI_DISPBASE(I915_READ(DSPSURF(crtc->plane)));
else
addr = I915_READ(DSPADDR(crtc->plane));
seq_printf(m, "Current scanout address 0x%08x\n", addr);
if (work->pending_flip_obj) {
seq_printf(m, "New framebuffer address 0x%08lx\n", (long)work->gtt_offset);
seq_printf(m, "MMIO update completed? %d\n", addr == work->gtt_offset);
}
}
spin_unlock_irq(&dev->event_lock);
}
mutex_unlock(&dev->struct_mutex);
return 0;
}
static int i915_gem_batch_pool_info(struct seq_file *m, void *data)
{
struct drm_info_node *node = m->private;
struct drm_device *dev = node->minor->dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct drm_i915_gem_object *obj;
struct intel_engine_cs *engine;
int total = 0;
int ret, j;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
for_each_engine(engine, dev_priv) {
for (j = 0; j < ARRAY_SIZE(engine->batch_pool.cache_list); j++) {
int count;
count = 0;
list_for_each_entry(obj,
&engine->batch_pool.cache_list[j],
batch_pool_link)
count++;
seq_printf(m, "%s cache[%d]: %d objects\n",
engine->name, j, count);
list_for_each_entry(obj,
&engine->batch_pool.cache_list[j],
batch_pool_link) {
seq_puts(m, " ");
describe_obj(m, obj);
seq_putc(m, '\n');
}
total += count;
}
}
seq_printf(m, "total: %d\n", total);
mutex_unlock(&dev->struct_mutex);
return 0;
}
static int i915_gem_request_info(struct seq_file *m, void *data)
{
struct drm_info_node *node = m->private;
struct drm_device *dev = node->minor->dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct intel_engine_cs *engine;
struct drm_i915_gem_request *req;
int ret, any;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
any = 0;
for_each_engine(engine, dev_priv) {
int count;
count = 0;
list_for_each_entry(req, &engine->request_list, link)
count++;
if (count == 0)
continue;
seq_printf(m, "%s requests: %d\n", engine->name, count);
list_for_each_entry(req, &engine->request_list, link) {
struct task_struct *task;
rcu_read_lock();
task = NULL;
if (req->pid)
task = pid_task(req->pid, PIDTYPE_PID);
seq_printf(m, " %x @ %d: %s [%d]\n",
req->fence.seqno,
(int) (jiffies - req->emitted_jiffies),
task ? task->comm : "<unknown>",
task ? task->pid : -1);
rcu_read_unlock();
}
any++;
}
mutex_unlock(&dev->struct_mutex);
if (any == 0)
seq_puts(m, "No requests\n");
return 0;
}
static void i915_ring_seqno_info(struct seq_file *m,
struct intel_engine_cs *engine)
{
struct intel_breadcrumbs *b = &engine->breadcrumbs;
struct rb_node *rb;
seq_printf(m, "Current sequence (%s): %x\n",
engine->name, intel_engine_get_seqno(engine));
seq_printf(m, "Current user interrupts (%s): %lx\n",
engine->name, READ_ONCE(engine->breadcrumbs.irq_wakeups));
spin_lock(&b->lock);
for (rb = rb_first(&b->waiters); rb; rb = rb_next(rb)) {
struct intel_wait *w = container_of(rb, typeof(*w), node);
seq_printf(m, "Waiting (%s): %s [%d] on %x\n",
engine->name, w->tsk->comm, w->tsk->pid, w->seqno);
}
spin_unlock(&b->lock);
}
static int i915_gem_seqno_info(struct seq_file *m, void *data)
{
struct drm_info_node *node = m->private;
struct drm_device *dev = node->minor->dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct intel_engine_cs *engine;
int ret;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
intel_runtime_pm_get(dev_priv);
for_each_engine(engine, dev_priv)
i915_ring_seqno_info(m, engine);
intel_runtime_pm_put(dev_priv);
mutex_unlock(&dev->struct_mutex);
return 0;
}
static int i915_interrupt_info(struct seq_file *m, void *data)
{
struct drm_info_node *node = m->private;
struct drm_device *dev = node->minor->dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct intel_engine_cs *engine;
int ret, i, pipe;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
intel_runtime_pm_get(dev_priv);
if (IS_CHERRYVIEW(dev)) {
seq_printf(m, "Master Interrupt Control:\t%08x\n",
I915_READ(GEN8_MASTER_IRQ));
seq_printf(m, "Display IER:\t%08x\n",
I915_READ(VLV_IER));
seq_printf(m, "Display IIR:\t%08x\n",
I915_READ(VLV_IIR));
seq_printf(m, "Display IIR_RW:\t%08x\n",
I915_READ(VLV_IIR_RW));
seq_printf(m, "Display IMR:\t%08x\n",
I915_READ(VLV_IMR));
for_each_pipe(dev_priv, pipe)
seq_printf(m, "Pipe %c stat:\t%08x\n",
pipe_name(pipe),
I915_READ(PIPESTAT(pipe)));
seq_printf(m, "Port hotplug:\t%08x\n",
I915_READ(PORT_HOTPLUG_EN));
seq_printf(m, "DPFLIPSTAT:\t%08x\n",
I915_READ(VLV_DPFLIPSTAT));
seq_printf(m, "DPINVGTT:\t%08x\n",
I915_READ(DPINVGTT));
for (i = 0; i < 4; i++) {
seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
i, I915_READ(GEN8_GT_IMR(i)));
seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
i, I915_READ(GEN8_GT_IIR(i)));
seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
i, I915_READ(GEN8_GT_IER(i)));
}
seq_printf(m, "PCU interrupt mask:\t%08x\n",
I915_READ(GEN8_PCU_IMR));
seq_printf(m, "PCU interrupt identity:\t%08x\n",
I915_READ(GEN8_PCU_IIR));
seq_printf(m, "PCU interrupt enable:\t%08x\n",
I915_READ(GEN8_PCU_IER));
} else if (INTEL_INFO(dev)->gen >= 8) {
seq_printf(m, "Master Interrupt Control:\t%08x\n",
I915_READ(GEN8_MASTER_IRQ));
for (i = 0; i < 4; i++) {
seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
i, I915_READ(GEN8_GT_IMR(i)));
seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
i, I915_READ(GEN8_GT_IIR(i)));
seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
i, I915_READ(GEN8_GT_IER(i)));
}
for_each_pipe(dev_priv, pipe) {
enum intel_display_power_domain power_domain;
power_domain = POWER_DOMAIN_PIPE(pipe);
if (!intel_display_power_get_if_enabled(dev_priv,
power_domain)) {
seq_printf(m, "Pipe %c power disabled\n",
pipe_name(pipe));
continue;
}
seq_printf(m, "Pipe %c IMR:\t%08x\n",
pipe_name(pipe),
I915_READ(GEN8_DE_PIPE_IMR(pipe)));
seq_printf(m, "Pipe %c IIR:\t%08x\n",
pipe_name(pipe),
I915_READ(GEN8_DE_PIPE_IIR(pipe)));
seq_printf(m, "Pipe %c IER:\t%08x\n",
pipe_name(pipe),
I915_READ(GEN8_DE_PIPE_IER(pipe)));
intel_display_power_put(dev_priv, power_domain);
}
seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
I915_READ(GEN8_DE_PORT_IMR));
seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
I915_READ(GEN8_DE_PORT_IIR));
seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
I915_READ(GEN8_DE_PORT_IER));
seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
I915_READ(GEN8_DE_MISC_IMR));
seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
I915_READ(GEN8_DE_MISC_IIR));
seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
I915_READ(GEN8_DE_MISC_IER));
seq_printf(m, "PCU interrupt mask:\t%08x\n",
I915_READ(GEN8_PCU_IMR));
seq_printf(m, "PCU interrupt identity:\t%08x\n",
I915_READ(GEN8_PCU_IIR));
seq_printf(m, "PCU interrupt enable:\t%08x\n",
I915_READ(GEN8_PCU_IER));
} else if (IS_VALLEYVIEW(dev)) {
seq_printf(m, "Display IER:\t%08x\n",
I915_READ(VLV_IER));
seq_printf(m, "Display IIR:\t%08x\n",
I915_READ(VLV_IIR));
seq_printf(m, "Display IIR_RW:\t%08x\n",
I915_READ(VLV_IIR_RW));
seq_printf(m, "Display IMR:\t%08x\n",
I915_READ(VLV_IMR));
for_each_pipe(dev_priv, pipe)
seq_printf(m, "Pipe %c stat:\t%08x\n",
pipe_name(pipe),
I915_READ(PIPESTAT(pipe)));
seq_printf(m, "Master IER:\t%08x\n",
I915_READ(VLV_MASTER_IER));
seq_printf(m, "Render IER:\t%08x\n",
I915_READ(GTIER));
seq_printf(m, "Render IIR:\t%08x\n",
I915_READ(GTIIR));
seq_printf(m, "Render IMR:\t%08x\n",
I915_READ(GTIMR));
seq_printf(m, "PM IER:\t\t%08x\n",
I915_READ(GEN6_PMIER));
seq_printf(m, "PM IIR:\t\t%08x\n",
I915_READ(GEN6_PMIIR));
seq_printf(m, "PM IMR:\t\t%08x\n",
I915_READ(GEN6_PMIMR));
seq_printf(m, "Port hotplug:\t%08x\n",
I915_READ(PORT_HOTPLUG_EN));
seq_printf(m, "DPFLIPSTAT:\t%08x\n",
I915_READ(VLV_DPFLIPSTAT));
seq_printf(m, "DPINVGTT:\t%08x\n",
I915_READ(DPINVGTT));
} else if (!HAS_PCH_SPLIT(dev)) {
seq_printf(m, "Interrupt enable: %08x\n",
I915_READ(IER));
seq_printf(m, "Interrupt identity: %08x\n",
I915_READ(IIR));
seq_printf(m, "Interrupt mask: %08x\n",
I915_READ(IMR));
for_each_pipe(dev_priv, pipe)
seq_printf(m, "Pipe %c stat: %08x\n",
pipe_name(pipe),
I915_READ(PIPESTAT(pipe)));
} else {
seq_printf(m, "North Display Interrupt enable: %08x\n",
I915_READ(DEIER));
seq_printf(m, "North Display Interrupt identity: %08x\n",
I915_READ(DEIIR));
seq_printf(m, "North Display Interrupt mask: %08x\n",
I915_READ(DEIMR));
seq_printf(m, "South Display Interrupt enable: %08x\n",
I915_READ(SDEIER));
seq_printf(m, "South Display Interrupt identity: %08x\n",
I915_READ(SDEIIR));
seq_printf(m, "South Display Interrupt mask: %08x\n",
I915_READ(SDEIMR));
seq_printf(m, "Graphics Interrupt enable: %08x\n",
I915_READ(GTIER));
seq_printf(m, "Graphics Interrupt identity: %08x\n",
I915_READ(GTIIR));
seq_printf(m, "Graphics Interrupt mask: %08x\n",
I915_READ(GTIMR));
}
for_each_engine(engine, dev_priv) {
if (INTEL_INFO(dev)->gen >= 6) {
seq_printf(m,
"Graphics Interrupt mask (%s): %08x\n",
engine->name, I915_READ_IMR(engine));
}
i915_ring_seqno_info(m, engine);
}
intel_runtime_pm_put(dev_priv);
mutex_unlock(&dev->struct_mutex);
return 0;
}
static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
{
struct drm_info_node *node = m->private;
struct drm_device *dev = node->minor->dev;
struct drm_i915_private *dev_priv = to_i915(dev);
int i, ret;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
for (i = 0; i < dev_priv->num_fence_regs; i++) {
struct drm_i915_gem_object *obj = dev_priv->fence_regs[i].obj;
seq_printf(m, "Fence %d, pin count = %d, object = ",
i, dev_priv->fence_regs[i].pin_count);
if (obj == NULL)
seq_puts(m, "unused");
else
describe_obj(m, obj);
seq_putc(m, '\n');
}
mutex_unlock(&dev->struct_mutex);
return 0;
}
static int i915_hws_info(struct seq_file *m, void *data)
{
struct drm_info_node *node = m->private;
struct drm_device *dev = node->minor->dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct intel_engine_cs *engine;
const u32 *hws;
int i;
engine = &dev_priv->engine[(uintptr_t)node->info_ent->data];
hws = engine->status_page.page_addr;
if (hws == NULL)
return 0;
for (i = 0; i < 4096 / sizeof(u32) / 4; i += 4) {
seq_printf(m, "0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
i * 4,
hws[i], hws[i + 1], hws[i + 2], hws[i + 3]);
}
return 0;
}
static ssize_t
i915_error_state_write(struct file *filp,
const char __user *ubuf,
size_t cnt,
loff_t *ppos)
{
struct i915_error_state_file_priv *error_priv = filp->private_data;
struct drm_device *dev = error_priv->dev;
int ret;
DRM_DEBUG_DRIVER("Resetting error state\n");
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
i915_destroy_error_state(dev);
mutex_unlock(&dev->struct_mutex);
return cnt;
}
static int i915_error_state_open(struct inode *inode, struct file *file)
{
struct drm_device *dev = inode->i_private;
struct i915_error_state_file_priv *error_priv;
error_priv = kzalloc(sizeof(*error_priv), GFP_KERNEL);
if (!error_priv)
return -ENOMEM;
error_priv->dev = dev;
i915_error_state_get(dev, error_priv);
file->private_data = error_priv;
return 0;
}
static int i915_error_state_release(struct inode *inode, struct file *file)
{
struct i915_error_state_file_priv *error_priv = file->private_data;
i915_error_state_put(error_priv);
kfree(error_priv);
return 0;
}
static ssize_t i915_error_state_read(struct file *file, char __user *userbuf,
size_t count, loff_t *pos)
{
struct i915_error_state_file_priv *error_priv = file->private_data;
struct drm_i915_error_state_buf error_str;
loff_t tmp_pos = 0;
ssize_t ret_count = 0;
int ret;
ret = i915_error_state_buf_init(&error_str, to_i915(error_priv->dev), count, *pos);
if (ret)
return ret;
ret = i915_error_state_to_str(&error_str, error_priv);
if (ret)
goto out;
ret_count = simple_read_from_buffer(userbuf, count, &tmp_pos,
error_str.buf,
error_str.bytes);
if (ret_count < 0)
ret = ret_count;
else
*pos = error_str.start + ret_count;
out:
i915_error_state_buf_release(&error_str);
return ret ?: ret_count;
}
static const struct file_operations i915_error_state_fops = {
.owner = THIS_MODULE,
.open = i915_error_state_open,
.read = i915_error_state_read,
.write = i915_error_state_write,
.llseek = default_llseek,
.release = i915_error_state_release,
};
static int
i915_next_seqno_get(void *data, u64 *val)
{
struct drm_device *dev = data;
struct drm_i915_private *dev_priv = to_i915(dev);
int ret;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
*val = dev_priv->next_seqno;
mutex_unlock(&dev->struct_mutex);
return 0;
}
static int
i915_next_seqno_set(void *data, u64 val)
{
struct drm_device *dev = data;
int ret;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
ret = i915_gem_set_seqno(dev, val);
mutex_unlock(&dev->struct_mutex);
return ret;
}
DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
i915_next_seqno_get, i915_next_seqno_set,
"0x%llx\n");
static int i915_frequency_info(struct seq_file *m, void *unused)
{
struct drm_info_node *node = m->private;
struct drm_device *dev = node->minor->dev;
struct drm_i915_private *dev_priv = to_i915(dev);
int ret = 0;
intel_runtime_pm_get(dev_priv);
if (IS_GEN5(dev)) {
u16 rgvswctl = I915_READ16(MEMSWCTL);
u16 rgvstat = I915_READ16(MEMSTAT_ILK);
seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
MEMSTAT_VID_SHIFT);
seq_printf(m, "Current P-state: %d\n",
(rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
} else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
u32 freq_sts;
mutex_lock(&dev_priv->rps.hw_lock);
freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
seq_printf(m, "actual GPU freq: %d MHz\n",
intel_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));
seq_printf(m, "current GPU freq: %d MHz\n",
intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
seq_printf(m, "max GPU freq: %d MHz\n",
intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
seq_printf(m, "min GPU freq: %d MHz\n",
intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
seq_printf(m, "idle GPU freq: %d MHz\n",
intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
seq_printf(m,
"efficient (RPe) frequency: %d MHz\n",
intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
mutex_unlock(&dev_priv->rps.hw_lock);
} else if (INTEL_INFO(dev)->gen >= 6) {
u32 rp_state_limits;
u32 gt_perf_status;
u32 rp_state_cap;
u32 rpmodectl, rpinclimit, rpdeclimit;
u32 rpstat, cagf, reqf;
u32 rpupei, rpcurup, rpprevup;
u32 rpdownei, rpcurdown, rpprevdown;
u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
int max_freq;
rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
if (IS_BROXTON(dev)) {
rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
gt_perf_status = I915_READ(BXT_GT_PERF_STATUS);
} else {
rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
}
/* RPSTAT1 is in the GT power well */
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
goto out;
intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
reqf = I915_READ(GEN6_RPNSWREQ);
if (IS_GEN9(dev))
reqf >>= 23;
else {
reqf &= ~GEN6_TURBO_DISABLE;
if (IS_HASWELL(dev) || IS_BROADWELL(dev))
reqf >>= 24;
else
reqf >>= 25;
}
reqf = intel_gpu_freq(dev_priv, reqf);
rpmodectl = I915_READ(GEN6_RP_CONTROL);
rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);
rpstat = I915_READ(GEN6_RPSTAT1);
rpupei = I915_READ(GEN6_RP_CUR_UP_EI) & GEN6_CURICONT_MASK;
rpcurup = I915_READ(GEN6_RP_CUR_UP) & GEN6_CURBSYTAVG_MASK;
rpprevup = I915_READ(GEN6_RP_PREV_UP) & GEN6_CURBSYTAVG_MASK;
rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI) & GEN6_CURIAVG_MASK;
rpcurdown = I915_READ(GEN6_RP_CUR_DOWN) & GEN6_CURBSYTAVG_MASK;
rpprevdown = I915_READ(GEN6_RP_PREV_DOWN) & GEN6_CURBSYTAVG_MASK;
if (IS_GEN9(dev))
cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
else
cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
cagf = intel_gpu_freq(dev_priv, cagf);
intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
mutex_unlock(&dev->struct_mutex);
if (IS_GEN6(dev) || IS_GEN7(dev)) {
pm_ier = I915_READ(GEN6_PMIER);
pm_imr = I915_READ(GEN6_PMIMR);
pm_isr = I915_READ(GEN6_PMISR);
pm_iir = I915_READ(GEN6_PMIIR);
pm_mask = I915_READ(GEN6_PMINTRMSK);
} else {
pm_ier = I915_READ(GEN8_GT_IER(2));
pm_imr = I915_READ(GEN8_GT_IMR(2));
pm_isr = I915_READ(GEN8_GT_ISR(2));
pm_iir = I915_READ(GEN8_GT_IIR(2));
pm_mask = I915_READ(GEN6_PMINTRMSK);
}
seq_printf(m, "PM IER=0x%08x IMR=0x%08x ISR=0x%08x IIR=0x%08x, MASK=0x%08x\n",
pm_ier, pm_imr, pm_isr, pm_iir, pm_mask);
seq_printf(m, "pm_intr_keep: 0x%08x\n", dev_priv->rps.pm_intr_keep);
seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
seq_printf(m, "Render p-state ratio: %d\n",
(gt_perf_status & (IS_GEN9(dev) ? 0x1ff00 : 0xff00)) >> 8);
seq_printf(m, "Render p-state VID: %d\n",
gt_perf_status & 0xff);
seq_printf(m, "Render p-state limit: %d\n",
rp_state_limits & 0xff);
seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
seq_printf(m, "CAGF: %dMHz\n", cagf);
seq_printf(m, "RP CUR UP EI: %d (%dus)\n",
rpupei, GT_PM_INTERVAL_TO_US(dev_priv, rpupei));
seq_printf(m, "RP CUR UP: %d (%dus)\n",
rpcurup, GT_PM_INTERVAL_TO_US(dev_priv, rpcurup));
seq_printf(m, "RP PREV UP: %d (%dus)\n",
rpprevup, GT_PM_INTERVAL_TO_US(dev_priv, rpprevup));
seq_printf(m, "Up threshold: %d%%\n",
dev_priv->rps.up_threshold);
seq_printf(m, "RP CUR DOWN EI: %d (%dus)\n",
rpdownei, GT_PM_INTERVAL_TO_US(dev_priv, rpdownei));
seq_printf(m, "RP CUR DOWN: %d (%dus)\n",
rpcurdown, GT_PM_INTERVAL_TO_US(dev_priv, rpcurdown));
seq_printf(m, "RP PREV DOWN: %d (%dus)\n",
rpprevdown, GT_PM_INTERVAL_TO_US(dev_priv, rpprevdown));
seq_printf(m, "Down threshold: %d%%\n",
dev_priv->rps.down_threshold);
max_freq = (IS_BROXTON(dev) ? rp_state_cap >> 0 :
rp_state_cap >> 16) & 0xff;
max_freq *= (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
GEN9_FREQ_SCALER : 1);
seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
intel_gpu_freq(dev_priv, max_freq));
max_freq = (rp_state_cap & 0xff00) >> 8;
max_freq *= (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
GEN9_FREQ_SCALER : 1);
seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
intel_gpu_freq(dev_priv, max_freq));
max_freq = (IS_BROXTON(dev) ? rp_state_cap >> 16 :
rp_state_cap >> 0) & 0xff;
max_freq *= (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
GEN9_FREQ_SCALER : 1);
seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
intel_gpu_freq(dev_priv, max_freq));
seq_printf(m, "Max overclocked frequency: %dMHz\n",
intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
seq_printf(m, "Current freq: %d MHz\n",
intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
seq_printf(m, "Actual freq: %d MHz\n", cagf);
seq_printf(m, "Idle freq: %d MHz\n",
intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
seq_printf(m, "Min freq: %d MHz\n",
intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
seq_printf(m, "Boost freq: %d MHz\n",
intel_gpu_freq(dev_priv, dev_priv->rps.boost_freq));
seq_printf(m, "Max freq: %d MHz\n",
intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
seq_printf(m,
"efficient (RPe) frequency: %d MHz\n",
intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
} else {
seq_puts(m, "no P-state info available\n");
}
seq_printf(m, "Current CD clock frequency: %d kHz\n", dev_priv->cdclk_freq);
seq_printf(m, "Max CD clock frequency: %d kHz\n", dev_priv->max_cdclk_freq);
seq_printf(m, "Max pixel clock frequency: %d kHz\n", dev_priv->max_dotclk_freq);
out:
intel_runtime_pm_put(dev_priv);
return ret;
}
static int i915_hangcheck_info(struct seq_file *m, void *unused)
{
struct drm_info_node *node = m->private;
struct drm_device *dev = node->minor->dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct intel_engine_cs *engine;
u64 acthd[I915_NUM_ENGINES];
u32 seqno[I915_NUM_ENGINES];
u32 instdone[I915_NUM_INSTDONE_REG];
enum intel_engine_id id;
int j;
if (!i915.enable_hangcheck) {
seq_printf(m, "Hangcheck disabled\n");
return 0;
}
intel_runtime_pm_get(dev_priv);
for_each_engine_id(engine, dev_priv, id) {
acthd[id] = intel_engine_get_active_head(engine);
seqno[id] = intel_engine_get_seqno(engine);
}
i915_get_extra_instdone(dev_priv, instdone);
intel_runtime_pm_put(dev_priv);
if (delayed_work_pending(&dev_priv->gpu_error.hangcheck_work)) {
seq_printf(m, "Hangcheck active, fires in %dms\n",
jiffies_to_msecs(dev_priv->gpu_error.hangcheck_work.timer.expires -
jiffies));
} else
seq_printf(m, "Hangcheck inactive\n");
for_each_engine_id(engine, dev_priv, id) {
seq_printf(m, "%s:\n", engine->name);
seq_printf(m, "\tseqno = %x [current %x, last %x]\n",
engine->hangcheck.seqno,
seqno[id],
engine->last_submitted_seqno);
seq_printf(m, "\twaiters? %d\n",
intel_engine_has_waiter(engine));
seq_printf(m, "\tuser interrupts = %lx [current %lx]\n",
engine->hangcheck.user_interrupts,
READ_ONCE(engine->breadcrumbs.irq_wakeups));
seq_printf(m, "\tACTHD = 0x%08llx [current 0x%08llx]\n",
(long long)engine->hangcheck.acthd,
(long long)acthd[id]);
seq_printf(m, "\tscore = %d\n", engine->hangcheck.score);
seq_printf(m, "\taction = %d\n", engine->hangcheck.action);
if (engine->id == RCS) {
seq_puts(m, "\tinstdone read =");
for (j = 0; j < I915_NUM_INSTDONE_REG; j++)
seq_printf(m, " 0x%08x", instdone[j]);
seq_puts(m, "\n\tinstdone accu =");
for (j = 0; j < I915_NUM_INSTDONE_REG; j++)
seq_printf(m, " 0x%08x",
engine->hangcheck.instdone[j]);
seq_puts(m, "\n");
}
}
return 0;
}
static int ironlake_drpc_info(struct seq_file *m)
{
struct drm_info_node *node = m->private;
struct drm_device *dev = node->minor->dev;
struct drm_i915_private *dev_priv = to_i915(dev);
u32 rgvmodectl, rstdbyctl;
u16 crstandvid;
int ret;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
intel_runtime_pm_get(dev_priv);
rgvmodectl = I915_READ(MEMMODECTL);
rstdbyctl = I915_READ(RSTDBYCTL);
crstandvid = I915_READ16(CRSTANDVID);
intel_runtime_pm_put(dev_priv);
mutex_unlock(&dev->struct_mutex);
seq_printf(m, "HD boost: %s\n", yesno(rgvmodectl & MEMMODE_BOOST_EN));
seq_printf(m, "Boost freq: %d\n",
(rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
MEMMODE_BOOST_FREQ_SHIFT);
seq_printf(m, "HW control enabled: %s\n",
yesno(rgvmodectl & MEMMODE_HWIDLE_EN));
seq_printf(m, "SW control enabled: %s\n",
yesno(rgvmodectl & MEMMODE_SWMODE_EN));
seq_printf(m, "Gated voltage change: %s\n",
yesno(rgvmodectl & MEMMODE_RCLK_GATE));
seq_printf(m, "Starting frequency: P%d\n",
(rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
seq_printf(m, "Max P-state: P%d\n",
(rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
seq_printf(m, "Render standby enabled: %s\n",
yesno(!(rstdbyctl & RCX_SW_EXIT)));
seq_puts(m, "Current RS state: ");
switch (rstdbyctl & RSX_STATUS_MASK) {
case RSX_STATUS_ON:
seq_puts(m, "on\n");
break;
case RSX_STATUS_RC1:
seq_puts(m, "RC1\n");
break;
case RSX_STATUS_RC1E:
seq_puts(m, "RC1E\n");
break;
case RSX_STATUS_RS1:
seq_puts(m, "RS1\n");
break;
case RSX_STATUS_RS2:
seq_puts(m, "RS2 (RC6)\n");
break;
case RSX_STATUS_RS3:
seq_puts(m, "RC3 (RC6+)\n");
break;
default:
seq_puts(m, "unknown\n");
break;
}
return 0;
}
static int i915_forcewake_domains(struct seq_file *m, void *data)
{
struct drm_info_node *node = m->private;
struct drm_device *dev = node->minor->dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct intel_uncore_forcewake_domain *fw_domain;
spin_lock_irq(&dev_priv->uncore.lock);
for_each_fw_domain(fw_domain, dev_priv) {
seq_printf(m, "%s.wake_count = %u\n",
intel_uncore_forcewake_domain_to_str(fw_domain->id),
fw_domain->wake_count);
}
spin_unlock_irq(&dev_priv->uncore.lock);
return 0;
}
static int vlv_drpc_info(struct seq_file *m)
{
struct drm_info_node *node = m->private;
struct drm_device *dev = node->minor->dev;
struct drm_i915_private *dev_priv = to_i915(dev);
u32 rpmodectl1, rcctl1, pw_status;
intel_runtime_pm_get(dev_priv);
pw_status = I915_READ(VLV_GTLC_PW_STATUS);
rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
rcctl1 = I915_READ(GEN6_RC_CONTROL);
intel_runtime_pm_put(dev_priv);
seq_printf(m, "Video Turbo Mode: %s\n",
yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
seq_printf(m, "Turbo enabled: %s\n",
yesno(rpmodectl1 & GEN6_RP_ENABLE));
seq_printf(m, "HW control enabled: %s\n",
yesno(rpmodectl1 & GEN6_RP_ENABLE));
seq_printf(m, "SW control enabled: %s\n",
yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
GEN6_RP_MEDIA_SW_MODE));
seq_printf(m, "RC6 Enabled: %s\n",
yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
GEN6_RC_CTL_EI_MODE(1))));
seq_printf(m, "Render Power Well: %s\n",
(pw_status & VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
seq_printf(m, "Media Power Well: %s\n",
(pw_status & VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
seq_printf(m, "Render RC6 residency since boot: %u\n",
I915_READ(VLV_GT_RENDER_RC6));
seq_printf(m, "Media RC6 residency since boot: %u\n",
I915_READ(VLV_GT_MEDIA_RC6));
return i915_forcewake_domains(m, NULL);
}
static int gen6_drpc_info(struct seq_file *m)
{
struct drm_info_node *node = m->private;
struct drm_device *dev = node->minor->dev;
struct drm_i915_private *dev_priv = to_i915(dev);
u32 rpmodectl1, gt_core_status, rcctl1, rc6vids = 0;
u32 gen9_powergate_enable = 0, gen9_powergate_status = 0;
unsigned forcewake_count;
int count = 0, ret;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
intel_runtime_pm_get(dev_priv);
spin_lock_irq(&dev_priv->uncore.lock);
forcewake_count = dev_priv->uncore.fw_domain[FW_DOMAIN_ID_RENDER].wake_count;
spin_unlock_irq(&dev_priv->uncore.lock);
if (forcewake_count) {
seq_puts(m, "RC information inaccurate because somebody "
"holds a forcewake reference \n");
} else {
/* NB: we cannot use forcewake, else we read the wrong values */
while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
udelay(10);
seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
}
gt_core_status = I915_READ_FW(GEN6_GT_CORE_STATUS);
trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
rcctl1 = I915_READ(GEN6_RC_CONTROL);
if (INTEL_INFO(dev)->gen >= 9) {
gen9_powergate_enable = I915_READ(GEN9_PG_ENABLE);
gen9_powergate_status = I915_READ(GEN9_PWRGT_DOMAIN_STATUS);
}
mutex_unlock(&dev->struct_mutex);
mutex_lock(&dev_priv->rps.hw_lock);
sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
mutex_unlock(&dev_priv->rps.hw_lock);
intel_runtime_pm_put(dev_priv);
seq_printf(m, "Video Turbo Mode: %s\n",
yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
seq_printf(m, "HW control enabled: %s\n",
yesno(rpmodectl1 & GEN6_RP_ENABLE));
seq_printf(m, "SW control enabled: %s\n",
yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
GEN6_RP_MEDIA_SW_MODE));
seq_printf(m, "RC1e Enabled: %s\n",
yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
seq_printf(m, "RC6 Enabled: %s\n",
yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
if (INTEL_INFO(dev)->gen >= 9) {
seq_printf(m, "Render Well Gating Enabled: %s\n",
yesno(gen9_powergate_enable & GEN9_RENDER_PG_ENABLE));
seq_printf(m, "Media Well Gating Enabled: %s\n",
yesno(gen9_powergate_enable & GEN9_MEDIA_PG_ENABLE));
}
seq_printf(m, "Deep RC6 Enabled: %s\n",
yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
seq_printf(m, "Deepest RC6 Enabled: %s\n",
yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
seq_puts(m, "Current RC state: ");
switch (gt_core_status & GEN6_RCn_MASK) {
case GEN6_RC0:
if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
seq_puts(m, "Core Power Down\n");
else
seq_puts(m, "on\n");
break;
case GEN6_RC3:
seq_puts(m, "RC3\n");
break;
case GEN6_RC6:
seq_puts(m, "RC6\n");
break;
case GEN6_RC7:
seq_puts(m, "RC7\n");
break;
default:
seq_puts(m, "Unknown\n");
break;
}
seq_printf(m, "Core Power Down: %s\n",
yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
if (INTEL_INFO(dev)->gen >= 9) {
seq_printf(m, "Render Power Well: %s\n",
(gen9_powergate_status &
GEN9_PWRGT_RENDER_STATUS_MASK) ? "Up" : "Down");
seq_printf(m, "Media Power Well: %s\n",
(gen9_powergate_status &
GEN9_PWRGT_MEDIA_STATUS_MASK) ? "Up" : "Down");
}
/* Not exactly sure what this is */
seq_printf(m, "RC6 \"Locked to RPn\" residency since boot: %u\n",
I915_READ(GEN6_GT_GFX_RC6_LOCKED));
seq_printf(m, "RC6 residency since boot: %u\n",
I915_READ(GEN6_GT_GFX_RC6));
seq_printf(m, "RC6+ residency since boot: %u\n",
I915_READ(GEN6_GT_GFX_RC6p));
seq_printf(m, "RC6++ residency since boot: %u\n",
I915_READ(GEN6_GT_GFX_RC6pp));
seq_printf(m, "RC6 voltage: %dmV\n",
GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
seq_printf(m, "RC6+ voltage: %dmV\n",
GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
seq_printf(m, "RC6++ voltage: %dmV\n",
GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
return i915_forcewake_domains(m, NULL);
}
static int i915_drpc_info(struct seq_file *m, void *unused)
{
struct drm_info_node *node = m->private;
struct drm_device *dev = node->minor->dev;
if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
return vlv_drpc_info(m);
else if (INTEL_INFO(dev)->gen >= 6)
return gen6_drpc_info(m);
else
return ironlake_drpc_info(m);
}
static int i915_frontbuffer_tracking(struct seq_file *m, void *unused)
{
struct drm_info_node *node = m->private;
struct drm_device *dev = node->minor->dev;
struct drm_i915_private *dev_priv = to_i915(dev);
seq_printf(m, "FB tracking busy bits: 0x%08x\n",
dev_priv->fb_tracking.busy_bits);
seq_printf(m, "FB tracking flip bits: 0x%08x\n",
dev_priv->fb_tracking.flip_bits);
return 0;
}
static int i915_fbc_status(struct seq_file *m, void *unused)
{
struct drm_info_node *node = m->private;
struct drm_device *dev = node->minor->dev;
struct drm_i915_private *dev_priv = to_i915(dev);
if (!HAS_FBC(dev)) {
seq_puts(m, "FBC unsupported on this chipset\n");
return 0;
}
intel_runtime_pm_get(dev_priv);
mutex_lock(&dev_priv->fbc.lock);
if (intel_fbc_is_active(dev_priv))
seq_puts(m, "FBC enabled\n");
else
seq_printf(m, "FBC disabled: %s\n",
dev_priv->fbc.no_fbc_reason);
if (INTEL_INFO(dev_priv)->gen >= 7)
seq_printf(m, "Compressing: %s\n",
yesno(I915_READ(FBC_STATUS2) &
FBC_COMPRESSION_MASK));
mutex_unlock(&dev_priv->fbc.lock);
intel_runtime_pm_put(dev_priv);
return 0;
}
static int i915_fbc_fc_get(void *data, u64 *val)
{
struct drm_device *dev = data;
struct drm_i915_private *dev_priv = to_i915(dev);
if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
return -ENODEV;
*val = dev_priv->fbc.false_color;
return 0;
}
static int i915_fbc_fc_set(void *data, u64 val)
{
struct drm_device *dev = data;
struct drm_i915_private *dev_priv = to_i915(dev);
u32 reg;
if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
return -ENODEV;
mutex_lock(&dev_priv->fbc.lock);
reg = I915_READ(ILK_DPFC_CONTROL);
dev_priv->fbc.false_color = val;
I915_WRITE(ILK_DPFC_CONTROL, val ?
