| /**************************************************************************** |
| |
| Copyright Echo Digital Audio Corporation (c) 1998 - 2004 |
| All rights reserved |
| www.echoaudio.com |
| |
| This file is part of Echo Digital Audio's generic driver library. |
| |
| Echo Digital Audio's generic driver library is free software; |
| you can redistribute it and/or modify it under the terms of |
| the GNU General Public License as published by the Free Software |
| Foundation. |
| |
| This program is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program; if not, write to the Free Software |
| Foundation, Inc., 59 Temple Place - Suite 330, Boston, |
| MA 02111-1307, USA. |
| |
| ************************************************************************* |
| |
| Translation from C++ and adaptation for use in ALSA-Driver |
| were made by Giuliano Pochini <pochini@shiny.it> |
| |
| ****************************************************************************/ |
| |
| #if PAGE_SIZE < 4096 |
| #error PAGE_SIZE is < 4k |
| #endif |
| |
| static int restore_dsp_rettings(struct echoaudio *chip); |
| |
| |
| /* Some vector commands involve the DSP reading or writing data to and from the |
| comm page; if you send one of these commands to the DSP, it will complete the |
| command and then write a non-zero value to the Handshake field in the |
| comm page. This function waits for the handshake to show up. */ |
| static int wait_handshake(struct echoaudio *chip) |
| { |
| int i; |
| |
| /* Wait up to 20ms for the handshake from the DSP */ |
| for (i = 0; i < HANDSHAKE_TIMEOUT; i++) { |
| /* Look for the handshake value */ |
| barrier(); |
| if (chip->comm_page->handshake) { |
| return 0; |
| } |
| udelay(1); |
| } |
| |
| dev_err(chip->card->dev, "wait_handshake(): Timeout waiting for DSP\n"); |
| return -EBUSY; |
| } |
| |
| |
| |
| /* Much of the interaction between the DSP and the driver is done via vector |
| commands; send_vector writes a vector command to the DSP. Typically, this |
| causes the DSP to read or write fields in the comm page. |
| PCI posting is not required thanks to the handshake logic. */ |
| static int send_vector(struct echoaudio *chip, u32 command) |
| { |
| int i; |
| |
| wmb(); /* Flush all pending writes before sending the command */ |
| |
| /* Wait up to 100ms for the "vector busy" bit to be off */ |
| for (i = 0; i < VECTOR_BUSY_TIMEOUT; i++) { |
| if (!(get_dsp_register(chip, CHI32_VECTOR_REG) & |
| CHI32_VECTOR_BUSY)) { |
| set_dsp_register(chip, CHI32_VECTOR_REG, command); |
| /*if (i) DE_ACT(("send_vector time: %d\n", i));*/ |
| return 0; |
| } |
| udelay(1); |
| } |
| |
| DE_ACT((KERN_ERR "timeout on send_vector\n")); |
| return -EBUSY; |
| } |
| |
| |
| |
| /* write_dsp writes a 32-bit value to the DSP; this is used almost |
| exclusively for loading the DSP. */ |
| static int write_dsp(struct echoaudio *chip, u32 data) |
| { |
| u32 status, i; |
| |
| for (i = 0; i < 10000000; i++) { /* timeout = 10s */ |
| status = get_dsp_register(chip, CHI32_STATUS_REG); |
| if ((status & CHI32_STATUS_HOST_WRITE_EMPTY) != 0) { |
| set_dsp_register(chip, CHI32_DATA_REG, data); |
| wmb(); /* write it immediately */ |
| return 0; |
| } |
| udelay(1); |
| cond_resched(); |
| } |
| |
| chip->bad_board = TRUE; /* Set TRUE until DSP re-loaded */ |
| DE_ACT((KERN_ERR "write_dsp: Set bad_board to TRUE\n")); |
| return -EIO; |
| } |
| |
| |
| |
| /* read_dsp reads a 32-bit value from the DSP; this is used almost |
| exclusively for loading the DSP and checking the status of the ASIC. */ |
| static int read_dsp(struct echoaudio *chip, u32 *data) |
| { |
| u32 status, i; |
| |
| for (i = 0; i < READ_DSP_TIMEOUT; i++) { |
| status = get_dsp_register(chip, CHI32_STATUS_REG); |
| if ((status & CHI32_STATUS_HOST_READ_FULL) != 0) { |
| *data = get_dsp_register(chip, CHI32_DATA_REG); |
| return 0; |
| } |
| udelay(1); |
| cond_resched(); |
| } |
| |
| chip->bad_board = TRUE; /* Set TRUE until DSP re-loaded */ |
| DE_INIT((KERN_ERR "read_dsp: Set bad_board to TRUE\n")); |
| return -EIO; |
| } |
| |
| |
| |
| /**************************************************************************** |
| Firmware loading functions |
