blob: 9f2b552aee33998680c2dc2c72e81c28f99209f5 [file] [log] [blame]
/*
* Copyright (c) 2014-2015 Hisilicon Limited.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
#include <linux/clk.h>
#include <linux/cpumask.h>
#include <linux/etherdevice.h>
#include <linux/if_vlan.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
#include <linux/module.h>
#include <linux/phy.h>
#include <linux/platform_device.h>
#include <linux/skbuff.h>
#include "hnae.h"
#include "hns_enet.h"
#include "hns_dsaf_mac.h"
#define NIC_MAX_Q_PER_VF 16
#define HNS_NIC_TX_TIMEOUT (5 * HZ)
#define SERVICE_TIMER_HZ (1 * HZ)
#define NIC_TX_CLEAN_MAX_NUM 256
#define NIC_RX_CLEAN_MAX_NUM 64
#define RCB_IRQ_NOT_INITED 0
#define RCB_IRQ_INITED 1
#define HNS_BUFFER_SIZE_2048 2048
#define BD_MAX_SEND_SIZE 8191
#define SKB_TMP_LEN(SKB) \
(((SKB)->transport_header - (SKB)->mac_header) + tcp_hdrlen(SKB))
static void fill_v2_desc(struct hnae_ring *ring, void *priv,
int size, dma_addr_t dma, int frag_end,
int buf_num, enum hns_desc_type type, int mtu)
{
struct hnae_desc *desc = &ring->desc[ring->next_to_use];
struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
struct iphdr *iphdr;
struct ipv6hdr *ipv6hdr;
struct sk_buff *skb;
__be16 protocol;
u8 bn_pid = 0;
u8 rrcfv = 0;
u8 ip_offset = 0;
u8 tvsvsn = 0;
u16 mss = 0;
u8 l4_len = 0;
u16 paylen = 0;
desc_cb->priv = priv;
desc_cb->length = size;
desc_cb->dma = dma;
desc_cb->type = type;
desc->addr = cpu_to_le64(dma);
desc->tx.send_size = cpu_to_le16((u16)size);
/* config bd buffer end */
hnae_set_bit(rrcfv, HNSV2_TXD_VLD_B, 1);
hnae_set_field(bn_pid, HNSV2_TXD_BUFNUM_M, 0, buf_num - 1);
/* fill port_id in the tx bd for sending management pkts */
hnae_set_field(bn_pid, HNSV2_TXD_PORTID_M,
HNSV2_TXD_PORTID_S, ring->q->handle->dport_id);
if (type == DESC_TYPE_SKB) {
skb = (struct sk_buff *)priv;
if (skb->ip_summed == CHECKSUM_PARTIAL) {
skb_reset_mac_len(skb);
protocol = skb->protocol;
ip_offset = ETH_HLEN;
if (protocol == htons(ETH_P_8021Q)) {
ip_offset += VLAN_HLEN;
protocol = vlan_get_protocol(skb);
skb->protocol = protocol;
}
if (skb->protocol == htons(ETH_P_IP)) {
iphdr = ip_hdr(skb);
hnae_set_bit(rrcfv, HNSV2_TXD_L3CS_B, 1);
hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1);
/* check for tcp/udp header */
if (iphdr->protocol == IPPROTO_TCP &&
skb_is_gso(skb)) {
hnae_set_bit(tvsvsn,
HNSV2_TXD_TSE_B, 1);
l4_len = tcp_hdrlen(skb);
mss = skb_shinfo(skb)->gso_size;
paylen = skb->len - SKB_TMP_LEN(skb);
}
} else if (skb->protocol == htons(ETH_P_IPV6)) {
hnae_set_bit(tvsvsn, HNSV2_TXD_IPV6_B, 1);
ipv6hdr = ipv6_hdr(skb);
hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1);
/* check for tcp/udp header */
if (ipv6hdr->nexthdr == IPPROTO_TCP &&
skb_is_gso(skb) && skb_is_gso_v6(skb)) {
hnae_set_bit(tvsvsn,
HNSV2_TXD_TSE_B, 1);
l4_len = tcp_hdrlen(skb);
mss = skb_shinfo(skb)->gso_size;
paylen = skb->len - SKB_TMP_LEN(skb);
}
}
desc->tx.ip_offset = ip_offset;
desc->tx.tse_vlan_snap_v6_sctp_nth = tvsvsn;
desc->tx.mss = cpu_to_le16(mss);
desc->tx.l4_len = l4_len;
desc->tx.paylen = cpu_to_le16(paylen);
}
}
hnae_set_bit(rrcfv, HNSV2_TXD_FE_B, frag_end);
desc->tx.bn_pid = bn_pid;
desc->tx.ra_ri_cs_fe_vld = rrcfv;
ring_ptr_move_fw(ring, next_to_use);
}
static const struct acpi_device_id hns_enet_acpi_match[] = {
{ "HISI00C1", 0 },
{ "HISI00C2", 0 },
{ },
};
MODULE_DEVICE_TABLE(acpi, hns_enet_acpi_match);
static void fill_desc(struct hnae_ring *ring, void *priv,
int size, dma_addr_t dma, int frag_end,
int buf_num, enum hns_desc_type type, int mtu)
{
struct hnae_desc *desc = &ring->desc[ring->next_to_use];
struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
struct sk_buff *skb;
__be16 protocol;
u32 ip_offset;
u32 asid_bufnum_pid = 0;
u32 flag_ipoffset = 0;
desc_cb->priv = priv;
desc_cb->length = size;
desc_cb->dma = dma;
desc_cb->type = type;
desc->addr = cpu_to_le64(dma);
desc->tx.send_size = cpu_to_le16((u16)size);
/*config bd buffer end */
flag_ipoffset |= 1 << HNS_TXD_VLD_B;
asid_bufnum_pid |= buf_num << HNS_TXD_BUFNUM_S;
if (type == DESC_TYPE_SKB) {
skb = (struct sk_buff *)priv;
if (skb->ip_summed == CHECKSUM_PARTIAL) {
protocol = skb->protocol;
ip_offset = ETH_HLEN;
/*if it is a SW VLAN check the next protocol*/
if (protocol == htons(ETH_P_8021Q)) {
ip_offset += VLAN_HLEN;
protocol = vlan_get_protocol(skb);
skb->protocol = protocol;
}
if (skb->protocol == htons(ETH_P_IP)) {
flag_ipoffset |= 1 << HNS_TXD_L3CS_B;
/* check for tcp/udp header */
flag_ipoffset |= 1 << HNS_TXD_L4CS_B;
} else if (skb->protocol == htons(ETH_P_IPV6)) {
/* ipv6 has not l3 cs, check for L4 header */
flag_ipoffset |= 1 << HNS_TXD_L4CS_B;
}
flag_ipoffset |= ip_offset << HNS_TXD_IPOFFSET_S;
}
}
flag_ipoffset |= frag_end << HNS_TXD_FE_B;
desc->tx.asid_bufnum_pid = cpu_to_le16(asid_bufnum_pid);
desc->tx.flag_ipoffset = cpu_to_le32(flag_ipoffset);
ring_ptr_move_fw(ring, next_to_use);
}
static void unfill_desc(struct hnae_ring *ring)
{
ring_ptr_move_bw(ring, next_to_use);
}
static int hns_nic_maybe_stop_tx(
struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring)
{
struct sk_buff *skb = *out_skb;
struct sk_buff *new_skb = NULL;
int buf_num;
/* no. of segments (plus a header) */
buf_num = skb_shinfo(skb)->nr_frags + 1;
if (unlikely(buf_num > ring->max_desc_num_per_pkt)) {
if (ring_space(ring) < 1)
return -EBUSY;
new_skb = skb_copy(skb, GFP_ATOMIC);
if (!new_skb)
return -ENOMEM;
dev_kfree_skb_any(skb);
*out_skb = new_skb;
buf_num = 1;
} else if (buf_num > ring_space(ring)) {
return -EBUSY;
}
*bnum = buf_num;
return 0;
}
static int hns_nic_maybe_stop_tso(
struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring)
{
int i;
int size;
int buf_num;
int frag_num;
struct sk_buff *skb = *out_skb;
struct sk_buff *new_skb = NULL;
struct skb_frag_struct *frag;
size = skb_headlen(skb);
buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
frag_num = skb_shinfo(skb)->nr_frags;
for (i = 0; i < frag_num; i++) {
frag = &skb_shinfo(skb)->frags[i];
size = skb_frag_size(frag);
buf_num += (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
}
if (unlikely(buf_num > ring->max_desc_num_per_pkt)) {
buf_num = (skb->len + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
if (ring_space(ring) < buf_num)
return -EBUSY;
/* manual split the send packet */
new_skb = skb_copy(skb, GFP_ATOMIC);
if (!new_skb)
return -ENOMEM;
dev_kfree_skb_any(skb);
*out_skb = new_skb;
} else if (ring_space(ring) < buf_num) {
return -EBUSY;
}
*bnum = buf_num;
return 0;
}
static void fill_tso_desc(struct hnae_ring *ring, void *priv,
int size, dma_addr_t dma, int frag_end,
int buf_num, enum hns_desc_type type, int mtu)
{
int frag_buf_num;
int sizeoflast;
int k;
frag_buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
sizeoflast = size % BD_MAX_SEND_SIZE;
sizeoflast = sizeoflast ? sizeoflast : BD_MAX_SEND_SIZE;
/* when the frag size is bigger than hardware, split this frag */
for (k = 0; k < frag_buf_num; k++)
fill_v2_desc(ring, priv,
(k == frag_buf_num - 1) ?
sizeoflast : BD_MAX_SEND_SIZE,
dma + BD_MAX_SEND_SIZE * k,
frag_end && (k == frag_buf_num - 1) ? 1 : 0,
buf_num,
(type == DESC_TYPE_SKB && !k) ?
