| // SPDX-License-Identifier: GPL-2.0 |
| // Copyright (c) 2017 Cadence |
| // Cadence PCIe endpoint controller driver. |
| // Author: Cyrille Pitchen <cyrille.pitchen@free-electrons.com> |
| |
| #include <linux/delay.h> |
| #include <linux/kernel.h> |
| #include <linux/of.h> |
| #include <linux/pci-epc.h> |
| #include <linux/platform_device.h> |
| #include <linux/pm_runtime.h> |
| #include <linux/sizes.h> |
| |
| #include "pcie-cadence.h" |
| |
| #define CDNS_PCIE_EP_MIN_APERTURE 128 /* 128 bytes */ |
| #define CDNS_PCIE_EP_IRQ_PCI_ADDR_NONE 0x1 |
| #define CDNS_PCIE_EP_IRQ_PCI_ADDR_LEGACY 0x3 |
| |
| /** |
| * struct cdns_pcie_ep - private data for this PCIe endpoint controller driver |
| * @pcie: Cadence PCIe controller |
| * @max_regions: maximum number of regions supported by hardware |
| * @ob_region_map: bitmask of mapped outbound regions |
| * @ob_addr: base addresses in the AXI bus where the outbound regions start |
| * @irq_phys_addr: base address on the AXI bus where the MSI/legacy IRQ |
| * dedicated outbound regions is mapped. |
| * @irq_cpu_addr: base address in the CPU space where a write access triggers |
| * the sending of a memory write (MSI) / normal message (legacy |
| * IRQ) TLP through the PCIe bus. |
| * @irq_pci_addr: used to save the current mapping of the MSI/legacy IRQ |
| * dedicated outbound region. |
| * @irq_pci_fn: the latest PCI function that has updated the mapping of |
| * the MSI/legacy IRQ dedicated outbound region. |
| * @irq_pending: bitmask of asserted legacy IRQs. |
| */ |
| struct cdns_pcie_ep { |
| struct cdns_pcie pcie; |
| u32 max_regions; |
| unsigned long ob_region_map; |
| phys_addr_t *ob_addr; |
| phys_addr_t irq_phys_addr; |
| void __iomem *irq_cpu_addr; |
| u64 irq_pci_addr; |
| u8 irq_pci_fn; |
| u8 irq_pending; |
| }; |
| |
| static int cdns_pcie_ep_write_header(struct pci_epc *epc, u8 fn, |
| struct pci_epf_header *hdr) |
| { |
| struct cdns_pcie_ep *ep = epc_get_drvdata(epc); |
| struct cdns_pcie *pcie = &ep->pcie; |
| |
| cdns_pcie_ep_fn_writew(pcie, fn, PCI_DEVICE_ID, hdr->deviceid); |
| cdns_pcie_ep_fn_writeb(pcie, fn, PCI_REVISION_ID, hdr->revid); |
| cdns_pcie_ep_fn_writeb(pcie, fn, PCI_CLASS_PROG, hdr->progif_code); |
| cdns_pcie_ep_fn_writew(pcie, fn, PCI_CLASS_DEVICE, |
| hdr->subclass_code | hdr->baseclass_code << 8); |
| cdns_pcie_ep_fn_writeb(pcie, fn, PCI_CACHE_LINE_SIZE, |
| hdr->cache_line_size); |
| cdns_pcie_ep_fn_writew(pcie, fn, PCI_SUBSYSTEM_ID, hdr->subsys_id); |
| cdns_pcie_ep_fn_writeb(pcie, fn, PCI_INTERRUPT_PIN, hdr->interrupt_pin); |
| |
| /* |
| * Vendor ID can only be modified from function 0, all other functions |
| * use the same vendor ID as function 0. |
| */ |
| if (fn == 0) { |
| /* Update the vendor IDs. */ |
| u32 id = CDNS_PCIE_LM_ID_VENDOR(hdr->vendorid) | |
| CDNS_PCIE_LM_ID_SUBSYS(hdr->subsys_vendor_id); |
| |