(reg | FBC_CTL_FALSE_COLOR) :
(reg & ~FBC_CTL_FALSE_COLOR));
mutex_unlock(&dev_priv->fbc.lock);
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(i915_fbc_fc_fops,
i915_fbc_fc_get, i915_fbc_fc_set,
"%llu\n");
static int i915_ips_status(struct seq_file *m, void *unused)
{
struct drm_info_node *node = m->private;
struct drm_device *dev = node->minor->dev;
struct drm_i915_private *dev_priv = to_i915(dev);
if (!HAS_IPS(dev)) {
seq_puts(m, "not supported\n");
return 0;
}
intel_runtime_pm_get(dev_priv);
seq_printf(m, "Enabled by kernel parameter: %s\n",
yesno(i915.enable_ips));
if (INTEL_INFO(dev)->gen >= 8) {
seq_puts(m, "Currently: unknown\n");
} else {
if (I915_READ(IPS_CTL) & IPS_ENABLE)
seq_puts(m, "Currently: enabled\n");
else
seq_puts(m, "Currently: disabled\n");
}
intel_runtime_pm_put(dev_priv);
return 0;
}
static int i915_sr_status(struct seq_file *m, void *unused)
{
struct drm_info_node *node = m->private;
struct drm_device *dev = node->minor->dev;
struct drm_i915_private *dev_priv = to_i915(dev);
bool sr_enabled = false;
intel_runtime_pm_get(dev_priv);
if (HAS_PCH_SPLIT(dev))
sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
else if (IS_CRESTLINE(dev) || IS_G4X(dev) ||
IS_I945G(dev) || IS_I945GM(dev))
sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
else if (IS_I915GM(dev))
sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
else if (IS_PINEVIEW(dev))
sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
sr_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
intel_runtime_pm_put(dev_priv);
seq_printf(m, "self-refresh: %s\n",
sr_enabled ? "enabled" : "disabled");
return 0;
}
static int i915_emon_status(struct seq_file *m, void *unused)
{
struct drm_info_node *node = m->private;
struct drm_device *dev = node->minor->dev;
struct drm_i915_private *dev_priv = to_i915(dev);
unsigned long temp, chipset, gfx;
int ret;
if (!IS_GEN5(dev))
return -ENODEV;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
temp = i915_mch_val(dev_priv);
chipset = i915_chipset_val(dev_priv);
gfx = i915_gfx_val(dev_priv);
mutex_unlock(&dev->struct_mutex);
seq_printf(m, "GMCH temp: %ld\n", temp);
seq_printf(m, "Chipset power: %ld\n", chipset);
seq_printf(m, "GFX power: %ld\n", gfx);
seq_printf(m, "Total power: %ld\n", chipset + gfx);
return 0;
}
static int i915_ring_freq_table(struct seq_file *m, void *unused)
{
struct drm_info_node *node = m->private;
struct drm_device *dev = node->minor->dev;
struct drm_i915_private *dev_priv = to_i915(dev);
int ret = 0;
int gpu_freq, ia_freq;
unsigned int max_gpu_freq, min_gpu_freq;
if (!HAS_CORE_RING_FREQ(dev)) {
seq_puts(m, "unsupported on this chipset\n");
return 0;
}
intel_runtime_pm_get(dev_priv);
ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
if (ret)
goto out;
if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
/* Convert GT frequency to 50 HZ units */
min_gpu_freq =
dev_priv->rps.min_freq_softlimit / GEN9_FREQ_SCALER;
max_gpu_freq =
dev_priv->rps.max_freq_softlimit / GEN9_FREQ_SCALER;
} else {
min_gpu_freq = dev_priv->rps.min_freq_softlimit;
max_gpu_freq = dev_priv->rps.max_freq_softlimit;
}
seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
for (gpu_freq = min_gpu_freq; gpu_freq <= max_gpu_freq; gpu_freq++) {
ia_freq = gpu_freq;
sandybridge_pcode_read(dev_priv,
GEN6_PCODE_READ_MIN_FREQ_TABLE,
&ia_freq);
seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
intel_gpu_freq(dev_priv, (gpu_freq *
(IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
GEN9_FREQ_SCALER : 1))),
((ia_freq >> 0) & 0xff) * 100,
((ia_freq >> 8) & 0xff) * 100);
}
mutex_unlock(&dev_priv->rps.hw_lock);
out:
intel_runtime_pm_put(dev_priv);
return ret;
}
static int i915_opregion(struct seq_file *m, void *unused)
{
struct drm_info_node *node = m->private;
struct drm_device *dev = node->minor->dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct intel_opregion *opregion = &dev_priv->opregion;
int ret;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
goto out;
if (opregion->header)
seq_write(m, opregion->header, OPREGION_SIZE);
mutex_unlock(&dev->struct_mutex);
out:
return 0;
}
static int i915_vbt(struct seq_file *m, void *unused)
{
struct drm_info_node *node = m->private;
struct drm_device *dev = node->minor->dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct intel_opregion *opregion = &dev_priv->opregion;
if (opregion->vbt)
seq_write(m, opregion->vbt, opregion->vbt_size);
return 0;
}
static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
{
struct drm_info_node *node = m->private;
struct drm_device *dev = node->minor->dev;
struct intel_framebuffer *fbdev_fb = NULL;
struct drm_framebuffer *drm_fb;
int ret;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
#ifdef CONFIG_DRM_FBDEV_EMULATION
if (to_i915(dev)->fbdev) {
fbdev_fb = to_intel_framebuffer(to_i915(dev)->fbdev->helper.fb);
seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
fbdev_fb->base.width,
fbdev_fb->base.height,
fbdev_fb->base.depth,
fbdev_fb->base.bits_per_pixel,
fbdev_fb->base.modifier[0],
drm_framebuffer_read_refcount(&fbdev_fb->base));
describe_obj(m, fbdev_fb->obj);
seq_putc(m, '\n');
}
#endif
mutex_lock(&dev->mode_config.fb_lock);
drm_for_each_fb(drm_fb, dev) {
struct intel_framebuffer *fb = to_intel_framebuffer(drm_fb);
if (fb == fbdev_fb)
continue;
seq_printf(m, "user size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
fb->base.width,
fb->base.height,
fb->base.depth,
fb->base.bits_per_pixel,
fb->base.modifier[0],
drm_framebuffer_read_refcount(&fb->base));
describe_obj(m, fb->obj);
seq_putc(m, '\n');
}
mutex_unlock(&dev->mode_config.fb_lock);
mutex_unlock(&dev->struct_mutex);
return 0;
}
static void describe_ctx_ring(struct seq_file *m, struct intel_ring *ring)
{
seq_printf(m, " (ringbuffer, space: %d, head: %u, tail: %u, last head: %d)",
ring->space, ring->head, ring->tail,
ring->last_retired_head);
}
static int i915_context_status(struct seq_file *m, void *unused)
{
struct drm_info_node *node = m->private;
struct drm_device *dev = node->minor->dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct intel_engine_cs *engine;
struct i915_gem_context *ctx;
int ret;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
list_for_each_entry(ctx, &dev_priv->context_list, link) {
seq_printf(m, "HW context %u ", ctx->hw_id);
if (IS_ERR(ctx->file_priv)) {
seq_puts(m, "(deleted) ");
} else if (ctx->file_priv) {
struct pid *pid = ctx->file_priv->file->pid;
struct task_struct *task;
task = get_pid_task(pid, PIDTYPE_PID);
if (task) {
seq_printf(m, "(%s [%d]) ",
task->comm, task->pid);
put_task_struct(task);
}
} else {
seq_puts(m, "(kernel) ");
}
seq_putc(m, ctx->remap_slice ? 'R' : 'r');
seq_putc(m, '\n');
for_each_engine(engine, dev_priv) {
struct intel_context *ce = &ctx->engine[engine->id];
seq_printf(m, "%s: ", engine->name);
seq_putc(m, ce->initialised ? 'I' : 'i');
if (ce->state)
describe_obj(m, ce->state);
if (ce->ring)
describe_ctx_ring(m, ce->ring);
seq_putc(m, '\n');
}
seq_putc(m, '\n');
}
mutex_unlock(&dev->struct_mutex);
return 0;
}
static void i915_dump_lrc_obj(struct seq_file *m,
struct i915_gem_context *ctx,
struct intel_engine_cs *engine)
{
struct drm_i915_gem_object *ctx_obj = ctx->engine[engine->id].state;
struct page *page;
uint32_t *reg_state;
int j;
unsigned long ggtt_offset = 0;
seq_printf(m, "CONTEXT: %s %u\n", engine->name, ctx->hw_id);
if (ctx_obj == NULL) {
seq_puts(m, "\tNot allocated\n");
return;
}
if (!i915_gem_obj_ggtt_bound(ctx_obj))
seq_puts(m, "\tNot bound in GGTT\n");
else
ggtt_offset = i915_gem_obj_ggtt_offset(ctx_obj);
if (i915_gem_object_get_pages(ctx_obj)) {
seq_puts(m, "\tFailed to get pages for context object\n");
return;
}
page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
if (!WARN_ON(page == NULL)) {
reg_state = kmap_atomic(page);
for (j = 0; j < 0x600 / sizeof(u32) / 4; j += 4) {
seq_printf(m, "\t[0x%08lx] 0x%08x 0x%08x 0x%08x 0x%08x\n",
ggtt_offset + 4096 + (j * 4),
reg_state[j], reg_state[j + 1],
reg_state[j + 2], reg_state[j + 3]);
}
kunmap_atomic(reg_state);
}
seq_putc(m, '\n');
}
static int i915_dump_lrc(struct seq_file *m, void *unused)
{
struct drm_info_node *node = (struct drm_info_node *) m->private;
struct drm_device *dev = node->minor->dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct intel_engine_cs *engine;
struct i915_gem_context *ctx;
int ret;
if (!i915.enable_execlists) {
seq_printf(m, "Logical Ring Contexts are disabled\n");
return 0;
}
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
list_for_each_entry(ctx, &dev_priv->context_list, link)
for_each_engine(engine, dev_priv)
i915_dump_lrc_obj(m, ctx, engine);
mutex_unlock(&dev->struct_mutex);
return 0;
}
static int i915_execlists(struct seq_file *m, void *data)
{
struct drm_info_node *node = (struct drm_info_node *)m->private;
struct drm_device *dev = node->minor->dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct intel_engine_cs *engine;
u32 status_pointer;
u8 read_pointer;
u8 write_pointer;
u32 status;
u32 ctx_id;
struct list_head *cursor;
int i, ret;
if (!i915.enable_execlists) {
seq_puts(m, "Logical Ring Contexts are disabled\n");
return 0;
}
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
intel_runtime_pm_get(dev_priv);
for_each_engine(engine, dev_priv) {
struct drm_i915_gem_request *head_req = NULL;
int count = 0;
seq_printf(m, "%s\n", engine->name);
status = I915_READ(RING_EXECLIST_STATUS_LO(engine));
ctx_id = I915_READ(RING_EXECLIST_STATUS_HI(engine));
seq_printf(m, "\tExeclist status: 0x%08X, context: %u\n",
status, ctx_id);
status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(engine));
seq_printf(m, "\tStatus pointer: 0x%08X\n", status_pointer);
read_pointer = engine->next_context_status_buffer;
write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
if (read_pointer > write_pointer)
write_pointer += GEN8_CSB_ENTRIES;
seq_printf(m, "\tRead pointer: 0x%08X, write pointer 0x%08X\n",
read_pointer, write_pointer);
for (i = 0; i < GEN8_CSB_ENTRIES; i++) {
status = I915_READ(RING_CONTEXT_STATUS_BUF_LO(engine, i));
ctx_id = I915_READ(RING_CONTEXT_STATUS_BUF_HI(engine, i));
seq_printf(m, "\tStatus buffer %d: 0x%08X, context: %u\n",
i, status, ctx_id);
}
spin_lock_bh(&engine->execlist_lock);
list_for_each(cursor, &engine->execlist_queue)
count++;
head_req = list_first_entry_or_null(&engine->execlist_queue,
struct drm_i915_gem_request,
execlist_link);
spin_unlock_bh(&engine->execlist_lock);
seq_printf(m, "\t%d requests in queue\n", count);
if (head_req) {
seq_printf(m, "\tHead request context: %u\n",
head_req->ctx->hw_id);
seq_printf(m, "\tHead request tail: %u\n",
head_req->tail);
}
seq_putc(m, '\n');
}
intel_runtime_pm_put(dev_priv);
mutex_unlock(&dev->struct_mutex);
return 0;
}
static const char *swizzle_string(unsigned swizzle)
{
switch (swizzle) {
case I915_BIT_6_SWIZZLE_NONE:
return "none";
case I915_BIT_6_SWIZZLE_9:
return "bit9";
case I915_BIT_6_SWIZZLE_9_10:
return "bit9/bit10";
case I915_BIT_6_SWIZZLE_9_11:
return "bit9/bit11";
case I915_BIT_6_SWIZZLE_9_10_11:
return "bit9/bit10/bit11";
case I915_BIT_6_SWIZZLE_9_17:
return "bit9/bit17";
case I915_BIT_6_SWIZZLE_9_10_17:
return "bit9/bit10/bit17";
case I915_BIT_6_SWIZZLE_UNKNOWN:
return "unknown";
}
return "bug";
}
static int i915_swizzle_info(struct seq_file *m, void *data)
{
struct drm_info_node *node = m->private;
struct drm_device *dev = node->minor->dev;
struct drm_i915_private *dev_priv = to_i915(dev);
int ret;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
intel_runtime_pm_get(dev_priv);
seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
swizzle_string(dev_priv->mm.bit_6_swizzle_x));
seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
swizzle_string(dev_priv->mm.bit_6_swizzle_y));
if (IS_GEN3(dev) || IS_GEN4(dev)) {
seq_printf(m, "DDC = 0x%08x\n",
I915_READ(DCC));
seq_printf(m, "DDC2 = 0x%08x\n",
I915_READ(DCC2));
seq_printf(m, "C0DRB3 = 0x%04x\n",
I915_READ16(C0DRB3));
seq_printf(m, "C1DRB3 = 0x%04x\n",
I915_READ16(C1DRB3));
} else if (INTEL_INFO(dev)->gen >= 6) {
seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
I915_READ(MAD_DIMM_C0));
seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
I915_READ(MAD_DIMM_C1));
seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
I915_READ(MAD_DIMM_C2));
seq_printf(m, "TILECTL = 0x%08x\n",
I915_READ(TILECTL));
if (INTEL_INFO(dev)->gen >= 8)
seq_printf(m, "GAMTARBMODE = 0x%08x\n",
I915_READ(GAMTARBMODE));
else
seq_printf(m, "ARB_MODE = 0x%08x\n",
I915_READ(ARB_MODE));
seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
I915_READ(DISP_ARB_CTL));
}
if (dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
seq_puts(m, "L-shaped memory detected\n");
intel_runtime_pm_put(dev_priv);
mutex_unlock(&dev->struct_mutex);
return 0;
}
static int per_file_ctx(int id, void *ptr, void *data)
{
struct i915_gem_context *ctx = ptr;
struct seq_file *m = data;
struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
if (!ppgtt) {
seq_printf(m, " no ppgtt for context %d\n",
ctx->user_handle);
return 0;
}
if (i915_gem_context_is_default(ctx))
seq_puts(m, " default context:\n");
else
seq_printf(m, " context %d:\n", ctx->user_handle);
ppgtt->debug_dump(ppgtt, m);
return 0;
}
static void gen8_ppgtt_info(struct seq_file *m, struct drm_device *dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
struct intel_engine_cs *engine;
struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
int i;
if (!ppgtt)
return;
for_each_engine(engine, dev_priv) {
seq_printf(m, "%s\n", engine->name);
for (i = 0; i < 4; i++) {
u64 pdp = I915_READ(GEN8_RING_PDP_UDW(engine, i));
pdp <<= 32;
pdp |= I915_READ(GEN8_RING_PDP_LDW(engine, i));
seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
}
}
}
static void gen6_ppgtt_info(struct seq_file *m, struct drm_device *dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
struct intel_engine_cs *engine;
if (IS_GEN6(dev_priv))
seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
for_each_engine(engine, dev_priv) {
seq_printf(m, "%s\n", engine->name);
if (IS_GEN7(dev_priv))
seq_printf(m, "GFX_MODE: 0x%08x\n",
I915_READ(RING_MODE_GEN7(engine)));
seq_printf(m, "PP_DIR_BASE: 0x%08x\n",
I915_READ(RING_PP_DIR_BASE(engine)));
seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n",
I915_READ(RING_PP_DIR_BASE_READ(engine)));
seq_printf(m, "PP_DIR_DCLV: 0x%08x\n",
I915_READ(RING_PP_DIR_DCLV(engine)));
}
if (dev_priv->mm.aliasing_ppgtt) {
struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
seq_puts(m, "aliasing PPGTT:\n");
seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd.base.ggtt_offset);
ppgtt->debug_dump(ppgtt, m);
}
seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
}
static int i915_ppgtt_info(struct seq_file *m, void *data)
{
struct drm_info_node *node = m->private;
struct drm_device *dev = node->minor->dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct drm_file *file;
int ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
intel_runtime_pm_get(dev_priv);
if (INTEL_INFO(dev)->gen >= 8)
gen8_ppgtt_info(m, dev);
else if (INTEL_INFO(dev)->gen >= 6)
gen6_ppgtt_info(m, dev);
mutex_lock(&dev->filelist_mutex);
list_for_each_entry_reverse(file, &dev->filelist, lhead) {
struct drm_i915_file_private *file_priv = file->driver_priv;
struct task_struct *task;
task = get_pid_task(file->pid, PIDTYPE_PID);
if (!task) {
ret = -ESRCH;
goto out_unlock;
}
seq_printf(m, "\nproc: %s\n", task->comm);
put_task_struct(task);
idr_for_each(&file_priv->context_idr, per_file_ctx,
(void *)(unsigned long)m);
}
out_unlock:
mutex_unlock(&dev->filelist_mutex);
intel_runtime_pm_put(dev_priv);
mutex_unlock(&dev->struct_mutex);
return ret;
}
static int count_irq_waiters(struct drm_i915_private *i915)
{
struct intel_engine_cs *engine;
int count = 0;
for_each_engine(engine, i915)
count += intel_engine_has_waiter(engine);
return count;
}
static int i915_rps_boost_info(struct seq_file *m, void *data)
{
struct drm_info_node *node = m->private;
struct drm_device *dev = node->minor->dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct drm_file *file;
seq_printf(m, "RPS enabled? %d\n", dev_priv->rps.enabled);
seq_printf(m, "GPU busy? %s [%x]\n",
yesno(dev_priv->gt.awake), dev_priv->gt.active_engines);
seq_printf(m, "CPU waiting? %d\n", count_irq_waiters(dev_priv));
seq_printf(m, "Frequency requested %d; min hard:%d, soft:%d; max soft:%d, hard:%d\n",
intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit),
intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit),
intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
mutex_lock(&dev->filelist_mutex);
spin_lock(&dev_priv->rps.client_lock);
list_for_each_entry_reverse(file, &dev->filelist, lhead) {
struct drm_i915_file_private *file_priv = file->driver_priv;
struct task_struct *task;
rcu_read_lock();
task = pid_task(file->pid, PIDTYPE_PID);
seq_printf(m, "%s [%d]: %d boosts%s\n",
task ? task->comm : "<unknown>",
task ? task->pid : -1,
file_priv->rps.boosts,
list_empty(&file_priv->rps.link) ? "" : ", active");