DESC_TYPE_SKB : DESC_TYPE_PAGE,
mtu);
}
netdev_tx_t hns_nic_net_xmit_hw(struct net_device *ndev,
struct sk_buff *skb,
struct hns_nic_ring_data *ring_data)
{
struct hns_nic_priv *priv = netdev_priv(ndev);
struct hnae_ring *ring = ring_data->ring;
struct device *dev = ring_to_dev(ring);
struct netdev_queue *dev_queue;
struct skb_frag_struct *frag;
int buf_num;
int seg_num;
dma_addr_t dma;
int size, next_to_use;
int i;
switch (priv->ops.maybe_stop_tx(&skb, &buf_num, ring)) {
case -EBUSY:
ring->stats.tx_busy++;
goto out_net_tx_busy;
case -ENOMEM:
ring->stats.sw_err_cnt++;
netdev_err(ndev, "no memory to xmit!\n");
goto out_err_tx_ok;
default:
break;
}
/* no. of segments (plus a header) */
seg_num = skb_shinfo(skb)->nr_frags + 1;
next_to_use = ring->next_to_use;
/* fill the first part */
size = skb_headlen(skb);
dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE);
if (dma_mapping_error(dev, dma)) {
netdev_err(ndev, "TX head DMA map failed\n");
ring->stats.sw_err_cnt++;
goto out_err_tx_ok;
}
priv->ops.fill_desc(ring, skb, size, dma, seg_num == 1 ? 1 : 0,
buf_num, DESC_TYPE_SKB, ndev->mtu);
/* fill the fragments */
for (i = 1; i < seg_num; i++) {
frag = &skb_shinfo(skb)->frags[i - 1];
size = skb_frag_size(frag);
dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE);
if (dma_mapping_error(dev, dma)) {
netdev_err(ndev, "TX frag(%d) DMA map failed\n", i);
ring->stats.sw_err_cnt++;
goto out_map_frag_fail;
}
priv->ops.fill_desc(ring, skb_frag_page(frag), size, dma,
seg_num - 1 == i ? 1 : 0, buf_num,
DESC_TYPE_PAGE, ndev->mtu);
}
/*complete translate all packets*/
dev_queue = netdev_get_tx_queue(ndev, skb->queue_mapping);
netdev_tx_sent_queue(dev_queue, skb->len);
netif_trans_update(ndev);
ndev->stats.tx_bytes += skb->len;
ndev->stats.tx_packets++;
wmb(); /* commit all data before submit */
assert(skb->queue_mapping < priv->ae_handle->q_num);
hnae_queue_xmit(priv->ae_handle->qs[skb->queue_mapping], buf_num);
ring->stats.tx_pkts++;
ring->stats.tx_bytes += skb->len;
return NETDEV_TX_OK;
out_map_frag_fail:
while (ring->next_to_use != next_to_use) {
unfill_desc(ring);
if (ring->next_to_use != next_to_use)
dma_unmap_page(dev,
ring->desc_cb[ring->next_to_use].dma,
ring->desc_cb[ring->next_to_use].length,
DMA_TO_DEVICE);
else
dma_unmap_single(dev,
ring->desc_cb[next_to_use].dma,
ring->desc_cb[next_to_use].length,
DMA_TO_DEVICE);
}
out_err_tx_ok:
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
out_net_tx_busy:
netif_stop_subqueue(ndev, skb->queue_mapping);
/* Herbert's original patch had:
* smp_mb__after_netif_stop_queue();
* but since that doesn't exist yet, just open code it.
*/
smp_mb();
return NETDEV_TX_BUSY;
}
/**
* hns_nic_get_headlen - determine size of header for RSC/LRO/GRO/FCOE
* @data: pointer to the start of the headers
* @max: total length of section to find headers in
*
* This function is meant to determine the length of headers that will
* be recognized by hardware for LRO, GRO, and RSC offloads. The main
* motivation of doing this is to only perform one pull for IPv4 TCP
* packets so that we can do basic things like calculating the gso_size
* based on the average data per packet.
**/
static unsigned int hns_nic_get_headlen(unsigned char *data, u32 flag,
unsigned int max_size)
{
unsigned char *network;
u8 hlen;
/* this should never happen, but better safe than sorry */
if (max_size < ETH_HLEN)
return max_size;
/* initialize network frame pointer */
network = data;
/* set first protocol and move network header forward */
network += ETH_HLEN;
/* handle any vlan tag if present */
if (hnae_get_field(flag, HNS_RXD_VLAN_M, HNS_RXD_VLAN_S)
== HNS_RX_FLAG_VLAN_PRESENT) {
if ((typeof(max_size))(network - data) > (max_size - VLAN_HLEN))
return max_size;
network += VLAN_HLEN;
}
/* handle L3 protocols */
if (hnae_get_field(flag, HNS_RXD_L3ID_M, HNS_RXD_L3ID_S)
== HNS_RX_FLAG_L3ID_IPV4) {
if ((typeof(max_size))(network - data) >
(max_size - sizeof(struct iphdr)))
return max_size;
/* access ihl as a u8 to avoid unaligned access on ia64 */
hlen = (network[0] & 0x0F) << 2;
/* verify hlen meets minimum size requirements */
if (hlen < sizeof(struct iphdr))
return network - data;
/* record next protocol if header is present */
} else if (hnae_get_field(flag, HNS_RXD_L3ID_M, HNS_RXD_L3ID_S)
== HNS_RX_FLAG_L3ID_IPV6) {
if ((typeof(max_size))(network - data) >
(max_size - sizeof(struct ipv6hdr)))
return max_size;
/* record next protocol */
hlen = sizeof(struct ipv6hdr);
} else {
return network - data;
}
/* relocate pointer to start of L4 header */
network += hlen;
/* finally sort out TCP/UDP */
if (hnae_get_field(flag, HNS_RXD_L4ID_M, HNS_RXD_L4ID_S)
== HNS_RX_FLAG_L4ID_TCP) {
if ((typeof(max_size))(network - data) >
(max_size - sizeof(struct tcphdr)))
return max_size;
/* access doff as a u8 to avoid unaligned access on ia64 */
hlen = (network[12] & 0xF0) >> 2;
/* verify hlen meets minimum size requirements */
if (hlen < sizeof(struct tcphdr))
return network - data;
network += hlen;
} else if (hnae_get_field(flag, HNS_RXD_L4ID_M, HNS_RXD_L4ID_S)
== HNS_RX_FLAG_L4ID_UDP) {
if ((typeof(max_size))(network - data) >
(max_size - sizeof(struct udphdr)))
return max_size;
network += sizeof(struct udphdr);
}
/* If everything has gone correctly network should be the
* data section of the packet and will be the end of the header.
* If not then it probably represents the end of the last recognized
* header.
*/
if ((typeof(max_size))(network - data) < max_size)
return network - data;
else
return max_size;
}
static void hns_nic_reuse_page(struct sk_buff *skb, int i,
struct hnae_ring *ring, int pull_len,
struct hnae_desc_cb *desc_cb)
{
struct hnae_desc *desc;
int truesize, size;
int last_offset;
bool twobufs;
twobufs = ((PAGE_SIZE < 8192) &&
hnae_buf_size(ring) == HNS_BUFFER_SIZE_2048);
desc = &ring->desc[ring->next_to_clean];
size = le16_to_cpu(desc->rx.size);
if (twobufs) {
truesize = hnae_buf_size(ring);
} else {
truesize = ALIGN(size, L1_CACHE_BYTES);
last_offset = hnae_page_size(ring) - hnae_buf_size(ring);
}
skb_add_rx_frag(skb, i, desc_cb->priv, desc_cb->page_offset + pull_len,
size - pull_len, truesize - pull_len);
/* avoid re-using remote pages,flag default unreuse */
if (unlikely(page_to_nid(desc_cb->priv) != numa_node_id()))
return;
if (twobufs) {
/* if we are only owner of page we can reuse it */
if (likely(page_count(desc_cb->priv) == 1)) {
/* flip page offset to other buffer */
desc_cb->page_offset ^= truesize;
desc_cb->reuse_flag = 1;
/* bump ref count on page before it is given*/
get_page(desc_cb->priv);
}
return;
}
/* move offset up to the next cache line */
desc_cb->page_offset += truesize;
if (desc_cb->page_offset <= last_offset) {
desc_cb->reuse_flag = 1;
/* bump ref count on page before it is given*/
get_page(desc_cb->priv);
}
}
static void get_v2rx_desc_bnum(u32 bnum_flag, int *out_bnum)
{
*out_bnum = hnae_get_field(bnum_flag,
HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S) + 1;
}
static void get_rx_desc_bnum(u32 bnum_flag, int *out_bnum)
{
*out_bnum = hnae_get_field(bnum_flag,
HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S);
}
static void hns_nic_rx_checksum(struct hns_nic_ring_data *ring_data,
struct sk_buff *skb, u32 flag)
{
struct net_device *netdev = ring_data->napi.dev;
u32 l3id;
u32 l4id;
/* check if RX checksum offload is enabled */
if (unlikely(!(netdev->features & NETIF_F_RXCSUM)))
return;
/* In hardware, we only support checksum for the following protocols:
* 1) IPv4,
* 2) TCP(over IPv4 or IPv6),
* 3) UDP(over IPv4 or IPv6),
* 4) SCTP(over IPv4 or IPv6)
* but we support many L3(IPv4, IPv6, MPLS, PPPoE etc) and L4(TCP,
* UDP, GRE, SCTP, IGMP, ICMP etc.) protocols.
*
* Hardware limitation:
* Our present hardware RX Descriptor lacks L3/L4 checksum "Status &
* Error" bit (which usually can be used to indicate whether checksum
* was calculated by the hardware and if there was any error encountered
* during checksum calculation).
*
* Software workaround:
* We do get info within the RX descriptor about the kind of L3/L4
* protocol coming in the packet and the error status. These errors
* might not just be checksum errors but could be related to version,
* length of IPv4, UDP, TCP etc.
* Because there is no-way of knowing if it is a L3/L4 error due to bad
* checksum or any other L3/L4 error, we will not (cannot) convey
* checksum status for such cases to upper stack and will not maintain
* the RX L3/L4 checksum counters as well.
