blob: 91a81a571d510b20971d0632be14b93ae0e9058c [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright 2019 Google LLC
*/
#include <linux/gfp.h>
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/file.h>
#include <linux/ktime.h>
#include <linux/mm.h>
#include <linux/lz4.h>
#include <linux/crc32.h>
#include "data_mgmt.h"
#include "format.h"
#include "integrity.h"
struct mount_info *incfs_alloc_mount_info(struct super_block *sb,
struct mount_options *options,
struct path *backing_dir_path)
{
struct mount_info *mi = NULL;
int error = 0;
mi = kzalloc(sizeof(*mi), GFP_NOFS);
if (!mi)
return ERR_PTR(-ENOMEM);
mi->mi_sb = sb;
mi->mi_options = *options;
mi->mi_backing_dir_path = *backing_dir_path;
mi->mi_owner = get_current_cred();
path_get(&mi->mi_backing_dir_path);
mutex_init(&mi->mi_dir_struct_mutex);
mutex_init(&mi->mi_pending_reads_mutex);
init_waitqueue_head(&mi->mi_pending_reads_notif_wq);
INIT_LIST_HEAD(&mi->mi_reads_list_head);
if (options->read_log_pages != 0) {
size_t buf_size = PAGE_SIZE * options->read_log_pages;
spin_lock_init(&mi->mi_log.rl_writer_lock);
init_waitqueue_head(&mi->mi_log.ml_notif_wq);
mi->mi_log.rl_size = buf_size / sizeof(*mi->mi_log.rl_ring_buf);
mi->mi_log.rl_ring_buf = kzalloc(buf_size, GFP_NOFS);
if (!mi->mi_log.rl_ring_buf) {
error = -ENOMEM;
goto err;
}
}
return mi;
err:
incfs_free_mount_info(mi);
return ERR_PTR(error);
}
void incfs_free_mount_info(struct mount_info *mi)
{
if (!mi)
return;
dput(mi->mi_index_dir);
path_put(&mi->mi_backing_dir_path);
mutex_destroy(&mi->mi_dir_struct_mutex);
mutex_destroy(&mi->mi_pending_reads_mutex);
put_cred(mi->mi_owner);
kfree(mi->mi_log.rl_ring_buf);
kfree(mi->log_xattr);
kfree(mi->pending_read_xattr);
kfree(mi);
}
static void data_file_segment_init(struct data_file_segment *segment)
{
init_waitqueue_head(&segment->new_data_arrival_wq);
mutex_init(&segment->blockmap_mutex);
INIT_LIST_HEAD(&segment->reads_list_head);
}
static void data_file_segment_destroy(struct data_file_segment *segment)
{
mutex_destroy(&segment->blockmap_mutex);
}
struct data_file *incfs_open_data_file(struct mount_info *mi, struct file *bf)
{
struct data_file *df = NULL;
struct backing_file_context *bfc = NULL;
int md_records;
u64 size;
int error = 0;
int i;
if (!bf || !mi)
return ERR_PTR(-EFAULT);
if (!S_ISREG(bf->f_inode->i_mode))
return ERR_PTR(-EBADF);
bfc = incfs_alloc_bfc(bf);
if (IS_ERR(bfc))
return ERR_CAST(bfc);
df = kzalloc(sizeof(*df), GFP_NOFS);
if (!df) {
error = -ENOMEM;
goto out;
}
df->df_backing_file_context = bfc;
df->df_mount_info = mi;
for (i = 0; i < ARRAY_SIZE(df->df_segments); i++)
data_file_segment_init(&df->df_segments[i]);
error = mutex_lock_interruptible(&bfc->bc_mutex);
if (error)
goto out;
error = incfs_read_file_header(bfc, &df->df_metadata_off,
&df->df_id, &size);
mutex_unlock(&bfc->bc_mutex);
if (error)
goto out;
df->df_size = size;
if (size > 0)
df->df_block_count = get_blocks_count_for_size(size);
md_records = incfs_scan_metadata_chain(df);
if (md_records < 0)
error = md_records;
out:
if (error) {
incfs_free_bfc(bfc);
df->df_backing_file_context = NULL;
incfs_free_data_file(df);
return ERR_PTR(error);
}
return df;
}
void incfs_free_data_file(struct data_file *df)
{
int i;
if (!df)
return;