| cdns_pcie_writel(pcie, CDNS_PCIE_LM_ID, id); |
| } |
| |
| return 0; |
| } |
| |
| static int cdns_pcie_ep_set_bar(struct pci_epc *epc, u8 fn, |
| struct pci_epf_bar *epf_bar) |
| { |
| struct cdns_pcie_ep *ep = epc_get_drvdata(epc); |
| struct cdns_pcie *pcie = &ep->pcie; |
| dma_addr_t bar_phys = epf_bar->phys_addr; |
| enum pci_barno bar = epf_bar->barno; |
| int flags = epf_bar->flags; |
| u32 addr0, addr1, reg, cfg, b, aperture, ctrl; |
| u64 sz; |
| |
| /* BAR size is 2^(aperture + 7) */ |
| sz = max_t(size_t, epf_bar->size, CDNS_PCIE_EP_MIN_APERTURE); |
| /* |
| * roundup_pow_of_two() returns an unsigned long, which is not suited |
| * for 64bit values. |
| */ |
| sz = 1ULL << fls64(sz - 1); |
| aperture = ilog2(sz) - 7; /* 128B -> 0, 256B -> 1, 512B -> 2, ... */ |
| |
| if ((flags & PCI_BASE_ADDRESS_SPACE) == PCI_BASE_ADDRESS_SPACE_IO) { |
| ctrl = CDNS_PCIE_LM_BAR_CFG_CTRL_IO_32BITS; |
| } else { |
| bool is_prefetch = !!(flags & PCI_BASE_ADDRESS_MEM_PREFETCH); |
| bool is_64bits = sz > SZ_2G; |
| |
| if (is_64bits && (bar & 1)) |
| return -EINVAL; |
| |
| if (is_64bits && !(flags & PCI_BASE_ADDRESS_MEM_TYPE_64)) |
| epf_bar->flags |= PCI_BASE_ADDRESS_MEM_TYPE_64; |
| |
| if (is_64bits && is_prefetch) |
| ctrl = CDNS_PCIE_LM_BAR_CFG_CTRL_PREFETCH_MEM_64BITS; |
| else if (is_prefetch) |
| ctrl = CDNS_PCIE_LM_BAR_CFG_CTRL_PREFETCH_MEM_32BITS; |
| else if (is_64bits) |
| ctrl = CDNS_PCIE_LM_BAR_CFG_CTRL_MEM_64BITS; |
| else |
| ctrl = CDNS_PCIE_LM_BAR_CFG_CTRL_MEM_32BITS; |
| } |
| |
| addr0 = lower_32_bits(bar_phys); |
| addr1 = upper_32_bits(bar_phys); |
| cdns_pcie_writel(pcie, CDNS_PCIE_AT_IB_EP_FUNC_BAR_ADDR0(fn, bar), |
| addr0); |
| cdns_pcie_writel(pcie, CDNS_PCIE_AT_IB_EP_FUNC_BAR_ADDR1(fn, bar), |
| addr1); |
| |
| if (bar < BAR_4) { |
| reg = CDNS_PCIE_LM_EP_FUNC_BAR_CFG0(fn); |
| b = bar; |
| } else { |
| reg = CDNS_PCIE_LM_EP_FUNC_BAR_CFG1(fn); |
| b = bar - BAR_4; |
| } |
| |
| cfg = cdns_pcie_readl(pcie, reg); |
| cfg &= ~(CDNS_PCIE_LM_EP_FUNC_BAR_CFG_BAR_APERTURE_MASK(b) | |
| CDNS_PCIE_LM_EP_FUNC_BAR_CFG_BAR_CTRL_MASK(b)); |
| cfg |= (CDNS_PCIE_LM_EP_FUNC_BAR_CFG_BAR_APERTURE(b, aperture) | |
| CDNS_PCIE_LM_EP_FUNC_BAR_CFG_BAR_CTRL(b, ctrl)); |
| cdns_pcie_writel(pcie, reg, cfg); |
| |
| return 0; |
| } |
| |
| static void cdns_pcie_ep_clear_bar(struct pci_epc *epc, u8 fn, |
| struct pci_epf_bar *epf_bar) |
| { |
| struct cdns_pcie_ep *ep = epc_get_drvdata(epc); |
| struct cdns_pcie *pcie = &ep->pcie; |
| enum pci_barno bar = epf_bar->barno; |
| u32 reg, cfg, b, ctrl; |
| |
| if (bar < BAR_4) { |
| reg = CDNS_PCIE_LM_EP_FUNC_BAR_CFG0(fn); |
| b = bar; |
| } else { |
| reg = CDNS_PCIE_LM_EP_FUNC_BAR_CFG1(fn); |
| b = bar - BAR_4; |
| } |
| |
| ctrl = CDNS_PCIE_LM_BAR_CFG_CTRL_DISABLED; |
| cfg = cdns_pcie_readl(pcie, reg); |
| cfg &= ~(CDNS_PCIE_LM_EP_FUNC_BAR_CFG_BAR_APERTURE_MASK(b) | |