*/
l3id = hnae_get_field(flag, HNS_RXD_L3ID_M, HNS_RXD_L3ID_S);
l4id = hnae_get_field(flag, HNS_RXD_L4ID_M, HNS_RXD_L4ID_S);
/* check L3 protocol for which checksum is supported */
if ((l3id != HNS_RX_FLAG_L3ID_IPV4) && (l3id != HNS_RX_FLAG_L3ID_IPV6))
return;
/* check for any(not just checksum)flagged L3 protocol errors */
if (unlikely(hnae_get_bit(flag, HNS_RXD_L3E_B)))
return;
/* we do not support checksum of fragmented packets */
if (unlikely(hnae_get_bit(flag, HNS_RXD_FRAG_B)))
return;
/* check L4 protocol for which checksum is supported */
if ((l4id != HNS_RX_FLAG_L4ID_TCP) &&
(l4id != HNS_RX_FLAG_L4ID_UDP) &&
(l4id != HNS_RX_FLAG_L4ID_SCTP))
return;
/* check for any(not just checksum)flagged L4 protocol errors */
if (unlikely(hnae_get_bit(flag, HNS_RXD_L4E_B)))
return;
/* now, this has to be a packet with valid RX checksum */
skb->ip_summed = CHECKSUM_UNNECESSARY;
}
static int hns_nic_poll_rx_skb(struct hns_nic_ring_data *ring_data,
struct sk_buff **out_skb, int *out_bnum)
{
struct hnae_ring *ring = ring_data->ring;
struct net_device *ndev = ring_data->napi.dev;
struct hns_nic_priv *priv = netdev_priv(ndev);
struct sk_buff *skb;
struct hnae_desc *desc;
struct hnae_desc_cb *desc_cb;
unsigned char *va;
int bnum, length, i;
int pull_len;
u32 bnum_flag;
desc = &ring->desc[ring->next_to_clean];
desc_cb = &ring->desc_cb[ring->next_to_clean];
prefetch(desc);
va = (unsigned char *)desc_cb->buf + desc_cb->page_offset;
/* prefetch first cache line of first page */
prefetch(va);
#if L1_CACHE_BYTES < 128
prefetch(va + L1_CACHE_BYTES);
#endif
skb = *out_skb = napi_alloc_skb(&ring_data->napi,
HNS_RX_HEAD_SIZE);
if (unlikely(!skb)) {
netdev_err(ndev, "alloc rx skb fail\n");
ring->stats.sw_err_cnt++;
return -ENOMEM;
}
prefetchw(skb->data);
length = le16_to_cpu(desc->rx.pkt_len);
bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag);
priv->ops.get_rxd_bnum(bnum_flag, &bnum);
*out_bnum = bnum;
if (length <= HNS_RX_HEAD_SIZE) {
memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long)));
/* we can reuse buffer as-is, just make sure it is local */
if (likely(page_to_nid(desc_cb->priv) == numa_node_id()))
desc_cb->reuse_flag = 1;
else /* this page cannot be reused so discard it */
put_page(desc_cb->priv);
ring_ptr_move_fw(ring, next_to_clean);
if (unlikely(bnum != 1)) { /* check err*/
*out_bnum = 1;
goto out_bnum_err;
}
} else {
ring->stats.seg_pkt_cnt++;
pull_len = hns_nic_get_headlen(va, bnum_flag, HNS_RX_HEAD_SIZE);
memcpy(__skb_put(skb, pull_len), va,
ALIGN(pull_len, sizeof(long)));
hns_nic_reuse_page(skb, 0, ring, pull_len, desc_cb);
ring_ptr_move_fw(ring, next_to_clean);
if (unlikely(bnum >= (int)MAX_SKB_FRAGS)) { /* check err*/
*out_bnum = 1;
goto out_bnum_err;
}
for (i = 1; i < bnum; i++) {
desc = &ring->desc[ring->next_to_clean];
desc_cb = &ring->desc_cb[ring->next_to_clean];
hns_nic_reuse_page(skb, i, ring, 0, desc_cb);
ring_ptr_move_fw(ring, next_to_clean);
}
}
/* check except process, free skb and jump the desc */
if (unlikely((!bnum) || (bnum > ring->max_desc_num_per_pkt))) {
out_bnum_err:
*out_bnum = *out_bnum ? *out_bnum : 1; /* ntc moved,cannot 0*/
netdev_err(ndev, "invalid bnum(%d,%d,%d,%d),%016llx,%016llx\n",
bnum, ring->max_desc_num_per_pkt,
length, (int)MAX_SKB_FRAGS,
((u64 *)desc)[0], ((u64 *)desc)[1]);
ring->stats.err_bd_num++;
dev_kfree_skb_any(skb);
return -EDOM;
}
bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag);
if (unlikely(!hnae_get_bit(bnum_flag, HNS_RXD_VLD_B))) {
netdev_err(ndev, "no valid bd,%016llx,%016llx\n",
((u64 *)desc)[0], ((u64 *)desc)[1]);
ring->stats.non_vld_descs++;
dev_kfree_skb_any(skb);
return -EINVAL;
}
if (unlikely((!desc->rx.pkt_len) ||
hnae_get_bit(bnum_flag, HNS_RXD_DROP_B))) {
ring->stats.err_pkt_len++;
dev_kfree_skb_any(skb);
return -EFAULT;
}
if (unlikely(hnae_get_bit(bnum_flag, HNS_RXD_L2E_B))) {
ring->stats.l2_err++;
dev_kfree_skb_any(skb);
return -EFAULT;
}
ring->stats.rx_pkts++;
ring->stats.rx_bytes += skb->len;
/* indicate to upper stack if our hardware has already calculated
* the RX checksum
*/
hns_nic_rx_checksum(ring_data, skb, bnum_flag);
return 0;
}
static void
hns_nic_alloc_rx_buffers(struct hns_nic_ring_data *ring_data, int cleand_count)
{
int i, ret;
struct hnae_desc_cb res_cbs;
struct hnae_desc_cb *desc_cb;
struct hnae_ring *ring = ring_data->ring;
struct net_device *ndev = ring_data->napi.dev;
for (i = 0; i < cleand_count; i++) {
desc_cb = &ring->desc_cb[ring->next_to_use];
if (desc_cb->reuse_flag) {
ring->stats.reuse_pg_cnt++;
hnae_reuse_buffer(ring, ring->next_to_use);
} else {
ret = hnae_reserve_buffer_map(ring, &res_cbs);
if (ret) {
ring->stats.sw_err_cnt++;
netdev_err(ndev, "hnae reserve buffer map failed.\n");
break;
}
hnae_replace_buffer(ring, ring->next_to_use, &res_cbs);
}
ring_ptr_move_fw(ring, next_to_use);
}
wmb(); /* make all data has been write before submit */
writel_relaxed(i, ring->io_base + RCB_REG_HEAD);
}
/* return error number for error or number of desc left to take
*/
static void hns_nic_rx_up_pro(struct hns_nic_ring_data *ring_data,
struct sk_buff *skb)
{
struct net_device *ndev = ring_data->napi.dev;
skb->protocol = eth_type_trans(skb, ndev);
(void)napi_gro_receive(&ring_data->napi, skb);
}
static int hns_desc_unused(struct hnae_ring *ring)
{
int ntc = ring->next_to_clean;
int ntu = ring->next_to_use;
return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu;
}
#define HNS_LOWEST_LATENCY_RATE 27 /* 27 MB/s */
#define HNS_LOW_LATENCY_RATE 80 /* 80 MB/s */
#define HNS_COAL_BDNUM 3
static u32 hns_coal_rx_bdnum(struct hnae_ring *ring)
{
bool coal_enable = ring->q->handle->coal_adapt_en;
if (coal_enable &&
ring->coal_last_rx_bytes > HNS_LOWEST_LATENCY_RATE)
return HNS_COAL_BDNUM;
else
return 0;
}
static void hns_update_rx_rate(struct hnae_ring *ring)
{
bool coal_enable = ring->q->handle->coal_adapt_en;
u32 time_passed_ms;
u64 total_bytes;
if (!coal_enable ||
time_before(jiffies, ring->coal_last_jiffies + (HZ >> 4)))
return;
/* ring->stats.rx_bytes overflowed */
if (ring->coal_last_rx_bytes > ring->stats.rx_bytes) {
ring->coal_last_rx_bytes = ring->stats.rx_bytes;
ring->coal_last_jiffies = jiffies;
return;
}
total_bytes = ring->stats.rx_bytes - ring->coal_last_rx_bytes;
time_passed_ms = jiffies_to_msecs(jiffies - ring->coal_last_jiffies);
do_div(total_bytes, time_passed_ms);
ring->coal_rx_rate = total_bytes >> 10;
ring->coal_last_rx_bytes = ring->stats.rx_bytes;
ring->coal_last_jiffies = jiffies;
}
/**
* smooth_alg - smoothing algrithm for adjusting coalesce parameter
**/
static u32 smooth_alg(u32 new_param, u32 old_param)
{
u32 gap = (new_param > old_param) ? new_param - old_param
: old_param - new_param;
if (gap > 8)
gap >>= 3;
if (new_param > old_param)
return old_param + gap;
else
return old_param - gap;
}
/**
* hns_nic_adp_coalesce - self adapte coalesce according to rx rate
* @ring_data: pointer to hns_nic_ring_data
**/
static void hns_nic_adpt_coalesce(struct hns_nic_ring_data *ring_data)
{
struct hnae_ring *ring = ring_data->ring;
struct hnae_handle *handle = ring->q->handle;
u32 new_coal_param, old_coal_param = ring->coal_param;
if (ring->coal_rx_rate < HNS_LOWEST_LATENCY_RATE)
new_coal_param = HNAE_LOWEST_LATENCY_COAL_PARAM;
else if (ring->coal_rx_rate < HNS_LOW_LATENCY_RATE)
new_coal_param = HNAE_LOW_LATENCY_COAL_PARAM;
else
new_coal_param = HNAE_BULK_LATENCY_COAL_PARAM;
if (new_coal_param == old_coal_param &&
new_coal_param == handle->coal_param)
return;
new_coal_param = smooth_alg(new_coal_param, old_coal_param);
ring->coal_param = new_coal_param;
/**
* Because all ring in one port has one coalesce param, when one ring
* calculate its own coalesce param, it cannot write to hardware at
* once. There are three conditions as follows:
* 1. current ring's coalesce param is larger than the hardware.