| ****************************************************************************/ |
| |
| /* This function is used to read back the serial number from the DSP; |
| this is triggered by the SET_COMMPAGE_ADDR command. |
| Only some early Echogals products have serial numbers in the ROM; |
| the serial number is not used, but you still need to do this as |
| part of the DSP load process. */ |
| static int read_sn(struct echoaudio *chip) |
| { |
| int i; |
| u32 sn[6]; |
| |
| for (i = 0; i < 5; i++) { |
| if (read_dsp(chip, &sn[i])) { |
| dev_err(chip->card->dev, |
| "Failed to read serial number\n"); |
| return -EIO; |
| } |
| } |
| DE_INIT(("Read serial number %08x %08x %08x %08x %08x\n", |
| sn[0], sn[1], sn[2], sn[3], sn[4])); |
| return 0; |
| } |
| |
| |
| |
| #ifndef ECHOCARD_HAS_ASIC |
| /* This card has no ASIC, just return ok */ |
| static inline int check_asic_status(struct echoaudio *chip) |
| { |
| chip->asic_loaded = TRUE; |
| return 0; |
| } |
| |
| #endif /* !ECHOCARD_HAS_ASIC */ |
| |
| |
| |
| #ifdef ECHOCARD_HAS_ASIC |
| |
| /* Load ASIC code - done after the DSP is loaded */ |
| static int load_asic_generic(struct echoaudio *chip, u32 cmd, short asic) |
| { |
| const struct firmware *fw; |
| int err; |
| u32 i, size; |
| u8 *code; |
| |
| err = get_firmware(&fw, chip, asic); |
| if (err < 0) { |
| dev_warn(chip->card->dev, "Firmware not found !\n"); |
| return err; |
| } |
| |
| code = (u8 *)fw->data; |
| size = fw->size; |
| |
| /* Send the "Here comes the ASIC" command */ |
| if (write_dsp(chip, cmd) < 0) |
| goto la_error; |
| |
| /* Write length of ASIC file in bytes */ |
| if (write_dsp(chip, size) < 0) |
| goto la_error; |
| |
| for (i = 0; i < size; i++) { |
| if (write_dsp(chip, code[i]) < 0) |
| goto la_error; |
| } |
| |
| DE_INIT(("ASIC loaded\n")); |
| free_firmware(fw, chip); |
| return 0; |
| |
| la_error: |
| DE_INIT(("failed on write_dsp\n")); |
| free_firmware(fw, chip); |
| return -EIO; |
| } |
| |
| #endif /* ECHOCARD_HAS_ASIC */ |
| |
| |
| |
| #ifdef DSP_56361 |
| |
| /* Install the resident loader for 56361 DSPs; The resident loader is on |
| the EPROM on the board for 56301 DSP. The resident loader is a tiny little |
| program that is used to load the real DSP code. */ |
| static int install_resident_loader(struct echoaudio *chip) |
| { |
| u32 address; |
| int index, words, i; |
| u16 *code; |
| u32 status; |
| const struct firmware *fw; |
| |
| /* 56361 cards only! This check is required by the old 56301-based |
| Mona and Gina24 */ |
| if (chip->device_id != DEVICE_ID_56361) |
| return 0; |
| |
| /* Look to see if the resident loader is present. If the resident |
| loader is already installed, host flag 5 will be on. */ |
| status = get_dsp_register(chip, CHI32_STATUS_REG); |
| if (status & CHI32_STATUS_REG_HF5) { |
| DE_INIT(("Resident loader already installed; status is 0x%x\n", |
| status)); |
| return 0; |
| } |
| |
| i = get_firmware(&fw, chip, FW_361_LOADER); |
| if (i < 0) { |
| dev_warn(chip->card->dev, "Firmware not found !\n"); |
| return i; |
| } |
| |
| /* The DSP code is an array of 16 bit words. The array is divided up |
| into sections. The first word of each section is the size in words, |
| followed by the section type. |
| Since DSP addresses and data are 24 bits wide, they each take up two |
| 16 bit words in the array. |
| This is a lot like the other loader loop, but it's not a loop, you |
| don't write the memory type, and you don't write a zero at the end. */ |
| |
| /* Set DSP format bits for 24 bit mode */ |
| set_dsp_register(chip, CHI32_CONTROL_REG, |
| get_dsp_register(chip, CHI32_CONTROL_REG) | 0x900); |
| |
| code = (u16 *)fw->data; |
| |
| /* Skip the header section; the first word in the array is the size |
| of the first section, so the first real section of code is pointed |
| to by Code[0]. */ |
| index = code[0]; |
| |
| /* Skip the section size, LRS block type, and DSP memory type */ |
| index += 3; |
| |
| /* Get the number of DSP words to write */ |
| words = code[index++]; |
| |
| /* Get the DSP address for this block; 24 bits, so build from two words */ |
| address = ((u32)code[index] << 16) + code[index + 1]; |
