blob: 87f65201bcb4a2e68987e22cdc015fb81d220b82 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2018-2020, The Linux Foundation. All rights reserved.
*/
#include <linux/cpufreq.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/of_platform.h>
#include <linux/pm_opp.h>
#include <linux/energy_model.h>
#include <linux/sched.h>
#include <linux/cpu_cooling.h>
#define CREATE_TRACE_POINTS
#include <trace/events/dcvsh.h>
#define LUT_MAX_ENTRIES 40U
#define CORE_COUNT_VAL(val) (((val) & (GENMASK(18, 16))) >> 16)
#define LUT_ROW_SIZE 32
#define CLK_HW_DIV 2
#define GT_IRQ_STATUS BIT(2)
#define MAX_FN_SIZE 20
#define LIMITS_POLLING_DELAY_MS 10
#define CYCLE_CNTR_OFFSET(c, m, acc_count) \
(acc_count ? ((c - cpumask_first(m) + 1) * 4) : 0)
enum {
CPUFREQ_HW_LOW_TEMP_LEVEL,
CPUFREQ_HW_HIGH_TEMP_LEVEL,
};
enum {
REG_ENABLE,
REG_FREQ_LUT_TABLE,
REG_VOLT_LUT_TABLE,
REG_PERF_STATE,
REG_CYCLE_CNTR,
REG_DOMAIN_STATE,
REG_INTR_EN,
REG_INTR_CLR,
REG_INTR_STATUS,
REG_ARRAY_SIZE,
};
static unsigned int lut_row_size = LUT_ROW_SIZE;
static unsigned int lut_max_entries = LUT_MAX_ENTRIES;
static bool accumulative_counter;
struct skipped_freq {
bool skip;
u32 freq;
u32 cc;
u32 high_temp_index;
u32 low_temp_index;
u32 final_index;
spinlock_t lock;
};
struct cpufreq_qcom {
struct cpufreq_frequency_table *table;
void __iomem *reg_bases[REG_ARRAY_SIZE];
cpumask_t related_cpus;
unsigned int max_cores;
unsigned int lut_max_entries;
unsigned long xo_rate;
unsigned long cpu_hw_rate;
unsigned long dcvsh_freq_limit;
struct delayed_work freq_poll_work;
struct mutex dcvsh_lock;
struct device_attribute freq_limit_attr;
struct skipped_freq skip_data;
int dcvsh_irq;
char dcvsh_irq_name[MAX_FN_SIZE];
bool is_irq_enabled;
bool is_irq_requested;
};
struct cpufreq_counter {
u64 total_cycle_counter;
u32 prev_cycle_counter;
spinlock_t lock;
};
struct cpufreq_cooling_cdev {
int cpu_id;
bool cpu_cooling_state;
struct thermal_cooling_device *cdev;
struct device_node *np;
};
static const u16 cpufreq_qcom_std_offsets[REG_ARRAY_SIZE] = {
[REG_ENABLE] = 0x0,
[REG_FREQ_LUT_TABLE] = 0x110,
[REG_VOLT_LUT_TABLE] = 0x114,
[REG_PERF_STATE] = 0x920,
[REG_CYCLE_CNTR] = 0x9c0,
};
static const u16 cpufreq_qcom_epss_std_offsets[REG_ARRAY_SIZE] = {
[REG_ENABLE] = 0x0,
[REG_FREQ_LUT_TABLE] = 0x100,
[REG_VOLT_LUT_TABLE] = 0x200,
[REG_PERF_STATE] = 0x320,
[REG_CYCLE_CNTR] = 0x3c4,
[REG_DOMAIN_STATE] = 0x020,
[REG_INTR_EN] = 0x304,
[REG_INTR_CLR] = 0x308,
[REG_INTR_STATUS] = 0x30C,
};
static struct cpufreq_counter qcom_cpufreq_counter[NR_CPUS];
static struct cpufreq_qcom *qcom_freq_domain_map[NR_CPUS];
static unsigned int qcom_cpufreq_hw_get(unsigned int cpu);
static ssize_t dcvsh_freq_limit_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct cpufreq_qcom *c = container_of(attr, struct cpufreq_qcom,
freq_limit_attr);
return snprintf(buf, PAGE_SIZE, "%lu\n", c->dcvsh_freq_limit);
}
static unsigned long limits_mitigation_notify(struct cpufreq_qcom *c,
bool limit)
{