* 2. or ring which adapt last time can change again.
* 3. timeout.
*/
if (new_coal_param == handle->coal_param) {
handle->coal_last_jiffies = jiffies;
handle->coal_ring_idx = ring_data->queue_index;
} else if (new_coal_param > handle->coal_param ||
handle->coal_ring_idx == ring_data->queue_index ||
time_after(jiffies, handle->coal_last_jiffies + (HZ >> 4))) {
handle->dev->ops->set_coalesce_usecs(handle,
new_coal_param);
handle->dev->ops->set_coalesce_frames(handle,
1, new_coal_param);
handle->coal_param = new_coal_param;
handle->coal_ring_idx = ring_data->queue_index;
handle->coal_last_jiffies = jiffies;
}
}
static int hns_nic_rx_poll_one(struct hns_nic_ring_data *ring_data,
int budget, void *v)
{
struct hnae_ring *ring = ring_data->ring;
struct sk_buff *skb;
int num, bnum;
#define RCB_NOF_ALLOC_RX_BUFF_ONCE 16
int recv_pkts, recv_bds, clean_count, err;
int unused_count = hns_desc_unused(ring);
num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
rmb(); /* make sure num taken effect before the other data is touched */
recv_pkts = 0, recv_bds = 0, clean_count = 0;
num -= unused_count;
while (recv_pkts < budget && recv_bds < num) {
/* reuse or realloc buffers */
if (clean_count + unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) {
hns_nic_alloc_rx_buffers(ring_data,
clean_count + unused_count);
clean_count = 0;
unused_count = hns_desc_unused(ring);
}
/* poll one pkt */
err = hns_nic_poll_rx_skb(ring_data, &skb, &bnum);
if (unlikely(!skb)) /* this fault cannot be repaired */
goto out;
recv_bds += bnum;
clean_count += bnum;
if (unlikely(err)) { /* do jump the err */
recv_pkts++;
continue;
}
/* do update ip stack process*/
((void (*)(struct hns_nic_ring_data *, struct sk_buff *))v)(
ring_data, skb);
recv_pkts++;
}
out:
/* make all data has been write before submit */
if (clean_count + unused_count > 0)
hns_nic_alloc_rx_buffers(ring_data,
clean_count + unused_count);
return recv_pkts;
}
static bool hns_nic_rx_fini_pro(struct hns_nic_ring_data *ring_data)
{
struct hnae_ring *ring = ring_data->ring;
int num = 0;
bool rx_stopped;
hns_update_rx_rate(ring);
/* for hardware bug fixed */
ring_data->ring->q->handle->dev->ops->toggle_ring_irq(ring, 0);
num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
if (num <= hns_coal_rx_bdnum(ring)) {
if (ring->q->handle->coal_adapt_en)
hns_nic_adpt_coalesce(ring_data);
rx_stopped = true;
} else {
ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
ring_data->ring, 1);
rx_stopped = false;
}
return rx_stopped;
}
static bool hns_nic_rx_fini_pro_v2(struct hns_nic_ring_data *ring_data)
{
struct hnae_ring *ring = ring_data->ring;
int num;
hns_update_rx_rate(ring);
num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
if (num <= hns_coal_rx_bdnum(ring)) {
if (ring->q->handle->coal_adapt_en)
hns_nic_adpt_coalesce(ring_data);
return true;
}
return false;
}
static inline void hns_nic_reclaim_one_desc(struct hnae_ring *ring,
int *bytes, int *pkts)
{
struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
(*pkts) += (desc_cb->type == DESC_TYPE_SKB);
(*bytes) += desc_cb->length;
/* desc_cb will be cleaned, after hnae_free_buffer_detach*/
hnae_free_buffer_detach(ring, ring->next_to_clean);
ring_ptr_move_fw(ring, next_to_clean);
}
static int is_valid_clean_head(struct hnae_ring *ring, int h)
{
int u = ring->next_to_use;
int c = ring->next_to_clean;
if (unlikely(h > ring->desc_num))
return 0;
assert(u > 0 && u < ring->desc_num);
assert(c > 0 && c < ring->desc_num);
assert(u != c && h != c); /* must be checked before call this func */
return u > c ? (h > c && h <= u) : (h > c || h <= u);
}
/* netif_tx_lock will turn down the performance, set only when necessary */
#ifdef CONFIG_NET_POLL_CONTROLLER
#define NETIF_TX_LOCK(ring) spin_lock(&(ring)->lock)
#define NETIF_TX_UNLOCK(ring) spin_unlock(&(ring)->lock)
#else
#define NETIF_TX_LOCK(ring)
#define NETIF_TX_UNLOCK(ring)
#endif
/* reclaim all desc in one budget
* return error or number of desc left
*/
static int hns_nic_tx_poll_one(struct hns_nic_ring_data *ring_data,
int budget, void *v)
{
struct hnae_ring *ring = ring_data->ring;
struct net_device *ndev = ring_data->napi.dev;
struct netdev_queue *dev_queue;
struct hns_nic_priv *priv = netdev_priv(ndev);
int head;
int bytes, pkts;
NETIF_TX_LOCK(ring);
head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
rmb(); /* make sure head is ready before touch any data */
if (is_ring_empty(ring) || head == ring->next_to_clean) {
NETIF_TX_UNLOCK(ring);
return 0; /* no data to poll */
}
if (!is_valid_clean_head(ring, head)) {
netdev_err(ndev, "wrong head (%d, %d-%d)\n", head,
ring->next_to_use, ring->next_to_clean);
ring->stats.io_err_cnt++;
NETIF_TX_UNLOCK(ring);
return -EIO;
}
bytes = 0;
pkts = 0;
while (head != ring->next_to_clean) {
hns_nic_reclaim_one_desc(ring, &bytes, &pkts);
/* issue prefetch for next Tx descriptor */
prefetch(&ring->desc_cb[ring->next_to_clean]);
}
NETIF_TX_UNLOCK(ring);
dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index);
netdev_tx_completed_queue(dev_queue, pkts, bytes);
if (unlikely(priv->link && !netif_carrier_ok(ndev)))
netif_carrier_on(ndev);
if (unlikely(pkts && netif_carrier_ok(ndev) &&
(ring_space(ring) >= ring->max_desc_num_per_pkt * 2))) {
/* Make sure that anybody stopping the queue after this
* sees the new next_to_clean.
*/
smp_mb();
if (netif_tx_queue_stopped(dev_queue) &&
!test_bit(NIC_STATE_DOWN, &priv->state)) {
netif_tx_wake_queue(dev_queue);
ring->stats.restart_queue++;
}
}
return 0;
}
static bool hns_nic_tx_fini_pro(struct hns_nic_ring_data *ring_data)
{
struct hnae_ring *ring = ring_data->ring;
int head;
ring_data->ring->q->handle->dev->ops->toggle_ring_irq(ring, 0);
head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
if (head != ring->next_to_clean) {
ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
ring_data->ring, 1);
return false;
} else {
return true;
}
}
static bool hns_nic_tx_fini_pro_v2(struct hns_nic_ring_data *ring_data)
{
struct hnae_ring *ring = ring_data->ring;
int head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
if (head == ring->next_to_clean)
return true;
else
return false;
}
static void hns_nic_tx_clr_all_bufs(struct hns_nic_ring_data *ring_data)
{
struct hnae_ring *ring = ring_data->ring;
struct net_device *ndev = ring_data->napi.dev;
struct netdev_queue *dev_queue;
int head;
int bytes, pkts;
NETIF_TX_LOCK(ring);
head = ring->next_to_use; /* ntu :soft setted ring position*/
bytes = 0;
pkts = 0;
while (head != ring->next_to_clean)
hns_nic_reclaim_one_desc(ring, &bytes, &pkts);
NETIF_TX_UNLOCK(ring);
dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index);
netdev_tx_reset_queue(dev_queue);
}
static int hns_nic_common_poll(struct napi_struct *napi, int budget)
{
int clean_complete = 0;
struct hns_nic_ring_data *ring_data =
container_of(napi, struct hns_nic_ring_data, napi);
struct hnae_ring *ring = ring_data->ring;
try_again:
clean_complete += ring_data->poll_one(
ring_data, budget - clean_complete,
ring_data->ex_process);
if (clean_complete < budget) {
if (ring_data->fini_process(ring_data)) {
