| #ifndef _X86_64_BITOPS_H |
| #define _X86_64_BITOPS_H |
| |
| /* |
| * Copyright 1992, Linus Torvalds. |
| */ |
| |
| #include <asm/alternative.h> |
| |
| #if __GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ < 1) |
| /* Technically wrong, but this avoids compilation errors on some gcc |
| versions. */ |
| #define ADDR "=m" (*(volatile long *) addr) |
| #else |
| #define ADDR "+m" (*(volatile long *) addr) |
| #endif |
| |
| /** |
| * set_bit - Atomically set a bit in memory |
| * @nr: the bit to set |
| * @addr: the address to start counting from |
| * |
| * This function is atomic and may not be reordered. See __set_bit() |
| * if you do not require the atomic guarantees. |
| * Note that @nr may be almost arbitrarily large; this function is not |
| * restricted to acting on a single-word quantity. |
| */ |
| static __inline__ void set_bit(int nr, volatile void * addr) |
| { |
| __asm__ __volatile__( LOCK_PREFIX |
| "btsl %1,%0" |
| :ADDR |
| :"dIr" (nr) : "memory"); |
| } |
| |
| /** |
| * __set_bit - Set a bit in memory |
| * @nr: the bit to set |
| * @addr: the address to start counting from |
| * |
| * Unlike set_bit(), this function is non-atomic and may be reordered. |
| * If it's called on the same region of memory simultaneously, the effect |
| * may be that only one operation succeeds. |
| */ |
| static __inline__ void __set_bit(int nr, volatile void * addr) |
| { |
| __asm__ volatile( |
| "btsl %1,%0" |
| :ADDR |
| :"dIr" (nr) : "memory"); |
| } |
| |
| /** |
| * clear_bit - Clears a bit in memory |
| * @nr: Bit to clear |
| * @addr: Address to start counting from |
| * |
| * clear_bit() is atomic and may not be reordered. However, it does |
| * not contain a memory barrier, so if it is used for locking purposes, |
| * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit() |
| * in order to ensure changes are visible on other processors. |
| */ |
| static __inline__ void clear_bit(int nr, volatile void * addr) |
| { |
| __asm__ __volatile__( LOCK_PREFIX |
| "btrl %1,%0" |
| :ADDR |
| :"dIr" (nr)); |
| } |
| |
| static __inline__ void __clear_bit(int nr, volatile void * addr) |
| { |
| __asm__ __volatile__( |
| "btrl %1,%0" |
| :ADDR |
| :"dIr" (nr)); |
| } |
| |
| #define smp_mb__before_clear_bit() barrier() |
| #define smp_mb__after_clear_bit() barrier() |
| |
| /** |
| * __change_bit - Toggle a bit in memory |
| * @nr: the bit to change |
| * @addr: the address to start counting from |
| * |
| * Unlike change_bit(), this function is non-atomic and may be reordered. |
| * If it's called on the same region of memory simultaneously, the effect |
| * may be that only one operation succeeds. |
| */ |
| static __inline__ void __change_bit(int nr, volatile void * addr) |
| { |
| __asm__ __volatile__( |
| "btcl %1,%0" |
| :ADDR |
| :"dIr" (nr)); |
| } |
| |
| /** |
| * change_bit - Toggle a bit in memory |
| * @nr: Bit to change |
| * @addr: Address to start counting from |
| * |
| * change_bit() is atomic and may not be reordered. |
| * Note that @nr may be almost arbitrarily large; this function is not |
| * restricted to acting on a single-word quantity. |
| */ |
| static __inline__ void change_bit(int nr, volatile void * addr) |
| { |
| __asm__ __volatile__( LOCK_PREFIX |
| "btcl %1,%0" |
| :ADDR |
| :"dIr" (nr)); |
| } |
| |
| /** |
| * test_and_set_bit - Set a bit and return its old value |
| * @nr: Bit to set |
| * @addr: Address to count from |
| * |
| * This operation is atomic and cannot be reordered. |
| * It also implies a memory barrier. |
| */ |
| static __inline__ int test_and_set_bit(int nr, volatile void * addr) |
| { |
| int oldbit; |
| |
| __asm__ __volatile__( LOCK_PREFIX |
| "btsl %2,%1\n\tsbbl %0,%0" |
| :"=r" (oldbit),ADDR |
| :"dIr" (nr) : "memory"); |
| return oldbit; |
| } |
| |
| /** |
| * __test_and_set_bit - Set a bit and return its old value |
| * @nr: Bit to set |