struct cpufreq_policy *policy;
u32 cpu;
unsigned long freq;
if (limit) {
freq = readl_relaxed(c->reg_bases[REG_DOMAIN_STATE]) &
GENMASK(7, 0);
freq = DIV_ROUND_CLOSEST_ULL(freq * c->xo_rate, 1000);
} else {
cpu = cpumask_first(&c->related_cpus);
policy = cpufreq_cpu_get_raw(cpu);
if (!policy)
freq = U32_MAX;
else
freq = policy->cpuinfo.max_freq;
}
sched_update_cpu_freq_min_max(&c->related_cpus, 0, freq);
trace_dcvsh_freq(cpumask_first(&c->related_cpus), freq);
c->dcvsh_freq_limit = freq;
return freq;
}
static void limits_dcvsh_poll(struct work_struct *work)
{
struct cpufreq_qcom *c = container_of(work, struct cpufreq_qcom,
freq_poll_work.work);
unsigned long freq_limit, dcvsh_freq;
u32 regval, cpu;
mutex_lock(&c->dcvsh_lock);
cpu = cpumask_first(&c->related_cpus);
freq_limit = limits_mitigation_notify(c, true);
dcvsh_freq = qcom_cpufreq_hw_get(cpu);
if (freq_limit != dcvsh_freq) {
mod_delayed_work(system_highpri_wq, &c->freq_poll_work,
msecs_to_jiffies(LIMITS_POLLING_DELAY_MS));
} else {
/* Update scheduler for throttle removal */
limits_mitigation_notify(c, false);
regval = readl_relaxed(c->reg_bases[REG_INTR_CLR]);
regval |= GT_IRQ_STATUS;
writel_relaxed(regval, c->reg_bases[REG_INTR_CLR]);
c->is_irq_enabled = true;
enable_irq(c->dcvsh_irq);
}
mutex_unlock(&c->dcvsh_lock);
}
static irqreturn_t dcvsh_handle_isr(int irq, void *data)
{
struct cpufreq_qcom *c = data;
u32 regval;
regval = readl_relaxed(c->reg_bases[REG_INTR_STATUS]);
if (!(regval & GT_IRQ_STATUS))
return IRQ_HANDLED;
mutex_lock(&c->dcvsh_lock);
if (c->is_irq_enabled) {
c->is_irq_enabled = false;
disable_irq_nosync(c->dcvsh_irq);
limits_mitigation_notify(c, true);
mod_delayed_work(system_highpri_wq, &c->freq_poll_work,
msecs_to_jiffies(LIMITS_POLLING_DELAY_MS));
}
mutex_unlock(&c->dcvsh_lock);
return IRQ_HANDLED;
}
static u64 qcom_cpufreq_get_cpu_cycle_counter(int cpu)
{
struct cpufreq_counter *cpu_counter;
struct cpufreq_qcom *cpu_domain;
u64 cycle_counter_ret;
unsigned long flags;
u16 offset;
u32 val;
cpu_domain = qcom_freq_domain_map[cpu];
cpu_counter = &qcom_cpufreq_counter[cpu];
spin_lock_irqsave(&cpu_counter->lock, flags);
offset = CYCLE_CNTR_OFFSET(cpu, &cpu_domain->related_cpus,
accumulative_counter);
val = readl_relaxed_no_log(cpu_domain->reg_bases[REG_CYCLE_CNTR] +
offset);
if (val < cpu_counter->prev_cycle_counter) {
/* Handle counter overflow */
cpu_counter->total_cycle_counter += UINT_MAX -
cpu_counter->prev_cycle_counter + val;
cpu_counter->prev_cycle_counter = val;
} else {
cpu_counter->total_cycle_counter += val -
cpu_counter->prev_cycle_counter;
cpu_counter->prev_cycle_counter = val;
}
cycle_counter_ret = cpu_counter->total_cycle_counter;
spin_unlock_irqrestore(&cpu_counter->lock, flags);
return cycle_counter_ret;
}
static int
qcom_cpufreq_hw_target_index(struct cpufreq_policy *policy,
unsigned int index)
{
struct cpufreq_qcom *c = policy->driver_data;
unsigned long flags;
if (c->skip_data.skip && index == c->skip_data.high_temp_index) {