incfs_free_mtree(df->df_hash_tree);
for (i = 0; i < ARRAY_SIZE(df->df_segments); i++)
data_file_segment_destroy(&df->df_segments[i]);
incfs_free_bfc(df->df_backing_file_context);
kfree(df);
}
int make_inode_ready_for_data_ops(struct mount_info *mi,
struct inode *inode,
struct file *backing_file)
{
struct inode_info *node = get_incfs_node(inode);
struct data_file *df = NULL;
int err = 0;
inode_lock(inode);
if (S_ISREG(inode->i_mode)) {
if (!node->n_file) {
df = incfs_open_data_file(mi, backing_file);
if (IS_ERR(df))
err = PTR_ERR(df);
else
node->n_file = df;
}
} else
err = -EBADF;
inode_unlock(inode);
return err;
}
struct dir_file *incfs_open_dir_file(struct mount_info *mi, struct file *bf)
{
struct dir_file *dir = NULL;
if (!S_ISDIR(bf->f_inode->i_mode))
return ERR_PTR(-EBADF);
dir = kzalloc(sizeof(*dir), GFP_NOFS);
if (!dir)
return ERR_PTR(-ENOMEM);
dir->backing_dir = get_file(bf);
dir->mount_info = mi;
return dir;
}
void incfs_free_dir_file(struct dir_file *dir)
{
if (!dir)
return;
if (dir->backing_dir)
fput(dir->backing_dir);
kfree(dir);
}
static ssize_t decompress(struct mem_range src, struct mem_range dst)
{
int result = LZ4_decompress_safe(src.data, dst.data, src.len, dst.len);
if (result < 0)
return -EBADMSG;
return result;
}
static void log_block_read(struct mount_info *mi, incfs_uuid_t *id,
int block_index, bool timed_out)
{
struct read_log *log = &mi->mi_log;
struct read_log_state state;
s64 now_us = ktime_to_us(ktime_get());
struct read_log_record record = {
.file_id = *id,
.block_index = block_index,
.timed_out = timed_out,
.timestamp_us = now_us
};
if (log->rl_size == 0)
return;
spin_lock(&log->rl_writer_lock);
state = READ_ONCE(log->rl_state);
log->rl_ring_buf[state.next_index] = record;
if (++state.next_index == log->rl_size) {
state.next_index = 0;
++state.current_pass_no;
}
WRITE_ONCE(log->rl_state, state);
spin_unlock(&log->rl_writer_lock);
wake_up_all(&log->ml_notif_wq);
}
static int validate_hash_tree(struct file *bf, struct data_file *df,
int block_index, struct mem_range data, u8 *buf)
{
u8 digest[INCFS_MAX_HASH_SIZE] = {};
struct mtree *tree = NULL;
struct ondisk_signature *sig = NULL;
struct mem_range calc_digest_rng;
struct mem_range saved_digest_rng;
struct mem_range root_hash_rng;
int digest_size;
int hash_block_index = block_index;
int hash_per_block;
int lvl = 0;
int res;
tree = df->df_hash_tree;
sig = df->df_signature;
if (!tree || !sig)
return 0;
digest_size = tree->alg->digest_size;
hash_per_block = INCFS_DATA_FILE_BLOCK_SIZE / digest_size;
calc_digest_rng = range(digest, digest_size);
res = incfs_calc_digest(tree->alg, data, calc_digest_rng);
if (res)
return res;
for (lvl = 0; lvl < tree->depth; lvl++) {
loff_t lvl_off = tree->hash_level_suboffset[lvl] +
sig->mtree_offset;
loff_t hash_block_off = lvl_off +
round_down(hash_block_index * digest_size,
INCFS_DATA_FILE_BLOCK_SIZE);
size_t hash_off_in_block = hash_block_index * digest_size
% INCFS_DATA_FILE_BLOCK_SIZE;
struct mem_range buf_range = range(buf,
INCFS_DATA_FILE_BLOCK_SIZE);
ssize_t read_res = incfs_kread(bf, buf,
INCFS_DATA_FILE_BLOCK_SIZE, hash_block_off);
if (read_res < 0)
return read_res;
if (read_res != INCFS_DATA_FILE_BLOCK_SIZE)
return -EIO;
saved_digest_rng = range(buf + hash_off_in_block, digest_size);