| * @addr: Address to count from |
| * |
| * This operation is non-atomic and can be reordered. |
| * If two examples of this operation race, one can appear to succeed |
| * but actually fail. You must protect multiple accesses with a lock. |
| */ |
| static __inline__ int __test_and_set_bit(int nr, volatile void * addr) |
| { |
| int oldbit; |
| |
| __asm__( |
| "btsl %2,%1\n\tsbbl %0,%0" |
| :"=r" (oldbit),ADDR |
| :"dIr" (nr)); |
| return oldbit; |
| } |
| |
| /** |
| * test_and_clear_bit - Clear a bit and return its old value |
| * @nr: Bit to clear |
| * @addr: Address to count from |
| * |
| * This operation is atomic and cannot be reordered. |
| * It also implies a memory barrier. |
| */ |
| static __inline__ int test_and_clear_bit(int nr, volatile void * addr) |
| { |
| int oldbit; |
| |
| __asm__ __volatile__( LOCK_PREFIX |
| "btrl %2,%1\n\tsbbl %0,%0" |
| :"=r" (oldbit),ADDR |
| :"dIr" (nr) : "memory"); |
| return oldbit; |
| } |
| |
| /** |
| * __test_and_clear_bit - Clear a bit and return its old value |
| * @nr: Bit to clear |
| * @addr: Address to count from |
| * |
| * This operation is non-atomic and can be reordered. |
| * If two examples of this operation race, one can appear to succeed |
| * but actually fail. You must protect multiple accesses with a lock. |
| */ |
| static __inline__ int __test_and_clear_bit(int nr, volatile void * addr) |
| { |
| int oldbit; |
| |
| __asm__( |
| "btrl %2,%1\n\tsbbl %0,%0" |
| :"=r" (oldbit),ADDR |
| :"dIr" (nr)); |
| return oldbit; |
| } |
| |
| /* WARNING: non atomic and it can be reordered! */ |
| static __inline__ int __test_and_change_bit(int nr, volatile void * addr) |
| { |
| int oldbit; |
| |
| __asm__ __volatile__( |
| "btcl %2,%1\n\tsbbl %0,%0" |
| :"=r" (oldbit),ADDR |
| :"dIr" (nr) : "memory"); |
| return oldbit; |
| } |
| |
| /** |
| * test_and_change_bit - Change a bit and return its old value |
| * @nr: Bit to change |
| * @addr: Address to count from |
| * |
| * This operation is atomic and cannot be reordered. |
| * It also implies a memory barrier. |
| */ |
| static __inline__ int test_and_change_bit(int nr, volatile void * addr) |
| { |
| int oldbit; |
| |
| __asm__ __volatile__( LOCK_PREFIX |
| "btcl %2,%1\n\tsbbl %0,%0" |
| :"=r" (oldbit),ADDR |
| :"dIr" (nr) : "memory"); |
| return oldbit; |
| } |
| |
| #if 0 /* Fool kernel-doc since it doesn't do macros yet */ |
| /** |
| * test_bit - Determine whether a bit is set |
| * @nr: bit number to test |
| * @addr: Address to start counting from |
| */ |
| static int test_bit(int nr, const volatile void * addr); |
| #endif |
| |
| static __inline__ int constant_test_bit(int nr, const volatile void * addr) |
| { |
| return ((1UL << (nr & 31)) & (((const volatile unsigned int *) addr)[nr >> 5])) != 0; |
| } |
| |
| static __inline__ int variable_test_bit(int nr, volatile const void * addr) |
| { |
| int oldbit; |
| |
| __asm__ __volatile__( |
| "btl %2,%1\n\tsbbl %0,%0" |
| :"=r" (oldbit) |
| :"m" (*(volatile long *)addr),"dIr" (nr)); |
| return oldbit; |
| } |
| |
| #define test_bit(nr,addr) \ |
| (__builtin_constant_p(nr) ? \ |
| constant_test_bit((nr),(addr)) : \ |
| variable_test_bit((nr),(addr))) |
| |
| #undef ADDR |
| |
| extern long find_first_zero_bit(const unsigned long * addr, unsigned long size); |
| extern long find_next_zero_bit (const unsigned long * addr, long size, long offset); |
| extern long find_first_bit(const unsigned long * addr, unsigned long size); |
| extern long find_next_bit(const unsigned long * addr, long size, long offset); |
| |
| /* return index of first bet set in val or max when no bit is set */ |
| static inline long __scanbit(unsigned long val, unsigned long max) |
| { |
| asm("bsfq %1,%0 ; cmovz %2,%0" : "=&r" (val) : "r" (val), "r" (max)); |
| return val; |
| } |
| |
| #define find_first_bit(addr,size) \ |
| ((__builtin_constant_p(size) && (size) <= BITS_PER_LONG ? \ |