spin_lock_irqsave(&c->skip_data.lock, flags);
writel_relaxed(c->skip_data.final_index,
c->reg_bases[REG_PERF_STATE]);
spin_unlock_irqrestore(&c->skip_data.lock, flags);
} else {
writel_relaxed(index, c->reg_bases[REG_PERF_STATE]);
}
arch_set_freq_scale(policy->related_cpus,
policy->freq_table[index].frequency,
policy->cpuinfo.max_freq);
return 0;
}
static unsigned int qcom_cpufreq_hw_get(unsigned int cpu)
{
struct cpufreq_qcom *c;
struct cpufreq_policy *policy;
unsigned int index;
policy = cpufreq_cpu_get_raw(cpu);
if (!policy)
return 0;
c = policy->driver_data;
index = readl_relaxed(c->reg_bases[REG_PERF_STATE]);
index = min(index, c->lut_max_entries - 1);
return policy->freq_table[index].frequency;
}
static unsigned int
qcom_cpufreq_hw_fast_switch(struct cpufreq_policy *policy,
unsigned int target_freq)
{
int index;
index = policy->cached_resolved_idx;
if (index < 0)
return 0;
if (qcom_cpufreq_hw_target_index(policy, index))
return 0;
return policy->freq_table[index].frequency;
}
static int qcom_cpufreq_hw_cpu_init(struct cpufreq_policy *policy)
{
struct em_data_callback em_cb = EM_DATA_CB(of_dev_pm_opp_get_cpu_power);
struct cpufreq_qcom *c;
struct device *cpu_dev;
int ret;
cpu_dev = get_cpu_device(policy->cpu);
if (!cpu_dev) {
pr_err("%s: failed to get cpu%d device\n", __func__,
policy->cpu);
return -ENODEV;
}
c = qcom_freq_domain_map[policy->cpu];
if (!c) {
pr_err("No scaling support for CPU%d\n", policy->cpu);
return -ENODEV;
}
cpumask_copy(policy->cpus, &c->related_cpus);
ret = dev_pm_opp_get_opp_count(cpu_dev);
if (ret <= 0)
dev_err(cpu_dev, "OPP table is not ready\n");
policy->fast_switch_possible = true;
policy->freq_table = c->table;
policy->driver_data = c;
policy->dvfs_possible_from_any_cpu = true;
em_register_perf_domain(policy->cpus, ret, &em_cb);
if (c->dcvsh_irq > 0 && !c->is_irq_requested) {
snprintf(c->dcvsh_irq_name, sizeof(c->dcvsh_irq_name),
"dcvsh-irq-%d", policy->cpu);
ret = devm_request_threaded_irq(cpu_dev, c->dcvsh_irq, NULL,
dcvsh_handle_isr, IRQF_TRIGGER_HIGH | IRQF_ONESHOT |
IRQF_NO_SUSPEND, c->dcvsh_irq_name, c);
if (ret) {
dev_err(cpu_dev, "Failed to register irq %d\n", ret);
return ret;
}
c->is_irq_requested = true;
c->is_irq_enabled = true;
c->freq_limit_attr.attr.name = "dcvsh_freq_limit";
c->freq_limit_attr.show = dcvsh_freq_limit_show;
c->freq_limit_attr.attr.mode = 0444;
c->dcvsh_freq_limit = U32_MAX;
device_create_file(cpu_dev, &c->freq_limit_attr);
}
return 0;
}
static struct freq_attr *qcom_cpufreq_hw_attr[] = {
&cpufreq_freq_attr_scaling_available_freqs,
&cpufreq_freq_attr_scaling_boost_freqs,
NULL
};
static void qcom_cpufreq_ready(struct cpufreq_policy *policy)
{
static struct thermal_cooling_device *cdev[NR_CPUS];
struct device_node *np;
unsigned int cpu = policy->cpu;
if (cdev[cpu])
return;
np = of_cpu_device_node_get(cpu);
if (WARN_ON(!np))
return;
/*
* For now, just loading the cooling device;
* thermal DT code takes care of matching them.