| CDNS_PCIE_LM_EP_FUNC_BAR_CFG_BAR_CTRL_MASK(b)); |
| cfg |= CDNS_PCIE_LM_EP_FUNC_BAR_CFG_BAR_CTRL(b, ctrl); |
| cdns_pcie_writel(pcie, reg, cfg); |
| |
| cdns_pcie_writel(pcie, CDNS_PCIE_AT_IB_EP_FUNC_BAR_ADDR0(fn, bar), 0); |
| cdns_pcie_writel(pcie, CDNS_PCIE_AT_IB_EP_FUNC_BAR_ADDR1(fn, bar), 0); |
| } |
| |
| static int cdns_pcie_ep_map_addr(struct pci_epc *epc, u8 fn, phys_addr_t addr, |
| u64 pci_addr, size_t size) |
| { |
| struct cdns_pcie_ep *ep = epc_get_drvdata(epc); |
| struct cdns_pcie *pcie = &ep->pcie; |
| u32 r; |
| |
| r = find_first_zero_bit(&ep->ob_region_map, |
| sizeof(ep->ob_region_map) * BITS_PER_LONG); |
| if (r >= ep->max_regions - 1) { |
| dev_err(&epc->dev, "no free outbound region\n"); |
| return -EINVAL; |
| } |
| |
| cdns_pcie_set_outbound_region(pcie, fn, r, false, addr, pci_addr, size); |
| |
| set_bit(r, &ep->ob_region_map); |
| ep->ob_addr[r] = addr; |
| |
| return 0; |
| } |
| |
| static void cdns_pcie_ep_unmap_addr(struct pci_epc *epc, u8 fn, |
| phys_addr_t addr) |
| { |
| struct cdns_pcie_ep *ep = epc_get_drvdata(epc); |
| struct cdns_pcie *pcie = &ep->pcie; |
| u32 r; |
| |
| for (r = 0; r < ep->max_regions - 1; r++) |
| if (ep->ob_addr[r] == addr) |
| break; |
| |
| if (r == ep->max_regions - 1) |
| return; |
| |
| cdns_pcie_reset_outbound_region(pcie, r); |
| |
| ep->ob_addr[r] = 0; |
| clear_bit(r, &ep->ob_region_map); |
| } |
| |
| static int cdns_pcie_ep_set_msi(struct pci_epc *epc, u8 fn, u8 mmc) |
| { |
| struct cdns_pcie_ep *ep = epc_get_drvdata(epc); |
| struct cdns_pcie *pcie = &ep->pcie; |
| u32 cap = CDNS_PCIE_EP_FUNC_MSI_CAP_OFFSET; |
| u16 flags; |
| |
| /* |
| * Set the Multiple Message Capable bitfield into the Message Control |
| * register. |
| */ |
| flags = cdns_pcie_ep_fn_readw(pcie, fn, cap + PCI_MSI_FLAGS); |
| flags = (flags & ~PCI_MSI_FLAGS_QMASK) | (mmc << 1); |
| flags |= PCI_MSI_FLAGS_64BIT; |
| flags &= ~PCI_MSI_FLAGS_MASKBIT; |
| cdns_pcie_ep_fn_writew(pcie, fn, cap + PCI_MSI_FLAGS, flags); |
| |
| return 0; |
| } |
| |
| static int cdns_pcie_ep_get_msi(struct pci_epc *epc, u8 fn) |
| { |
| struct cdns_pcie_ep *ep = epc_get_drvdata(epc); |
| struct cdns_pcie *pcie = &ep->pcie; |
| u32 cap = CDNS_PCIE_EP_FUNC_MSI_CAP_OFFSET; |
| u16 flags, mme; |
| |
| /* Validate that the MSI feature is actually enabled. */ |
| flags = cdns_pcie_ep_fn_readw(pcie, fn, cap + PCI_MSI_FLAGS); |
| if (!(flags & PCI_MSI_FLAGS_ENABLE)) |
| return -EINVAL; |
| |
| /* |
| * Get the Multiple Message Enable bitfield from the Message Control |
| * register. |
| */ |
| mme = (flags & PCI_MSI_FLAGS_QSIZE) >> 4; |
| |
| return mme; |
| } |
| |
| static void cdns_pcie_ep_assert_intx(struct cdns_pcie_ep *ep, u8 fn, |
| u8 intx, bool is_asserted) |
| { |
| struct cdns_pcie *pcie = &ep->pcie; |
| u32 offset; |
| u16 status; |
| u8 msg_code; |
| |
| intx &= 3; |
| |
| /* Set the outbound region if needed. */ |