| index += 2; |
| |
| /* Write the count to the DSP */ |
| if (write_dsp(chip, words)) { |
| DE_INIT(("install_resident_loader: Failed to write word count!\n")); |
| goto irl_error; |
| } |
| /* Write the DSP address */ |
| if (write_dsp(chip, address)) { |
| DE_INIT(("install_resident_loader: Failed to write DSP address!\n")); |
| goto irl_error; |
| } |
| /* Write out this block of code to the DSP */ |
| for (i = 0; i < words; i++) { |
| u32 data; |
| |
| data = ((u32)code[index] << 16) + code[index + 1]; |
| if (write_dsp(chip, data)) { |
| DE_INIT(("install_resident_loader: Failed to write DSP code\n")); |
| goto irl_error; |
| } |
| index += 2; |
| } |
| |
| /* Wait for flag 5 to come up */ |
| for (i = 0; i < 200; i++) { /* Timeout is 50us * 200 = 10ms */ |
| udelay(50); |
| status = get_dsp_register(chip, CHI32_STATUS_REG); |
| if (status & CHI32_STATUS_REG_HF5) |
| break; |
| } |
| |
| if (i == 200) { |
| DE_INIT(("Resident loader failed to set HF5\n")); |
| goto irl_error; |
| } |
| |
| DE_INIT(("Resident loader successfully installed\n")); |
| free_firmware(fw, chip); |
| return 0; |
| |
| irl_error: |
| free_firmware(fw, chip); |
| return -EIO; |
| } |
| |
| #endif /* DSP_56361 */ |
| |
| |
| static int load_dsp(struct echoaudio *chip, u16 *code) |
| { |
| u32 address, data; |
| int index, words, i; |
| |
| if (chip->dsp_code == code) { |
| DE_INIT(("DSP is already loaded!\n")); |
| return 0; |
| } |
| chip->bad_board = TRUE; /* Set TRUE until DSP loaded */ |
| chip->dsp_code = NULL; /* Current DSP code not loaded */ |
| chip->asic_loaded = FALSE; /* Loading the DSP code will reset the ASIC */ |
| |
| DE_INIT(("load_dsp: Set bad_board to TRUE\n")); |
| |
| /* If this board requires a resident loader, install it. */ |
| #ifdef DSP_56361 |
| if ((i = install_resident_loader(chip)) < 0) |
| return i; |
| #endif |
| |
| /* Send software reset command */ |
| if (send_vector(chip, DSP_VC_RESET) < 0) { |
| DE_INIT(("LoadDsp: send_vector DSP_VC_RESET failed, Critical Failure\n")); |
| return -EIO; |
| } |
| /* Delay 10us */ |
| udelay(10); |
| |
| /* Wait 10ms for HF3 to indicate that software reset is complete */ |
| for (i = 0; i < 1000; i++) { /* Timeout is 10us * 1000 = 10ms */ |
| if (get_dsp_register(chip, CHI32_STATUS_REG) & |
| CHI32_STATUS_REG_HF3) |
| break; |
| udelay(10); |
| } |
| |
| if (i == 1000) { |
| DE_INIT(("load_dsp: Timeout waiting for CHI32_STATUS_REG_HF3\n")); |
| return -EIO; |
| } |
| |
| /* Set DSP format bits for 24 bit mode now that soft reset is done */ |
| set_dsp_register(chip, CHI32_CONTROL_REG, |
| get_dsp_register(chip, CHI32_CONTROL_REG) | 0x900); |
| |
| /* Main loader loop */ |
| |
| index = code[0]; |
| for (;;) { |
| int block_type, mem_type; |
| |
| /* Total Block Size */ |
| index++; |
| |
| /* Block Type */ |
| block_type = code[index]; |
| if (block_type == 4) /* We're finished */ |
| break; |
| |
| index++; |
| |
| /* Memory Type P=0,X=1,Y=2 */ |
| mem_type = code[index++]; |
| |
| /* Block Code Size */ |
| words = code[index++]; |
| if (words == 0) /* We're finished */ |
| break; |
| |
| /* Start Address */ |
| address = ((u32)code[index] << 16) + code[index + 1]; |
| index += 2; |
| |
| if (write_dsp(chip, words) < 0) { |
| DE_INIT(("load_dsp: failed to write number of DSP words\n")); |
| return -EIO; |
| } |
| if (write_dsp(chip, address) < 0) { |
| DE_INIT(("load_dsp: failed to write DSP address\n")); |
| return -EIO; |
| } |
| if (write_dsp(chip, mem_type) < 0) { |
| DE_INIT(("load_dsp: failed to write DSP memory type\n")); |
| return -EIO; |
| } |
| /* Code */ |
| for (i = 0; i < words; i++, index+=2) { |
| data = ((u32)code[index] << 16) + code[index + 1]; |
| if (write_dsp(chip, data) < 0) { |
| DE_INIT(("load_dsp: failed to write DSP data\n")); |
| return -EIO; |
| } |
| } |
| } |
| |
| if (write_dsp(chip, 0) < 0) { /* We're done!!! */ |
| DE_INIT(("load_dsp: Failed to write final zero\n")); |
| return -EIO; |
| } |
| udelay(10); |
| |
| for (i = 0; i < 5000; i++) { /* Timeout is 100us * 5000 = 500ms */ |
| /* Wait for flag 4 - indicates that the DSP loaded OK */ |
| if (get_dsp_register(chip, CHI32_STATUS_REG) & |
| CHI32_STATUS_REG_HF4) { |