if (!incfs_equal_ranges(calc_digest_rng, saved_digest_rng)) {
int i;
bool zero = true;
pr_debug("incfs: Hash mismatch lvl:%d blk:%d\n",
lvl, block_index);
for (i = 0; i < saved_digest_rng.len; ++i)
if (saved_digest_rng.data[i]) {
zero = false;
break;
}
if (zero)
pr_debug("incfs: Note saved_digest all zero - did you forget to load the hashes?\n");
return -EBADMSG;
}
res = incfs_calc_digest(tree->alg, buf_range, calc_digest_rng);
if (res)
return res;
hash_block_index /= hash_per_block;
}
root_hash_rng = range(tree->root_hash, digest_size);
if (!incfs_equal_ranges(calc_digest_rng, root_hash_rng)) {
pr_debug("incfs: Root hash mismatch blk:%d\n", block_index);
return -EBADMSG;
}
return 0;
}
static int revalidate_signature(struct file *bf, struct data_file *df)
{
struct ondisk_signature *sig = df->df_signature;
struct mem_range root_hash = {};
int result = 0;
u8 *sig_buf = NULL;
u8 *add_data_buf = NULL;
ssize_t read_res;
/* File has no signature. */
if (!sig || !df->df_hash_tree || sig->sig_size == 0)
return 0;
/* Signature has already been validated. */
if (df->df_signature_validated)
return 0;
add_data_buf = kzalloc(sig->add_data_size, GFP_NOFS);
if (!add_data_buf) {
result = -ENOMEM;
goto out;
}
read_res = incfs_kread(bf, add_data_buf, sig->add_data_size,
sig->add_data_offset);
if (read_res < 0) {
result = read_res;
goto out;
}
if (read_res != sig->add_data_size) {
result = -EIO;
goto out;
}
sig_buf = kzalloc(sig->sig_size, GFP_NOFS);
if (!sig_buf) {
result = -ENOMEM;
goto out;
}
read_res = incfs_kread(bf, sig_buf, sig->sig_size, sig->sig_offset);
if (read_res < 0) {
result = read_res;
goto out;
}
if (read_res != sig->sig_size) {
result = -EIO;
goto out;
}
root_hash = range(df->df_hash_tree->root_hash,
df->df_hash_tree->alg->digest_size);
result = incfs_validate_pkcs7_signature(
range(sig_buf, sig->sig_size),
root_hash,
range(add_data_buf, sig->add_data_size));
if (result == 0)
df->df_signature_validated = true;
out:
kfree(sig_buf);
kfree(add_data_buf);
return result;
}
static struct data_file_segment *get_file_segment(struct data_file *df,
int block_index)
{
int seg_idx = block_index % ARRAY_SIZE(df->df_segments);
return &df->df_segments[seg_idx];
}
static bool is_data_block_present(struct data_file_block *block)
{
return (block->db_backing_file_data_offset != 0) &&
(block->db_stored_size != 0);
}
static int get_data_file_block(struct data_file *df, int index,
struct data_file_block *res_block)
{
struct incfs_blockmap_entry bme = {};
struct backing_file_context *bfc = NULL;
loff_t blockmap_off = 0;
u16 flags = 0;
int error = 0;
if (!df || !res_block)
return -EFAULT;
blockmap_off = df->df_blockmap_off;
bfc = df->df_backing_file_context;
if (index < 0 || index >= df->df_block_count || blockmap_off == 0)
return -EINVAL;
error = incfs_read_blockmap_entry(bfc, index, blockmap_off, &bme);
if (error)
return error;
flags = le16_to_cpu(bme.me_flags);
res_block->db_backing_file_data_offset =
le16_to_cpu(bme.me_data_offset_hi);
res_block->db_backing_file_data_offset <<= 32;
res_block->db_backing_file_data_offset |=
le32_to_cpu(bme.me_data_offset_lo);
res_block->db_stored_size = le16_to_cpu(bme.me_data_size);
res_block->db_comp_alg = (flags & INCFS_BLOCK_COMPRESSED_LZ4) ?
