| #ifndef _ASM_GENERIC_PGTABLE_H |
| #define _ASM_GENERIC_PGTABLE_H |
| |
| #ifndef __ASSEMBLY__ |
| #ifdef CONFIG_MMU |
| |
| #ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS |
| /* |
| * Largely same as above, but only sets the access flags (dirty, |
| * accessed, and writable). Furthermore, we know it always gets set |
| * to a "more permissive" setting, which allows most architectures |
| * to optimize this. We return whether the PTE actually changed, which |
| * in turn instructs the caller to do things like update__mmu_cache. |
| * This used to be done in the caller, but sparc needs minor faults to |
| * force that call on sun4c so we changed this macro slightly |
| */ |
| #define ptep_set_access_flags(__vma, __address, __ptep, __entry, __dirty) \ |
| ({ \ |
| int __changed = !pte_same(*(__ptep), __entry); \ |
| if (__changed) { \ |
| set_pte_at((__vma)->vm_mm, (__address), __ptep, __entry); \ |
| flush_tlb_page(__vma, __address); \ |
| } \ |
| __changed; \ |
| }) |
| #endif |
| |
| #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG |
| #define ptep_test_and_clear_young(__vma, __address, __ptep) \ |
| ({ \ |
| pte_t __pte = *(__ptep); \ |
| int r = 1; \ |
| if (!pte_young(__pte)) \ |
| r = 0; \ |
| else \ |
| set_pte_at((__vma)->vm_mm, (__address), \ |
| (__ptep), pte_mkold(__pte)); \ |
| r; \ |
| }) |
| #endif |
| |
| #ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH |
| #define ptep_clear_flush_young(__vma, __address, __ptep) \ |
| ({ \ |
| int __young; \ |
| __young = ptep_test_and_clear_young(__vma, __address, __ptep); \ |
| if (__young) \ |
| flush_tlb_page(__vma, __address); \ |
| __young; \ |
| }) |
| #endif |
| |
| #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR |
| #define ptep_get_and_clear(__mm, __address, __ptep) \ |
| ({ \ |
| pte_t __pte = *(__ptep); \ |
| pte_clear((__mm), (__address), (__ptep)); \ |
| __pte; \ |
| }) |
| #endif |
| |
| #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL |
| #define ptep_get_and_clear_full(__mm, __address, __ptep, __full) \ |
| ({ \ |
| pte_t __pte; \ |
| __pte = ptep_get_and_clear((__mm), (__address), (__ptep)); \ |
| __pte; \ |
| }) |
| #endif |
| |
| /* |
| * Some architectures may be able to avoid expensive synchronization |
| * primitives when modifications are made to PTE's which are already |
| * not present, or in the process of an address space destruction. |
| */ |
| #ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL |
| #define pte_clear_not_present_full(__mm, __address, __ptep, __full) \ |
| do { \ |
| pte_clear((__mm), (__address), (__ptep)); \ |
| } while (0) |
| #endif |
| |
| #ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH |
| #define ptep_clear_flush(__vma, __address, __ptep) \ |
| ({ \ |
| pte_t __pte; \ |
| __pte = ptep_get_and_clear((__vma)->vm_mm, __address, __ptep); \ |
| flush_tlb_page(__vma, __address); \ |
| __pte; \ |
| }) |
| #endif |
| |
| #ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT |
| struct mm_struct; |
| static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep) |
| { |
| pte_t old_pte = *ptep; |
| set_pte_at(mm, address, ptep, pte_wrprotect(old_pte)); |
| } |
| #endif |
| |
| #ifndef __HAVE_ARCH_PTE_SAME |
| #define pte_same(A,B) (pte_val(A) == pte_val(B)) |
| #endif |
| |
| #ifndef __HAVE_ARCH_PAGE_TEST_DIRTY |
| #define page_test_dirty(page) (0) |
| #endif |
| |
| #ifndef __HAVE_ARCH_PAGE_CLEAR_DIRTY |
| #define page_clear_dirty(page) do { } while (0) |
| #endif |
| |
| #ifndef __HAVE_ARCH_PAGE_TEST_DIRTY |
| #define pte_maybe_dirty(pte) pte_dirty(pte) |
| #else |
| #define pte_maybe_dirty(pte) (1) |
| #endif |
| |
| #ifndef __HAVE_ARCH_PAGE_TEST_AND_CLEAR_YOUNG |
| #define page_test_and_clear_young(page) (0) |
| #endif |
| |
| #ifndef __HAVE_ARCH_PGD_OFFSET_GATE |
| #define pgd_offset_gate(mm, addr) pgd_offset(mm, addr) |
| #endif |
| |
| #ifndef __HAVE_ARCH_MOVE_PTE |
| #define move_pte(pte, prot, old_addr, new_addr) (pte) |
| #endif |
| |
| /* |
| * When walking page tables, get the address of the next boundary, |
| * or the end address of the range if that comes earlier. Although no |
| * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout. |
| */ |
| |
| #define pgd_addr_end(addr, end) \ |
| ({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \ |
| (__boundary - 1 < (end) - 1)? __boundary: (end); \ |
| }) |
| |
| #ifndef pud_addr_end |
| #define pud_addr_end(addr, end) \ |
| ({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \ |
| (__boundary - 1 < (end) - 1)? __boundary: (end); \ |
| }) |
| #endif |
| |
| #ifndef pmd_addr_end |
| #define pmd_addr_end(addr, end) \ |
| ({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \ |
| (__boundary - 1 < (end) - 1)? __boundary: (end); \ |
| }) |
| #endif |
| |
| /* |
| * When walking page tables, we usually want to skip any p?d_none entries; |