| set_dsp_register(chip, CHI32_CONTROL_REG, |
| get_dsp_register(chip, CHI32_CONTROL_REG) & ~0x1b00); |
| |
| if (write_dsp(chip, DSP_FNC_SET_COMMPAGE_ADDR) < 0) { |
| DE_INIT(("load_dsp: Failed to write DSP_FNC_SET_COMMPAGE_ADDR\n")); |
| return -EIO; |
| } |
| |
| if (write_dsp(chip, chip->comm_page_phys) < 0) { |
| DE_INIT(("load_dsp: Failed to write comm page address\n")); |
| return -EIO; |
| } |
| |
| /* Get the serial number via slave mode. |
| This is triggered by the SET_COMMPAGE_ADDR command. |
| We don't actually use the serial number but we have to |
| get it as part of the DSP init voodoo. */ |
| if (read_sn(chip) < 0) { |
| DE_INIT(("load_dsp: Failed to read serial number\n")); |
| return -EIO; |
| } |
| |
| chip->dsp_code = code; /* Show which DSP code loaded */ |
| chip->bad_board = FALSE; /* DSP OK */ |
| DE_INIT(("load_dsp: OK!\n")); |
| return 0; |
| } |
| udelay(100); |
| } |
| |
| DE_INIT(("load_dsp: DSP load timed out waiting for HF4\n")); |
| return -EIO; |
| } |
| |
| |
| |
| /* load_firmware takes care of loading the DSP and any ASIC code. */ |
| static int load_firmware(struct echoaudio *chip) |
| { |
| const struct firmware *fw; |
| int box_type, err; |
| |
| if (snd_BUG_ON(!chip->comm_page)) |
| return -EPERM; |
| |
| /* See if the ASIC is present and working - only if the DSP is already loaded */ |
| if (chip->dsp_code) { |
| if ((box_type = check_asic_status(chip)) >= 0) |
| return box_type; |
| /* ASIC check failed; force the DSP to reload */ |
| chip->dsp_code = NULL; |
| } |
| |
| err = get_firmware(&fw, chip, chip->dsp_code_to_load); |
| if (err < 0) |
| return err; |
| err = load_dsp(chip, (u16 *)fw->data); |
| free_firmware(fw, chip); |
| if (err < 0) |
| return err; |
| |
| if ((box_type = load_asic(chip)) < 0) |
| return box_type; /* error */ |
| |
| return box_type; |
| } |
| |
| |
| |
| /**************************************************************************** |
| Mixer functions |
| ****************************************************************************/ |
| |
| #if defined(ECHOCARD_HAS_INPUT_NOMINAL_LEVEL) || \ |
| defined(ECHOCARD_HAS_OUTPUT_NOMINAL_LEVEL) |
| |
| /* Set the nominal level for an input or output bus (true = -10dBV, false = +4dBu) */ |
| static int set_nominal_level(struct echoaudio *chip, u16 index, char consumer) |
| { |
| if (snd_BUG_ON(index >= num_busses_out(chip) + num_busses_in(chip))) |
| return -EINVAL; |
| |
| /* Wait for the handshake (OK even if ASIC is not loaded) */ |
| if (wait_handshake(chip)) |
| return -EIO; |
| |
| chip->nominal_level[index] = consumer; |
| |
| if (consumer) |
| chip->comm_page->nominal_level_mask |= cpu_to_le32(1 << index); |
| else |
| chip->comm_page->nominal_level_mask &= ~cpu_to_le32(1 << index); |
| |
| return 0; |
| } |
| |
| #endif /* ECHOCARD_HAS_*_NOMINAL_LEVEL */ |
| |
| |
| |
| /* Set the gain for a single physical output channel (dB). */ |
| static int set_output_gain(struct echoaudio *chip, u16 channel, s8 gain) |
| { |
| if (snd_BUG_ON(channel >= num_busses_out(chip))) |
| return -EINVAL; |
| |
| if (wait_handshake(chip)) |
| return -EIO; |
| |
| /* Save the new value */ |
| chip->output_gain[channel] = gain; |
| chip->comm_page->line_out_level[channel] = gain; |
| return 0; |
| } |
| |
| |
| |
| #ifdef ECHOCARD_HAS_MONITOR |
| /* Set the monitor level from an input bus to an output bus. */ |
| static int set_monitor_gain(struct echoaudio *chip, u16 output, u16 input, |
| s8 gain) |
| { |
| if (snd_BUG_ON(output >= num_busses_out(chip) || |
| input >= num_busses_in(chip))) |
| return -EINVAL; |
| |
| if (wait_handshake(chip)) |
| return -EIO; |
| |
| chip->monitor_gain[output][input] = gain; |
| chip->comm_page->monitors[monitor_index(chip, output, input)] = gain; |
| return 0; |
| } |
| #endif /* ECHOCARD_HAS_MONITOR */ |
| |
| |
| /* Tell the DSP to read and update output, nominal & monitor levels in comm page. */ |
| static int update_output_line_level(struct echoaudio *chip) |
| { |
| if (wait_handshake(chip)) |
| return -EIO; |
| clear_handshake(chip); |
| return send_vector(chip, DSP_VC_UPDATE_OUTVOL); |
| } |
| |
| |
| |
| /* Tell the DSP to read and update input levels in comm page */ |