COMPRESSION_LZ4 :
COMPRESSION_NONE;
return 0;
}
static bool is_read_done(struct pending_read *read)
{
return atomic_read_acquire(&read->done) != 0;
}
static void set_read_done(struct pending_read *read)
{
atomic_set_release(&read->done, 1);
}
/*
* Notifies a given data file about pending read from a given block.
* Returns a new pending read entry.
*/
static struct pending_read *add_pending_read(struct data_file *df,
int block_index)
{
struct pending_read *result = NULL;
struct data_file_segment *segment = NULL;
struct mount_info *mi = NULL;
segment = get_file_segment(df, block_index);
mi = df->df_mount_info;
result = kzalloc(sizeof(*result), GFP_NOFS);
if (!result)
return NULL;
result->file_id = df->df_id;
result->block_index = block_index;
result->timestamp_us = ktime_to_us(ktime_get());
mutex_lock(&mi->mi_pending_reads_mutex);
result->serial_number = ++mi->mi_last_pending_read_number;
mi->mi_pending_reads_count++;
list_add(&result->mi_reads_list, &mi->mi_reads_list_head);
list_add(&result->segment_reads_list, &segment->reads_list_head);
mutex_unlock(&mi->mi_pending_reads_mutex);
wake_up_all(&mi->mi_pending_reads_notif_wq);
return result;
}
/* Notifies a given data file that pending read is completed. */
static void remove_pending_read(struct data_file *df, struct pending_read *read)
{
struct mount_info *mi = NULL;
if (!df || !read) {
WARN_ON(!df);
WARN_ON(!read);
return;
}
mi = df->df_mount_info;
mutex_lock(&mi->mi_pending_reads_mutex);
list_del(&read->mi_reads_list);
list_del(&read->segment_reads_list);
mi->mi_pending_reads_count--;
mutex_unlock(&mi->mi_pending_reads_mutex);
kfree(read);
}
static void notify_pending_reads(struct mount_info *mi,
struct data_file_segment *segment,
int index)
{
struct pending_read *entry = NULL;
/* Notify pending reads waiting for this block. */
mutex_lock(&mi->mi_pending_reads_mutex);
list_for_each_entry(entry, &segment->reads_list_head,
segment_reads_list) {
if (entry->block_index == index)
set_read_done(entry);
}
mutex_unlock(&mi->mi_pending_reads_mutex);
wake_up_all(&segment->new_data_arrival_wq);
}
static int wait_for_data_block(struct data_file *df, int block_index,
int timeout_ms,
struct data_file_block *res_block)
{
struct data_file_block block = {};
struct data_file_segment *segment = NULL;
struct pending_read *read = NULL;
struct mount_info *mi = NULL;
int error = 0;
int wait_res = 0;
if (!df || !res_block)
return -EFAULT;
if (block_index < 0 || block_index >= df->df_block_count)
return -EINVAL;
if (df->df_blockmap_off <= 0)
return -ENODATA;
segment = get_file_segment(df, block_index);
error = mutex_lock_interruptible(&segment->blockmap_mutex);
if (error)
return error;
/* Look up the given block */
error = get_data_file_block(df, block_index, &block);
/* If it's not found, create a pending read */
if (!error && !is_data_block_present(&block) && timeout_ms != 0)
read = add_pending_read(df, block_index);
mutex_unlock(&segment->blockmap_mutex);
if (error)
return error;
/* If the block was found, just return it. No need to wait. */
if (is_data_block_present(&block)) {
*res_block = block;
return 0;
}
mi = df->df_mount_info;
if (timeout_ms == 0) {
log_block_read(mi, &df->df_id, block_index,
true /*timed out*/);
return -ETIME;
}
if (!read)
return -ENOMEM;
/* Wait for notifications about block's arrival */
wait_res =
wait_event_interruptible_timeout(segment->new_data_arrival_wq,
(is_read_done(read)),
msecs_to_jiffies(timeout_ms));
/* Woke up, the pending read is no longer needed. */
remove_pending_read(df, read);
read = NULL;
if (wait_res == 0) {
/* Wait has timed out */
log_block_read(mi, &df->df_id, block_index,
true /*timed out*/);
return -ETIME;
}
if (wait_res < 0) {
/*
* Only ERESTARTSYS is really expected here when a signal
* comes while we wait.
