blob: 6186fde718f9aacfa45b52220b5a9b0d2fea32df [file] [log] [blame]
/*
* Copyright (c) 2016 Avago Technologies. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful.
* ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
* INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A
* PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
* THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.
* See the GNU General Public License for more details, a copy of which
* can be found in the file COPYING included with this package
*
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/module.h>
#include <linux/parser.h>
#include <uapi/scsi/fc/fc_fs.h>
#include <uapi/scsi/fc/fc_els.h>
#include "nvme.h"
#include "fabrics.h"
#include <linux/nvme-fc-driver.h>
#include <linux/nvme-fc.h>
/* *************************** Data Structures/Defines ****************** */
/*
* We handle AEN commands ourselves and don't even let the
* block layer know about them.
*/
#define NVME_FC_NR_AEN_COMMANDS 1
#define NVME_FC_AQ_BLKMQ_DEPTH \
(NVMF_AQ_DEPTH - NVME_FC_NR_AEN_COMMANDS)
#define AEN_CMDID_BASE (NVME_FC_AQ_BLKMQ_DEPTH + 1)
enum nvme_fc_queue_flags {
NVME_FC_Q_CONNECTED = (1 << 0),
};
#define NVMEFC_QUEUE_DELAY 3 /* ms units */
struct nvme_fc_queue {
struct nvme_fc_ctrl *ctrl;
struct device *dev;
struct blk_mq_hw_ctx *hctx;
void *lldd_handle;
int queue_size;
size_t cmnd_capsule_len;
u32 qnum;
u32 rqcnt;
u32 seqno;
u64 connection_id;
atomic_t csn;
unsigned long flags;
} __aligned(sizeof(u64)); /* alignment for other things alloc'd with */
struct nvmefc_ls_req_op {
struct nvmefc_ls_req ls_req;
struct nvme_fc_ctrl *ctrl;
struct nvme_fc_queue *queue;
struct request *rq;
int ls_error;
struct completion ls_done;
struct list_head lsreq_list; /* ctrl->ls_req_list */
bool req_queued;
};
enum nvme_fcpop_state {
FCPOP_STATE_UNINIT = 0,
FCPOP_STATE_IDLE = 1,
FCPOP_STATE_ACTIVE = 2,
FCPOP_STATE_ABORTED = 3,
};
struct nvme_fc_fcp_op {
struct nvme_request nreq; /*
* nvme/host/core.c
* requires this to be
* the 1st element in the
* private structure
* associated with the
* request.
*/
struct nvmefc_fcp_req fcp_req;
struct nvme_fc_ctrl *ctrl;
struct nvme_fc_queue *queue;
struct request *rq;
atomic_t state;
u32 rqno;
u32 nents;
struct nvme_fc_cmd_iu cmd_iu;
struct nvme_fc_ersp_iu rsp_iu;
};
struct nvme_fc_lport {
struct nvme_fc_local_port localport;
struct ida endp_cnt;
struct list_head port_list; /* nvme_fc_port_list */
struct list_head endp_list;
struct device *dev; /* physical device for dma */
struct nvme_fc_port_template *ops;
struct kref ref;
} __aligned(sizeof(u64)); /* alignment for other things alloc'd with */
struct nvme_fc_rport {
struct nvme_fc_remote_port remoteport;
struct list_head endp_list; /* for lport->endp_list */
struct list_head ctrl_list;
spinlock_t lock;
struct kref ref;
} __aligned(sizeof(u64)); /* alignment for other things alloc'd with */
enum nvme_fcctrl_state {
FCCTRL_INIT = 0,
FCCTRL_ACTIVE = 1,
};
struct nvme_fc_ctrl {
spinlock_t lock;
struct nvme_fc_queue *queues;
u32 queue_count;
struct device *dev;
struct nvme_fc_lport *lport;
struct nvme_fc_rport *rport;
u32 cnum;
u64 association_id;
u64 cap;
struct list_head ctrl_list; /* rport->ctrl_list */
struct list_head ls_req_list;
struct blk_mq_tag_set admin_tag_set;
struct blk_mq_tag_set tag_set;
struct work_struct delete_work;
struct kref ref;
int state;
struct nvme_fc_fcp_op aen_ops[NVME_FC_NR_AEN_COMMANDS];
struct nvme_ctrl ctrl;
};
static inline struct nvme_fc_ctrl *
to_fc_ctrl(struct nvme_ctrl *ctrl)
{
return container_of(ctrl, struct nvme_fc_ctrl, ctrl);
}
static inline struct nvme_fc_lport *
localport_to_lport(struct nvme_fc_local_port *portptr)
{
return container_of(portptr, struct nvme_fc_lport, localport);
}
static inline struct nvme_fc_rport *
remoteport_to_rport(struct nvme_fc_remote_port *portptr)
{
return container_of(portptr, struct nvme_fc_rport, remoteport);
}
static inline struct nvmefc_ls_req_op *
ls_req_to_lsop(struct nvmefc_ls_req *lsreq)
{
return container_of(lsreq, struct nvmefc_ls_req_op, ls_req);
}
static inline struct nvme_fc_fcp_op *