| static int update_input_line_level(struct echoaudio *chip) |
| { |
| if (wait_handshake(chip)) |
| return -EIO; |
| clear_handshake(chip); |
| return send_vector(chip, DSP_VC_UPDATE_INGAIN); |
| } |
| |
| |
| |
| /* set_meters_on turns the meters on or off. If meters are turned on, the DSP |
| will write the meter and clock detect values to the comm page at about 30Hz */ |
| static void set_meters_on(struct echoaudio *chip, char on) |
| { |
| if (on && !chip->meters_enabled) { |
| send_vector(chip, DSP_VC_METERS_ON); |
| chip->meters_enabled = 1; |
| } else if (!on && chip->meters_enabled) { |
| send_vector(chip, DSP_VC_METERS_OFF); |
| chip->meters_enabled = 0; |
| memset((s8 *)chip->comm_page->vu_meter, ECHOGAIN_MUTED, |
| DSP_MAXPIPES); |
| memset((s8 *)chip->comm_page->peak_meter, ECHOGAIN_MUTED, |
| DSP_MAXPIPES); |
| } |
| } |
| |
| |
| |
| /* Fill out an the given array using the current values in the comm page. |
| Meters are written in the comm page by the DSP in this order: |
| Output busses |
| Input busses |
| Output pipes (vmixer cards only) |
| |
| This function assumes there are no more than 16 in/out busses or pipes |
| Meters is an array [3][16][2] of long. */ |
| static void get_audio_meters(struct echoaudio *chip, long *meters) |
| { |
| int i, m, n; |
| |
| m = 0; |
| n = 0; |
| for (i = 0; i < num_busses_out(chip); i++, m++) { |
| meters[n++] = chip->comm_page->vu_meter[m]; |
| meters[n++] = chip->comm_page->peak_meter[m]; |
| } |
| for (; n < 32; n++) |
| meters[n] = 0; |
| |
| #ifdef ECHOCARD_ECHO3G |
| m = E3G_MAX_OUTPUTS; /* Skip unused meters */ |
| #endif |
| |
| for (i = 0; i < num_busses_in(chip); i++, m++) { |
| meters[n++] = chip->comm_page->vu_meter[m]; |
| meters[n++] = chip->comm_page->peak_meter[m]; |
| } |
| for (; n < 64; n++) |
| meters[n] = 0; |
| |
| #ifdef ECHOCARD_HAS_VMIXER |
| for (i = 0; i < num_pipes_out(chip); i++, m++) { |
| meters[n++] = chip->comm_page->vu_meter[m]; |
| meters[n++] = chip->comm_page->peak_meter[m]; |
| } |
| #endif |
| for (; n < 96; n++) |
| meters[n] = 0; |
| } |
| |
| |
| |
| static int restore_dsp_rettings(struct echoaudio *chip) |
| { |
| int i, o, err; |
| DE_INIT(("restore_dsp_settings\n")); |
| |
| if ((err = check_asic_status(chip)) < 0) |
| return err; |
| |
| /* Gina20/Darla20 only. Should be harmless for other cards. */ |
| chip->comm_page->gd_clock_state = GD_CLOCK_UNDEF; |
| chip->comm_page->gd_spdif_status = GD_SPDIF_STATUS_UNDEF; |
| chip->comm_page->handshake = 0xffffffff; |
| |
| /* Restore output busses */ |
| for (i = 0; i < num_busses_out(chip); i++) { |
| err = set_output_gain(chip, i, chip->output_gain[i]); |
| if (err < 0) |
| return err; |
| } |
| |
| #ifdef ECHOCARD_HAS_VMIXER |
| for (i = 0; i < num_pipes_out(chip); i++) |
| for (o = 0; o < num_busses_out(chip); o++) { |
| err = set_vmixer_gain(chip, o, i, |
| chip->vmixer_gain[o][i]); |
| if (err < 0) |
| return err; |
| } |
| if (update_vmixer_level(chip) < 0) |
| return -EIO; |
| #endif /* ECHOCARD_HAS_VMIXER */ |
| |
| #ifdef ECHOCARD_HAS_MONITOR |
| for (o = 0; o < num_busses_out(chip); o++) |
| for (i = 0; i < num_busses_in(chip); i++) { |
| err = set_monitor_gain(chip, o, i, |
| chip->monitor_gain[o][i]); |
| if (err < 0) |
| return err; |
| } |
| #endif /* ECHOCARD_HAS_MONITOR */ |
| |
| #ifdef ECHOCARD_HAS_INPUT_GAIN |
| for (i = 0; i < num_busses_in(chip); i++) { |
| err = set_input_gain(chip, i, chip->input_gain[i]); |
| if (err < 0) |
| return err; |
| } |
| #endif /* ECHOCARD_HAS_INPUT_GAIN */ |
| |
| err = update_output_line_level(chip); |
| if (err < 0) |
| return err; |
| |
| err = update_input_line_level(chip); |
| if (err < 0) |
| return err; |
| |
| err = set_sample_rate(chip, chip->sample_rate); |
| if (err < 0) |
| return err; |
| |
| if (chip->meters_enabled) { |
| err = send_vector(chip, DSP_VC_METERS_ON); |
| if (err < 0) |
| return err; |
| } |
| |
| #ifdef ECHOCARD_HAS_DIGITAL_MODE_SWITCH |
| if (set_digital_mode(chip, chip->digital_mode) < 0) |
| return -EIO; |
| #endif |
| |
| #ifdef ECHOCARD_HAS_DIGITAL_IO |
| if (set_professional_spdif(chip, chip->professional_spdif) < 0) |
| return -EIO; |
| #endif |
| |
| #ifdef ECHOCARD_HAS_PHANTOM_POWER |