*/
return wait_res;
}
error = mutex_lock_interruptible(&segment->blockmap_mutex);
if (error)
return error;
/*
* Re-read block's info now, it has just arrived and
* should be available.
*/
error = get_data_file_block(df, block_index, &block);
if (!error) {
if (is_data_block_present(&block))
*res_block = block;
else {
/*
* Somehow wait finished successfully bug block still
* can't be found. It's not normal.
*/
pr_warn("incfs:Wait succeeded, but block not found.\n");
error = -ENODATA;
}
}
mutex_unlock(&segment->blockmap_mutex);
return error;
}
ssize_t incfs_read_data_file_block(struct mem_range dst, struct data_file *df,
int index, int timeout_ms,
struct mem_range tmp)
{
loff_t pos;
ssize_t result;
size_t bytes_to_read;
struct mount_info *mi = NULL;
struct file *bf = NULL;
struct data_file_block block = {};
if (!dst.data || !df)
return -EFAULT;
if (tmp.len < 2 * INCFS_DATA_FILE_BLOCK_SIZE)
return -ERANGE;
mi = df->df_mount_info;
bf = df->df_backing_file_context->bc_file;
result = wait_for_data_block(df, index, timeout_ms, &block);
if (result < 0)
goto out;
pos = block.db_backing_file_data_offset;
if (block.db_comp_alg == COMPRESSION_NONE) {
bytes_to_read = min(dst.len, block.db_stored_size);
result = incfs_kread(bf, dst.data, bytes_to_read, pos);
/* Some data was read, but not enough */
if (result >= 0 && result != bytes_to_read)
result = -EIO;
} else {
bytes_to_read = min(tmp.len, block.db_stored_size);
result = incfs_kread(bf, tmp.data, bytes_to_read, pos);
if (result == bytes_to_read) {
result =
decompress(range(tmp.data, bytes_to_read), dst);
if (result < 0) {
const char *name =
bf->f_path.dentry->d_name.name;
pr_warn_once("incfs: Decompression error. %s",
name);
}
} else if (result >= 0) {
/* Some data was read, but not enough */
result = -EIO;
}
}
if (result > 0) {
int err = validate_hash_tree(bf, df, index, dst, tmp.data);
if (err < 0)
result = err;
}
if (result > 0) {
int err = revalidate_signature(bf, df);
if (err < 0)
result = err;
}
if (result >= 0)
log_block_read(mi, &df->df_id, index, false /*timed out*/);
out:
return result;
}
int incfs_process_new_data_block(struct data_file *df,
struct incfs_new_data_block *block, u8 *data)
{
struct mount_info *mi = NULL;
struct backing_file_context *bfc = NULL;
struct data_file_segment *segment = NULL;
struct data_file_block existing_block = {};
u16 flags = 0;
int error = 0;
if (!df || !block)
return -EFAULT;
bfc = df->df_backing_file_context;
mi = df->df_mount_info;
if (block->block_index >= df->df_block_count)
return -ERANGE;
segment = get_file_segment(df, block->block_index);
if (!segment)
return -EFAULT;
if (block->compression == COMPRESSION_LZ4)
flags |= INCFS_BLOCK_COMPRESSED_LZ4;
error = mutex_lock_interruptible(&segment->blockmap_mutex);
if (error)
return error;
error = get_data_file_block(df, block->block_index, &existing_block);
if (error)
goto unlock;
if (is_data_block_present(&existing_block)) {
/* Block is already present, nothing to do here */