| if (unlikely(ep->irq_pci_addr != CDNS_PCIE_EP_IRQ_PCI_ADDR_LEGACY || |
| ep->irq_pci_fn != fn)) { |
| /* First region was reserved for IRQ writes. */ |
| cdns_pcie_set_outbound_region_for_normal_msg(pcie, fn, 0, |
| ep->irq_phys_addr); |
| ep->irq_pci_addr = CDNS_PCIE_EP_IRQ_PCI_ADDR_LEGACY; |
| ep->irq_pci_fn = fn; |
| } |
| |
| if (is_asserted) { |
| ep->irq_pending |= BIT(intx); |
| msg_code = MSG_CODE_ASSERT_INTA + intx; |
| } else { |
| ep->irq_pending &= ~BIT(intx); |
| msg_code = MSG_CODE_DEASSERT_INTA + intx; |
| } |
| |
| status = cdns_pcie_ep_fn_readw(pcie, fn, PCI_STATUS); |
| if (((status & PCI_STATUS_INTERRUPT) != 0) ^ (ep->irq_pending != 0)) { |
| status ^= PCI_STATUS_INTERRUPT; |
| cdns_pcie_ep_fn_writew(pcie, fn, PCI_STATUS, status); |
| } |
| |
| offset = CDNS_PCIE_NORMAL_MSG_ROUTING(MSG_ROUTING_LOCAL) | |
| CDNS_PCIE_NORMAL_MSG_CODE(msg_code) | |
| CDNS_PCIE_MSG_NO_DATA; |
| writel(0, ep->irq_cpu_addr + offset); |
| } |
| |
| static int cdns_pcie_ep_send_legacy_irq(struct cdns_pcie_ep *ep, u8 fn, u8 intx) |
| { |
| u16 cmd; |
| |
| cmd = cdns_pcie_ep_fn_readw(&ep->pcie, fn, PCI_COMMAND); |
| if (cmd & PCI_COMMAND_INTX_DISABLE) |
| return -EINVAL; |
| |
| cdns_pcie_ep_assert_intx(ep, fn, intx, true); |
| /* |
| * The mdelay() value was taken from dra7xx_pcie_raise_legacy_irq() |
| * from drivers/pci/dwc/pci-dra7xx.c |
| */ |
| mdelay(1); |
| cdns_pcie_ep_assert_intx(ep, fn, intx, false); |
| return 0; |
| } |
| |
| static int cdns_pcie_ep_send_msi_irq(struct cdns_pcie_ep *ep, u8 fn, |
| u8 interrupt_num) |
| { |
| struct cdns_pcie *pcie = &ep->pcie; |
| u32 cap = CDNS_PCIE_EP_FUNC_MSI_CAP_OFFSET; |
| u16 flags, mme, data, data_mask; |
| u8 msi_count; |
| u64 pci_addr, pci_addr_mask = 0xff; |
| |
| /* Check whether the MSI feature has been enabled by the PCI host. */ |
| flags = cdns_pcie_ep_fn_readw(pcie, fn, cap + PCI_MSI_FLAGS); |
| if (!(flags & PCI_MSI_FLAGS_ENABLE)) |
| return -EINVAL; |
| |
| /* Get the number of enabled MSIs */ |
| mme = (flags & PCI_MSI_FLAGS_QSIZE) >> 4; |
| msi_count = 1 << mme; |
| if (!interrupt_num || interrupt_num > msi_count) |
| return -EINVAL; |
| |
| /* Compute the data value to be written. */ |
| data_mask = msi_count - 1; |
| data = cdns_pcie_ep_fn_readw(pcie, fn, cap + PCI_MSI_DATA_64); |
| data = (data & ~data_mask) | ((interrupt_num - 1) & data_mask); |
| |
| /* Get the PCI address where to write the data into. */ |
| pci_addr = cdns_pcie_ep_fn_readl(pcie, fn, cap + PCI_MSI_ADDRESS_HI); |
| pci_addr <<= 32; |
| pci_addr |= cdns_pcie_ep_fn_readl(pcie, fn, cap + PCI_MSI_ADDRESS_LO); |
| pci_addr &= GENMASK_ULL(63, 2); |
| |
| /* Set the outbound region if needed. */ |
| if (unlikely(ep->irq_pci_addr != (pci_addr & ~pci_addr_mask) || |
| ep->irq_pci_fn != fn)) { |
| /* First region was reserved for IRQ writes. */ |
| cdns_pcie_set_outbound_region(pcie, fn, 0, |
| false, |