| if (set_phantom_power(chip, chip->phantom_power) < 0) |
| return -EIO; |
| #endif |
| |
| #ifdef ECHOCARD_HAS_EXTERNAL_CLOCK |
| /* set_input_clock() also restores automute setting */ |
| if (set_input_clock(chip, chip->input_clock) < 0) |
| return -EIO; |
| #endif |
| |
| #ifdef ECHOCARD_HAS_OUTPUT_CLOCK_SWITCH |
| if (set_output_clock(chip, chip->output_clock) < 0) |
| return -EIO; |
| #endif |
| |
| if (wait_handshake(chip) < 0) |
| return -EIO; |
| clear_handshake(chip); |
| if (send_vector(chip, DSP_VC_UPDATE_FLAGS) < 0) |
| return -EIO; |
| |
| DE_INIT(("restore_dsp_rettings done\n")); |
| return 0; |
| } |
| |
| |
| |
| /**************************************************************************** |
| Transport functions |
| ****************************************************************************/ |
| |
| /* set_audio_format() sets the format of the audio data in host memory for |
| this pipe. Note that _MS_ (mono-to-stereo) playback modes are not used by ALSA |
| but they are here because they are just mono while capturing */ |
| static void set_audio_format(struct echoaudio *chip, u16 pipe_index, |
| const struct audioformat *format) |
| { |
| u16 dsp_format; |
| |
| dsp_format = DSP_AUDIOFORM_SS_16LE; |
| |
| /* Look for super-interleave (no big-endian and 8 bits) */ |
| if (format->interleave > 2) { |
| switch (format->bits_per_sample) { |
| case 16: |
| dsp_format = DSP_AUDIOFORM_SUPER_INTERLEAVE_16LE; |
| break; |
| case 24: |
| dsp_format = DSP_AUDIOFORM_SUPER_INTERLEAVE_24LE; |
| break; |
| case 32: |
| dsp_format = DSP_AUDIOFORM_SUPER_INTERLEAVE_32LE; |
| break; |
| } |
| dsp_format |= format->interleave; |
| } else if (format->data_are_bigendian) { |
| /* For big-endian data, only 32 bit samples are supported */ |
| switch (format->interleave) { |
| case 1: |
| dsp_format = DSP_AUDIOFORM_MM_32BE; |
| break; |
| #ifdef ECHOCARD_HAS_STEREO_BIG_ENDIAN32 |
| case 2: |
| dsp_format = DSP_AUDIOFORM_SS_32BE; |
| break; |
| #endif |
| } |
| } else if (format->interleave == 1 && |
| format->bits_per_sample == 32 && !format->mono_to_stereo) { |
| /* 32 bit little-endian mono->mono case */ |
| dsp_format = DSP_AUDIOFORM_MM_32LE; |
| } else { |
| /* Handle the other little-endian formats */ |
| switch (format->bits_per_sample) { |
| case 8: |
| if (format->interleave == 2) |
| dsp_format = DSP_AUDIOFORM_SS_8; |
| else |
| dsp_format = DSP_AUDIOFORM_MS_8; |
| break; |
| default: |
| case 16: |
| if (format->interleave == 2) |
| dsp_format = DSP_AUDIOFORM_SS_16LE; |
| else |
| dsp_format = DSP_AUDIOFORM_MS_16LE; |
| break; |
| case 24: |
| if (format->interleave == 2) |
| dsp_format = DSP_AUDIOFORM_SS_24LE; |
| else |
| dsp_format = DSP_AUDIOFORM_MS_24LE; |
| break; |
| case 32: |
| if (format->interleave == 2) |
| dsp_format = DSP_AUDIOFORM_SS_32LE; |
| else |
| dsp_format = DSP_AUDIOFORM_MS_32LE; |
| break; |
| } |
| } |
| DE_ACT(("set_audio_format[%d] = %x\n", pipe_index, dsp_format)); |
| chip->comm_page->audio_format[pipe_index] = cpu_to_le16(dsp_format); |
| } |
| |
| |
| |
| /* start_transport starts transport for a set of pipes. |
| The bits 1 in channel_mask specify what pipes to start. Only the bit of the |
| first channel must be set, regardless its interleave. |
| Same thing for pause_ and stop_ -trasport below. */ |
| static int start_transport(struct echoaudio *chip, u32 channel_mask, |
| u32 cyclic_mask) |
| { |
| DE_ACT(("start_transport %x\n", channel_mask)); |
| |
| if (wait_handshake(chip)) |
| return -EIO; |
| |
| chip->comm_page->cmd_start |= cpu_to_le32(channel_mask); |
| |
| if (chip->comm_page->cmd_start) { |
| clear_handshake(chip); |
| send_vector(chip, DSP_VC_START_TRANSFER); |
| if (wait_handshake(chip)) |
| return -EIO; |
| /* Keep track of which pipes are transporting */ |
| chip->active_mask |= channel_mask; |
| chip->comm_page->cmd_start = 0; |
| return 0; |
| } |
| |
| DE_ACT(("start_transport: No pipes to start!\n")); |
| return -EINVAL; |
| } |
| |
| |
| |
| static int pause_transport(struct echoaudio *chip, u32 channel_mask) |
| { |
| DE_ACT(("pause_transport %x\n", channel_mask)); |
| |
| if (wait_handshake(chip)) |
| return -EIO; |
| |