rcu_read_unlock();
}
seq_printf(m, "Kernel (anonymous) boosts: %d\n", dev_priv->rps.boosts);
spin_unlock(&dev_priv->rps.client_lock);
mutex_unlock(&dev->filelist_mutex);
return 0;
}
static int i915_llc(struct seq_file *m, void *data)
{
struct drm_info_node *node = m->private;
struct drm_device *dev = node->minor->dev;
struct drm_i915_private *dev_priv = to_i915(dev);
const bool edram = INTEL_GEN(dev_priv) > 8;
seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev)));
seq_printf(m, "%s: %lluMB\n", edram ? "eDRAM" : "eLLC",
intel_uncore_edram_size(dev_priv)/1024/1024);
return 0;
}
static int i915_guc_load_status_info(struct seq_file *m, void *data)
{
struct drm_info_node *node = m->private;
struct drm_i915_private *dev_priv = to_i915(node->minor->dev);
struct intel_guc_fw *guc_fw = &dev_priv->guc.guc_fw;
u32 tmp, i;
if (!HAS_GUC_UCODE(dev_priv))
return 0;
seq_printf(m, "GuC firmware status:\n");
seq_printf(m, "\tpath: %s\n",
guc_fw->guc_fw_path);
seq_printf(m, "\tfetch: %s\n",
intel_guc_fw_status_repr(guc_fw->guc_fw_fetch_status));
seq_printf(m, "\tload: %s\n",
intel_guc_fw_status_repr(guc_fw->guc_fw_load_status));
seq_printf(m, "\tversion wanted: %d.%d\n",
guc_fw->guc_fw_major_wanted, guc_fw->guc_fw_minor_wanted);
seq_printf(m, "\tversion found: %d.%d\n",
guc_fw->guc_fw_major_found, guc_fw->guc_fw_minor_found);
seq_printf(m, "\theader: offset is %d; size = %d\n",
guc_fw->header_offset, guc_fw->header_size);
seq_printf(m, "\tuCode: offset is %d; size = %d\n",
guc_fw->ucode_offset, guc_fw->ucode_size);
seq_printf(m, "\tRSA: offset is %d; size = %d\n",
guc_fw->rsa_offset, guc_fw->rsa_size);
tmp = I915_READ(GUC_STATUS);
seq_printf(m, "\nGuC status 0x%08x:\n", tmp);
seq_printf(m, "\tBootrom status = 0x%x\n",
(tmp & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT);
seq_printf(m, "\tuKernel status = 0x%x\n",
(tmp & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT);
seq_printf(m, "\tMIA Core status = 0x%x\n",
(tmp & GS_MIA_MASK) >> GS_MIA_SHIFT);
seq_puts(m, "\nScratch registers:\n");
for (i = 0; i < 16; i++)
seq_printf(m, "\t%2d: \t0x%x\n", i, I915_READ(SOFT_SCRATCH(i)));
return 0;
}
static void i915_guc_client_info(struct seq_file *m,
struct drm_i915_private *dev_priv,
struct i915_guc_client *client)
{
struct intel_engine_cs *engine;
uint64_t tot = 0;
seq_printf(m, "\tPriority %d, GuC ctx index: %u, PD offset 0x%x\n",
client->priority, client->ctx_index, client->proc_desc_offset);
seq_printf(m, "\tDoorbell id %d, offset: 0x%x, cookie 0x%x\n",
client->doorbell_id, client->doorbell_offset, client->cookie);
seq_printf(m, "\tWQ size %d, offset: 0x%x, tail %d\n",
client->wq_size, client->wq_offset, client->wq_tail);
seq_printf(m, "\tWork queue full: %u\n", client->no_wq_space);
seq_printf(m, "\tFailed to queue: %u\n", client->q_fail);
seq_printf(m, "\tFailed doorbell: %u\n", client->b_fail);
seq_printf(m, "\tLast submission result: %d\n", client->retcode);
for_each_engine(engine, dev_priv) {
seq_printf(m, "\tSubmissions: %llu %s\n",
client->submissions[engine->id],
engine->name);
tot += client->submissions[engine->id];
}
seq_printf(m, "\tTotal: %llu\n", tot);
}
static int i915_guc_info(struct seq_file *m, void *data)
{
struct drm_info_node *node = m->private;
struct drm_device *dev = node->minor->dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct intel_guc guc;
struct i915_guc_client client = {};
struct intel_engine_cs *engine;
u64 total = 0;
if (!HAS_GUC_SCHED(dev_priv))
return 0;
if (mutex_lock_interruptible(&dev->struct_mutex))
return 0;
/* Take a local copy of the GuC data, so we can dump it at leisure */
guc = dev_priv->guc;
if (guc.execbuf_client)
client = *guc.execbuf_client;
mutex_unlock(&dev->struct_mutex);
seq_printf(m, "Doorbell map:\n");
seq_printf(m, "\t%*pb\n", GUC_MAX_DOORBELLS, guc.doorbell_bitmap);
seq_printf(m, "Doorbell next cacheline: 0x%x\n\n", guc.db_cacheline);
seq_printf(m, "GuC total action count: %llu\n", guc.action_count);
seq_printf(m, "GuC action failure count: %u\n", guc.action_fail);
seq_printf(m, "GuC last action command: 0x%x\n", guc.action_cmd);
seq_printf(m, "GuC last action status: 0x%x\n", guc.action_status);
seq_printf(m, "GuC last action error code: %d\n", guc.action_err);
seq_printf(m, "\nGuC submissions:\n");
for_each_engine(engine, dev_priv) {
seq_printf(m, "\t%-24s: %10llu, last seqno 0x%08x\n",
engine->name, guc.submissions[engine->id],
guc.last_seqno[engine->id]);
total += guc.submissions[engine->id];
}
seq_printf(m, "\t%s: %llu\n", "Total", total);
seq_printf(m, "\nGuC execbuf client @ %p:\n", guc.execbuf_client);
i915_guc_client_info(m, dev_priv, &client);
/* Add more as required ... */
return 0;
}
static int i915_guc_log_dump(struct seq_file *m, void *data)
{
struct drm_info_node *node = m->private;
struct drm_device *dev = node->minor->dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct drm_i915_gem_object *log_obj = dev_priv->guc.log_obj;
u32 *log;
int i = 0, pg;
if (!log_obj)
return 0;
for (pg = 0; pg < log_obj->base.size / PAGE_SIZE; pg++) {
log = kmap_atomic(i915_gem_object_get_page(log_obj, pg));
for (i = 0; i < PAGE_SIZE / sizeof(u32); i += 4)
seq_printf(m, "0x%08x 0x%08x 0x%08x 0x%08x\n",
*(log + i), *(log + i + 1),
*(log + i + 2), *(log + i + 3));
kunmap_atomic(log);
}
seq_putc(m, '\n');
return 0;
}
static int i915_edp_psr_status(struct seq_file *m, void *data)
{
struct drm_info_node *node = m->private;
struct drm_device *dev = node->minor->dev;
struct drm_i915_private *dev_priv = to_i915(dev);
u32 psrperf = 0;
u32 stat[3];
enum pipe pipe;
bool enabled = false;
if (!HAS_PSR(dev)) {
seq_puts(m, "PSR not supported\n");
return 0;
}
intel_runtime_pm_get(dev_priv);
mutex_lock(&dev_priv->psr.lock);
seq_printf(m, "Sink_Support: %s\n", yesno(dev_priv->psr.sink_support));
seq_printf(m, "Source_OK: %s\n", yesno(dev_priv->psr.source_ok));
seq_printf(m, "Enabled: %s\n", yesno((bool)dev_priv->psr.enabled));
seq_printf(m, "Active: %s\n", yesno(dev_priv->psr.active));
seq_printf(m, "Busy frontbuffer bits: 0x%03x\n",
dev_priv->psr.busy_frontbuffer_bits);
seq_printf(m, "Re-enable work scheduled: %s\n",
yesno(work_busy(&dev_priv->psr.work.work)));
if (HAS_DDI(dev))
enabled = I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE;
else {
for_each_pipe(dev_priv, pipe) {
stat[pipe] = I915_READ(VLV_PSRSTAT(pipe)) &
VLV_EDP_PSR_CURR_STATE_MASK;
if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
(stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
enabled = true;
}
}
seq_printf(m, "Main link in standby mode: %s\n",
yesno(dev_priv->psr.link_standby));
seq_printf(m, "HW Enabled & Active bit: %s", yesno(enabled));
if (!HAS_DDI(dev))
for_each_pipe(dev_priv, pipe) {
if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
(stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
seq_printf(m, " pipe %c", pipe_name(pipe));
}
seq_puts(m, "\n");
/*
* VLV/CHV PSR has no kind of performance counter
* SKL+ Perf counter is reset to 0 everytime DC state is entered
*/
if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
psrperf = I915_READ(EDP_PSR_PERF_CNT) &
EDP_PSR_PERF_CNT_MASK;
seq_printf(m, "Performance_Counter: %u\n", psrperf);
}
mutex_unlock(&dev_priv->psr.lock);
intel_runtime_pm_put(dev_priv);
return 0;
}
static int i915_sink_crc(struct seq_file *m, void *data)
{
struct drm_info_node *node = m->private;
struct drm_device *dev = node->minor->dev;
struct intel_connector *connector;
struct intel_dp *intel_dp = NULL;
int ret;
u8 crc[6];
drm_modeset_lock_all(dev);
for_each_intel_connector(dev, connector) {
struct drm_crtc *crtc;
if (!connector->base.state->best_encoder)
continue;
crtc = connector->base.state->crtc;
if (!crtc->state->active)
continue;
if (connector->base.connector_type != DRM_MODE_CONNECTOR_eDP)
continue;
intel_dp = enc_to_intel_dp(connector->base.state->best_encoder);
ret = intel_dp_sink_crc(intel_dp, crc);
if (ret)
goto out;
seq_printf(m, "%02x%02x%02x%02x%02x%02x\n",
crc[0], crc[1], crc[2],
crc[3], crc[4], crc[5]);
goto out;
}
ret = -ENODEV;
out:
drm_modeset_unlock_all(dev);
return ret;
}
static int i915_energy_uJ(struct seq_file *m, void *data)
{
struct drm_info_node *node = m->private;
struct drm_device *dev = node->minor->dev;
struct drm_i915_private *dev_priv = to_i915(dev);
u64 power;
u32 units;
if (INTEL_INFO(dev)->gen < 6)
return -ENODEV;
intel_runtime_pm_get(dev_priv);
rdmsrl(MSR_RAPL_POWER_UNIT, power);
power = (power & 0x1f00) >> 8;
units = 1000000 / (1 << power); /* convert to uJ */
power = I915_READ(MCH_SECP_NRG_STTS);
power *= units;
intel_runtime_pm_put(dev_priv);
seq_printf(m, "%llu", (long long unsigned)power);
return 0;
}
static int i915_runtime_pm_status(struct seq_file *m, void *unused)
{
struct drm_info_node *node = m->private;
struct drm_device *dev = node->minor->dev;
struct drm_i915_private *dev_priv = to_i915(dev);
if (!HAS_RUNTIME_PM(dev_priv))
seq_puts(m, "Runtime power management not supported\n");
seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->gt.awake));
seq_printf(m, "IRQs disabled: %s\n",
yesno(!intel_irqs_enabled(dev_priv)));
#ifdef CONFIG_PM
seq_printf(m, "Usage count: %d\n",
atomic_read(&dev->dev->power.usage_count));
#else
seq_printf(m, "Device Power Management (CONFIG_PM) disabled\n");
#endif
seq_printf(m, "PCI device power state: %s [%d]\n",
pci_power_name(dev_priv->drm.pdev->current_state),
dev_priv->drm.pdev->current_state);
return 0;
}
static int i915_power_domain_info(struct seq_file *m, void *unused)
{
struct drm_info_node *node = m->private;
struct drm_device *dev = node->minor->dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct i915_power_domains *power_domains = &dev_priv->power_domains;
int i;
mutex_lock(&power_domains->lock);
seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
for (i = 0; i < power_domains->power_well_count; i++) {
struct i915_power_well *power_well;
enum intel_display_power_domain power_domain;
power_well = &power_domains->power_wells[i];
seq_printf(m, "%-25s %d\n", power_well->name,
power_well->count);
for (power_domain = 0; power_domain < POWER_DOMAIN_NUM;
power_domain++) {
if (!(BIT(power_domain) & power_well->domains))
continue;
seq_printf(m, " %-23s %d\n",
intel_display_power_domain_str(power_domain),
power_domains->domain_use_count[power_domain]);
}
}
mutex_unlock(&power_domains->lock);
return 0;
}
static int i915_dmc_info(struct seq_file *m, void *unused)
{
struct drm_info_node *node = m->private;
struct drm_device *dev = node->minor->dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct intel_csr *csr;
if (!HAS_CSR(dev)) {
seq_puts(m, "not supported\n");
return 0;
}
csr = &dev_priv->csr;
intel_runtime_pm_get(dev_priv);
seq_printf(m, "fw loaded: %s\n", yesno(csr->dmc_payload != NULL));
seq_printf(m, "path: %s\n", csr->fw_path);
if (!csr->dmc_payload)
goto out;
seq_printf(m, "version: %d.%d\n", CSR_VERSION_MAJOR(csr->version),
CSR_VERSION_MINOR(csr->version));
if (IS_SKYLAKE(dev) && csr->version >= CSR_VERSION(1, 6)) {
seq_printf(m, "DC3 -> DC5 count: %d\n",
I915_READ(SKL_CSR_DC3_DC5_COUNT));
seq_printf(m, "DC5 -> DC6 count: %d\n",
I915_READ(SKL_CSR_DC5_DC6_COUNT));
} else if (IS_BROXTON(dev) && csr->version >= CSR_VERSION(1, 4)) {
seq_printf(m, "DC3 -> DC5 count: %d\n",
I915_READ(BXT_CSR_DC3_DC5_COUNT));
}
out:
seq_printf(m, "program base: 0x%08x\n", I915_READ(CSR_PROGRAM(0)));
seq_printf(m, "ssp base: 0x%08x\n", I915_READ(CSR_SSP_BASE));
seq_printf(m, "htp: 0x%08x\n", I915_READ(CSR_HTP_SKL));
intel_runtime_pm_put(dev_priv);
return 0;
}
static void intel_seq_print_mode(struct seq_file *m, int tabs,
struct drm_display_mode *mode)
{
int i;
for (i = 0; i < tabs; i++)
seq_putc(m, '\t');
seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n",
mode->base.id, mode->name,
mode->vrefresh, mode->clock,
mode->hdisplay, mode->hsync_start,
mode->hsync_end, mode->htotal,
mode->vdisplay, mode->vsync_start,
mode->vsync_end, mode->vtotal,
mode->type, mode->flags);
}
static void intel_encoder_info(struct seq_file *m,
struct intel_crtc *intel_crtc,
struct intel_encoder *intel_encoder)
{
struct drm_info_node *node = m->private;
struct drm_device *dev = node->minor->dev;
struct drm_crtc *crtc = &intel_crtc->base;
struct intel_connector *intel_connector;
struct drm_encoder *encoder;
encoder = &intel_encoder->base;
seq_printf(m, "\tencoder %d: type: %s, connectors:\n",
encoder->base.id, encoder->name);
for_each_connector_on_encoder(dev, encoder, intel_connector) {
struct drm_connector *connector = &intel_connector->base;
seq_printf(m, "\t\tconnector %d: type: %s, status: %s",
connector->base.id,
connector->name,
drm_get_connector_status_name(connector->status));
if (connector->status == connector_status_connected) {
struct drm_display_mode *mode = &crtc->mode;
seq_printf(m, ", mode:\n");
intel_seq_print_mode(m, 2, mode);
} else {
seq_putc(m, '\n');
}
}
}
static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc)
{
struct drm_info_node *node = m->private;
struct drm_device *dev = node->minor->dev;
struct drm_crtc *crtc = &intel_crtc->base;
struct intel_encoder *intel_encoder;
struct drm_plane_state *plane_state = crtc->primary->state;
struct drm_framebuffer *fb = plane_state->fb;
if (fb)
seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n",
fb->base.id, plane_state->src_x >> 16,
plane_state->src_y >> 16, fb->width, fb->height);
else
seq_puts(m, "\tprimary plane disabled\n");
for_each_encoder_on_crtc(dev, crtc, intel_encoder)
intel_encoder_info(m, intel_crtc, intel_encoder);
}
static void intel_panel_info(struct seq_file *m, struct intel_panel *panel)
{
struct drm_display_mode *mode = panel->fixed_mode;
seq_printf(m, "\tfixed mode:\n");
intel_seq_print_mode(m, 2, mode);
}
static void intel_dp_info(struct seq_file *m,
struct intel_connector *intel_connector)
{
struct intel_encoder *intel_encoder = intel_connector->encoder;
struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]);
seq_printf(m, "\taudio support: %s\n", yesno(intel_dp->has_audio));
if (intel_connector->base.connector_type == DRM_MODE_CONNECTOR_eDP)
intel_panel_info(m, &intel_connector->panel);
}
static void intel_hdmi_info(struct seq_file *m,
struct intel_connector *intel_connector)
{
struct intel_encoder *intel_encoder = intel_connector->encoder;
struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
seq_printf(m, "\taudio support: %s\n", yesno(intel_hdmi->has_audio));
}
static void intel_lvds_info(struct seq_file *m,
struct intel_connector *intel_connector)
{
intel_panel_info(m, &intel_connector->panel);
}
static void intel_connector_info(struct seq_file *m,
struct drm_connector *connector)
{
struct intel_connector *intel_connector = to_intel_connector(connector);
struct intel_encoder *intel_encoder = intel_connector->encoder;
struct drm_display_mode *mode;
seq_printf(m, "connector %d: type %s, status: %s\n",
connector->base.id, connector->name,
drm_get_connector_status_name(connector->status));
if (connector->status == connector_status_connected) {
seq_printf(m, "\tname: %s\n", connector->display_info.name);
seq_printf(m, "\tphysical dimensions: %dx%dmm\n",
connector->display_info.width_mm,
connector->display_info.height_mm);
seq_printf(m, "\tsubpixel order: %s\n",
drm_get_subpixel_order_name(connector->display_info.subpixel_order));
seq_printf(m, "\tCEA rev: %d\n",
connector->display_info.cea_rev);
}
if (!intel_encoder || intel_encoder->type == INTEL_OUTPUT_DP_MST)
return;
switch (connector->connector_type) {
case DRM_MODE_CONNECTOR_DisplayPort:
case DRM_MODE_CONNECTOR_eDP:
intel_dp_info(m, intel_connector);
break;
case DRM_MODE_CONNECTOR_LVDS:
if (intel_encoder->type == INTEL_OUTPUT_LVDS)
intel_lvds_info(m, intel_connector);
break;
case DRM_MODE_CONNECTOR_HDMIA:
if (intel_encoder->type == INTEL_OUTPUT_HDMI ||
intel_encoder->type == INTEL_OUTPUT_UNKNOWN)
intel_hdmi_info(m, intel_connector);
break;
default:
break;
}
seq_printf(m, "\tmodes:\n");
list_for_each_entry(mode, &connector->modes, head)
intel_seq_print_mode(m, 2, mode);
}
static bool cursor_active(struct drm_device *dev, int pipe)
{
struct drm_i915_private *dev_priv = to_i915(dev);
u32 state;
if (IS_845G(dev) || IS_I865G(dev))
state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
else
state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
return state;
}
static bool cursor_position(struct drm_device *dev, int pipe, int *x, int *y)
{
struct drm_i915_private *dev_priv = to_i915(dev);
u32 pos;
pos = I915_READ(CURPOS(pipe));
*x = (pos >> CURSOR_X_SHIFT) & CURSOR_POS_MASK;
if (pos & (CURSOR_POS_SIGN << CURSOR_X_SHIFT))
*x = -*x;
*y = (pos >> CURSOR_Y_SHIFT) & CURSOR_POS_MASK;
if (pos & (CURSOR_POS_SIGN << CURSOR_Y_SHIFT))
*y = -*y;
return cursor_active(dev, pipe);
}
static const char *plane_type(enum drm_plane_type type)
{
switch (type) {
case DRM_PLANE_TYPE_OVERLAY:
return "OVL";
case DRM_PLANE_TYPE_PRIMARY:
return "PRI";
case DRM_PLANE_TYPE_CURSOR:
return "CUR";
/*
* Deliberately omitting default: to generate compiler warnings
* when a new drm_plane_type gets added.