goto unlock;
}
error = mutex_lock_interruptible(&bfc->bc_mutex);
if (!error) {
error = incfs_write_data_block_to_backing_file(
bfc, range(data, block->data_len), block->block_index,
df->df_blockmap_off, flags);
mutex_unlock(&bfc->bc_mutex);
}
if (!error)
notify_pending_reads(mi, segment, block->block_index);
unlock:
mutex_unlock(&segment->blockmap_mutex);
if (error)
pr_debug("incfs: %s %d error: %d\n", __func__,
block->block_index, error);
return error;
}
int incfs_read_file_signature(struct data_file *df, struct mem_range dst)
{
struct file *bf = df->df_backing_file_context->bc_file;
struct ondisk_signature *sig;
int read_res = 0;
if (!dst.data)
return -EFAULT;
sig = df->df_signature;
if (!sig)
return 0;
if (dst.len < sig->sig_size)
return -E2BIG;
read_res = incfs_kread(bf, dst.data, sig->sig_size, sig->sig_offset);
if (read_res < 0)
return read_res;
if (read_res != sig->sig_size)
return -EIO;
return read_res;
}
int incfs_process_new_hash_block(struct data_file *df,
struct incfs_new_data_block *block, u8 *data)
{
struct backing_file_context *bfc = NULL;
struct mount_info *mi = NULL;
struct mtree *hash_tree = NULL;
struct ondisk_signature *sig = NULL;
loff_t hash_area_base = 0;
loff_t hash_area_size = 0;
int error = 0;
if (!df || !block)
return -EFAULT;
if (!(block->flags & INCFS_BLOCK_FLAGS_HASH))
return -EINVAL;
bfc = df->df_backing_file_context;
mi = df->df_mount_info;
if (!df)
return -ENOENT;
hash_tree = df->df_hash_tree;
sig = df->df_signature;
if (!hash_tree || !sig || sig->mtree_offset == 0)
return -ENOTSUPP;
hash_area_base = sig->mtree_offset;
hash_area_size = sig->mtree_size;
if (hash_area_size < block->block_index * INCFS_DATA_FILE_BLOCK_SIZE
+ block->data_len) {
/* Hash block goes beyond dedicated hash area of this file. */
return -ERANGE;
}
error = mutex_lock_interruptible(&bfc->bc_mutex);
if (!error)
error = incfs_write_hash_block_to_backing_file(
bfc, range(data, block->data_len), block->block_index,
hash_area_base);
mutex_unlock(&bfc->bc_mutex);
return error;
}
static int process_blockmap_md(struct incfs_blockmap *bm,
struct metadata_handler *handler)
{
struct data_file *df = handler->context;
int error = 0;
loff_t base_off = le64_to_cpu(bm->m_base_offset);
u32 block_count = le32_to_cpu(bm->m_block_count);
if (!df)
return -EFAULT;
if (df->df_block_count != block_count)
return -EBADMSG;
df->df_blockmap_off = base_off;
return error;
}
static int process_file_attr_md(struct incfs_file_attr *fa,
struct metadata_handler *handler)
{
struct data_file *df = handler->context;
u16 attr_size = le16_to_cpu(fa->fa_size);
if (!df)
return -EFAULT;
if (attr_size > INCFS_MAX_FILE_ATTR_SIZE)
return -E2BIG;
df->n_attr.fa_value_offset = le64_to_cpu(fa->fa_offset);
df->n_attr.fa_value_size = attr_size;
df->n_attr.fa_crc = le32_to_cpu(fa->fa_crc);
return 0;
}
static int process_file_signature_md(struct incfs_file_signature *sg,
struct metadata_handler *handler)
{
struct data_file *df = handler->context;