| ep->irq_phys_addr, |
| pci_addr & ~pci_addr_mask, |
| pci_addr_mask + 1); |
| ep->irq_pci_addr = (pci_addr & ~pci_addr_mask); |
| ep->irq_pci_fn = fn; |
| } |
| writel(data, ep->irq_cpu_addr + (pci_addr & pci_addr_mask)); |
| |
| return 0; |
| } |
| |
| static int cdns_pcie_ep_raise_irq(struct pci_epc *epc, u8 fn, |
| enum pci_epc_irq_type type, |
| u16 interrupt_num) |
| { |
| struct cdns_pcie_ep *ep = epc_get_drvdata(epc); |
| |
| switch (type) { |
| case PCI_EPC_IRQ_LEGACY: |
| return cdns_pcie_ep_send_legacy_irq(ep, fn, 0); |
| |
| case PCI_EPC_IRQ_MSI: |
| return cdns_pcie_ep_send_msi_irq(ep, fn, interrupt_num); |
| |
| default: |
| break; |
| } |
| |
| return -EINVAL; |
| } |
| |
| static int cdns_pcie_ep_start(struct pci_epc *epc) |
| { |
| struct cdns_pcie_ep *ep = epc_get_drvdata(epc); |
| struct cdns_pcie *pcie = &ep->pcie; |
| struct pci_epf *epf; |
| u32 cfg; |
| |
| /* |
| * BIT(0) is hardwired to 1, hence function 0 is always enabled |
| * and can't be disabled anyway. |
| */ |
| cfg = BIT(0); |
| list_for_each_entry(epf, &epc->pci_epf, list) |
| cfg |= BIT(epf->func_no); |
| cdns_pcie_writel(pcie, CDNS_PCIE_LM_EP_FUNC_CFG, cfg); |
| |
| /* |
| * The PCIe links are automatically established by the controller |
| * once for all at powerup: the software can neither start nor stop |
| * those links later at runtime. |
| * |
| * Then we only have to notify the EP core that our links are already |
| * established. However we don't call directly pci_epc_linkup() because |
| * we've already locked the epc->lock. |
| */ |
| list_for_each_entry(epf, &epc->pci_epf, list) |
| pci_epf_linkup(epf); |
| |
| return 0; |
| } |
| |
| static const struct pci_epc_ops cdns_pcie_epc_ops = { |
| .write_header = cdns_pcie_ep_write_header, |
| .set_bar = cdns_pcie_ep_set_bar, |
| .clear_bar = cdns_pcie_ep_clear_bar, |
| .map_addr = cdns_pcie_ep_map_addr, |
| .unmap_addr = cdns_pcie_ep_unmap_addr, |
| .set_msi = cdns_pcie_ep_set_msi, |
| .get_msi = cdns_pcie_ep_get_msi, |
| .raise_irq = cdns_pcie_ep_raise_irq, |
| .start = cdns_pcie_ep_start, |
| }; |
| |
| static const struct of_device_id cdns_pcie_ep_of_match[] = { |
| { .compatible = "cdns,cdns-pcie-ep" }, |
| |
| { }, |
| }; |
| |
| static int cdns_pcie_ep_probe(struct platform_device *pdev) |
| { |
| struct device *dev = &pdev->dev; |
| struct device_node *np = dev->of_node; |
| struct cdns_pcie_ep *ep; |
| struct cdns_pcie *pcie; |
| struct pci_epc *epc; |
| struct resource *res; |
| int ret; |
| int phy_count; |
| |
| ep = devm_kzalloc(dev, sizeof(*ep), GFP_KERNEL); |
| if (!ep) |
| return -ENOMEM; |
| |
| pcie = &ep->pcie; |
| pcie->is_rc = false; |
| |
| res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "reg"); |
| pcie->reg_base = devm_ioremap_resource(dev, res); |
| if (IS_ERR(pcie->reg_base)) { |
| dev_err(dev, "missing \"reg\"\n"); |
| return PTR_ERR(pcie->reg_base); |