*/
}
return "unknown";
}
static const char *plane_rotation(unsigned int rotation)
{
static char buf[48];
/*
* According to doc only one DRM_ROTATE_ is allowed but this
* will print them all to visualize if the values are misused
*/
snprintf(buf, sizeof(buf),
"%s%s%s%s%s%s(0x%08x)",
(rotation & BIT(DRM_ROTATE_0)) ? "0 " : "",
(rotation & BIT(DRM_ROTATE_90)) ? "90 " : "",
(rotation & BIT(DRM_ROTATE_180)) ? "180 " : "",
(rotation & BIT(DRM_ROTATE_270)) ? "270 " : "",
(rotation & BIT(DRM_REFLECT_X)) ? "FLIPX " : "",
(rotation & BIT(DRM_REFLECT_Y)) ? "FLIPY " : "",
rotation);
return buf;
}
static void intel_plane_info(struct seq_file *m, struct intel_crtc *intel_crtc)
{
struct drm_info_node *node = m->private;
struct drm_device *dev = node->minor->dev;
struct intel_plane *intel_plane;
for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
struct drm_plane_state *state;
struct drm_plane *plane = &intel_plane->base;
if (!plane->state) {
seq_puts(m, "plane->state is NULL!\n");
continue;
}
state = plane->state;
seq_printf(m, "\t--Plane id %d: type=%s, crtc_pos=%4dx%4d, crtc_size=%4dx%4d, src_pos=%d.%04ux%d.%04u, src_size=%d.%04ux%d.%04u, format=%s, rotation=%s\n",
plane->base.id,
plane_type(intel_plane->base.type),
state->crtc_x, state->crtc_y,
state->crtc_w, state->crtc_h,
(state->src_x >> 16),
((state->src_x & 0xffff) * 15625) >> 10,
(state->src_y >> 16),
((state->src_y & 0xffff) * 15625) >> 10,
(state->src_w >> 16),
((state->src_w & 0xffff) * 15625) >> 10,
(state->src_h >> 16),
((state->src_h & 0xffff) * 15625) >> 10,
state->fb ? drm_get_format_name(state->fb->pixel_format) : "N/A",
plane_rotation(state->rotation));
}
}
static void intel_scaler_info(struct seq_file *m, struct intel_crtc *intel_crtc)
{
struct intel_crtc_state *pipe_config;
int num_scalers = intel_crtc->num_scalers;
int i;
pipe_config = to_intel_crtc_state(intel_crtc->base.state);
/* Not all platformas have a scaler */
if (num_scalers) {
seq_printf(m, "\tnum_scalers=%d, scaler_users=%x scaler_id=%d",
num_scalers,
pipe_config->scaler_state.scaler_users,
pipe_config->scaler_state.scaler_id);
for (i = 0; i < SKL_NUM_SCALERS; i++) {
struct intel_scaler *sc =
&pipe_config->scaler_state.scalers[i];
seq_printf(m, ", scalers[%d]: use=%s, mode=%x",
i, yesno(sc->in_use), sc->mode);
}
seq_puts(m, "\n");
} else {
seq_puts(m, "\tNo scalers available on this platform\n");
}
}
static int i915_display_info(struct seq_file *m, void *unused)
{
struct drm_info_node *node = m->private;
struct drm_device *dev = node->minor->dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct intel_crtc *crtc;
struct drm_connector *connector;
intel_runtime_pm_get(dev_priv);
drm_modeset_lock_all(dev);
seq_printf(m, "CRTC info\n");
seq_printf(m, "---------\n");
for_each_intel_crtc(dev, crtc) {
bool active;
struct intel_crtc_state *pipe_config;
int x, y;
pipe_config = to_intel_crtc_state(crtc->base.state);
seq_printf(m, "CRTC %d: pipe: %c, active=%s, (size=%dx%d), dither=%s, bpp=%d\n",
crtc->base.base.id, pipe_name(crtc->pipe),
yesno(pipe_config->base.active),
pipe_config->pipe_src_w, pipe_config->pipe_src_h,
yesno(pipe_config->dither), pipe_config->pipe_bpp);
if (pipe_config->base.active) {
intel_crtc_info(m, crtc);
active = cursor_position(dev, crtc->pipe, &x, &y);
seq_printf(m, "\tcursor visible? %s, position (%d, %d), size %dx%d, addr 0x%08x, active? %s\n",
yesno(crtc->cursor_base),
x, y, crtc->base.cursor->state->crtc_w,
crtc->base.cursor->state->crtc_h,
crtc->cursor_addr, yesno(active));
intel_scaler_info(m, crtc);
intel_plane_info(m, crtc);
}
seq_printf(m, "\tunderrun reporting: cpu=%s pch=%s \n",
yesno(!crtc->cpu_fifo_underrun_disabled),
yesno(!crtc->pch_fifo_underrun_disabled));
}
seq_printf(m, "\n");
seq_printf(m, "Connector info\n");
seq_printf(m, "--------------\n");
list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
intel_connector_info(m, connector);
}
drm_modeset_unlock_all(dev);
intel_runtime_pm_put(dev_priv);
return 0;
}
static int i915_semaphore_status(struct seq_file *m, void *unused)
{
struct drm_info_node *node = (struct drm_info_node *) m->private;
struct drm_device *dev = node->minor->dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct intel_engine_cs *engine;
int num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
enum intel_engine_id id;
int j, ret;
if (!i915.semaphores) {
seq_puts(m, "Semaphores are disabled\n");
return 0;
}
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
intel_runtime_pm_get(dev_priv);
if (IS_BROADWELL(dev)) {
struct page *page;
uint64_t *seqno;
page = i915_gem_object_get_page(dev_priv->semaphore_obj, 0);
seqno = (uint64_t *)kmap_atomic(page);
for_each_engine_id(engine, dev_priv, id) {
uint64_t offset;
seq_printf(m, "%s\n", engine->name);
seq_puts(m, " Last signal:");
for (j = 0; j < num_rings; j++) {
offset = id * I915_NUM_ENGINES + j;
seq_printf(m, "0x%08llx (0x%02llx) ",
seqno[offset], offset * 8);
}
seq_putc(m, '\n');
seq_puts(m, " Last wait: ");
for (j = 0; j < num_rings; j++) {
offset = id + (j * I915_NUM_ENGINES);
seq_printf(m, "0x%08llx (0x%02llx) ",
seqno[offset], offset * 8);
}
seq_putc(m, '\n');
}
kunmap_atomic(seqno);
} else {
seq_puts(m, " Last signal:");
for_each_engine(engine, dev_priv)
for (j = 0; j < num_rings; j++)
seq_printf(m, "0x%08x\n",
I915_READ(engine->semaphore.mbox.signal[j]));
seq_putc(m, '\n');
}
seq_puts(m, "\nSync seqno:\n");
for_each_engine(engine, dev_priv) {
for (j = 0; j < num_rings; j++)
seq_printf(m, " 0x%08x ",
engine->semaphore.sync_seqno[j]);
seq_putc(m, '\n');
}
seq_putc(m, '\n');
intel_runtime_pm_put(dev_priv);
mutex_unlock(&dev->struct_mutex);
return 0;
}
static int i915_shared_dplls_info(struct seq_file *m, void *unused)
{
struct drm_info_node *node = (struct drm_info_node *) m->private;
struct drm_device *dev = node->minor->dev;
struct drm_i915_private *dev_priv = to_i915(dev);
int i;
drm_modeset_lock_all(dev);
for (i = 0; i < dev_priv->num_shared_dpll; i++) {
struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
seq_printf(m, "DPLL%i: %s, id: %i\n", i, pll->name, pll->id);
seq_printf(m, " crtc_mask: 0x%08x, active: 0x%x, on: %s\n",
pll->config.crtc_mask, pll->active_mask, yesno(pll->on));
seq_printf(m, " tracked hardware state:\n");
seq_printf(m, " dpll: 0x%08x\n", pll->config.hw_state.dpll);
seq_printf(m, " dpll_md: 0x%08x\n",
pll->config.hw_state.dpll_md);
seq_printf(m, " fp0: 0x%08x\n", pll->config.hw_state.fp0);
seq_printf(m, " fp1: 0x%08x\n", pll->config.hw_state.fp1);
seq_printf(m, " wrpll: 0x%08x\n", pll->config.hw_state.wrpll);
}
drm_modeset_unlock_all(dev);
return 0;
}
static int i915_wa_registers(struct seq_file *m, void *unused)
{
int i;
int ret;
struct intel_engine_cs *engine;
struct drm_info_node *node = (struct drm_info_node *) m->private;
struct drm_device *dev = node->minor->dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct i915_workarounds *workarounds = &dev_priv->workarounds;
enum intel_engine_id id;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
intel_runtime_pm_get(dev_priv);
seq_printf(m, "Workarounds applied: %d\n", workarounds->count);
for_each_engine_id(engine, dev_priv, id)
seq_printf(m, "HW whitelist count for %s: %d\n",
engine->name, workarounds->hw_whitelist_count[id]);
for (i = 0; i < workarounds->count; ++i) {
i915_reg_t addr;
u32 mask, value, read;
bool ok;
addr = workarounds->reg[i].addr;
mask = workarounds->reg[i].mask;
value = workarounds->reg[i].value;
read = I915_READ(addr);
ok = (value & mask) == (read & mask);
seq_printf(m, "0x%X: 0x%08X, mask: 0x%08X, read: 0x%08x, status: %s\n",
i915_mmio_reg_offset(addr), value, mask, read, ok ? "OK" : "FAIL");
}
intel_runtime_pm_put(dev_priv);
mutex_unlock(&dev->struct_mutex);
return 0;
}
static int i915_ddb_info(struct seq_file *m, void *unused)
{
struct drm_info_node *node = m->private;
struct drm_device *dev = node->minor->dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct skl_ddb_allocation *ddb;
struct skl_ddb_entry *entry;
enum pipe pipe;
int plane;
if (INTEL_INFO(dev)->gen < 9)
return 0;
drm_modeset_lock_all(dev);
ddb = &dev_priv->wm.skl_hw.ddb;
seq_printf(m, "%-15s%8s%8s%8s\n", "", "Start", "End", "Size");
for_each_pipe(dev_priv, pipe) {
seq_printf(m, "Pipe %c\n", pipe_name(pipe));
for_each_plane(dev_priv, pipe, plane) {
entry = &ddb->plane[pipe][plane];
seq_printf(m, " Plane%-8d%8u%8u%8u\n", plane + 1,
entry->start, entry->end,
skl_ddb_entry_size(entry));
}
entry = &ddb->plane[pipe][PLANE_CURSOR];
seq_printf(m, " %-13s%8u%8u%8u\n", "Cursor", entry->start,
entry->end, skl_ddb_entry_size(entry));
}
drm_modeset_unlock_all(dev);
return 0;
}
static void drrs_status_per_crtc(struct seq_file *m,
struct drm_device *dev, struct intel_crtc *intel_crtc)
{
struct drm_i915_private *dev_priv = to_i915(dev);
struct i915_drrs *drrs = &dev_priv->drrs;
int vrefresh = 0;
struct drm_connector *connector;
drm_for_each_connector(connector, dev) {
if (connector->state->crtc != &intel_crtc->base)
continue;
seq_printf(m, "%s:\n", connector->name);
}
if (dev_priv->vbt.drrs_type == STATIC_DRRS_SUPPORT)
seq_puts(m, "\tVBT: DRRS_type: Static");
else if (dev_priv->vbt.drrs_type == SEAMLESS_DRRS_SUPPORT)
seq_puts(m, "\tVBT: DRRS_type: Seamless");
else if (dev_priv->vbt.drrs_type == DRRS_NOT_SUPPORTED)
seq_puts(m, "\tVBT: DRRS_type: None");
else
seq_puts(m, "\tVBT: DRRS_type: FIXME: Unrecognized Value");
seq_puts(m, "\n\n");
if (to_intel_crtc_state(intel_crtc->base.state)->has_drrs) {
struct intel_panel *panel;
mutex_lock(&drrs->mutex);
/* DRRS Supported */
seq_puts(m, "\tDRRS Supported: Yes\n");
/* disable_drrs() will make drrs->dp NULL */
if (!drrs->dp) {
seq_puts(m, "Idleness DRRS: Disabled");
mutex_unlock(&drrs->mutex);
return;
}
panel = &drrs->dp->attached_connector->panel;
seq_printf(m, "\t\tBusy_frontbuffer_bits: 0x%X",
drrs->busy_frontbuffer_bits);
seq_puts(m, "\n\t\t");
if (drrs->refresh_rate_type == DRRS_HIGH_RR) {
seq_puts(m, "DRRS_State: DRRS_HIGH_RR\n");
vrefresh = panel->fixed_mode->vrefresh;
} else if (drrs->refresh_rate_type == DRRS_LOW_RR) {
seq_puts(m, "DRRS_State: DRRS_LOW_RR\n");
vrefresh = panel->downclock_mode->vrefresh;
} else {
seq_printf(m, "DRRS_State: Unknown(%d)\n",
drrs->refresh_rate_type);
mutex_unlock(&drrs->mutex);
return;
}
seq_printf(m, "\t\tVrefresh: %d", vrefresh);
seq_puts(m, "\n\t\t");
mutex_unlock(&drrs->mutex);
} else {
/* DRRS not supported. Print the VBT parameter*/
seq_puts(m, "\tDRRS Supported : No");
}
seq_puts(m, "\n");
}
static int i915_drrs_status(struct seq_file *m, void *unused)
{
struct drm_info_node *node = m->private;
struct drm_device *dev = node->minor->dev;
struct intel_crtc *intel_crtc;
int active_crtc_cnt = 0;
drm_modeset_lock_all(dev);
for_each_intel_crtc(dev, intel_crtc) {
if (intel_crtc->base.state->active) {
active_crtc_cnt++;
seq_printf(m, "\nCRTC %d: ", active_crtc_cnt);
drrs_status_per_crtc(m, dev, intel_crtc);
}
}
drm_modeset_unlock_all(dev);
if (!active_crtc_cnt)
seq_puts(m, "No active crtc found\n");
return 0;
}
struct pipe_crc_info {
const char *name;
struct drm_device *dev;
enum pipe pipe;
};
static int i915_dp_mst_info(struct seq_file *m, void *unused)
{
struct drm_info_node *node = (struct drm_info_node *) m->private;
struct drm_device *dev = node->minor->dev;
struct intel_encoder *intel_encoder;
struct intel_digital_port *intel_dig_port;
struct drm_connector *connector;
drm_modeset_lock_all(dev);
drm_for_each_connector(connector, dev) {
if (connector->connector_type != DRM_MODE_CONNECTOR_DisplayPort)
continue;
intel_encoder = intel_attached_encoder(connector);
if (!intel_encoder || intel_encoder->type == INTEL_OUTPUT_DP_MST)
continue;
intel_dig_port = enc_to_dig_port(&intel_encoder->base);
if (!intel_dig_port->dp.can_mst)
continue;
seq_printf(m, "MST Source Port %c\n",
port_name(intel_dig_port->port));
drm_dp_mst_dump_topology(m, &intel_dig_port->dp.mst_mgr);
}
drm_modeset_unlock_all(dev);
return 0;
}
static int i915_pipe_crc_open(struct inode *inode, struct file *filep)
{
struct pipe_crc_info *info = inode->i_private;
struct drm_i915_private *dev_priv = to_i915(info->dev);
struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
if (info->pipe >= INTEL_INFO(info->dev)->num_pipes)
return -ENODEV;
spin_lock_irq(&pipe_crc->lock);
if (pipe_crc->opened) {
spin_unlock_irq(&pipe_crc->lock);
return -EBUSY; /* already open */
}
pipe_crc->opened = true;
filep->private_data = inode->i_private;
spin_unlock_irq(&pipe_crc->lock);
return 0;
}
static int i915_pipe_crc_release(struct inode *inode, struct file *filep)
{
struct pipe_crc_info *info = inode->i_private;
struct drm_i915_private *dev_priv = to_i915(info->dev);
struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
spin_lock_irq(&pipe_crc->lock);
pipe_crc->opened = false;
spin_unlock_irq(&pipe_crc->lock);
return 0;
}
/* (6 fields, 8 chars each, space separated (5) + '\n') */
#define PIPE_CRC_LINE_LEN (6 * 8 + 5 + 1)
/* account for \'0' */
#define PIPE_CRC_BUFFER_LEN (PIPE_CRC_LINE_LEN + 1)
static int pipe_crc_data_count(struct intel_pipe_crc *pipe_crc)
{
assert_spin_locked(&pipe_crc->lock);
return CIRC_CNT(pipe_crc->head, pipe_crc->tail,
INTEL_PIPE_CRC_ENTRIES_NR);
}
static ssize_t
i915_pipe_crc_read(struct file *filep, char __user *user_buf, size_t count,
loff_t *pos)
{
struct pipe_crc_info *info = filep->private_data;
struct drm_device *dev = info->dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
char buf[PIPE_CRC_BUFFER_LEN];
int n_entries;
ssize_t bytes_read;
/*
* Don't allow user space to provide buffers not big enough to hold
* a line of data.