struct mtree *hash_tree = NULL;
struct ondisk_signature *signature = NULL;
int error = 0;
loff_t base_tree_off = le64_to_cpu(sg->sg_hash_tree_offset);
u32 tree_size = le32_to_cpu(sg->sg_hash_tree_size);
loff_t sig_off = le64_to_cpu(sg->sg_sig_offset);
u32 sig_size = le32_to_cpu(sg->sg_sig_size);
loff_t add_data_off = le64_to_cpu(sg->sg_add_data_offset);
u32 add_data_size = le32_to_cpu(sg->sg_add_data_size);
if (!df)
return -ENOENT;
signature = kzalloc(sizeof(*signature), GFP_NOFS);
if (!signature) {
error = -ENOMEM;
goto out;
}
signature->add_data_offset = add_data_off;
signature->add_data_size = add_data_size;
signature->sig_offset = sig_off;
signature->sig_size = sig_size;
signature->mtree_offset = base_tree_off;
signature->mtree_size = tree_size;
hash_tree = incfs_alloc_mtree(sg->sg_hash_alg, df->df_block_count,
range(sg->sg_root_hash, sizeof(sg->sg_root_hash)));
if (IS_ERR(hash_tree)) {
error = PTR_ERR(hash_tree);
hash_tree = NULL;
goto out;
}
if (hash_tree->hash_tree_area_size != tree_size) {
error = -EINVAL;
goto out;
}
if (tree_size > 0 && handler->md_record_offset <= base_tree_off) {
error = -EINVAL;
goto out;
}
if (handler->md_record_offset <= signature->add_data_offset ||
handler->md_record_offset <= signature->sig_offset) {
error = -EINVAL;
goto out;
}
df->df_hash_tree = hash_tree;
df->df_signature = signature;
out:
if (error) {
incfs_free_mtree(hash_tree);
kfree(signature);
}
return error;
}
int incfs_scan_metadata_chain(struct data_file *df)
{
struct metadata_handler *handler = NULL;
int result = 0;
int records_count = 0;
int error = 0;
struct backing_file_context *bfc = NULL;
if (!df || !df->df_backing_file_context)
return -EFAULT;
bfc = df->df_backing_file_context;
handler = kzalloc(sizeof(*handler), GFP_NOFS);
if (!handler)
return -ENOMEM;
/* No writing to the backing file while it's being scanned. */
error = mutex_lock_interruptible(&bfc->bc_mutex);
if (error)
goto out;
/* Reading superblock */
handler->md_record_offset = df->df_metadata_off;
handler->context = df;
handler->handle_blockmap = process_blockmap_md;
handler->handle_file_attr = process_file_attr_md;
handler->handle_signature = process_file_signature_md;
pr_debug("incfs: Starting reading incfs-metadata records at offset %lld\n",
handler->md_record_offset);
while (handler->md_record_offset > 0) {
error = incfs_read_next_metadata_record(bfc, handler);
if (error) {
pr_warn("incfs: Error during reading incfs-metadata record. Offset: %lld Record #%d Error code: %d\n",
handler->md_record_offset, records_count + 1,
-error);
break;
}
records_count++;
}
if (error) {
pr_debug("incfs: Error %d after reading %d incfs-metadata records.\n",
-error, records_count);
result = error;
} else {
pr_debug("incfs: Finished reading %d incfs-metadata records.\n",
records_count);
result = records_count;
}
mutex_unlock(&bfc->bc_mutex);
out:
kfree(handler);
return result;
}
/*
* Quickly checks if there are pending reads with a serial number larger
* than a given one.