| (__scanbit(*(unsigned long *)addr,(size))) : \ |
| find_first_bit(addr,size))) |
| |
| #define find_next_bit(addr,size,off) \ |
| ((__builtin_constant_p(size) && (size) <= BITS_PER_LONG ? \ |
| ((off) + (__scanbit((*(unsigned long *)addr) >> (off),(size)-(off)))) : \ |
| find_next_bit(addr,size,off))) |
| |
| #define find_first_zero_bit(addr,size) \ |
| ((__builtin_constant_p(size) && (size) <= BITS_PER_LONG ? \ |
| (__scanbit(~*(unsigned long *)addr,(size))) : \ |
| find_first_zero_bit(addr,size))) |
| |
| #define find_next_zero_bit(addr,size,off) \ |
| ((__builtin_constant_p(size) && (size) <= BITS_PER_LONG ? \ |
| ((off)+(__scanbit(~(((*(unsigned long *)addr)) >> (off)),(size)-(off)))) : \ |
| find_next_zero_bit(addr,size,off))) |
| |
| /* |
| * Find string of zero bits in a bitmap. -1 when not found. |
| */ |
| extern unsigned long |
| find_next_zero_string(unsigned long *bitmap, long start, long nbits, int len); |
| |
| static inline void set_bit_string(unsigned long *bitmap, unsigned long i, |
| int len) |
| { |
| unsigned long end = i + len; |
| while (i < end) { |
| __set_bit(i, bitmap); |
| i++; |
| } |
| } |
| |
| static inline void __clear_bit_string(unsigned long *bitmap, unsigned long i, |
| int len) |
| { |
| unsigned long end = i + len; |
| while (i < end) { |
| __clear_bit(i, bitmap); |
| i++; |
| } |
| } |
| |
| /** |
| * ffz - find first zero in word. |
| * @word: The word to search |
| * |
| * Undefined if no zero exists, so code should check against ~0UL first. |
| */ |
| static __inline__ unsigned long ffz(unsigned long word) |
| { |
| __asm__("bsfq %1,%0" |
| :"=r" (word) |
| :"r" (~word)); |
| return word; |
| } |
| |
| /** |
| * __ffs - find first bit in word. |
| * @word: The word to search |
| * |
| * Undefined if no bit exists, so code should check against 0 first. |
| */ |
| static __inline__ unsigned long __ffs(unsigned long word) |
| { |
| __asm__("bsfq %1,%0" |
| :"=r" (word) |
| :"rm" (word)); |
| return word; |
| } |
| |
| /* |
| * __fls: find last bit set. |
| * @word: The word to search |
| * |
| * Undefined if no zero exists, so code should check against ~0UL first. |
| */ |
| static __inline__ unsigned long __fls(unsigned long word) |
| { |
| __asm__("bsrq %1,%0" |
| :"=r" (word) |
| :"rm" (word)); |
| return word; |
| } |
| |
| #ifdef __KERNEL__ |
| |
| #include <asm-generic/bitops/sched.h> |
| |
| /** |
| * ffs - find first bit set |
| * @x: the word to search |
| * |
| * This is defined the same way as |
| * the libc and compiler builtin ffs routines, therefore |
| * differs in spirit from the above ffz (man ffs). |
| */ |
| static __inline__ int ffs(int x) |
| { |
| int r; |
| |
| __asm__("bsfl %1,%0\n\t" |
| "cmovzl %2,%0" |
| : "=r" (r) : "rm" (x), "r" (-1)); |
| return r+1; |
| } |
| |
| /** |
| * fls64 - find last bit set in 64 bit word |
| * @x: the word to search |
| * |
| * This is defined the same way as fls. |
| */ |
| static __inline__ int fls64(__u64 x) |
| { |
| if (x == 0) |
| return 0; |
| return __fls(x) + 1; |
| } |
| |
| /** |
| * fls - find last bit set |
| * @x: the word to search |
| * |
| * This is defined the same way as ffs. |
| */ |
| static __inline__ int fls(int x) |
| { |
| int r; |
| |
| __asm__("bsrl %1,%0\n\t" |
| "cmovzl %2,%0" |
| : "=&r" (r) : "rm" (x), "rm" (-1)); |
| return r+1; |
| } |
| |
| #define ARCH_HAS_FAST_MULTIPLIER 1 |
| |
| #include <asm-generic/bitops/hweight.h> |
| |
| #endif /* __KERNEL__ */ |
| |
| #ifdef __KERNEL__ |
| |
| #include <asm-generic/bitops/ext2-non-atomic.h> |
| |
| #define ext2_set_bit_atomic(lock,nr,addr) \ |
| test_and_set_bit((nr),(unsigned long*)addr) |
| #define ext2_clear_bit_atomic(lock,nr,addr) \ |
| test_and_clear_bit((nr),(unsigned long*)addr) |
| |
| #include <asm-generic/bitops/minix.h> |
| |
| #endif /* __KERNEL__ */ |
| |
| #endif /* _X86_64_BITOPS_H */ |