| chip->comm_page->cmd_stop |= cpu_to_le32(channel_mask); |
| chip->comm_page->cmd_reset = 0; |
| if (chip->comm_page->cmd_stop) { |
| clear_handshake(chip); |
| send_vector(chip, DSP_VC_STOP_TRANSFER); |
| if (wait_handshake(chip)) |
| return -EIO; |
| /* Keep track of which pipes are transporting */ |
| chip->active_mask &= ~channel_mask; |
| chip->comm_page->cmd_stop = 0; |
| chip->comm_page->cmd_reset = 0; |
| return 0; |
| } |
| |
| DE_ACT(("pause_transport: No pipes to stop!\n")); |
| return 0; |
| } |
| |
| |
| |
| static int stop_transport(struct echoaudio *chip, u32 channel_mask) |
| { |
| DE_ACT(("stop_transport %x\n", channel_mask)); |
| |
| if (wait_handshake(chip)) |
| return -EIO; |
| |
| chip->comm_page->cmd_stop |= cpu_to_le32(channel_mask); |
| chip->comm_page->cmd_reset |= cpu_to_le32(channel_mask); |
| if (chip->comm_page->cmd_reset) { |
| clear_handshake(chip); |
| send_vector(chip, DSP_VC_STOP_TRANSFER); |
| if (wait_handshake(chip)) |
| return -EIO; |
| /* Keep track of which pipes are transporting */ |
| chip->active_mask &= ~channel_mask; |
| chip->comm_page->cmd_stop = 0; |
| chip->comm_page->cmd_reset = 0; |
| return 0; |
| } |
| |
| DE_ACT(("stop_transport: No pipes to stop!\n")); |
| return 0; |
| } |
| |
| |
| |
| static inline int is_pipe_allocated(struct echoaudio *chip, u16 pipe_index) |
| { |
| return (chip->pipe_alloc_mask & (1 << pipe_index)); |
| } |
| |
| |
| |
| /* Stops everything and turns off the DSP. All pipes should be already |
| stopped and unallocated. */ |
| static int rest_in_peace(struct echoaudio *chip) |
| { |
| DE_ACT(("rest_in_peace() open=%x\n", chip->pipe_alloc_mask)); |
| |
| /* Stops all active pipes (just to be sure) */ |
| stop_transport(chip, chip->active_mask); |
| |
| set_meters_on(chip, FALSE); |
| |
| #ifdef ECHOCARD_HAS_MIDI |
| enable_midi_input(chip, FALSE); |
| #endif |
| |
| /* Go to sleep */ |
| if (chip->dsp_code) { |
| /* Make load_firmware do a complete reload */ |
| chip->dsp_code = NULL; |
| /* Put the DSP to sleep */ |
| return send_vector(chip, DSP_VC_GO_COMATOSE); |
| } |
| return 0; |
| } |
| |
| |
| |
| /* Fills the comm page with default values */ |
| static int init_dsp_comm_page(struct echoaudio *chip) |
| { |
| /* Check if the compiler added extra padding inside the structure */ |
| if (offsetof(struct comm_page, midi_output) != 0xbe0) { |
| DE_INIT(("init_dsp_comm_page() - Invalid struct comm_page structure\n")); |
| return -EPERM; |
| } |
| |
| /* Init all the basic stuff */ |
| chip->card_name = ECHOCARD_NAME; |
| chip->bad_board = TRUE; /* Set TRUE until DSP loaded */ |
| chip->dsp_code = NULL; /* Current DSP code not loaded */ |
| chip->asic_loaded = FALSE; |
| memset(chip->comm_page, 0, sizeof(struct comm_page)); |
| |
| /* Init the comm page */ |
| chip->comm_page->comm_size = |
| cpu_to_le32(sizeof(struct comm_page)); |
| chip->comm_page->handshake = 0xffffffff; |
| chip->comm_page->midi_out_free_count = |
| cpu_to_le32(DSP_MIDI_OUT_FIFO_SIZE); |
| chip->comm_page->sample_rate = cpu_to_le32(44100); |
| |
| /* Set line levels so we don't blast any inputs on startup */ |
| memset(chip->comm_page->monitors, ECHOGAIN_MUTED, MONITOR_ARRAY_SIZE); |
| memset(chip->comm_page->vmixer, ECHOGAIN_MUTED, VMIXER_ARRAY_SIZE); |
| |
| return 0; |
| } |
| |
| |
| |
| /* This function initializes the chip structure with default values, ie. all |
| * muted and internal clock source. Then it copies the settings to the DSP. |
| * This MUST be called after the DSP is up and running ! |
| */ |
| static int init_line_levels(struct echoaudio *chip) |
| { |
| DE_INIT(("init_line_levels\n")); |
| memset(chip->output_gain, ECHOGAIN_MUTED, sizeof(chip->output_gain)); |
| memset(chip->input_gain, ECHOGAIN_MUTED, sizeof(chip->input_gain)); |
| memset(chip->monitor_gain, ECHOGAIN_MUTED, sizeof(chip->monitor_gain)); |
| memset(chip->vmixer_gain, ECHOGAIN_MUTED, sizeof(chip->vmixer_gain)); |
| chip->input_clock = ECHO_CLOCK_INTERNAL; |
| chip->output_clock = ECHO_CLOCK_WORD; |
| chip->sample_rate = 44100; |
| return restore_dsp_rettings(chip); |
| } |
| |
| |
| |
| /* This is low level part of the interrupt handler. |
| It returns -1 if the IRQ is not ours, or N>=0 if it is, where N is the number |