*/
if (of_find_property(np, "#cooling-cells", NULL)) {
cdev[cpu] = of_cpufreq_cooling_register(policy);
if (IS_ERR(cdev[cpu])) {
pr_err("running cpufreq for CPU%d without cooling dev: %ld\n",
cpu, PTR_ERR(cdev[cpu]));
cdev[cpu] = NULL;
}
}
of_node_put(np);
}
static struct cpufreq_driver cpufreq_qcom_hw_driver = {
.flags = CPUFREQ_STICKY | CPUFREQ_NEED_INITIAL_FREQ_CHECK |
CPUFREQ_HAVE_GOVERNOR_PER_POLICY,
.verify = cpufreq_generic_frequency_table_verify,
.target_index = qcom_cpufreq_hw_target_index,
.get = qcom_cpufreq_hw_get,
.init = qcom_cpufreq_hw_cpu_init,
.fast_switch = qcom_cpufreq_hw_fast_switch,
.name = "qcom-cpufreq-hw",
.attr = qcom_cpufreq_hw_attr,
.boost_enabled = true,
.ready = qcom_cpufreq_ready,
};
static int qcom_cpufreq_hw_read_lut(struct platform_device *pdev,
struct cpufreq_qcom *c)
{
struct device *dev = &pdev->dev, *cpu_dev;
void __iomem *base_freq, *base_volt;
u32 data, src, lval, i, core_count, prev_cc, prev_freq, cur_freq, volt;
u32 vc;
unsigned long cpu;
c->table = devm_kcalloc(dev, lut_max_entries + 1,
sizeof(*c->table), GFP_KERNEL);
if (!c->table)
return -ENOMEM;
spin_lock_init(&c->skip_data.lock);
base_freq = c->reg_bases[REG_FREQ_LUT_TABLE];
base_volt = c->reg_bases[REG_VOLT_LUT_TABLE];
for (i = 0; i < lut_max_entries; i++) {
data = readl_relaxed(base_freq + i * lut_row_size);
src = (data & GENMASK(31, 30)) >> 30;
lval = data & GENMASK(7, 0);
core_count = CORE_COUNT_VAL(data);
data = readl_relaxed(base_volt + i * lut_row_size);
volt = (data & GENMASK(11, 0)) * 1000;
vc = data & GENMASK(21, 16);
if (src)
c->table[i].frequency = c->xo_rate * lval / 1000;
else
c->table[i].frequency = c->cpu_hw_rate / 1000;
cur_freq = c->table[i].frequency;
dev_dbg(dev, "index=%d freq=%d, core_count %d\n",
i, c->table[i].frequency, core_count);
if (core_count != c->max_cores) {
if (core_count == (c->max_cores - 1)) {
c->skip_data.skip = true;
c->skip_data.high_temp_index = i;
c->skip_data.freq = cur_freq;
c->skip_data.cc = core_count;
c->skip_data.final_index = i + 1;
c->skip_data.low_temp_index = i + 1;
} else {
cur_freq = CPUFREQ_ENTRY_INVALID;
c->table[i].flags = CPUFREQ_BOOST_FREQ;
}
}
/*
* Two of the same frequencies with the same core counts means
* end of table.