fcp_req_to_fcp_op(struct nvmefc_fcp_req *fcpreq)
{
return container_of(fcpreq, struct nvme_fc_fcp_op, fcp_req);
}
/* *************************** Globals **************************** */
static DEFINE_SPINLOCK(nvme_fc_lock);
static LIST_HEAD(nvme_fc_lport_list);
static DEFINE_IDA(nvme_fc_local_port_cnt);
static DEFINE_IDA(nvme_fc_ctrl_cnt);
static struct workqueue_struct *nvme_fc_wq;
/* *********************** FC-NVME Port Management ************************ */
static int __nvme_fc_del_ctrl(struct nvme_fc_ctrl *);
static void __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *,
struct nvme_fc_queue *, unsigned int);
/**
* nvme_fc_register_localport - transport entry point called by an
* LLDD to register the existence of a NVME
* host FC port.
* @pinfo: pointer to information about the port to be registered
* @template: LLDD entrypoints and operational parameters for the port
* @dev: physical hardware device node port corresponds to. Will be
* used for DMA mappings
* @lport_p: pointer to a local port pointer. Upon success, the routine
* will allocate a nvme_fc_local_port structure and place its
* address in the local port pointer. Upon failure, local port
* pointer will be set to 0.
*
* Returns:
* a completion status. Must be 0 upon success; a negative errno
* (ex: -ENXIO) upon failure.
*/
int
nvme_fc_register_localport(struct nvme_fc_port_info *pinfo,
struct nvme_fc_port_template *template,
struct device *dev,
struct nvme_fc_local_port **portptr)
{
struct nvme_fc_lport *newrec;
unsigned long flags;
int ret, idx;
if (!template->localport_delete || !template->remoteport_delete ||
!template->ls_req || !template->fcp_io ||
!template->ls_abort || !template->fcp_abort ||
!template->max_hw_queues || !template->max_sgl_segments ||
!template->max_dif_sgl_segments || !template->dma_boundary) {
ret = -EINVAL;
goto out_reghost_failed;
}
newrec = kmalloc((sizeof(*newrec) + template->local_priv_sz),
GFP_KERNEL);
if (!newrec) {
ret = -ENOMEM;
goto out_reghost_failed;
}
idx = ida_simple_get(&nvme_fc_local_port_cnt, 0, 0, GFP_KERNEL);
if (idx < 0) {
ret = -ENOSPC;
goto out_fail_kfree;
}
if (!get_device(dev) && dev) {
ret = -ENODEV;
goto out_ida_put;
}
INIT_LIST_HEAD(&newrec->port_list);
INIT_LIST_HEAD(&newrec->endp_list);
kref_init(&newrec->ref);
newrec->ops = template;
newrec->dev = dev;
ida_init(&newrec->endp_cnt);
newrec->localport.private = &newrec[1];
newrec->localport.node_name = pinfo->node_name;
newrec->localport.port_name = pinfo->port_name;
newrec->localport.port_role = pinfo->port_role;
newrec->localport.port_id = pinfo->port_id;
newrec->localport.port_state = FC_OBJSTATE_ONLINE;
newrec->localport.port_num = idx;
spin_lock_irqsave(&nvme_fc_lock, flags);
list_add_tail(&newrec->port_list, &nvme_fc_lport_list);
spin_unlock_irqrestore(&nvme_fc_lock, flags);
if (dev)
dma_set_seg_boundary(dev, template->dma_boundary);
*portptr = &newrec->localport;
return 0;
out_ida_put:
ida_simple_remove(&nvme_fc_local_port_cnt, idx);
out_fail_kfree:
kfree(newrec);
out_reghost_failed:
*portptr = NULL;
return ret;
}
EXPORT_SYMBOL_GPL(nvme_fc_register_localport);
static void
nvme_fc_free_lport(struct kref *ref)
{
struct nvme_fc_lport *lport =
container_of(ref, struct nvme_fc_lport, ref);
unsigned long flags;
WARN_ON(lport->localport.port_state != FC_OBJSTATE_DELETED);
WARN_ON(!list_empty(&lport->endp_list));
/* remove from transport list */
spin_lock_irqsave(&nvme_fc_lock, flags);
list_del(&lport->port_list);
spin_unlock_irqrestore(&nvme_fc_lock, flags);
/* let the LLDD know we've finished tearing it down */
lport->ops->localport_delete(&lport->localport);
ida_simple_remove(&nvme_fc_local_port_cnt, lport->localport.port_num);
ida_destroy(&lport->endp_cnt);
put_device(lport->dev);
kfree(lport);
}
static void
nvme_fc_lport_put(struct nvme_fc_lport *lport)
{
kref_put(&lport->ref, nvme_fc_free_lport);
}
static int
nvme_fc_lport_get(struct nvme_fc_lport *lport)
{
return kref_get_unless_zero(&lport->ref);
}
/**
* nvme_fc_unregister_localport - transport entry point called by an
* LLDD to deregister/remove a previously
* registered a NVME host FC port.