napi_complete(napi);
ring->q->handle->dev->ops->toggle_ring_irq(ring, 0);
} else {
goto try_again;
}
}
return clean_complete;
}
static irqreturn_t hns_irq_handle(int irq, void *dev)
{
struct hns_nic_ring_data *ring_data = (struct hns_nic_ring_data *)dev;
ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
ring_data->ring, 1);
napi_schedule(&ring_data->napi);
return IRQ_HANDLED;
}
/**
*hns_nic_adjust_link - adjust net work mode by the phy stat or new param
*@ndev: net device
*/
static void hns_nic_adjust_link(struct net_device *ndev)
{
struct hns_nic_priv *priv = netdev_priv(ndev);
struct hnae_handle *h = priv->ae_handle;
int state = 1;
if (ndev->phydev) {
h->dev->ops->adjust_link(h, ndev->phydev->speed,
ndev->phydev->duplex);
state = ndev->phydev->link;
}
state = state && h->dev->ops->get_status(h);
if (state != priv->link) {
if (state) {
netif_carrier_on(ndev);
netif_tx_wake_all_queues(ndev);
netdev_info(ndev, "link up\n");
} else {
netif_carrier_off(ndev);
netdev_info(ndev, "link down\n");
}
priv->link = state;
}
}
/**
*hns_nic_init_phy - init phy
*@ndev: net device
*@h: ae handle
* Return 0 on success, negative on failure
*/
int hns_nic_init_phy(struct net_device *ndev, struct hnae_handle *h)
{
struct phy_device *phy_dev = h->phy_dev;
int ret;
if (!h->phy_dev)
return 0;
if (h->phy_if != PHY_INTERFACE_MODE_XGMII) {
phy_dev->dev_flags = 0;
ret = phy_connect_direct(ndev, phy_dev, hns_nic_adjust_link,
h->phy_if);
} else {
ret = phy_attach_direct(ndev, phy_dev, 0, h->phy_if);
}
if (unlikely(ret))
return -ENODEV;
phy_dev->supported &= h->if_support;
phy_dev->advertising = phy_dev->supported;
if (h->phy_if == PHY_INTERFACE_MODE_XGMII)
phy_dev->autoneg = false;
return 0;
}
static int hns_nic_ring_open(struct net_device *netdev, int idx)
{
struct hns_nic_priv *priv = netdev_priv(netdev);
struct hnae_handle *h = priv->ae_handle;
napi_enable(&priv->ring_data[idx].napi);
enable_irq(priv->ring_data[idx].ring->irq);
h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 0);
return 0;
}
static int hns_nic_net_set_mac_address(struct net_device *ndev, void *p)
{
struct hns_nic_priv *priv = netdev_priv(ndev);
struct hnae_handle *h = priv->ae_handle;
struct sockaddr *mac_addr = p;
int ret;
if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data))
return -EADDRNOTAVAIL;
ret = h->dev->ops->set_mac_addr(h, mac_addr->sa_data);
if (ret) {
netdev_err(ndev, "set_mac_address fail, ret=%d!\n", ret);
return ret;
}
memcpy(ndev->dev_addr, mac_addr->sa_data, ndev->addr_len);
return 0;
}
static void hns_nic_update_stats(struct net_device *netdev)
{
struct hns_nic_priv *priv = netdev_priv(netdev);
struct hnae_handle *h = priv->ae_handle;
h->dev->ops->update_stats(h, &netdev->stats);
}
/* set mac addr if it is configed. or leave it to the AE driver */
static void hns_init_mac_addr(struct net_device *ndev)
{
struct hns_nic_priv *priv = netdev_priv(ndev);
if (!device_get_mac_address(priv->dev, ndev->dev_addr, ETH_ALEN)) {
eth_hw_addr_random(ndev);
dev_warn(priv->dev, "No valid mac, use random mac %pM",
ndev->dev_addr);
}
}
static void hns_nic_ring_close(struct net_device *netdev, int idx)
{
struct hns_nic_priv *priv = netdev_priv(netdev);
struct hnae_handle *h = priv->ae_handle;
h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 1);
disable_irq(priv->ring_data[idx].ring->irq);
napi_disable(&priv->ring_data[idx].napi);
}
static int hns_nic_init_affinity_mask(int q_num, int ring_idx,
struct hnae_ring *ring, cpumask_t *mask)
{
int cpu;
/* Diffrent irq banlance between 16core and 32core.
* The cpu mask set by ring index according to the ring flag
* which indicate the ring is tx or rx.
*/
if (q_num == num_possible_cpus()) {
if (is_tx_ring(ring))
cpu = ring_idx;
else
cpu = ring_idx - q_num;
} else {
if (is_tx_ring(ring))
cpu = ring_idx * 2;
else
cpu = (ring_idx - q_num) * 2 + 1;
}
cpumask_clear(mask);
cpumask_set_cpu(cpu, mask);
return cpu;
}
static int hns_nic_init_irq(struct hns_nic_priv *priv)
{
struct hnae_handle *h = priv->ae_handle;
struct hns_nic_ring_data *rd;
int i;
int ret;
int cpu;
for (i = 0; i < h->q_num * 2; i++) {
rd = &priv->ring_data[i];
if (rd->ring->irq_init_flag == RCB_IRQ_INITED)
break;
snprintf(rd->ring->ring_name, RCB_RING_NAME_LEN,
"%s-%s%d", priv->netdev->name,
(is_tx_ring(rd->ring) ? "tx" : "rx"), rd->queue_index);
rd->ring->ring_name[RCB_RING_NAME_LEN - 1] = '\0';
ret = request_irq(rd->ring->irq,
hns_irq_handle, 0, rd->ring->ring_name, rd);
if (ret) {
netdev_err(priv->netdev, "request irq(%d) fail\n",
rd->ring->irq);
return ret;
}
disable_irq(rd->ring->irq);
cpu = hns_nic_init_affinity_mask(h->q_num, i,
rd->ring, &rd->mask);
if (cpu_online(cpu))
irq_set_affinity_hint(rd->ring->irq,
&rd->mask);
rd->ring->irq_init_flag = RCB_IRQ_INITED;
}
return 0;
}
static int hns_nic_net_up(struct net_device *ndev)
{
struct hns_nic_priv *priv = netdev_priv(ndev);
struct hnae_handle *h = priv->ae_handle;
int i, j;
int ret;
ret = hns_nic_init_irq(priv);
if (ret != 0) {
netdev_err(ndev, "hns init irq failed! ret=%d\n", ret);
return ret;
}
for (i = 0; i < h->q_num * 2; i++) {
ret = hns_nic_ring_open(ndev, i);
if (ret)
goto out_has_some_queues;
}
ret = h->dev->ops->set_mac_addr(h, ndev->dev_addr);
if (ret)
goto out_set_mac_addr_err;
ret = h->dev->ops->start ? h->dev->ops->start(h) : 0;
if (ret)
goto out_start_err;
if (ndev->phydev)
phy_start(ndev->phydev);
clear_bit(NIC_STATE_DOWN, &priv->state);
(void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ);
return 0;
out_start_err:
netif_stop_queue(ndev);
out_set_mac_addr_err:
out_has_some_queues:
for (j = i - 1; j >= 0; j--)
hns_nic_ring_close(ndev, j);
set_bit(NIC_STATE_DOWN, &priv->state);
return ret;
}
static void hns_nic_net_down(struct net_device *ndev)
{
int i;
struct hnae_ae_ops *ops;
struct hns_nic_priv *priv = netdev_priv(ndev);
if (test_and_set_bit(NIC_STATE_DOWN, &priv->state))
return;
(void)del_timer_sync(&priv->service_timer);
netif_tx_stop_all_queues(ndev);
netif_carrier_off(ndev);
netif_tx_disable(ndev);
priv->link = 0;
if (ndev->phydev)
phy_stop(ndev->phydev);
ops = priv->ae_handle->dev->ops;
if (ops->stop)
ops->stop(priv->ae_handle);
netif_tx_stop_all_queues(ndev);
for (i = priv->ae_handle->q_num - 1; i >= 0; i--) {
hns_nic_ring_close(ndev, i);
hns_nic_ring_close(ndev, i + priv->ae_handle->q_num);
/* clean tx buffers*/
hns_nic_tx_clr_all_bufs(priv->ring_data + i);
}
}
void hns_nic_net_reset(struct net_device *ndev)
{
struct hns_nic_priv *priv = netdev_priv(ndev);
struct hnae_handle *handle = priv->ae_handle;
while (test_and_set_bit(NIC_STATE_RESETTING, &priv->state))
usleep_range(1000, 2000);
(void)hnae_reinit_handle(handle);
clear_bit(NIC_STATE_RESETTING, &priv->state);
}
void hns_nic_net_reinit(struct net_device *netdev)
{
struct hns_nic_priv *priv = netdev_priv(netdev);
enum hnae_port_type type = priv->ae_handle->port_type;
netif_trans_update(priv->netdev);
while (test_and_set_bit(NIC_STATE_REINITING, &priv->state))
usleep_range(1000, 2000);
hns_nic_net_down(netdev);
/* Only do hns_nic_net_reset in debug mode
* because of hardware limitation.