*/
if (count < PIPE_CRC_LINE_LEN)
return -EINVAL;
if (pipe_crc->source == INTEL_PIPE_CRC_SOURCE_NONE)
return 0;
/* nothing to read */
spin_lock_irq(&pipe_crc->lock);
while (pipe_crc_data_count(pipe_crc) == 0) {
int ret;
if (filep->f_flags & O_NONBLOCK) {
spin_unlock_irq(&pipe_crc->lock);
return -EAGAIN;
}
ret = wait_event_interruptible_lock_irq(pipe_crc->wq,
pipe_crc_data_count(pipe_crc), pipe_crc->lock);
if (ret) {
spin_unlock_irq(&pipe_crc->lock);
return ret;
}
}
/* We now have one or more entries to read */
n_entries = count / PIPE_CRC_LINE_LEN;
bytes_read = 0;
while (n_entries > 0) {
struct intel_pipe_crc_entry *entry =
&pipe_crc->entries[pipe_crc->tail];
int ret;
if (CIRC_CNT(pipe_crc->head, pipe_crc->tail,
INTEL_PIPE_CRC_ENTRIES_NR) < 1)
break;
BUILD_BUG_ON_NOT_POWER_OF_2(INTEL_PIPE_CRC_ENTRIES_NR);
pipe_crc->tail = (pipe_crc->tail + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
bytes_read += snprintf(buf, PIPE_CRC_BUFFER_LEN,
"%8u %8x %8x %8x %8x %8x\n",
entry->frame, entry->crc[0],
entry->crc[1], entry->crc[2],
entry->crc[3], entry->crc[4]);
spin_unlock_irq(&pipe_crc->lock);
ret = copy_to_user(user_buf, buf, PIPE_CRC_LINE_LEN);
if (ret == PIPE_CRC_LINE_LEN)
return -EFAULT;
user_buf += PIPE_CRC_LINE_LEN;
n_entries--;
spin_lock_irq(&pipe_crc->lock);
}
spin_unlock_irq(&pipe_crc->lock);
return bytes_read;
}
static const struct file_operations i915_pipe_crc_fops = {
.owner = THIS_MODULE,
.open = i915_pipe_crc_open,
.read = i915_pipe_crc_read,
.release = i915_pipe_crc_release,
};
static struct pipe_crc_info i915_pipe_crc_data[I915_MAX_PIPES] = {
{
.name = "i915_pipe_A_crc",
.pipe = PIPE_A,
},
{
.name = "i915_pipe_B_crc",
.pipe = PIPE_B,
},
{
.name = "i915_pipe_C_crc",
.pipe = PIPE_C,
},
};
static int i915_pipe_crc_create(struct dentry *root, struct drm_minor *minor,
enum pipe pipe)
{
struct drm_device *dev = minor->dev;
struct dentry *ent;
struct pipe_crc_info *info = &i915_pipe_crc_data[pipe];
info->dev = dev;
ent = debugfs_create_file(info->name, S_IRUGO, root, info,
&i915_pipe_crc_fops);
if (!ent)
return -ENOMEM;
return drm_add_fake_info_node(minor, ent, info);
}
static const char * const pipe_crc_sources[] = {
"none",
"plane1",
"plane2",
"pf",
"pipe",
"TV",
"DP-B",
"DP-C",
"DP-D",
"auto",
};
static const char *pipe_crc_source_name(enum intel_pipe_crc_source source)
{
BUILD_BUG_ON(ARRAY_SIZE(pipe_crc_sources) != INTEL_PIPE_CRC_SOURCE_MAX);
return pipe_crc_sources[source];
}
static int display_crc_ctl_show(struct seq_file *m, void *data)
{
struct drm_device *dev = m->private;
struct drm_i915_private *dev_priv = to_i915(dev);
int i;
for (i = 0; i < I915_MAX_PIPES; i++)
seq_printf(m, "%c %s\n", pipe_name(i),
pipe_crc_source_name(dev_priv->pipe_crc[i].source));
return 0;
}
static int display_crc_ctl_open(struct inode *inode, struct file *file)
{
struct drm_device *dev = inode->i_private;
return single_open(file, display_crc_ctl_show, dev);
}
static int i8xx_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
uint32_t *val)
{
if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
*source = INTEL_PIPE_CRC_SOURCE_PIPE;
switch (*source) {
case INTEL_PIPE_CRC_SOURCE_PIPE:
*val = PIPE_CRC_ENABLE | PIPE_CRC_INCLUDE_BORDER_I8XX;
break;
case INTEL_PIPE_CRC_SOURCE_NONE:
*val = 0;
break;
default:
return -EINVAL;
}
return 0;
}
static int i9xx_pipe_crc_auto_source(struct drm_device *dev, enum pipe pipe,
enum intel_pipe_crc_source *source)
{
struct intel_encoder *encoder;
struct intel_crtc *crtc;
struct intel_digital_port *dig_port;
int ret = 0;
*source = INTEL_PIPE_CRC_SOURCE_PIPE;
drm_modeset_lock_all(dev);
for_each_intel_encoder(dev, encoder) {
if (!encoder->base.crtc)
continue;
crtc = to_intel_crtc(encoder->base.crtc);
if (crtc->pipe != pipe)
continue;
switch (encoder->type) {
case INTEL_OUTPUT_TVOUT:
*source = INTEL_PIPE_CRC_SOURCE_TV;
break;
case INTEL_OUTPUT_DP:
case INTEL_OUTPUT_EDP:
dig_port = enc_to_dig_port(&encoder->base);
switch (dig_port->port) {
case PORT_B:
*source = INTEL_PIPE_CRC_SOURCE_DP_B;
break;
case PORT_C:
*source = INTEL_PIPE_CRC_SOURCE_DP_C;
break;
case PORT_D:
*source = INTEL_PIPE_CRC_SOURCE_DP_D;
break;
default:
WARN(1, "nonexisting DP port %c\n",
port_name(dig_port->port));
break;
}
break;
default:
break;
}
}
drm_modeset_unlock_all(dev);
return ret;
}
static int vlv_pipe_crc_ctl_reg(struct drm_device *dev,
enum pipe pipe,
enum intel_pipe_crc_source *source,
uint32_t *val)
{
struct drm_i915_private *dev_priv = to_i915(dev);
bool need_stable_symbols = false;
if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
if (ret)
return ret;
}
switch (*source) {
case INTEL_PIPE_CRC_SOURCE_PIPE:
*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_VLV;
break;
case INTEL_PIPE_CRC_SOURCE_DP_B:
*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_VLV;
need_stable_symbols = true;
break;
case INTEL_PIPE_CRC_SOURCE_DP_C:
*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_VLV;
need_stable_symbols = true;
break;
case INTEL_PIPE_CRC_SOURCE_DP_D:
if (!IS_CHERRYVIEW(dev))
return -EINVAL;
*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_VLV;
need_stable_symbols = true;
break;
case INTEL_PIPE_CRC_SOURCE_NONE:
*val = 0;
break;
default:
return -EINVAL;
}
/*
* When the pipe CRC tap point is after the transcoders we need
* to tweak symbol-level features to produce a deterministic series of
* symbols for a given frame. We need to reset those features only once
* a frame (instead of every nth symbol):
* - DC-balance: used to ensure a better clock recovery from the data
* link (SDVO)
* - DisplayPort scrambling: used for EMI reduction
*/
if (need_stable_symbols) {
uint32_t tmp = I915_READ(PORT_DFT2_G4X);
tmp |= DC_BALANCE_RESET_VLV;
switch (pipe) {
case PIPE_A:
tmp |= PIPE_A_SCRAMBLE_RESET;
break;
case PIPE_B:
tmp |= PIPE_B_SCRAMBLE_RESET;
break;
case PIPE_C:
tmp |= PIPE_C_SCRAMBLE_RESET;
break;
default:
return -EINVAL;
}
I915_WRITE(PORT_DFT2_G4X, tmp);
}
return 0;
}
static int i9xx_pipe_crc_ctl_reg(struct drm_device *dev,
enum pipe pipe,
enum intel_pipe_crc_source *source,
uint32_t *val)
{
struct drm_i915_private *dev_priv = to_i915(dev);
bool need_stable_symbols = false;
if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
if (ret)
return ret;
}
switch (*source) {
case INTEL_PIPE_CRC_SOURCE_PIPE:
*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_I9XX;
break;
case INTEL_PIPE_CRC_SOURCE_TV:
if (!SUPPORTS_TV(dev))
return -EINVAL;
*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_TV_PRE;
break;
case INTEL_PIPE_CRC_SOURCE_DP_B:
if (!IS_G4X(dev))
return -EINVAL;
*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_G4X;
need_stable_symbols = true;
break;
case INTEL_PIPE_CRC_SOURCE_DP_C:
if (!IS_G4X(dev))
return -EINVAL;
*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_G4X;
need_stable_symbols = true;
break;
case INTEL_PIPE_CRC_SOURCE_DP_D:
if (!IS_G4X(dev))
return -EINVAL;
*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_G4X;
need_stable_symbols = true;
break;
case INTEL_PIPE_CRC_SOURCE_NONE:
*val = 0;
break;
default:
return -EINVAL;
}
/*
* When the pipe CRC tap point is after the transcoders we need
* to tweak symbol-level features to produce a deterministic series of
* symbols for a given frame. We need to reset those features only once
* a frame (instead of every nth symbol):
* - DC-balance: used to ensure a better clock recovery from the data
* link (SDVO)
* - DisplayPort scrambling: used for EMI reduction
*/
if (need_stable_symbols) {
uint32_t tmp = I915_READ(PORT_DFT2_G4X);
WARN_ON(!IS_G4X(dev));
I915_WRITE(PORT_DFT_I9XX,
I915_READ(PORT_DFT_I9XX) | DC_BALANCE_RESET);
if (pipe == PIPE_A)
tmp |= PIPE_A_SCRAMBLE_RESET;
else
tmp |= PIPE_B_SCRAMBLE_RESET;
I915_WRITE(PORT_DFT2_G4X, tmp);
}
return 0;
}
static void vlv_undo_pipe_scramble_reset(struct drm_device *dev,
enum pipe pipe)
{
struct drm_i915_private *dev_priv = to_i915(dev);
uint32_t tmp = I915_READ(PORT_DFT2_G4X);
switch (pipe) {
case PIPE_A:
tmp &= ~PIPE_A_SCRAMBLE_RESET;
break;
case PIPE_B:
tmp &= ~PIPE_B_SCRAMBLE_RESET;
break;
case PIPE_C:
tmp &= ~PIPE_C_SCRAMBLE_RESET;
break;
default:
return;
}
if (!(tmp & PIPE_SCRAMBLE_RESET_MASK))
tmp &= ~DC_BALANCE_RESET_VLV;
I915_WRITE(PORT_DFT2_G4X, tmp);
}
static void g4x_undo_pipe_scramble_reset(struct drm_device *dev,
enum pipe pipe)
{
struct drm_i915_private *dev_priv = to_i915(dev);
uint32_t tmp = I915_READ(PORT_DFT2_G4X);
if (pipe == PIPE_A)
tmp &= ~PIPE_A_SCRAMBLE_RESET;
else
tmp &= ~PIPE_B_SCRAMBLE_RESET;
I915_WRITE(PORT_DFT2_G4X, tmp);
if (!(tmp & PIPE_SCRAMBLE_RESET_MASK)) {
I915_WRITE(PORT_DFT_I9XX,
I915_READ(PORT_DFT_I9XX) & ~DC_BALANCE_RESET);
}
}
static int ilk_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
uint32_t *val)
{
if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
*source = INTEL_PIPE_CRC_SOURCE_PIPE;
switch (*source) {
case INTEL_PIPE_CRC_SOURCE_PLANE1:
*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_ILK;
break;
case INTEL_PIPE_CRC_SOURCE_PLANE2:
*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_ILK;
break;
case INTEL_PIPE_CRC_SOURCE_PIPE:
*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_ILK;
break;
case INTEL_PIPE_CRC_SOURCE_NONE:
*val = 0;
break;
default:
return -EINVAL;
}
return 0;
}
static void hsw_trans_edp_pipe_A_crc_wa(struct drm_device *dev, bool enable)
{
struct drm_i915_private *dev_priv = to_i915(dev);
struct intel_crtc *crtc =
to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_A]);
struct intel_crtc_state *pipe_config;
struct drm_atomic_state *state;
int ret = 0;
drm_modeset_lock_all(dev);
state = drm_atomic_state_alloc(dev);
if (!state) {
ret = -ENOMEM;
goto out;
}
state->acquire_ctx = drm_modeset_legacy_acquire_ctx(&crtc->base);
pipe_config = intel_atomic_get_crtc_state(state, crtc);
if (IS_ERR(pipe_config)) {
ret = PTR_ERR(pipe_config);
goto out;
}
pipe_config->pch_pfit.force_thru = enable;
if (pipe_config->cpu_transcoder == TRANSCODER_EDP &&
pipe_config->pch_pfit.enabled != enable)
pipe_config->base.connectors_changed = true;
ret = drm_atomic_commit(state);
out:
drm_modeset_unlock_all(dev);
WARN(ret, "Toggling workaround to %i returns %i\n", enable, ret);
if (ret)
drm_atomic_state_free(state);
}
static int ivb_pipe_crc_ctl_reg(struct drm_device *dev,
enum pipe pipe,
enum intel_pipe_crc_source *source,
uint32_t *val)
{
if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
*source = INTEL_PIPE_CRC_SOURCE_PF;
switch (*source) {
case INTEL_PIPE_CRC_SOURCE_PLANE1:
*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_IVB;
break;
case INTEL_PIPE_CRC_SOURCE_PLANE2:
*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_IVB;
break;
case INTEL_PIPE_CRC_SOURCE_PF:
if (IS_HASWELL(dev) && pipe == PIPE_A)
hsw_trans_edp_pipe_A_crc_wa(dev, true);
*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PF_IVB;
break;
case INTEL_PIPE_CRC_SOURCE_NONE:
*val = 0;
break;
default:
return -EINVAL;
}
return 0;
}
static int pipe_crc_set_source(struct drm_device *dev, enum pipe pipe,
enum intel_pipe_crc_source source)
{
struct drm_i915_private *dev_priv = to_i915(dev);
struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
struct intel_crtc *crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev,
pipe));
enum intel_display_power_domain power_domain;
u32 val = 0; /* shut up gcc */
int ret;
if (pipe_crc->source == source)
return 0;
/* forbid changing the source without going back to 'none' */
if (pipe_crc->source && source)
return -EINVAL;
power_domain = POWER_DOMAIN_PIPE(pipe);
if (!intel_display_power_get_if_enabled(dev_priv, power_domain)) {
DRM_DEBUG_KMS("Trying to capture CRC while pipe is off\n");
return -EIO;
}
if (IS_GEN2(dev))
ret = i8xx_pipe_crc_ctl_reg(&source, &val);
else if (INTEL_INFO(dev)->gen < 5)
ret = i9xx_pipe_crc_ctl_reg(dev, pipe, &source, &val);
else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
ret = vlv_pipe_crc_ctl_reg(dev, pipe, &source, &val);
else if (IS_GEN5(dev) || IS_GEN6(dev))
ret = ilk_pipe_crc_ctl_reg(&source, &val);
else
ret = ivb_pipe_crc_ctl_reg(dev, pipe, &source, &val);
if (ret != 0)
goto out;
/* none -> real source transition */
if (source) {
struct intel_pipe_crc_entry *entries;
DRM_DEBUG_DRIVER("collecting CRCs for pipe %c, %s\n",
pipe_name(pipe), pipe_crc_source_name(source));
entries = kcalloc(INTEL_PIPE_CRC_ENTRIES_NR,
sizeof(pipe_crc->entries[0]),
GFP_KERNEL);
if (!entries) {
ret = -ENOMEM;
goto out;
}
/*
* When IPS gets enabled, the pipe CRC changes. Since IPS gets
* enabled and disabled dynamically based on package C states,
* user space can't make reliable use of the CRCs, so let's just
* completely disable it.