| of midi data in the input queue. */ |
| static int service_irq(struct echoaudio *chip) |
| { |
| int st; |
| |
| /* Read the DSP status register and see if this DSP generated this interrupt */ |
| if (get_dsp_register(chip, CHI32_STATUS_REG) & CHI32_STATUS_IRQ) { |
| st = 0; |
| #ifdef ECHOCARD_HAS_MIDI |
| /* Get and parse midi data if present */ |
| if (chip->comm_page->midi_input[0]) /* The count is at index 0 */ |
| st = midi_service_irq(chip); /* Returns how many midi bytes we received */ |
| #endif |
| /* Clear the hardware interrupt */ |
| chip->comm_page->midi_input[0] = 0; |
| send_vector(chip, DSP_VC_ACK_INT); |
| return st; |
| } |
| return -1; |
| } |
| |
| |
| |
| |
| /****************************************************************************** |
| Functions for opening and closing pipes |
| ******************************************************************************/ |
| |
| /* allocate_pipes is used to reserve audio pipes for your exclusive use. |
| The call will fail if some pipes are already allocated. */ |
| static int allocate_pipes(struct echoaudio *chip, struct audiopipe *pipe, |
| int pipe_index, int interleave) |
| { |
| int i; |
| u32 channel_mask; |
| char is_cyclic; |
| |
| DE_ACT(("allocate_pipes: ch=%d int=%d\n", pipe_index, interleave)); |
| |
| if (chip->bad_board) |
| return -EIO; |
| |
| is_cyclic = 1; /* This driver uses cyclic buffers only */ |
| |
| for (channel_mask = i = 0; i < interleave; i++) |
| channel_mask |= 1 << (pipe_index + i); |
| if (chip->pipe_alloc_mask & channel_mask) { |
| DE_ACT(("allocate_pipes: channel already open\n")); |
| return -EAGAIN; |
| } |
| |
| chip->comm_page->position[pipe_index] = 0; |
| chip->pipe_alloc_mask |= channel_mask; |
| if (is_cyclic) |
| chip->pipe_cyclic_mask |= channel_mask; |
| pipe->index = pipe_index; |
| pipe->interleave = interleave; |
| pipe->state = PIPE_STATE_STOPPED; |
| |
| /* The counter register is where the DSP writes the 32 bit DMA |
| position for a pipe. The DSP is constantly updating this value as |
| it moves data. The DMA counter is in units of bytes, not samples. */ |
| pipe->dma_counter = &chip->comm_page->position[pipe_index]; |
| *pipe->dma_counter = 0; |
| DE_ACT(("allocate_pipes: ok\n")); |
| return pipe_index; |
| } |
| |
| |
| |
| static int free_pipes(struct echoaudio *chip, struct audiopipe *pipe) |
| { |
| u32 channel_mask; |
| int i; |
| |
| DE_ACT(("free_pipes: Pipe %d\n", pipe->index)); |
| if (snd_BUG_ON(!is_pipe_allocated(chip, pipe->index))) |
| return -EINVAL; |
| if (snd_BUG_ON(pipe->state != PIPE_STATE_STOPPED)) |
| return -EINVAL; |
| |
| for (channel_mask = i = 0; i < pipe->interleave; i++) |
| channel_mask |= 1 << (pipe->index + i); |
| |
| chip->pipe_alloc_mask &= ~channel_mask; |
| chip->pipe_cyclic_mask &= ~channel_mask; |
| return 0; |
| } |
| |
| |
| |
| /****************************************************************************** |
| Functions for managing the scatter-gather list |
| ******************************************************************************/ |
| |
| static int sglist_init(struct echoaudio *chip, struct audiopipe *pipe) |
| { |
| pipe->sglist_head = 0; |
| memset(pipe->sgpage.area, 0, PAGE_SIZE); |
| chip->comm_page->sglist_addr[pipe->index].addr = |
| cpu_to_le32(pipe->sgpage.addr); |
| return 0; |
| } |
| |
| |
| |
| static int sglist_add_mapping(struct echoaudio *chip, struct audiopipe *pipe, |
| dma_addr_t address, size_t length) |
| { |
| int head = pipe->sglist_head; |
| struct sg_entry *list = (struct sg_entry *)pipe->sgpage.area; |
| |
| if (head < MAX_SGLIST_ENTRIES - 1) { |
| list[head].addr = cpu_to_le32(address); |
| list[head].size = cpu_to_le32(length); |
| pipe->sglist_head++; |
| } else { |
| DE_ACT(("SGlist: too many fragments\n")); |
| return -ENOMEM; |
| } |
| return 0; |
| } |
| |
| |
| |
| static inline int sglist_add_irq(struct echoaudio *chip, struct audiopipe *pipe) |
| { |
| return sglist_add_mapping(chip, pipe, 0, 0); |
| } |
| |
| |
| |
| static inline int sglist_wrap(struct echoaudio *chip, struct audiopipe *pipe) |
| { |
| return sglist_add_mapping(chip, pipe, pipe->sgpage.addr, 0); |
| } |