*/
bool incfs_fresh_pending_reads_exist(struct mount_info *mi, int last_number)
{
bool result = false;
mutex_lock(&mi->mi_pending_reads_mutex);
result = (mi->mi_last_pending_read_number > last_number) &&
(mi->mi_pending_reads_count > 0);
mutex_unlock(&mi->mi_pending_reads_mutex);
return result;
}
int incfs_collect_pending_reads(struct mount_info *mi, int sn_lowerbound,
struct incfs_pending_read_info *reads,
int reads_size)
{
int reported_reads = 0;
struct pending_read *entry = NULL;
if (!mi)
return -EFAULT;
if (reads_size <= 0)
return 0;
mutex_lock(&mi->mi_pending_reads_mutex);
if (mi->mi_last_pending_read_number <= sn_lowerbound
|| mi->mi_pending_reads_count == 0)
goto unlock;
list_for_each_entry(entry, &mi->mi_reads_list_head, mi_reads_list) {
if (entry->serial_number <= sn_lowerbound)
continue;
reads[reported_reads].file_id = entry->file_id;
reads[reported_reads].block_index = entry->block_index;
reads[reported_reads].serial_number = entry->serial_number;
reads[reported_reads].timestamp_us = entry->timestamp_us;
/* reads[reported_reads].kind = INCFS_READ_KIND_PENDING; */
reported_reads++;
if (reported_reads >= reads_size)
break;
}
unlock:
mutex_unlock(&mi->mi_pending_reads_mutex);
return reported_reads;
}
struct read_log_state incfs_get_log_state(struct mount_info *mi)
{
struct read_log *log = &mi->mi_log;
struct read_log_state result;
spin_lock(&log->rl_writer_lock);
result = READ_ONCE(log->rl_state);
spin_unlock(&log->rl_writer_lock);
return result;
}
static u64 calc_record_count(const struct read_log_state *state, int rl_size)
{
return state->current_pass_no * (u64)rl_size + state->next_index;
}
int incfs_get_uncollected_logs_count(struct mount_info *mi,
struct read_log_state state)
{
struct read_log *log = &mi->mi_log;
u64 count = calc_record_count(&log->rl_state, log->rl_size) -
calc_record_count(&state, log->rl_size);
return min_t(int, count, log->rl_size);
}
static void fill_pending_read_from_log_record(
struct incfs_pending_read_info *dest, const struct read_log_record *src,
struct read_log_state *state, u64 log_size)
{
dest->file_id = src->file_id;
dest->block_index = src->block_index;
dest->serial_number =
state->current_pass_no * log_size + state->next_index;
dest->timestamp_us = src->timestamp_us;
}
int incfs_collect_logged_reads(struct mount_info *mi,
struct read_log_state *reader_state,
struct incfs_pending_read_info *reads,
int reads_size)
{
struct read_log *log = &mi->mi_log;
struct read_log_state live_state = incfs_get_log_state(mi);
u64 read_count = calc_record_count(reader_state, log->rl_size);
u64 written_count = calc_record_count(&live_state, log->rl_size);
int dst_idx;
if (reader_state->next_index >= log->rl_size ||
read_count > written_count)
return -ERANGE;
if (read_count == written_count)
return 0;
if (read_count > written_count) {
/* This reader is somehow ahead of the writer. */
pr_debug("incfs: Log reader is ahead of writer\n");
*reader_state = live_state;
}
if (written_count - read_count > log->rl_size) {
/*
* Reading pointer is too far behind,
* start from the record following the write pointer.
*/
pr_debug("incfs: read pointer is behind, moving: %u/%u -> %u/%u / %u\n",
(u32)reader_state->next_index,
(u32)reader_state->current_pass_no,
(u32)live_state.next_index,
(u32)live_state.current_pass_no - 1, (u32)log->rl_size);
*reader_state = (struct read_log_state){
.next_index = live_state.next_index,
.current_pass_no = live_state.current_pass_no - 1,
};
}
for (dst_idx = 0; dst_idx < reads_size; dst_idx++) {
if (reader_state->next_index == live_state.next_index &&
reader_state->current_pass_no == live_state.current_pass_no)
break;
fill_pending_read_from_log_record(
&reads[dst_idx],
&log->rl_ring_buf[reader_state->next_index],
reader_state, log->rl_size);
reader_state->next_index++;
if (reader_state->next_index == log->rl_size) {
reader_state->next_index = 0;
reader_state->current_pass_no++;
}
}
return dst_idx;
}
bool incfs_equal_ranges(struct mem_range lhs, struct mem_range rhs)
{
if (lhs.len != rhs.len)
return false;
return memcmp(lhs.data, rhs.data, lhs.len) == 0;
}