*/
hsw_disable_ips(crtc);
spin_lock_irq(&pipe_crc->lock);
kfree(pipe_crc->entries);
pipe_crc->entries = entries;
pipe_crc->head = 0;
pipe_crc->tail = 0;
spin_unlock_irq(&pipe_crc->lock);
}
pipe_crc->source = source;
I915_WRITE(PIPE_CRC_CTL(pipe), val);
POSTING_READ(PIPE_CRC_CTL(pipe));
/* real source -> none transition */
if (source == INTEL_PIPE_CRC_SOURCE_NONE) {
struct intel_pipe_crc_entry *entries;
struct intel_crtc *crtc =
to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
DRM_DEBUG_DRIVER("stopping CRCs for pipe %c\n",
pipe_name(pipe));
drm_modeset_lock(&crtc->base.mutex, NULL);
if (crtc->base.state->active)
intel_wait_for_vblank(dev, pipe);
drm_modeset_unlock(&crtc->base.mutex);
spin_lock_irq(&pipe_crc->lock);
entries = pipe_crc->entries;
pipe_crc->entries = NULL;
pipe_crc->head = 0;
pipe_crc->tail = 0;
spin_unlock_irq(&pipe_crc->lock);
kfree(entries);
if (IS_G4X(dev))
g4x_undo_pipe_scramble_reset(dev, pipe);
else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
vlv_undo_pipe_scramble_reset(dev, pipe);
else if (IS_HASWELL(dev) && pipe == PIPE_A)
hsw_trans_edp_pipe_A_crc_wa(dev, false);
hsw_enable_ips(crtc);
}
ret = 0;
out:
intel_display_power_put(dev_priv, power_domain);
return ret;
}
/*
* Parse pipe CRC command strings:
* command: wsp* object wsp+ name wsp+ source wsp*
* object: 'pipe'
* name: (A | B | C)
* source: (none | plane1 | plane2 | pf)
* wsp: (#0x20 | #0x9 | #0xA)+
*
* eg.:
* "pipe A plane1" -> Start CRC computations on plane1 of pipe A
* "pipe A none" -> Stop CRC
*/
static int display_crc_ctl_tokenize(char *buf, char *words[], int max_words)
{
int n_words = 0;
while (*buf) {
char *end;
/* skip leading white space */
buf = skip_spaces(buf);
if (!*buf)
break; /* end of buffer */
/* find end of word */
for (end = buf; *end && !isspace(*end); end++)
;
if (n_words == max_words) {
DRM_DEBUG_DRIVER("too many words, allowed <= %d\n",
max_words);
return -EINVAL; /* ran out of words[] before bytes */
}
if (*end)
*end++ = '\0';
words[n_words++] = buf;
buf = end;
}
return n_words;
}
enum intel_pipe_crc_object {
PIPE_CRC_OBJECT_PIPE,
};
static const char * const pipe_crc_objects[] = {
"pipe",
};
static int
display_crc_ctl_parse_object(const char *buf, enum intel_pipe_crc_object *o)
{
int i;
for (i = 0; i < ARRAY_SIZE(pipe_crc_objects); i++)
if (!strcmp(buf, pipe_crc_objects[i])) {
*o = i;
return 0;
}
return -EINVAL;
}
static int display_crc_ctl_parse_pipe(const char *buf, enum pipe *pipe)
{
const char name = buf[0];
if (name < 'A' || name >= pipe_name(I915_MAX_PIPES))
return -EINVAL;
*pipe = name - 'A';
return 0;
}
static int
display_crc_ctl_parse_source(const char *buf, enum intel_pipe_crc_source *s)
{
int i;
for (i = 0; i < ARRAY_SIZE(pipe_crc_sources); i++)
if (!strcmp(buf, pipe_crc_sources[i])) {
*s = i;
return 0;
}
return -EINVAL;
}
static int display_crc_ctl_parse(struct drm_device *dev, char *buf, size_t len)
{
#define N_WORDS 3
int n_words;
char *words[N_WORDS];
enum pipe pipe;
enum intel_pipe_crc_object object;
enum intel_pipe_crc_source source;
n_words = display_crc_ctl_tokenize(buf, words, N_WORDS);
if (n_words != N_WORDS) {
DRM_DEBUG_DRIVER("tokenize failed, a command is %d words\n",
N_WORDS);
return -EINVAL;
}
if (display_crc_ctl_parse_object(words[0], &object) < 0) {
DRM_DEBUG_DRIVER("unknown object %s\n", words[0]);
return -EINVAL;
}
if (display_crc_ctl_parse_pipe(words[1], &pipe) < 0) {
DRM_DEBUG_DRIVER("unknown pipe %s\n", words[1]);
return -EINVAL;
}
if (display_crc_ctl_parse_source(words[2], &source) < 0) {
DRM_DEBUG_DRIVER("unknown source %s\n", words[2]);
return -EINVAL;
}
return pipe_crc_set_source(dev, pipe, source);
}
static ssize_t display_crc_ctl_write(struct file *file, const char __user *ubuf,
size_t len, loff_t *offp)
{
struct seq_file *m = file->private_data;
struct drm_device *dev = m->private;
char *tmpbuf;
int ret;
if (len == 0)
return 0;
if (len > PAGE_SIZE - 1) {
DRM_DEBUG_DRIVER("expected <%lu bytes into pipe crc control\n",
PAGE_SIZE);
return -E2BIG;
}
tmpbuf = kmalloc(len + 1, GFP_KERNEL);
if (!tmpbuf)
return -ENOMEM;
if (copy_from_user(tmpbuf, ubuf, len)) {
ret = -EFAULT;
goto out;
}
tmpbuf[len] = '\0';
ret = display_crc_ctl_parse(dev, tmpbuf, len);
out:
kfree(tmpbuf);
if (ret < 0)
return ret;
*offp += len;
return len;
}
static const struct file_operations i915_display_crc_ctl_fops = {
.owner = THIS_MODULE,
.open = display_crc_ctl_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
.write = display_crc_ctl_write
};
static ssize_t i915_displayport_test_active_write(struct file *file,
const char __user *ubuf,
size_t len, loff_t *offp)
{
char *input_buffer;
int status = 0;
struct drm_device *dev;
struct drm_connector *connector;
struct list_head *connector_list;
struct intel_dp *intel_dp;
int val = 0;
dev = ((struct seq_file *)file->private_data)->private;
connector_list = &dev->mode_config.connector_list;
if (len == 0)
return 0;
input_buffer = kmalloc(len + 1, GFP_KERNEL);
if (!input_buffer)
return -ENOMEM;
if (copy_from_user(input_buffer, ubuf, len)) {
status = -EFAULT;
goto out;
}
input_buffer[len] = '\0';
DRM_DEBUG_DRIVER("Copied %d bytes from user\n", (unsigned int)len);
list_for_each_entry(connector, connector_list, head) {
if (connector->connector_type !=
DRM_MODE_CONNECTOR_DisplayPort)
continue;
if (connector->status == connector_status_connected &&
connector->encoder != NULL) {
intel_dp = enc_to_intel_dp(connector->encoder);
status = kstrtoint(input_buffer, 10, &val);
if (status < 0)
goto out;
DRM_DEBUG_DRIVER("Got %d for test active\n", val);
/* To prevent erroneous activation of the compliance
* testing code, only accept an actual value of 1 here
*/
if (val == 1)
intel_dp->compliance_test_active = 1;
else
intel_dp->compliance_test_active = 0;
}
}
out:
kfree(input_buffer);
if (status < 0)
return status;
*offp += len;
return len;
}
static int i915_displayport_test_active_show(struct seq_file *m, void *data)
{
struct drm_device *dev = m->private;
struct drm_connector *connector;
struct list_head *connector_list = &dev->mode_config.connector_list;
struct intel_dp *intel_dp;
list_for_each_entry(connector, connector_list, head) {
if (connector->connector_type !=
DRM_MODE_CONNECTOR_DisplayPort)
continue;
if (connector->status == connector_status_connected &&
connector->encoder != NULL) {
intel_dp = enc_to_intel_dp(connector->encoder);
if (intel_dp->compliance_test_active)
seq_puts(m, "1");
else
seq_puts(m, "0");
} else
seq_puts(m, "0");
}
return 0;
}
static int i915_displayport_test_active_open(struct inode *inode,
struct file *file)
{
struct drm_device *dev = inode->i_private;
return single_open(file, i915_displayport_test_active_show, dev);
}
static const struct file_operations i915_displayport_test_active_fops = {
.owner = THIS_MODULE,
.open = i915_displayport_test_active_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
.write = i915_displayport_test_active_write
};
static int i915_displayport_test_data_show(struct seq_file *m, void *data)
{
struct drm_device *dev = m->private;
struct drm_connector *connector;
struct list_head *connector_list = &dev->mode_config.connector_list;
struct intel_dp *intel_dp;
list_for_each_entry(connector, connector_list, head) {
if (connector->connector_type !=
DRM_MODE_CONNECTOR_DisplayPort)
continue;
if (connector->status == connector_status_connected &&
connector->encoder != NULL) {
intel_dp = enc_to_intel_dp(connector->encoder);
seq_printf(m, "%lx", intel_dp->compliance_test_data);
} else
seq_puts(m, "0");
}
return 0;
}
static int i915_displayport_test_data_open(struct inode *inode,
struct file *file)
{
struct drm_device *dev = inode->i_private;
return single_open(file, i915_displayport_test_data_show, dev);
}
static const struct file_operations i915_displayport_test_data_fops = {
.owner = THIS_MODULE,
.open = i915_displayport_test_data_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release
};
static int i915_displayport_test_type_show(struct seq_file *m, void *data)
{
struct drm_device *dev = m->private;
struct drm_connector *connector;
struct list_head *connector_list = &dev->mode_config.connector_list;
struct intel_dp *intel_dp;
list_for_each_entry(connector, connector_list, head) {
if (connector->connector_type !=
DRM_MODE_CONNECTOR_DisplayPort)
continue;
if (connector->status == connector_status_connected &&
connector->encoder != NULL) {
intel_dp = enc_to_intel_dp(connector->encoder);
seq_printf(m, "%02lx", intel_dp->compliance_test_type);
} else
seq_puts(m, "0");
}
return 0;
}
static int i915_displayport_test_type_open(struct inode *inode,
struct file *file)
{
struct drm_device *dev = inode->i_private;
return single_open(file, i915_displayport_test_type_show, dev);
}
static const struct file_operations i915_displayport_test_type_fops = {
.owner = THIS_MODULE,
.open = i915_displayport_test_type_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release
};
static void wm_latency_show(struct seq_file *m, const uint16_t wm[8])
{
struct drm_device *dev = m->private;
int level;
int num_levels;
if (IS_CHERRYVIEW(dev))
num_levels = 3;
else if (IS_VALLEYVIEW(dev))
num_levels = 1;
else
num_levels = ilk_wm_max_level(dev) + 1;
drm_modeset_lock_all(dev);
for (level = 0; level < num_levels; level++) {
unsigned int latency = wm[level];
/*
* - WM1+ latency values in 0.5us units
* - latencies are in us on gen9/vlv/chv
*/
if (INTEL_INFO(dev)->gen >= 9 || IS_VALLEYVIEW(dev) ||
IS_CHERRYVIEW(dev))
latency *= 10;
else if (level > 0)
latency *= 5;
seq_printf(m, "WM%d %u (%u.%u usec)\n",
level, wm[level], latency / 10, latency % 10);
}
drm_modeset_unlock_all(dev);
}
static int pri_wm_latency_show(struct seq_file *m, void *data)
{
struct drm_device *dev = m->private;
struct drm_i915_private *dev_priv = to_i915(dev);
const uint16_t *latencies;
if (INTEL_INFO(dev)->gen >= 9)
latencies = dev_priv->wm.skl_latency;
else
latencies = to_i915(dev)->wm.pri_latency;
wm_latency_show(m, latencies);
return 0;
}
static int spr_wm_latency_show(struct seq_file *m, void *data)
{
struct drm_device *dev = m->private;
struct drm_i915_private *dev_priv = to_i915(dev);
const uint16_t *latencies;
if (INTEL_INFO(dev)->gen >= 9)
latencies = dev_priv->wm.skl_latency;
else
latencies = to_i915(dev)->wm.spr_latency;
wm_latency_show(m, latencies);
return 0;
}
static int cur_wm_latency_show(struct seq_file *m, void *data)
{
struct drm_device *dev = m->private;
struct drm_i915_private *dev_priv = to_i915(dev);
const uint16_t *latencies;
if (INTEL_INFO(dev)->gen >= 9)
latencies = dev_priv->wm.skl_latency;
else
latencies = to_i915(dev)->wm.cur_latency;
wm_latency_show(m, latencies);
return 0;
}
static int pri_wm_latency_open(struct inode *inode, struct file *file)
{
struct drm_device *dev = inode->i_private;
if (INTEL_INFO(dev)->gen < 5)
return -ENODEV;
return single_open(file, pri_wm_latency_show, dev);
}
static int spr_wm_latency_open(struct inode *inode, struct file *file)
{
struct drm_device *dev = inode->i_private;
if (HAS_GMCH_DISPLAY(dev))
return -ENODEV;
return single_open(file, spr_wm_latency_show, dev);
}
static int cur_wm_latency_open(struct inode *inode, struct file *file)
{
struct drm_device *dev = inode->i_private;
if (HAS_GMCH_DISPLAY(dev))
return -ENODEV;
return single_open(file, cur_wm_latency_show, dev);
}
static ssize_t wm_latency_write(struct file *file, const char __user *ubuf,
size_t len, loff_t *offp, uint16_t wm[8])
{
struct seq_file *m = file->private_data;
struct drm_device *dev = m->private;
uint16_t new[8] = { 0 };
int num_levels;
int level;
int ret;
char tmp[32];
if (IS_CHERRYVIEW(dev))
num_levels = 3;
else if (IS_VALLEYVIEW(dev))
num_levels = 1;
else
num_levels = ilk_wm_max_level(dev) + 1;
if (len >= sizeof(tmp))
return -EINVAL;
if (copy_from_user(tmp, ubuf, len))
return -EFAULT;
tmp[len] = '\0';
ret = sscanf(tmp, "%hu %hu %hu %hu %hu %hu %hu %hu",
&new[0], &new[1], &new[2], &new[3],
&new[4], &new[5], &new[6], &new[7]);
if (ret != num_levels)
return -EINVAL;
drm_modeset_lock_all(dev);
for (level = 0; level < num_levels; level++)
wm[level] = new[level];
drm_modeset_unlock_all(dev);
return len;
}
static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf,
size_t len, loff_t *offp)
{
struct seq_file *m = file->private_data;
struct drm_device *dev = m->private;
struct drm_i915_private *dev_priv = to_i915(dev);
uint16_t *latencies;
if (INTEL_INFO(dev)->gen >= 9)
latencies = dev_priv->wm.skl_latency;
else
latencies = to_i915(dev)->wm.pri_latency;
return wm_latency_write(file, ubuf, len, offp, latencies);
}
static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf,
size_t len, loff_t *offp)
{
struct seq_file *m = file->private_data;
struct drm_device *dev = m->private;
struct drm_i915_private *dev_priv = to_i915(dev);
uint16_t *latencies;
if (INTEL_INFO(dev)->gen >= 9)
latencies = dev_priv->wm.skl_latency;
else
latencies = to_i915(dev)->wm.spr_latency;
return wm_latency_write(file, ubuf, len, offp, latencies);
}
static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf,
size_t len, loff_t *offp)
{
struct seq_file *m = file->private_data;
struct drm_device *dev = m->private;
struct drm_i915_private *dev_priv = to_i915(dev);
uint16_t *latencies;
if (INTEL_INFO(dev)->gen >= 9)
latencies = dev_priv->wm.skl_latency;
else
latencies = to_i915(dev)->wm.cur_latency;
return wm_latency_write(file, ubuf, len, offp, latencies);
}
static const struct file_operations i915_pri_wm_latency_fops = {
.owner = THIS_MODULE,
.open = pri_wm_latency_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
.write = pri_wm_latency_write
};
static const struct file_operations i915_spr_wm_latency_fops = {
.owner = THIS_MODULE,
.open = spr_wm_latency_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
.write = spr_wm_latency_write
};
static const struct file_operations i915_cur_wm_latency_fops = {
.owner = THIS_MODULE,
.open = cur_wm_latency_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
.write = cur_wm_latency_write
};
static int
i915_wedged_get(void *data, u64 *val)
{
struct drm_device *dev = data;
struct drm_i915_private *dev_priv = to_i915(dev);
*val = i915_terminally_wedged(&dev_priv->gpu_error);
return 0;
}
static int
i915_wedged_set(void *data, u64 val)
{
struct drm_device *dev = data;
struct drm_i915_private *dev_priv = to_i915(dev);
/*
* There is no safeguard against this debugfs entry colliding
* with the hangcheck calling same i915_handle_error() in
* parallel, causing an explosion. For now we assume that the
* test harness is responsible enough not to inject gpu hangs
* while it is writing to 'i915_wedged'
*/
if (i915_reset_in_progress(&dev_priv->gpu_error))
return -EAGAIN;
intel_runtime_pm_get(dev_priv);
i915_handle_error(dev_priv, val,
"Manually setting wedged to %llu", val);
intel_runtime_pm_put(dev_priv);
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
i915_wedged_get, i915_wedged_set,
"%llu\n");
static int
i915_ring_missed_irq_get(void *data, u64 *val)
{
struct drm_device *dev = data;
struct drm_i915_private *dev_priv = to_i915(dev);
*val = dev_priv->gpu_error.missed_irq_rings;
return 0;
}
static int
i915_ring_missed_irq_set(void *data, u64 val)
{
struct drm_device *dev = data;
struct drm_i915_private *dev_priv = to_i915(dev);
int ret;
/* Lock against concurrent debugfs callers */
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
dev_priv->gpu_error.missed_irq_rings = val;
mutex_unlock(&dev->struct_mutex);
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
i915_ring_missed_irq_get, i915_ring_missed_irq_set,
"0x%08llx\n");
static int
i915_ring_test_irq_get(void *data, u64 *val)
{
struct drm_device *dev = data;
struct drm_i915_private *dev_priv = to_i915(dev);
*val = dev_priv->gpu_error.test_irq_rings;
return 0;
}
static int
i915_ring_test_irq_set(void *data, u64 val)
{
struct drm_device *dev = data;
struct drm_i915_private *dev_priv = to_i915(dev);
val &= INTEL_INFO(dev_priv)->ring_mask;
DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
dev_priv->gpu_error.test_irq_rings = val;
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
i915_ring_test_irq_get, i915_ring_test_irq_set,
"0x%08llx\n");
#define DROP_UNBOUND 0x1
#define DROP_BOUND 0x2
#define DROP_RETIRE 0x4
#define DROP_ACTIVE 0x8
#define DROP_ALL (DROP_UNBOUND | \
DROP_BOUND | \
DROP_RETIRE | \
DROP_ACTIVE)
static int
i915_drop_caches_get(void *data, u64 *val)
{
*val = DROP_ALL;
return 0;
}
static int
i915_drop_caches_set(void *data, u64 val)
{
struct drm_device *dev = data;
struct drm_i915_private *dev_priv = to_i915(dev);
int ret;
DRM_DEBUG("Dropping caches: 0x%08llx\n", val);
/* No need to check and wait for gpu resets, only libdrm auto-restarts
* on ioctls on -EAGAIN. */
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
if (val & DROP_ACTIVE) {
ret = i915_gem_wait_for_idle(dev_priv);
if (ret)
goto unlock;
}
if (val & (DROP_RETIRE | DROP_ACTIVE))
i915_gem_retire_requests(dev_priv);
if (val & DROP_BOUND)
i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_BOUND);
if (val & DROP_UNBOUND)
i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_UNBOUND);
unlock:
mutex_unlock(&dev->struct_mutex);
return ret;
}
DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
i915_drop_caches_get, i915_drop_caches_set,
"0x%08llx\n");
static int
i915_max_freq_get(void *data, u64 *val)
{
struct drm_device *dev = data;
struct drm_i915_private *dev_priv = to_i915(dev);
if (INTEL_INFO(dev)->gen < 6)
return -ENODEV;
*val = intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit);
return 0;
}
static int
i915_max_freq_set(void *data, u64 val)
{
struct drm_device *dev = data;
struct drm_i915_private *dev_priv = to_i915(dev);
u32 hw_max, hw_min;
int ret;
if (INTEL_INFO(dev)->gen < 6)
return -ENODEV;
DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val);
ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
if (ret)
return ret;
/*
* Turbo will still be enabled, but won't go above the set value.
*/
val = intel_freq_opcode(dev_priv, val);
hw_max = dev_priv->rps.max_freq;
hw_min = dev_priv->rps.min_freq;
if (val < hw_min || val > hw_max || val < dev_priv->rps.min_freq_softlimit) {
mutex_unlock(&dev_priv->rps.hw_lock);
return -EINVAL;
}
dev_priv->rps.max_freq_softlimit = val;
intel_set_rps(dev_priv, val);
mutex_unlock(&dev_priv->rps.hw_lock);
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops,
i915_max_freq_get, i915_max_freq_set,
"%llu\n");
static int
i915_min_freq_get(void *data, u64 *val)
{
struct drm_device *dev = data;
struct drm_i915_private *dev_priv = to_i915(dev);
if (INTEL_GEN(dev_priv) < 6)
return -ENODEV;
*val = intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit);
return 0;
}
static int
i915_min_freq_set(void *data, u64 val)
{
struct drm_device *dev = data;
struct drm_i915_private *dev_priv = to_i915(dev);
u32 hw_max, hw_min;
int ret;
if (INTEL_GEN(dev_priv) < 6)
return -ENODEV;
DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val);
ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
if (ret)
return ret;
/*
* Turbo will still be enabled, but won't go below the set value.