| * and any p?d_bad entries - reporting the error before resetting to none. |
| * Do the tests inline, but report and clear the bad entry in mm/memory.c. |
| */ |
| void pgd_clear_bad(pgd_t *); |
| void pud_clear_bad(pud_t *); |
| void pmd_clear_bad(pmd_t *); |
| |
| static inline int pgd_none_or_clear_bad(pgd_t *pgd) |
| { |
| if (pgd_none(*pgd)) |
| return 1; |
| if (unlikely(pgd_bad(*pgd))) { |
| pgd_clear_bad(pgd); |
| return 1; |
| } |
| return 0; |
| } |
| |
| static inline int pud_none_or_clear_bad(pud_t *pud) |
| { |
| if (pud_none(*pud)) |
| return 1; |
| if (unlikely(pud_bad(*pud))) { |
| pud_clear_bad(pud); |
| return 1; |
| } |
| return 0; |
| } |
| |
| static inline int pmd_none_or_clear_bad(pmd_t *pmd) |
| { |
| if (pmd_none(*pmd)) |
| return 1; |
| if (unlikely(pmd_bad(*pmd))) { |
| pmd_clear_bad(pmd); |
| return 1; |
| } |
| return 0; |
| } |
| #endif /* CONFIG_MMU */ |
| |
| static inline pte_t __ptep_modify_prot_start(struct mm_struct *mm, |
| unsigned long addr, |
| pte_t *ptep) |
| { |
| /* |
| * Get the current pte state, but zero it out to make it |
| * non-present, preventing the hardware from asynchronously |
| * updating it. |
| */ |
| return ptep_get_and_clear(mm, addr, ptep); |
| } |
| |
| static inline void __ptep_modify_prot_commit(struct mm_struct *mm, |
| unsigned long addr, |
| pte_t *ptep, pte_t pte) |
| { |
| /* |
| * The pte is non-present, so there's no hardware state to |
| * preserve. |
| */ |
| set_pte_at(mm, addr, ptep, pte); |
| } |
| |
| #ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION |
| /* |
| * Start a pte protection read-modify-write transaction, which |
| * protects against asynchronous hardware modifications to the pte. |
| * The intention is not to prevent the hardware from making pte |
| * updates, but to prevent any updates it may make from being lost. |
| * |
| * This does not protect against other software modifications of the |
| * pte; the appropriate pte lock must be held over the transation. |
| * |
| * Note that this interface is intended to be batchable, meaning that |
| * ptep_modify_prot_commit may not actually update the pte, but merely |
| * queue the update to be done at some later time. The update must be |
| * actually committed before the pte lock is released, however. |
| */ |
| static inline pte_t ptep_modify_prot_start(struct mm_struct *mm, |
| unsigned long addr, |
| pte_t *ptep) |
| { |
| return __ptep_modify_prot_start(mm, addr, ptep); |
| } |
| |
| /* |
| * Commit an update to a pte, leaving any hardware-controlled bits in |
| * the PTE unmodified. |
| */ |
| static inline void ptep_modify_prot_commit(struct mm_struct *mm, |
| unsigned long addr, |
| pte_t *ptep, pte_t pte) |
| { |
| __ptep_modify_prot_commit(mm, addr, ptep, pte); |
| } |
| #endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */ |
| |
| /* |
| * A facility to provide lazy MMU batching. This allows PTE updates and |
| * page invalidations to be delayed until a call to leave lazy MMU mode |
| * is issued. Some architectures may benefit from doing this, and it is |
| * beneficial for both shadow and direct mode hypervisors, which may batch |
| * the PTE updates which happen during this window. Note that using this |
| * interface requires that read hazards be removed from the code. A read |
| * hazard could result in the direct mode hypervisor case, since the actual |
| * write to the page tables may not yet have taken place, so reads though |
| * a raw PTE pointer after it has been modified are not guaranteed to be |
| * up to date. This mode can only be entered and left under the protection of |
| * the page table locks for all page tables which may be modified. In the UP |
| * case, this is required so that preemption is disabled, and in the SMP case, |
| * it must synchronize the delayed page table writes properly on other CPUs. |
| */ |
| #ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE |
| #define arch_enter_lazy_mmu_mode() do {} while (0) |
| #define arch_leave_lazy_mmu_mode() do {} while (0) |
| #define arch_flush_lazy_mmu_mode() do {} while (0) |
| #endif |
| |
| /* |
| * A facility to provide batching of the reload of page tables with the |
| * actual context switch code for paravirtualized guests. By convention, |
| * only one of the lazy modes (CPU, MMU) should be active at any given |
| * time, entry should never be nested, and entry and exits should always |
| * be paired. This is for sanity of maintaining and reasoning about the |
| * kernel code. |
| */ |
| #ifndef __HAVE_ARCH_ENTER_LAZY_CPU_MODE |
| #define arch_enter_lazy_cpu_mode() do {} while (0) |
| #define arch_leave_lazy_cpu_mode() do {} while (0) |
| #define arch_flush_lazy_cpu_mode() do {} while (0) |
| #endif |
| |
| #endif /* !__ASSEMBLY__ */ |
| |
| #endif /* _ASM_GENERIC_PGTABLE_H */ |