*/
if (i > 0 && c->table[i - 1].frequency ==
c->table[i].frequency) {
if (prev_cc == core_count) {
struct cpufreq_frequency_table *prev =
&c->table[i - 1];
if (prev_freq == CPUFREQ_ENTRY_INVALID)
prev->flags = CPUFREQ_BOOST_FREQ;
}
break;
}
prev_cc = core_count;
prev_freq = cur_freq;
for_each_cpu(cpu, &c->related_cpus) {
cpu_dev = get_cpu_device(cpu);
if (!cpu_dev)
continue;
dev_pm_opp_add(cpu_dev, c->table[i].frequency * 1000,
volt);
}
}
c->lut_max_entries = i;
c->table[i].frequency = CPUFREQ_TABLE_END;
if (c->skip_data.skip) {
pr_debug("%s Skip: Index[%u], Frequency[%u], Core Count %u, Final Index %u Actual Index %u\n",
__func__, c->skip_data.high_temp_index,
c->skip_data.freq, c->skip_data.cc,
c->skip_data.final_index,
c->skip_data.low_temp_index);
}
return 0;
}
static int qcom_get_related_cpus(int index, struct cpumask *m)
{
struct device_node *cpu_np;
struct of_phandle_args args;
int cpu, ret;
for_each_possible_cpu(cpu) {
cpu_np = of_cpu_device_node_get(cpu);
if (!cpu_np)
continue;
ret = of_parse_phandle_with_args(cpu_np, "qcom,freq-domain",
"#freq-domain-cells", 0, &args);
of_node_put(cpu_np);
if (ret < 0)
continue;
if (index == args.args[0])
cpumask_set_cpu(cpu, m);
}
return 0;
}
static int qcom_cpu_resources_init(struct platform_device *pdev,
unsigned int cpu, int index,
unsigned int max_cores,
unsigned long xo_rate,
unsigned long cpu_hw_rate)
{
struct cpufreq_qcom *c;
struct resource *res;
struct device *dev = &pdev->dev;
const u16 *offsets;
int ret, i, cpu_r;
void __iomem *base;
if (qcom_freq_domain_map[cpu])
return 0;
c = devm_kzalloc(dev, sizeof(*c), GFP_KERNEL);
if (!c)
return -ENOMEM;
offsets = of_device_get_match_data(&pdev->dev);
if (!offsets)
return -EINVAL;
res = platform_get_resource(pdev, IORESOURCE_MEM, index);
base = devm_ioremap_resource(dev, res);
if (IS_ERR(base))
return PTR_ERR(base);
for (i = REG_ENABLE; i < REG_ARRAY_SIZE; i++)
c->reg_bases[i] = base + offsets[i];
if (!of_property_read_bool(dev->of_node, "qcom,skip-enable-check")) {
/* HW should be in enabled state to proceed */
if (!(readl_relaxed(c->reg_bases[REG_ENABLE]) & 0x1)) {
dev_err(dev, "Domain-%d cpufreq hardware not enabled\n",
index);
return -ENODEV;
}
}
accumulative_counter = !of_property_read_bool(dev->of_node,
"qcom,no-accumulative-counter");
ret = qcom_get_related_cpus(index, &c->related_cpus);
if (ret) {
dev_err(dev, "Domain-%d failed to get related CPUs\n", index);
return ret;
}
c->max_cores = max_cores;
if (!c->max_cores)
return -ENOENT;
c->xo_rate = xo_rate;
c->cpu_hw_rate = cpu_hw_rate;
ret = qcom_cpufreq_hw_read_lut(pdev, c);
if (ret) {