*/
val = intel_freq_opcode(dev_priv, val);
hw_max = dev_priv->rps.max_freq;
hw_min = dev_priv->rps.min_freq;
if (val < hw_min || val > hw_max || val > dev_priv->rps.max_freq_softlimit) {
mutex_unlock(&dev_priv->rps.hw_lock);
return -EINVAL;
}
dev_priv->rps.min_freq_softlimit = val;
intel_set_rps(dev_priv, val);
mutex_unlock(&dev_priv->rps.hw_lock);
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops,
i915_min_freq_get, i915_min_freq_set,
"%llu\n");
static int
i915_cache_sharing_get(void *data, u64 *val)
{
struct drm_device *dev = data;
struct drm_i915_private *dev_priv = to_i915(dev);
u32 snpcr;
int ret;
if (!(IS_GEN6(dev) || IS_GEN7(dev)))
return -ENODEV;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
intel_runtime_pm_get(dev_priv);
snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
intel_runtime_pm_put(dev_priv);
mutex_unlock(&dev_priv->drm.struct_mutex);
*val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
return 0;
}
static int
i915_cache_sharing_set(void *data, u64 val)
{
struct drm_device *dev = data;
struct drm_i915_private *dev_priv = to_i915(dev);
u32 snpcr;
if (!(IS_GEN6(dev) || IS_GEN7(dev)))
return -ENODEV;
if (val > 3)
return -EINVAL;
intel_runtime_pm_get(dev_priv);
DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
/* Update the cache sharing policy here as well */
snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
snpcr &= ~GEN6_MBC_SNPCR_MASK;
snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
intel_runtime_pm_put(dev_priv);
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
i915_cache_sharing_get, i915_cache_sharing_set,
"%llu\n");
struct sseu_dev_status {
unsigned int slice_total;
unsigned int subslice_total;
unsigned int subslice_per_slice;
unsigned int eu_total;
unsigned int eu_per_subslice;
};
static void cherryview_sseu_device_status(struct drm_device *dev,
struct sseu_dev_status *stat)
{
struct drm_i915_private *dev_priv = to_i915(dev);
int ss_max = 2;
int ss;
u32 sig1[ss_max], sig2[ss_max];
sig1[0] = I915_READ(CHV_POWER_SS0_SIG1);
sig1[1] = I915_READ(CHV_POWER_SS1_SIG1);
sig2[0] = I915_READ(CHV_POWER_SS0_SIG2);
sig2[1] = I915_READ(CHV_POWER_SS1_SIG2);
for (ss = 0; ss < ss_max; ss++) {
unsigned int eu_cnt;
if (sig1[ss] & CHV_SS_PG_ENABLE)
/* skip disabled subslice */
continue;
stat->slice_total = 1;
stat->subslice_per_slice++;
eu_cnt = ((sig1[ss] & CHV_EU08_PG_ENABLE) ? 0 : 2) +
((sig1[ss] & CHV_EU19_PG_ENABLE) ? 0 : 2) +
((sig1[ss] & CHV_EU210_PG_ENABLE) ? 0 : 2) +
((sig2[ss] & CHV_EU311_PG_ENABLE) ? 0 : 2);
stat->eu_total += eu_cnt;
stat->eu_per_subslice = max(stat->eu_per_subslice, eu_cnt);
}
stat->subslice_total = stat->subslice_per_slice;
}
static void gen9_sseu_device_status(struct drm_device *dev,
struct sseu_dev_status *stat)
{
struct drm_i915_private *dev_priv = to_i915(dev);
int s_max = 3, ss_max = 4;
int s, ss;
u32 s_reg[s_max], eu_reg[2*s_max], eu_mask[2];
/* BXT has a single slice and at most 3 subslices. */
if (IS_BROXTON(dev)) {
s_max = 1;
ss_max = 3;
}
for (s = 0; s < s_max; s++) {
s_reg[s] = I915_READ(GEN9_SLICE_PGCTL_ACK(s));
eu_reg[2*s] = I915_READ(GEN9_SS01_EU_PGCTL_ACK(s));
eu_reg[2*s + 1] = I915_READ(GEN9_SS23_EU_PGCTL_ACK(s));
}
eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
GEN9_PGCTL_SSA_EU19_ACK |
GEN9_PGCTL_SSA_EU210_ACK |
GEN9_PGCTL_SSA_EU311_ACK;
eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
GEN9_PGCTL_SSB_EU19_ACK |
GEN9_PGCTL_SSB_EU210_ACK |
GEN9_PGCTL_SSB_EU311_ACK;
for (s = 0; s < s_max; s++) {
unsigned int ss_cnt = 0;
if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
/* skip disabled slice */
continue;
stat->slice_total++;
if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
ss_cnt = INTEL_INFO(dev)->subslice_per_slice;
for (ss = 0; ss < ss_max; ss++) {
unsigned int eu_cnt;
if (IS_BROXTON(dev) &&
!(s_reg[s] & (GEN9_PGCTL_SS_ACK(ss))))
/* skip disabled subslice */
continue;
if (IS_BROXTON(dev))
ss_cnt++;
eu_cnt = 2 * hweight32(eu_reg[2*s + ss/2] &
eu_mask[ss%2]);
stat->eu_total += eu_cnt;
stat->eu_per_subslice = max(stat->eu_per_subslice,
eu_cnt);
}
stat->subslice_total += ss_cnt;
stat->subslice_per_slice = max(stat->subslice_per_slice,
ss_cnt);
}
}
static void broadwell_sseu_device_status(struct drm_device *dev,
struct sseu_dev_status *stat)
{
struct drm_i915_private *dev_priv = to_i915(dev);
int s;
u32 slice_info = I915_READ(GEN8_GT_SLICE_INFO);
stat->slice_total = hweight32(slice_info & GEN8_LSLICESTAT_MASK);
if (stat->slice_total) {
stat->subslice_per_slice = INTEL_INFO(dev)->subslice_per_slice;
stat->subslice_total = stat->slice_total *
stat->subslice_per_slice;
stat->eu_per_subslice = INTEL_INFO(dev)->eu_per_subslice;
stat->eu_total = stat->eu_per_subslice * stat->subslice_total;
/* subtract fused off EU(s) from enabled slice(s) */
for (s = 0; s < stat->slice_total; s++) {
u8 subslice_7eu = INTEL_INFO(dev)->subslice_7eu[s];
stat->eu_total -= hweight8(subslice_7eu);
}
}
}
static int i915_sseu_status(struct seq_file *m, void *unused)
{
struct drm_info_node *node = (struct drm_info_node *) m->private;
struct drm_i915_private *dev_priv = to_i915(node->minor->dev);
struct drm_device *dev = &dev_priv->drm;
struct sseu_dev_status stat;
if (INTEL_INFO(dev)->gen < 8)
return -ENODEV;
seq_puts(m, "SSEU Device Info\n");
seq_printf(m, " Available Slice Total: %u\n",
INTEL_INFO(dev)->slice_total);
seq_printf(m, " Available Subslice Total: %u\n",
INTEL_INFO(dev)->subslice_total);
seq_printf(m, " Available Subslice Per Slice: %u\n",
INTEL_INFO(dev)->subslice_per_slice);
seq_printf(m, " Available EU Total: %u\n",
INTEL_INFO(dev)->eu_total);
seq_printf(m, " Available EU Per Subslice: %u\n",
INTEL_INFO(dev)->eu_per_subslice);
seq_printf(m, " Has Pooled EU: %s\n", yesno(HAS_POOLED_EU(dev)));
if (HAS_POOLED_EU(dev))
seq_printf(m, " Min EU in pool: %u\n",
INTEL_INFO(dev)->min_eu_in_pool);
seq_printf(m, " Has Slice Power Gating: %s\n",
yesno(INTEL_INFO(dev)->has_slice_pg));
seq_printf(m, " Has Subslice Power Gating: %s\n",
yesno(INTEL_INFO(dev)->has_subslice_pg));
seq_printf(m, " Has EU Power Gating: %s\n",
yesno(INTEL_INFO(dev)->has_eu_pg));
seq_puts(m, "SSEU Device Status\n");
memset(&stat, 0, sizeof(stat));
intel_runtime_pm_get(dev_priv);
if (IS_CHERRYVIEW(dev)) {
cherryview_sseu_device_status(dev, &stat);
} else if (IS_BROADWELL(dev)) {
broadwell_sseu_device_status(dev, &stat);
} else if (INTEL_INFO(dev)->gen >= 9) {
gen9_sseu_device_status(dev, &stat);
}
intel_runtime_pm_put(dev_priv);
seq_printf(m, " Enabled Slice Total: %u\n",
stat.slice_total);
seq_printf(m, " Enabled Subslice Total: %u\n",
stat.subslice_total);
seq_printf(m, " Enabled Subslice Per Slice: %u\n",
stat.subslice_per_slice);
seq_printf(m, " Enabled EU Total: %u\n",
stat.eu_total);
seq_printf(m, " Enabled EU Per Subslice: %u\n",
stat.eu_per_subslice);
return 0;
}
static int i915_forcewake_open(struct inode *inode, struct file *file)
{
struct drm_device *dev = inode->i_private;
struct drm_i915_private *dev_priv = to_i915(dev);
if (INTEL_INFO(dev)->gen < 6)
return 0;
intel_runtime_pm_get(dev_priv);
intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
return 0;
}
static int i915_forcewake_release(struct inode *inode, struct file *file)
{
struct drm_device *dev = inode->i_private;
struct drm_i915_private *dev_priv = to_i915(dev);
if (INTEL_INFO(dev)->gen < 6)
return 0;
intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
intel_runtime_pm_put(dev_priv);
return 0;
}
static const struct file_operations i915_forcewake_fops = {
.owner = THIS_MODULE,
.open = i915_forcewake_open,
.release = i915_forcewake_release,
};
static int i915_forcewake_create(struct dentry *root, struct drm_minor *minor)
{
struct drm_device *dev = minor->dev;
struct dentry *ent;
ent = debugfs_create_file("i915_forcewake_user",
S_IRUSR,
root, dev,
&i915_forcewake_fops);
if (!ent)
return -ENOMEM;
return drm_add_fake_info_node(minor, ent, &i915_forcewake_fops);
}
static int i915_debugfs_create(struct dentry *root,
struct drm_minor *minor,
const char *name,
const struct file_operations *fops)
{
struct drm_device *dev = minor->dev;
struct dentry *ent;
ent = debugfs_create_file(name,
S_IRUGO | S_IWUSR,
root, dev,
fops);
if (!ent)
return -ENOMEM;
return drm_add_fake_info_node(minor, ent, fops);
}
static const struct drm_info_list i915_debugfs_list[] = {
{"i915_capabilities", i915_capabilities, 0},
{"i915_gem_objects", i915_gem_object_info, 0},
{"i915_gem_gtt", i915_gem_gtt_info, 0},
{"i915_gem_pinned", i915_gem_gtt_info, 0, (void *) PINNED_LIST},
{"i915_gem_active", i915_gem_object_list_info, 0, (void *) ACTIVE_LIST},
{"i915_gem_inactive", i915_gem_object_list_info, 0, (void *) INACTIVE_LIST},
{"i915_gem_stolen", i915_gem_stolen_list_info },
{"i915_gem_pageflip", i915_gem_pageflip_info, 0},
{"i915_gem_request", i915_gem_request_info, 0},
{"i915_gem_seqno", i915_gem_seqno_info, 0},
{"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
{"i915_gem_interrupt", i915_interrupt_info, 0},
{"i915_gem_hws", i915_hws_info, 0, (void *)RCS},
{"i915_gem_hws_blt", i915_hws_info, 0, (void *)BCS},
{"i915_gem_hws_bsd", i915_hws_info, 0, (void *)VCS},
{"i915_gem_hws_vebox", i915_hws_info, 0, (void *)VECS},
{"i915_gem_batch_pool", i915_gem_batch_pool_info, 0},
{"i915_guc_info", i915_guc_info, 0},
{"i915_guc_load_status", i915_guc_load_status_info, 0},
{"i915_guc_log_dump", i915_guc_log_dump, 0},
{"i915_frequency_info", i915_frequency_info, 0},
{"i915_hangcheck_info", i915_hangcheck_info, 0},
{"i915_drpc_info", i915_drpc_info, 0},
{"i915_emon_status", i915_emon_status, 0},
{"i915_ring_freq_table", i915_ring_freq_table, 0},
{"i915_frontbuffer_tracking", i915_frontbuffer_tracking, 0},
{"i915_fbc_status", i915_fbc_status, 0},
{"i915_ips_status", i915_ips_status, 0},
{"i915_sr_status", i915_sr_status, 0},
{"i915_opregion", i915_opregion, 0},
{"i915_vbt", i915_vbt, 0},
{"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
{"i915_context_status", i915_context_status, 0},
{"i915_dump_lrc", i915_dump_lrc, 0},
{"i915_execlists", i915_execlists, 0},
{"i915_forcewake_domains", i915_forcewake_domains, 0},
{"i915_swizzle_info", i915_swizzle_info, 0},
{"i915_ppgtt_info", i915_ppgtt_info, 0},
{"i915_llc", i915_llc, 0},
{"i915_edp_psr_status", i915_edp_psr_status, 0},
{"i915_sink_crc_eDP1", i915_sink_crc, 0},
{"i915_energy_uJ", i915_energy_uJ, 0},
{"i915_runtime_pm_status", i915_runtime_pm_status, 0},
{"i915_power_domain_info", i915_power_domain_info, 0},
{"i915_dmc_info", i915_dmc_info, 0},
{"i915_display_info", i915_display_info, 0},
{"i915_semaphore_status", i915_semaphore_status, 0},
{"i915_shared_dplls_info", i915_shared_dplls_info, 0},
{"i915_dp_mst_info", i915_dp_mst_info, 0},
{"i915_wa_registers", i915_wa_registers, 0},
{"i915_ddb_info", i915_ddb_info, 0},
{"i915_sseu_status", i915_sseu_status, 0},
{"i915_drrs_status", i915_drrs_status, 0},
{"i915_rps_boost_info", i915_rps_boost_info, 0},
};
#define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
static const struct i915_debugfs_files {
const char *name;
const struct file_operations *fops;
} i915_debugfs_files[] = {
{"i915_wedged", &i915_wedged_fops},
{"i915_max_freq", &i915_max_freq_fops},
{"i915_min_freq", &i915_min_freq_fops},
{"i915_cache_sharing", &i915_cache_sharing_fops},
{"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
{"i915_ring_test_irq", &i915_ring_test_irq_fops},
{"i915_gem_drop_caches", &i915_drop_caches_fops},
{"i915_error_state", &i915_error_state_fops},
{"i915_next_seqno", &i915_next_seqno_fops},
{"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
{"i915_pri_wm_latency", &i915_pri_wm_latency_fops},
{"i915_spr_wm_latency", &i915_spr_wm_latency_fops},
{"i915_cur_wm_latency", &i915_cur_wm_latency_fops},
{"i915_fbc_false_color", &i915_fbc_fc_fops},
{"i915_dp_test_data", &i915_displayport_test_data_fops},
{"i915_dp_test_type", &i915_displayport_test_type_fops},
{"i915_dp_test_active", &i915_displayport_test_active_fops}
};
void intel_display_crc_init(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
enum pipe pipe;
for_each_pipe(dev_priv, pipe) {
struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
pipe_crc->opened = false;
spin_lock_init(&pipe_crc->lock);
init_waitqueue_head(&pipe_crc->wq);
}
}
int i915_debugfs_register(struct drm_i915_private *dev_priv)
{
struct drm_minor *minor = dev_priv->drm.primary;
int ret, i;
ret = i915_forcewake_create(minor->debugfs_root, minor);
if (ret)
return ret;
for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
ret = i915_pipe_crc_create(minor->debugfs_root, minor, i);
if (ret)
return ret;
}
for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
ret = i915_debugfs_create(minor->debugfs_root, minor,
i915_debugfs_files[i].name,
i915_debugfs_files[i].fops);
if (ret)
return ret;
}
return drm_debugfs_create_files(i915_debugfs_list,
I915_DEBUGFS_ENTRIES,
minor->debugfs_root, minor);
}
void i915_debugfs_unregister(struct drm_i915_private *dev_priv)
{
struct drm_minor *minor = dev_priv->drm.primary;
int i;
drm_debugfs_remove_files(i915_debugfs_list,
I915_DEBUGFS_ENTRIES, minor);
drm_debugfs_remove_files((struct drm_info_list *) &i915_forcewake_fops,
1, minor);
for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
struct drm_info_list *info_list =
(struct drm_info_list *)&i915_pipe_crc_data[i];
drm_debugfs_remove_files(info_list, 1, minor);
}
for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
struct drm_info_list *info_list =
(struct drm_info_list *) i915_debugfs_files[i].fops;
drm_debugfs_remove_files(info_list, 1, minor);
}
}
struct dpcd_block {
/* DPCD dump start address. */
unsigned int offset;
/* DPCD dump end address, inclusive. If unset, .size will be used. */
unsigned int end;
/* DPCD dump size. Used if .end is unset. If unset, defaults to 1. */
size_t size;
/* Only valid for eDP. */
bool edp;
};
static const struct dpcd_block i915_dpcd_debug[] = {
{ .offset = DP_DPCD_REV, .size = DP_RECEIVER_CAP_SIZE },
{ .offset = DP_PSR_SUPPORT, .end = DP_PSR_CAPS },
{ .offset = DP_DOWNSTREAM_PORT_0, .size = 16 },
{ .offset = DP_LINK_BW_SET, .end = DP_EDP_CONFIGURATION_SET },
{ .offset = DP_SINK_COUNT, .end = DP_ADJUST_REQUEST_LANE2_3 },
{ .offset = DP_SET_POWER },
{ .offset = DP_EDP_DPCD_REV },
{ .offset = DP_EDP_GENERAL_CAP_1, .end = DP_EDP_GENERAL_CAP_3 },
{ .offset = DP_EDP_DISPLAY_CONTROL_REGISTER, .end = DP_EDP_BACKLIGHT_FREQ_CAP_MAX_LSB },
{ .offset = DP_EDP_DBC_MINIMUM_BRIGHTNESS_SET, .end = DP_EDP_DBC_MAXIMUM_BRIGHTNESS_SET },
};
static int i915_dpcd_show(struct seq_file *m, void *data)
{
struct drm_connector *connector = m->private;
struct intel_dp *intel_dp =
enc_to_intel_dp(&intel_attached_encoder(connector)->base);
uint8_t buf[16];
ssize_t err;
int i;
if (connector->status != connector_status_connected)
return -ENODEV;
for (i = 0; i < ARRAY_SIZE(i915_dpcd_debug); i++) {
const struct dpcd_block *b = &i915_dpcd_debug[i];
size_t size = b->end ? b->end - b->offset + 1 : (b->size ?: 1);
if (b->edp &&
connector->connector_type != DRM_MODE_CONNECTOR_eDP)
continue;
/* low tech for now */
if (WARN_ON(size > sizeof(buf)))
continue;
err = drm_dp_dpcd_read(&intel_dp->aux, b->offset, buf, size);
if (err <= 0) {
DRM_ERROR("dpcd read (%zu bytes at %u) failed (%zd)\n",
size, b->offset, err);
continue;
}
seq_printf(m, "%04x: %*ph\n", b->offset, (int) size, buf);
}
return 0;
}
static int i915_dpcd_open(struct inode *inode, struct file *file)
{
return single_open(file, i915_dpcd_show, inode->i_private);
}
static const struct file_operations i915_dpcd_fops = {
.owner = THIS_MODULE,
.open = i915_dpcd_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
/**
* i915_debugfs_connector_add - add i915 specific connector debugfs files
* @connector: pointer to a registered drm_connector
*
* Cleanup will be done by drm_connector_unregister() through a call to
* drm_debugfs_connector_remove().
*
* Returns 0 on success, negative error codes on error.
*/
int i915_debugfs_connector_add(struct drm_connector *connector)
{
struct dentry *root = connector->debugfs_entry;
/* The connector must have been registered beforehands. */
if (!root)
return -ENODEV;
if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
connector->connector_type == DRM_MODE_CONNECTOR_eDP)
debugfs_create_file("i915_dpcd", S_IRUGO, root, connector,
&i915_dpcd_fops);
return 0;
}