| } |
| |
| res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "mem"); |
| if (!res) { |
| dev_err(dev, "missing \"mem\"\n"); |
| return -EINVAL; |
| } |
| pcie->mem_res = res; |
| |
| ret = of_property_read_u32(np, "cdns,max-outbound-regions", |
| &ep->max_regions); |
| if (ret < 0) { |
| dev_err(dev, "missing \"cdns,max-outbound-regions\"\n"); |
| return ret; |
| } |
| ep->ob_addr = devm_kcalloc(dev, |
| ep->max_regions, sizeof(*ep->ob_addr), |
| GFP_KERNEL); |
| if (!ep->ob_addr) |
| return -ENOMEM; |
| |
| ret = cdns_pcie_init_phy(dev, pcie); |
| if (ret) { |
| dev_err(dev, "failed to init phy\n"); |
| return ret; |
| } |
| platform_set_drvdata(pdev, pcie); |
| pm_runtime_enable(dev); |
| ret = pm_runtime_get_sync(dev); |
| if (ret < 0) { |
| dev_err(dev, "pm_runtime_get_sync() failed\n"); |
| goto err_get_sync; |
| } |
| |
| /* Disable all but function 0 (anyway BIT(0) is hardwired to 1). */ |
| cdns_pcie_writel(pcie, CDNS_PCIE_LM_EP_FUNC_CFG, BIT(0)); |
| |
| epc = devm_pci_epc_create(dev, &cdns_pcie_epc_ops); |
| if (IS_ERR(epc)) { |
| dev_err(dev, "failed to create epc device\n"); |
| ret = PTR_ERR(epc); |
| goto err_init; |
| } |
| |
| epc_set_drvdata(epc, ep); |
| |
| if (of_property_read_u8(np, "max-functions", &epc->max_functions) < 0) |
| epc->max_functions = 1; |
| |
| ret = pci_epc_mem_init(epc, pcie->mem_res->start, |
| resource_size(pcie->mem_res)); |
| if (ret < 0) { |
| dev_err(dev, "failed to initialize the memory space\n"); |
| goto err_init; |
| } |
| |
| ep->irq_cpu_addr = pci_epc_mem_alloc_addr(epc, &ep->irq_phys_addr, |
| SZ_128K); |
| if (!ep->irq_cpu_addr) { |
| dev_err(dev, "failed to reserve memory space for MSI\n"); |
| ret = -ENOMEM; |
| goto free_epc_mem; |
| } |
| ep->irq_pci_addr = CDNS_PCIE_EP_IRQ_PCI_ADDR_NONE; |
| /* Reserve region 0 for IRQs */ |
| set_bit(0, &ep->ob_region_map); |
| |
| return 0; |
| |
| free_epc_mem: |
| pci_epc_mem_exit(epc); |
| |
| err_init: |
| pm_runtime_put_sync(dev); |
| |
| err_get_sync: |
| pm_runtime_disable(dev); |
| cdns_pcie_disable_phy(pcie); |
| phy_count = pcie->phy_count; |
| while (phy_count--) |
| device_link_del(pcie->link[phy_count]); |
| |
| return ret; |
| } |
| |
| static void cdns_pcie_ep_shutdown(struct platform_device *pdev) |
| { |
| struct device *dev = &pdev->dev; |
| struct cdns_pcie *pcie = dev_get_drvdata(dev); |
| int ret; |
| |
| ret = pm_runtime_put_sync(dev); |
| if (ret < 0) |
| dev_dbg(dev, "pm_runtime_put_sync failed\n"); |
| |
| pm_runtime_disable(dev); |
| |
| cdns_pcie_disable_phy(pcie); |
| } |
| |
| static struct platform_driver cdns_pcie_ep_driver = { |
| .driver = { |
| .name = "cdns-pcie-ep", |
| .of_match_table = cdns_pcie_ep_of_match, |
| .pm = &cdns_pcie_pm_ops, |
| }, |
| .probe = cdns_pcie_ep_probe, |
| .shutdown = cdns_pcie_ep_shutdown, |
| }; |
| builtin_platform_driver(cdns_pcie_ep_driver); |