dev_err(dev, "Domain-%d failed to read LUT\n", index);
return ret;
}
if (of_find_property(dev->of_node, "interrupts", NULL)) {
c->dcvsh_irq = of_irq_get(dev->of_node, index);
if (c->dcvsh_irq > 0) {
mutex_init(&c->dcvsh_lock);
INIT_DEFERRABLE_WORK(&c->freq_poll_work,
limits_dcvsh_poll);
}
}
for_each_cpu(cpu_r, &c->related_cpus)
qcom_freq_domain_map[cpu_r] = c;
return 0;
}
static int qcom_resources_init(struct platform_device *pdev)
{
struct device_node *cpu_np;
struct of_phandle_args args;
struct clk *clk;
unsigned int cpu;
unsigned long xo_rate, cpu_hw_rate;
int ret;
clk = devm_clk_get(&pdev->dev, "xo");
if (IS_ERR(clk))
return PTR_ERR(clk);
xo_rate = clk_get_rate(clk);
devm_clk_put(&pdev->dev, clk);
clk = devm_clk_get(&pdev->dev, "alternate");
if (IS_ERR(clk))
return PTR_ERR(clk);
cpu_hw_rate = clk_get_rate(clk) / CLK_HW_DIV;
devm_clk_put(&pdev->dev, clk);
of_property_read_u32(pdev->dev.of_node, "qcom,lut-row-size",
&lut_row_size);
of_property_read_u32(pdev->dev.of_node, "qcom,lut-max-entries",
&lut_max_entries);
for_each_possible_cpu(cpu) {
cpu_np = of_cpu_device_node_get(cpu);
if (!cpu_np) {
dev_dbg(&pdev->dev, "Failed to get cpu %d device\n",
cpu);
continue;
}
ret = of_parse_phandle_with_args(cpu_np, "qcom,freq-domain",
"#freq-domain-cells", 0, &args);
if (ret < 0)
return ret;
ret = qcom_cpu_resources_init(pdev, cpu, args.args[0],
args.args[1], xo_rate,
cpu_hw_rate);
if (ret)
return ret;
}
return 0;
}
static int cpufreq_hw_set_cur_state(struct thermal_cooling_device *cdev,
unsigned long state)
{
struct cpufreq_cooling_cdev *cpu_cdev = cdev->devdata;
struct cpufreq_policy *policy;
struct cpufreq_qcom *c;
unsigned long flags;
if (cpu_cdev->cpu_id == -1)
return -ENODEV;
if (state > CPUFREQ_HW_HIGH_TEMP_LEVEL)
return -EINVAL;
if (cpu_cdev->cpu_cooling_state == state)
return 0;
policy = cpufreq_cpu_get_raw(cpu_cdev->cpu_id);
if (!policy)
return 0;
c = policy->driver_data;
cpu_cdev->cpu_cooling_state = state;
if (state == CPUFREQ_HW_HIGH_TEMP_LEVEL) {
spin_lock_irqsave(&c->skip_data.lock, flags);
c->skip_data.final_index = c->skip_data.high_temp_index;
spin_unlock_irqrestore(&c->skip_data.lock, flags);
} else {
spin_lock_irqsave(&c->skip_data.lock, flags);
c->skip_data.final_index = c->skip_data.low_temp_index;
spin_unlock_irqrestore(&c->skip_data.lock, flags);
}
if (policy->cur != c->skip_data.freq)
return 0;
return qcom_cpufreq_hw_target_index(policy,
c->skip_data.high_temp_index);
}
static int cpufreq_hw_get_cur_state(struct thermal_cooling_device *cdev,
unsigned long *state)
{
struct cpufreq_cooling_cdev *cpu_cdev = cdev->devdata;
*state = (cpu_cdev->cpu_cooling_state) ?