*/
if (type == HNAE_PORT_DEBUG)
hns_nic_net_reset(netdev);
(void)hns_nic_net_up(netdev);
clear_bit(NIC_STATE_REINITING, &priv->state);
}
static int hns_nic_net_open(struct net_device *ndev)
{
struct hns_nic_priv *priv = netdev_priv(ndev);
struct hnae_handle *h = priv->ae_handle;
int ret;
if (test_bit(NIC_STATE_TESTING, &priv->state))
return -EBUSY;
priv->link = 0;
netif_carrier_off(ndev);
ret = netif_set_real_num_tx_queues(ndev, h->q_num);
if (ret < 0) {
netdev_err(ndev, "netif_set_real_num_tx_queues fail, ret=%d!\n",
ret);
return ret;
}
ret = netif_set_real_num_rx_queues(ndev, h->q_num);
if (ret < 0) {
netdev_err(ndev,
"netif_set_real_num_rx_queues fail, ret=%d!\n", ret);
return ret;
}
ret = hns_nic_net_up(ndev);
if (ret) {
netdev_err(ndev,
"hns net up fail, ret=%d!\n", ret);
return ret;
}
return 0;
}
static int hns_nic_net_stop(struct net_device *ndev)
{
hns_nic_net_down(ndev);
return 0;
}
static void hns_tx_timeout_reset(struct hns_nic_priv *priv);
static void hns_nic_net_timeout(struct net_device *ndev)
{
struct hns_nic_priv *priv = netdev_priv(ndev);
hns_tx_timeout_reset(priv);
}
static int hns_nic_do_ioctl(struct net_device *netdev, struct ifreq *ifr,
int cmd)
{
struct phy_device *phy_dev = netdev->phydev;
if (!netif_running(netdev))
return -EINVAL;
if (!phy_dev)
return -ENOTSUPP;
return phy_mii_ioctl(phy_dev, ifr, cmd);
}
/* use only for netconsole to poll with the device without interrupt */
#ifdef CONFIG_NET_POLL_CONTROLLER
static void hns_nic_poll_controller(struct net_device *ndev)
{
struct hns_nic_priv *priv = netdev_priv(ndev);
unsigned long flags;
int i;
local_irq_save(flags);
for (i = 0; i < priv->ae_handle->q_num * 2; i++)
napi_schedule(&priv->ring_data[i].napi);
local_irq_restore(flags);
}
#endif
static netdev_tx_t hns_nic_net_xmit(struct sk_buff *skb,
struct net_device *ndev)
{
struct hns_nic_priv *priv = netdev_priv(ndev);
assert(skb->queue_mapping < ndev->ae_handle->q_num);
return hns_nic_net_xmit_hw(ndev, skb,
&tx_ring_data(priv, skb->queue_mapping));
}
static void hns_nic_drop_rx_fetch(struct hns_nic_ring_data *ring_data,
struct sk_buff *skb)
{
dev_kfree_skb_any(skb);
}
#define HNS_LB_TX_RING 0
static struct sk_buff *hns_assemble_skb(struct net_device *ndev)
{
struct sk_buff *skb;
struct ethhdr *ethhdr;
int frame_len;
/* allocate test skb */
skb = alloc_skb(64, GFP_KERNEL);
if (!skb)
return NULL;
skb_put(skb, 64);
skb->dev = ndev;
memset(skb->data, 0xFF, skb->len);
/* must be tcp/ip package */
ethhdr = (struct ethhdr *)skb->data;
ethhdr->h_proto = htons(ETH_P_IP);
frame_len = skb->len & (~1ul);
memset(&skb->data[frame_len / 2], 0xAA,
frame_len / 2 - 1);
skb->queue_mapping = HNS_LB_TX_RING;
return skb;
}
static int hns_enable_serdes_lb(struct net_device *ndev)
{
struct hns_nic_priv *priv = netdev_priv(ndev);
struct hnae_handle *h = priv->ae_handle;
struct hnae_ae_ops *ops = h->dev->ops;
int speed, duplex;
int ret;
ret = ops->set_loopback(h, MAC_INTERNALLOOP_SERDES, 1);
if (ret)
return ret;
ret = ops->start ? ops->start(h) : 0;
if (ret)
return ret;
/* link adjust duplex*/
if (h->phy_if != PHY_INTERFACE_MODE_XGMII)
speed = 1000;
else
speed = 10000;
duplex = 1;
ops->adjust_link(h, speed, duplex);
/* wait h/w ready */
mdelay(300);
return 0;
}
static void hns_disable_serdes_lb(struct net_device *ndev)
{
struct hns_nic_priv *priv = netdev_priv(ndev);
struct hnae_handle *h = priv->ae_handle;
struct hnae_ae_ops *ops = h->dev->ops;
ops->stop(h);
ops->set_loopback(h, MAC_INTERNALLOOP_SERDES, 0);
}
/**
*hns_nic_clear_all_rx_fetch - clear the chip fetched descriptions. The
*function as follows:
* 1. if one rx ring has found the page_offset is not equal 0 between head
* and tail, it means that the chip fetched the wrong descs for the ring
* which buffer size is 4096.
* 2. we set the chip serdes loopback and set rss indirection to the ring.
* 3. construct 64-bytes ip broadcast packages, wait the associated rx ring
* recieving all packages and it will fetch new descriptions.
* 4. recover to the original state.
*
*@ndev: net device
*/
static int hns_nic_clear_all_rx_fetch(struct net_device *ndev)
{
struct hns_nic_priv *priv = netdev_priv(ndev);
struct hnae_handle *h = priv->ae_handle;
struct hnae_ae_ops *ops = h->dev->ops;
struct hns_nic_ring_data *rd;
struct hnae_ring *ring;
struct sk_buff *skb;
u32 *org_indir;
u32 *cur_indir;
int indir_size;
int head, tail;
int fetch_num;
int i, j;
bool found;
int retry_times;
int ret = 0;
/* alloc indir memory */
indir_size = ops->get_rss_indir_size(h) * sizeof(*org_indir);
org_indir = kzalloc(indir_size, GFP_KERNEL);
if (!org_indir)
return -ENOMEM;
/* store the orginal indirection */
ops->get_rss(h, org_indir, NULL, NULL);
cur_indir = kzalloc(indir_size, GFP_KERNEL);
if (!cur_indir) {
ret = -ENOMEM;
goto cur_indir_alloc_err;
}
/* set loopback */
if (hns_enable_serdes_lb(ndev)) {
ret = -EINVAL;
goto enable_serdes_lb_err;
}
/* foreach every rx ring to clear fetch desc */
for (i = 0; i < h->q_num; i++) {
ring = &h->qs[i]->rx_ring;
head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
tail = readl_relaxed(ring->io_base + RCB_REG_TAIL);
found = false;
fetch_num = ring_dist(ring, head, tail);
while (head != tail) {
if (ring->desc_cb[head].page_offset != 0) {
found = true;
break;
}
head++;
if (head == ring->desc_num)
head = 0;
}
if (found) {
for (j = 0; j < indir_size / sizeof(*org_indir); j++)
cur_indir[j] = i;
ops->set_rss(h, cur_indir, NULL, 0);
for (j = 0; j < fetch_num; j++) {
/* alloc one skb and init */
skb = hns_assemble_skb(ndev);
if (!skb)
goto out;
rd = &tx_ring_data(priv, skb->queue_mapping);
hns_nic_net_xmit_hw(ndev, skb, rd);
retry_times = 0;
while (retry_times++ < 10) {
mdelay(10);
/* clean rx */
rd = &rx_ring_data(priv, i);
if (rd->poll_one(rd, fetch_num,
hns_nic_drop_rx_fetch))
break;
}
retry_times = 0;
while (retry_times++ < 10) {
mdelay(10);
/* clean tx ring 0 send package */
rd = &tx_ring_data(priv,
HNS_LB_TX_RING);
if (rd->poll_one(rd, fetch_num, NULL))
break;
}
}
}
}
out:
/* restore everything */
ops->set_rss(h, org_indir, NULL, 0);
hns_disable_serdes_lb(ndev);
enable_serdes_lb_err:
kfree(cur_indir);
cur_indir_alloc_err:
kfree(org_indir);
return ret;
}
static int hns_nic_change_mtu(struct net_device *ndev, int new_mtu)
{
struct hns_nic_priv *priv = netdev_priv(ndev);
struct hnae_handle *h = priv->ae_handle;
bool if_running = netif_running(ndev);
int ret;
/* MTU < 68 is an error and causes problems on some kernels */
if (new_mtu < 68)
return -EINVAL;
/* MTU no change */
if (new_mtu == ndev->mtu)
return 0;
if (!h->dev->ops->set_mtu)
return -ENOTSUPP;
if (if_running) {
(void)hns_nic_net_stop(ndev);
msleep(100);
}
if (priv->enet_ver != AE_VERSION_1 &&
ndev->mtu <= BD_SIZE_2048_MAX_MTU &&
new_mtu > BD_SIZE_2048_MAX_MTU) {
/* update desc */
hnae_reinit_all_ring_desc(h);
/* clear the package which the chip has fetched */
ret = hns_nic_clear_all_rx_fetch(ndev);
/* the page offset must be consist with desc */
hnae_reinit_all_ring_page_off(h);
if (ret) {
netdev_err(ndev, "clear the fetched desc fail\n");
goto out;
}
}
ret = h->dev->ops->set_mtu(h, new_mtu);
if (ret) {
netdev_err(ndev, "set mtu fail, return value %d\n",
ret);
goto out;
}
/* finally, set new mtu to netdevice */
ndev->mtu = new_mtu;
out:
if (if_running) {
if (hns_nic_net_open(ndev)) {
netdev_err(ndev, "hns net open fail\n");
ret = -EINVAL;
}
}
return ret;
}
static int hns_nic_set_features(struct net_device *netdev,
netdev_features_t features)
{
struct hns_nic_priv *priv = netdev_priv(netdev);
switch (priv->enet_ver) {
case AE_VERSION_1:
if (features & (NETIF_F_TSO | NETIF_F_TSO6))
netdev_info(netdev, "enet v1 do not support tso!\n");
break;
default:
if (features & (NETIF_F_TSO | NETIF_F_TSO6)) {
priv->ops.fill_desc = fill_tso_desc;
priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso;
/* The chip only support 7*4096 */
netif_set_gso_max_size(netdev, 7 * 4096);
} else {
priv->ops.fill_desc = fill_v2_desc;
priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
}
break;
}
netdev->features = features;
return 0;
}
static netdev_features_t hns_nic_fix_features(
struct net_device *netdev, netdev_features_t features)
{
struct hns_nic_priv *priv = netdev_priv(netdev);
switch (priv->enet_ver) {
case AE_VERSION_1:
features &= ~(NETIF_F_TSO | NETIF_F_TSO6 |