CPUFREQ_HW_HIGH_TEMP_LEVEL : CPUFREQ_HW_LOW_TEMP_LEVEL;
return 0;
}
static int cpufreq_hw_get_max_state(struct thermal_cooling_device *cdev,
unsigned long *state)
{
*state = CPUFREQ_HW_HIGH_TEMP_LEVEL;
return 0;
}
static struct thermal_cooling_device_ops cpufreq_hw_cooling_ops = {
.get_max_state = cpufreq_hw_get_max_state,
.get_cur_state = cpufreq_hw_get_cur_state,
.set_cur_state = cpufreq_hw_set_cur_state,
};
static int cpufreq_hw_register_cooling_device(struct platform_device *pdev)
{
struct device_node *np = pdev->dev.of_node, *cpu_np, *phandle;
struct cpufreq_cooling_cdev *cpu_cdev = NULL;
struct device *cpu_dev;
struct cpufreq_policy *policy;
struct cpufreq_qcom *c;
char cdev_name[MAX_FN_SIZE] = "";
int cpu;
for_each_available_child_of_node(np, cpu_np) {
cpu_cdev = devm_kzalloc(&pdev->dev, sizeof(*cpu_cdev),
GFP_KERNEL);
if (!cpu_cdev)
return -ENOMEM;
cpu_cdev->cpu_id = -1;
cpu_cdev->cpu_cooling_state = false;
cpu_cdev->cdev = NULL;
cpu_cdev->np = cpu_np;
phandle = of_parse_phandle(cpu_np, "qcom,cooling-cpu", 0);
for_each_possible_cpu(cpu) {
policy = cpufreq_cpu_get_raw(cpu);
if (!policy)
continue;
c = policy->driver_data;
if (!c->skip_data.skip)
continue;
cpu_dev = get_cpu_device(cpu);
if (cpu_dev && cpu_dev->of_node == phandle) {
cpu_cdev->cpu_id = cpu;
snprintf(cdev_name, sizeof(cdev_name),
"cpufreq-hw-%d", cpu);
cpu_cdev->cdev =
thermal_of_cooling_device_register(
cpu_cdev->np, cdev_name,
cpu_cdev,
&cpufreq_hw_cooling_ops);
if (IS_ERR(cpu_cdev->cdev)) {
pr_err("Cooling register failed for %s, ret: %d\n",
cdev_name,
PTR_ERR(cpu_cdev->cdev));
c->skip_data.final_index =
c->skip_data.high_temp_index;
break;
}
pr_info("CPUFREQ-HW cooling device %d %s\n",
cpu, cdev_name);
break;
}
}
}
return 0;
}
static int qcom_cpufreq_hw_driver_probe(struct platform_device *pdev)
{
struct cpu_cycle_counter_cb cycle_counter_cb = {
.get_cpu_cycle_counter = qcom_cpufreq_get_cpu_cycle_counter,
};
int rc, cpu;
/* Get the bases of cpufreq for domains */
rc = qcom_resources_init(pdev);
if (rc) {
dev_err(&pdev->dev, "CPUFreq resource init failed\n");
return rc;
}
rc = cpufreq_register_driver(&cpufreq_qcom_hw_driver);
if (rc) {
dev_err(&pdev->dev, "CPUFreq HW driver failed to register\n");
return rc;
}
for_each_possible_cpu(cpu)
spin_lock_init(&qcom_cpufreq_counter[cpu].lock);
rc = register_cpu_cycle_counter_cb(&cycle_counter_cb);
if (rc) {
dev_err(&pdev->dev, "cycle counter cb failed to register\n");
return rc;
}
dev_dbg(&pdev->dev, "QCOM CPUFreq HW driver initialized\n");
of_platform_populate(pdev->dev.of_node, NULL, NULL, &pdev->dev);
cpufreq_hw_register_cooling_device(pdev);
return 0;
}
static const struct of_device_id qcom_cpufreq_hw_match[] = {
{ .compatible = "qcom,cpufreq-hw", .data = &cpufreq_qcom_std_offsets },
{ .compatible = "qcom,cpufreq-hw-epss",
.data = &cpufreq_qcom_epss_std_offsets },
{}
};
static struct platform_driver qcom_cpufreq_hw_driver = {
.probe = qcom_cpufreq_hw_driver_probe,
.driver = {
.name = "qcom-cpufreq-hw",
.of_match_table = qcom_cpufreq_hw_match,
},
};
static int __init qcom_cpufreq_hw_init(void)
{
return platform_driver_register(&qcom_cpufreq_hw_driver);
}
subsys_initcall(qcom_cpufreq_hw_init);
MODULE_DESCRIPTION("QCOM firmware-based CPU Frequency driver");