NETIF_F_HW_VLAN_CTAG_FILTER);
break;
default:
break;
}
return features;
}
static int hns_nic_uc_sync(struct net_device *netdev, const unsigned char *addr)
{
struct hns_nic_priv *priv = netdev_priv(netdev);
struct hnae_handle *h = priv->ae_handle;
if (h->dev->ops->add_uc_addr)
return h->dev->ops->add_uc_addr(h, addr);
return 0;
}
static int hns_nic_uc_unsync(struct net_device *netdev,
const unsigned char *addr)
{
struct hns_nic_priv *priv = netdev_priv(netdev);
struct hnae_handle *h = priv->ae_handle;
if (h->dev->ops->rm_uc_addr)
return h->dev->ops->rm_uc_addr(h, addr);
return 0;
}
/**
* nic_set_multicast_list - set mutl mac address
* @netdev: net device
* @p: mac address
*
* return void
*/
static void hns_set_multicast_list(struct net_device *ndev)
{
struct hns_nic_priv *priv = netdev_priv(ndev);
struct hnae_handle *h = priv->ae_handle;
struct netdev_hw_addr *ha = NULL;
if (!h) {
netdev_err(ndev, "hnae handle is null\n");
return;
}
if (h->dev->ops->clr_mc_addr)
if (h->dev->ops->clr_mc_addr(h))
netdev_err(ndev, "clear multicast address fail\n");
if (h->dev->ops->set_mc_addr) {
netdev_for_each_mc_addr(ha, ndev)
if (h->dev->ops->set_mc_addr(h, ha->addr))
netdev_err(ndev, "set multicast fail\n");
}
}
static void hns_nic_set_rx_mode(struct net_device *ndev)
{
struct hns_nic_priv *priv = netdev_priv(ndev);
struct hnae_handle *h = priv->ae_handle;
if (h->dev->ops->set_promisc_mode) {
if (ndev->flags & IFF_PROMISC)
h->dev->ops->set_promisc_mode(h, 1);
else
h->dev->ops->set_promisc_mode(h, 0);
}
hns_set_multicast_list(ndev);
if (__dev_uc_sync(ndev, hns_nic_uc_sync, hns_nic_uc_unsync))
netdev_err(ndev, "sync uc address fail\n");
}
static void hns_nic_get_stats64(struct net_device *ndev,
struct rtnl_link_stats64 *stats)
{
int idx = 0;
u64 tx_bytes = 0;
u64 rx_bytes = 0;
u64 tx_pkts = 0;
u64 rx_pkts = 0;
struct hns_nic_priv *priv = netdev_priv(ndev);
struct hnae_handle *h = priv->ae_handle;
for (idx = 0; idx < h->q_num; idx++) {
tx_bytes += h->qs[idx]->tx_ring.stats.tx_bytes;
tx_pkts += h->qs[idx]->tx_ring.stats.tx_pkts;
rx_bytes += h->qs[idx]->rx_ring.stats.rx_bytes;
rx_pkts += h->qs[idx]->rx_ring.stats.rx_pkts;
}
stats->tx_bytes = tx_bytes;
stats->tx_packets = tx_pkts;
stats->rx_bytes = rx_bytes;
stats->rx_packets = rx_pkts;
stats->rx_errors = ndev->stats.rx_errors;
stats->multicast = ndev->stats.multicast;
stats->rx_length_errors = ndev->stats.rx_length_errors;
stats->rx_crc_errors = ndev->stats.rx_crc_errors;
stats->rx_missed_errors = ndev->stats.rx_missed_errors;
stats->tx_errors = ndev->stats.tx_errors;
stats->rx_dropped = ndev->stats.rx_dropped;
stats->tx_dropped = ndev->stats.tx_dropped;
stats->collisions = ndev->stats.collisions;
stats->rx_over_errors = ndev->stats.rx_over_errors;
stats->rx_frame_errors = ndev->stats.rx_frame_errors;
stats->rx_fifo_errors = ndev->stats.rx_fifo_errors;
stats->tx_aborted_errors = ndev->stats.tx_aborted_errors;
stats->tx_carrier_errors = ndev->stats.tx_carrier_errors;
stats->tx_fifo_errors = ndev->stats.tx_fifo_errors;
stats->tx_heartbeat_errors = ndev->stats.tx_heartbeat_errors;
stats->tx_window_errors = ndev->stats.tx_window_errors;
stats->rx_compressed = ndev->stats.rx_compressed;
stats->tx_compressed = ndev->stats.tx_compressed;
}
static u16
hns_nic_select_queue(struct net_device *ndev, struct sk_buff *skb,
struct net_device *sb_dev,
select_queue_fallback_t fallback)
{
struct ethhdr *eth_hdr = (struct ethhdr *)skb->data;
struct hns_nic_priv *priv = netdev_priv(ndev);
/* fix hardware broadcast/multicast packets queue loopback */
if (!AE_IS_VER1(priv->enet_ver) &&
is_multicast_ether_addr(eth_hdr->h_dest))
return 0;
else
return fallback(ndev, skb, NULL);
}
static const struct net_device_ops hns_nic_netdev_ops = {
.ndo_open = hns_nic_net_open,
.ndo_stop = hns_nic_net_stop,
.ndo_start_xmit = hns_nic_net_xmit,
.ndo_tx_timeout = hns_nic_net_timeout,
.ndo_set_mac_address = hns_nic_net_set_mac_address,
.ndo_change_mtu = hns_nic_change_mtu,
.ndo_do_ioctl = hns_nic_do_ioctl,
.ndo_set_features = hns_nic_set_features,
.ndo_fix_features = hns_nic_fix_features,
.ndo_get_stats64 = hns_nic_get_stats64,
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = hns_nic_poll_controller,
#endif
.ndo_set_rx_mode = hns_nic_set_rx_mode,
.ndo_select_queue = hns_nic_select_queue,
};
static void hns_nic_update_link_status(struct net_device *netdev)
{
struct hns_nic_priv *priv = netdev_priv(netdev);
struct hnae_handle *h = priv->ae_handle;
if (h->phy_dev) {
if (h->phy_if != PHY_INTERFACE_MODE_XGMII)
return;
(void)genphy_read_status(h->phy_dev);
}
hns_nic_adjust_link(netdev);
}
/* for dumping key regs*/
static void hns_nic_dump(struct hns_nic_priv *priv)
{
struct hnae_handle *h = priv->ae_handle;
struct hnae_ae_ops *ops = h->dev->ops;
u32 *data, reg_num, i;
if (ops->get_regs_len && ops->get_regs) {
reg_num = ops->get_regs_len(priv->ae_handle);
reg_num = (reg_num + 3ul) & ~3ul;
data = kcalloc(reg_num, sizeof(u32), GFP_KERNEL);
if (data) {
ops->get_regs(priv->ae_handle, data);
for (i = 0; i < reg_num; i += 4)
pr_info("0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
i, data[i], data[i + 1],
data[i + 2], data[i + 3]);
kfree(data);
}
}
for (i = 0; i < h->q_num; i++) {
pr_info("tx_queue%d_next_to_clean:%d\n",
i, h->qs[i]->tx_ring.next_to_clean);
pr_info("tx_queue%d_next_to_use:%d\n",
i, h->qs[i]->tx_ring.next_to_use);
pr_info("rx_queue%d_next_to_clean:%d\n",
i, h->qs[i]->rx_ring.next_to_clean);
pr_info("rx_queue%d_next_to_use:%d\n",
i, h->qs[i]->rx_ring.next_to_use);
}
}
/* for resetting subtask */
static void hns_nic_reset_subtask(struct hns_nic_priv *priv)
{
enum hnae_port_type type = priv->ae_handle->port_type;
if (!test_bit(NIC_STATE2_RESET_REQUESTED, &priv->state))
return;
clear_bit(NIC_STATE2_RESET_REQUESTED, &priv->state);
/* If we're already down, removing or resetting, just bail */
if (test_bit(NIC_STATE_DOWN, &priv->state) ||
test_bit(NIC_STATE_REMOVING, &priv->state) ||
test_bit(NIC_STATE_RESETTING, &priv->state))
return;
hns_nic_dump(priv);
netdev_info(priv->netdev, "try to reset %s port!\n",
(type == HNAE_PORT_DEBUG ? "debug" : "service"));
rtnl_lock();
/* put off any impending NetWatchDogTimeout */
netif_trans_update(priv->netdev);
hns_nic_net_reinit(priv->netdev);
rtnl_unlock();
}
/* for doing service complete*/
static void hns_nic_service_event_complete(struct hns_nic_priv *priv)
{
WARN_ON(!test_bit(NIC_STATE_SERVICE_SCHED, &priv->state));
/* make sure to commit the things */
smp_mb__before_atomic();
clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state);
}
static void hns_nic_service_task(struct work_struct *work)
{
struct hns_nic_priv *priv
= container_of(work, struct hns_nic_priv, service_task);
struct hnae_handle *h = priv->ae_handle;
hns_nic_update_link_status(priv->netdev);
h->dev->ops->update_led_status(h);
hns_nic_update_stats(priv->netdev);
hns_nic_reset_subtask(priv);
hns_nic_service_event_complete(priv);
}
static void hns_nic_task_schedule(struct hns_nic_priv *priv)
{
if (!test_bit(NIC_STATE_DOWN, &priv->state) &&
!test_bit(NIC_STATE_REMOVING, &priv->state) &&
!test_and_set_bit(NIC_STATE_SERVICE_SCHED, &priv->state))
(void)schedule_work(&priv->service_task);
}
static void hns_nic_service_timer(struct timer_list *t)
{
struct hns_nic_priv *priv = from_timer(priv, t, service_timer);
(void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ);
hns_nic_task_schedule(priv);
}
/**
* hns_tx_timeout_reset - initiate reset due to Tx timeout
* @priv: driver private struct
**/
static void hns_tx_timeout_reset(struct hns_nic_priv *priv)
{
/* Do the reset outside of interrupt context */
if (!test_bit(NIC_STATE_DOWN, &priv->state)) {
set_bit(NIC_STATE2_RESET_REQUESTED, &priv->state);
netdev_warn(priv->netdev,
"initiating reset due to tx timeout(%llu,0x%lx)\n",
priv->tx_timeout_count, priv->state);
priv->tx_timeout_count++;
hns_nic_task_schedule(priv);
}
}
static int hns_nic_init_ring_data(struct hns_nic_priv *priv)
{
struct hnae_handle *h = priv->ae_handle;
struct hns_nic_ring_data *rd;
bool is_ver1 = AE_IS_VER1(priv->enet_ver);
int i;
if (h->q_num > NIC_MAX_Q_PER_VF) {
netdev_err(priv->netdev, "too much queue (%d)\n", h->q_num);
return -EINVAL;
}
priv->ring_data = kzalloc(array3_size(h->q_num,
sizeof(*priv->ring_data), 2),
GFP_KERNEL);
if (!priv->ring_data)
return -ENOMEM;
for (i = 0; i < h->q_num; i++) {
rd = &priv->ring_data[i];
rd->queue_index = i;
rd->ring = &h->qs[i]->tx_ring;
rd->poll_one = hns_nic_tx_poll_one;
rd->fini_process = is_ver1 ? hns_nic_tx_fini_pro :
hns_nic_tx_fini_pro_v2;
netif_napi_add(priv->netdev, &rd->napi,
hns_nic_common_poll, NIC_TX_CLEAN_MAX_NUM);
rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED;
}
for (i = h->q_num; i < h->q_num * 2; i++) {
rd = &priv->ring_data[i];
rd->queue_index = i - h->q_num;
rd->ring = &h->qs[i - h->q_num]->rx_ring;
rd->poll_one = hns_nic_rx_poll_one;
rd->ex_process = hns_nic_rx_up_pro;
rd->fini_process = is_ver1 ? hns_nic_rx_fini_pro :
hns_nic_rx_fini_pro_v2;
netif_napi_add(priv->netdev, &rd->napi,
hns_nic_common_poll, NIC_RX_CLEAN_MAX_NUM);
rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED;
}
return 0;
}
static void hns_nic_uninit_ring_data(struct hns_nic_priv *priv)
{
struct hnae_handle *h = priv->ae_handle;
int i;
for (i = 0; i < h->q_num * 2; i++) {
netif_napi_del(&priv->ring_data[i].napi);
if (priv->ring_data[i].ring->irq_init_flag == RCB_IRQ_INITED) {
(void)irq_set_affinity_hint(
priv->ring_data[i].ring->irq,
NULL);
free_irq(priv->ring_data[i].ring->irq,
&priv->ring_data[i]);
}
priv->ring_data[i].ring->irq_init_flag = RCB_IRQ_NOT_INITED;
}
kfree(priv->ring_data);
}
static void hns_nic_set_priv_ops(struct net_device *netdev)
{
struct hns_nic_priv *priv = netdev_priv(netdev);
struct hnae_handle *h = priv->ae_handle;
if (AE_IS_VER1(priv->enet_ver)) {
priv->ops.fill_desc = fill_desc;
priv->ops.get_rxd_bnum = get_rx_desc_bnum;
priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
} else {
priv->ops.get_rxd_bnum = get_v2rx_desc_bnum;
if ((netdev->features & NETIF_F_TSO) ||
(netdev->features & NETIF_F_TSO6)) {
priv->ops.fill_desc = fill_tso_desc;
priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso;
/* This chip only support 7*4096 */
netif_set_gso_max_size(netdev, 7 * 4096);
} else {
priv->ops.fill_desc = fill_v2_desc;
priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
}
/* enable tso when init
* control tso on/off through TSE bit in bd
*/
h->dev->ops->set_tso_stats(h, 1);
}
}
static int hns_nic_try_get_ae(struct net_device *ndev)
{
struct hns_nic_priv *priv = netdev_priv(ndev);
struct hnae_handle *h;
int ret;
h = hnae_get_handle(&priv->netdev->dev,
priv->fwnode, priv->port_id, NULL);
if (IS_ERR_OR_NULL(h)) {
ret = -ENODEV;
dev_dbg(priv->dev, "has not handle, register notifier!\n");
goto out;
}
priv->ae_handle = h;
ret = hns_nic_init_phy(ndev, h);
if (ret) {
dev_err(priv->dev, "probe phy device fail!\n");
goto out_init_phy;
}
ret = hns_nic_init_ring_data(priv);
if (ret) {
ret = -ENOMEM;
goto out_init_ring_data;
}
hns_nic_set_priv_ops(ndev);
ret = register_netdev(ndev);
if (ret) {
dev_err(priv->dev, "probe register netdev fail!\n");
goto out_reg_ndev_fail;
}
return 0;
out_reg_ndev_fail:
hns_nic_uninit_ring_data(priv);
priv->ring_data = NULL;
out_init_phy:
out_init_ring_data:
hnae_put_handle(priv->ae_handle);
priv->ae_handle = NULL;
out:
return ret;
}
static int hns_nic_notifier_action(struct notifier_block *nb,
unsigned long action, void *data)
{
struct hns_nic_priv *priv =
container_of(nb, struct hns_nic_priv, notifier_block);
assert(action == HNAE_AE_REGISTER);
if (!hns_nic_try_get_ae(priv->netdev)) {
hnae_unregister_notifier(&priv->notifier_block);
priv->notifier_block.notifier_call = NULL;
}
return 0;
}
static int hns_nic_dev_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct net_device *ndev;
struct hns_nic_priv *priv;
u32 port_id;
int ret;
ndev = alloc_etherdev_mq(sizeof(struct hns_nic_priv), NIC_MAX_Q_PER_VF);
if (!ndev)
return -ENOMEM;
platform_set_drvdata(pdev, ndev);
priv = netdev_priv(ndev);
priv->dev = dev;
priv->netdev = ndev;
if (dev_of_node(dev)) {
struct device_node *ae_node;
if (of_device_is_compatible(dev->of_node,
"hisilicon,hns-nic-v1"))
priv->enet_ver = AE_VERSION_1;
else
priv->enet_ver = AE_VERSION_2;
ae_node = of_parse_phandle(dev->of_node, "ae-handle", 0);
if (!ae_node) {
ret = -ENODEV;
dev_err(dev, "not find ae-handle\n");
goto out_read_prop_fail;
}
priv->fwnode = &ae_node->fwnode;
} else if (is_acpi_node(dev->fwnode)) {
struct fwnode_reference_args args;
if (acpi_dev_found(hns_enet_acpi_match[0].id))
priv->enet_ver = AE_VERSION_1;
else if (acpi_dev_found(hns_enet_acpi_match[1].id))
priv->enet_ver = AE_VERSION_2;
else
return -ENXIO;
/* try to find port-idx-in-ae first */
ret = acpi_node_get_property_reference(dev->fwnode,
"ae-handle", 0, &args);
if (ret) {
dev_err(dev, "not find ae-handle\n");
goto out_read_prop_fail;
}
if (!is_acpi_device_node(args.fwnode)) {
ret = -EINVAL;
goto out_read_prop_fail;
}
priv->fwnode = args.fwnode;
} else {
dev_err(dev, "cannot read cfg data from OF or acpi\n");
return -ENXIO;
}
ret = device_property_read_u32(dev, "port-idx-in-ae", &port_id);
if (ret) {
/* only for old code compatible */
ret = device_property_read_u32(dev, "port-id", &port_id);
if (ret)
goto out_read_prop_fail;
/* for old dts, we need to caculate the port offset */
port_id = port_id < HNS_SRV_OFFSET ? port_id + HNS_DEBUG_OFFSET
: port_id - HNS_SRV_OFFSET;
}
priv->port_id = port_id;
hns_init_mac_addr(ndev);
ndev->watchdog_timeo = HNS_NIC_TX_TIMEOUT;
ndev->priv_flags |= IFF_UNICAST_FLT;
ndev->netdev_ops = &hns_nic_netdev_ops;
hns_ethtool_set_ops(ndev);
ndev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
NETIF_F_GRO;
ndev->vlan_features |=
NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM;
ndev->vlan_features |= NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO;
/* MTU range: 68 - 9578 (v1) or 9706 (v2) */
ndev->min_mtu = MAC_MIN_MTU;
switch (priv->enet_ver) {
case AE_VERSION_2:
ndev->features |= NETIF_F_TSO | NETIF_F_TSO6;
ndev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6;
ndev->max_mtu = MAC_MAX_MTU_V2 -
(ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
break;
default:
ndev->max_mtu = MAC_MAX_MTU -
(ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
break;
}
SET_NETDEV_DEV(ndev, dev);
if (!dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)))
dev_dbg(dev, "set mask to 64bit\n");
else
dev_err(dev, "set mask to 64bit fail!\n");
/* carrier off reporting is important to ethtool even BEFORE open */
netif_carrier_off(ndev);
timer_setup(&priv->service_timer, hns_nic_service_timer, 0);
INIT_WORK(&priv->service_task, hns_nic_service_task);
set_bit(NIC_STATE_SERVICE_INITED, &priv->state);
clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state);
set_bit(NIC_STATE_DOWN, &priv->state);
if (hns_nic_try_get_ae(priv->netdev)) {
priv->notifier_block.notifier_call = hns_nic_notifier_action;
ret = hnae_register_notifier(&priv->notifier_block);
if (ret) {
dev_err(dev, "register notifier fail!\n");
goto out_notify_fail;
}
dev_dbg(dev, "has not handle, register notifier!\n");
}
return 0;
out_notify_fail:
(void)cancel_work_sync(&priv->service_task);
out_read_prop_fail:
free_netdev(ndev);
return ret;
}
static int hns_nic_dev_remove(struct platform_device *pdev)
{
struct net_device *ndev = platform_get_drvdata(pdev);
struct hns_nic_priv *priv = netdev_priv(ndev);
if (ndev->reg_state != NETREG_UNINITIALIZED)
unregister_netdev(ndev);
if (priv->ring_data)
hns_nic_uninit_ring_data(priv);
priv->ring_data = NULL;
if (ndev->phydev)
phy_disconnect(ndev->phydev);
if (!IS_ERR_OR_NULL(priv->ae_handle))
hnae_put_handle(priv->ae_handle);
priv->ae_handle = NULL;
if (priv->notifier_block.notifier_call)
hnae_unregister_notifier(&priv->notifier_block);
priv->notifier_block.notifier_call = NULL;
set_bit(NIC_STATE_REMOVING, &priv->state);
(void)cancel_work_sync(&priv->service_task);
free_netdev(ndev);
return 0;
}
static const struct of_device_id hns_enet_of_match[] = {
{.compatible = "hisilicon,hns-nic-v1",},
{.compatible = "hisilicon,hns-nic-v2",},
{},
};
MODULE_DEVICE_TABLE(of, hns_enet_of_match);
static struct platform_driver hns_nic_dev_driver = {
.driver = {
.name = "hns-nic",
.of_match_table = hns_enet_of_match,
.acpi_match_table = ACPI_PTR(hns_enet_acpi_match),
},
.probe = hns_nic_dev_probe,
.remove = hns_nic_dev_remove,
};
module_platform_driver(hns_nic_dev_driver);
MODULE_DESCRIPTION("HISILICON HNS Ethernet driver");
MODULE_AUTHOR("Hisilicon, Inc.");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:hns-nic");