* @localport: pointer to the (registered) local port that is to be
* deregistered.
*
* Returns:
* a completion status. Must be 0 upon success; a negative errno
* (ex: -ENXIO) upon failure.
*/
int
nvme_fc_unregister_localport(struct nvme_fc_local_port *portptr)
{
struct nvme_fc_lport *lport = localport_to_lport(portptr);
unsigned long flags;
if (!portptr)
return -EINVAL;
spin_lock_irqsave(&nvme_fc_lock, flags);
if (portptr->port_state != FC_OBJSTATE_ONLINE) {
spin_unlock_irqrestore(&nvme_fc_lock, flags);
return -EINVAL;
}
portptr->port_state = FC_OBJSTATE_DELETED;
spin_unlock_irqrestore(&nvme_fc_lock, flags);
nvme_fc_lport_put(lport);
return 0;
}
EXPORT_SYMBOL_GPL(nvme_fc_unregister_localport);
/**
* nvme_fc_register_remoteport - transport entry point called by an
* LLDD to register the existence of a NVME
* subsystem FC port on its fabric.
* @localport: pointer to the (registered) local port that the remote
* subsystem port is connected to.
* @pinfo: pointer to information about the port to be registered
* @rport_p: pointer to a remote port pointer. Upon success, the routine
* will allocate a nvme_fc_remote_port structure and place its
* address in the remote port pointer. Upon failure, remote port
* pointer will be set to 0.
*
* Returns:
* a completion status. Must be 0 upon success; a negative errno
* (ex: -ENXIO) upon failure.
*/
int
nvme_fc_register_remoteport(struct nvme_fc_local_port *localport,
struct nvme_fc_port_info *pinfo,
struct nvme_fc_remote_port **portptr)
{
struct nvme_fc_lport *lport = localport_to_lport(localport);
struct nvme_fc_rport *newrec;
unsigned long flags;
int ret, idx;
newrec = kmalloc((sizeof(*newrec) + lport->ops->remote_priv_sz),
GFP_KERNEL);
if (!newrec) {
ret = -ENOMEM;
goto out_reghost_failed;
}
if (!nvme_fc_lport_get(lport)) {
ret = -ESHUTDOWN;
goto out_kfree_rport;
}
idx = ida_simple_get(&lport->endp_cnt, 0, 0, GFP_KERNEL);
if (idx < 0) {
ret = -ENOSPC;
goto out_lport_put;
}
INIT_LIST_HEAD(&newrec->endp_list);
INIT_LIST_HEAD(&newrec->ctrl_list);
kref_init(&newrec->ref);
spin_lock_init(&newrec->lock);
newrec->remoteport.localport = &lport->localport;
newrec->remoteport.private = &newrec[1];
newrec->remoteport.port_role = pinfo->port_role;
newrec->remoteport.node_name = pinfo->node_name;
newrec->remoteport.port_name = pinfo->port_name;
newrec->remoteport.port_id = pinfo->port_id;
newrec->remoteport.port_state = FC_OBJSTATE_ONLINE;
newrec->remoteport.port_num = idx;
spin_lock_irqsave(&nvme_fc_lock, flags);
list_add_tail(&newrec->endp_list, &lport->endp_list);
spin_unlock_irqrestore(&nvme_fc_lock, flags);
*portptr = &newrec->remoteport;
return 0;
out_lport_put:
nvme_fc_lport_put(lport);
out_kfree_rport:
kfree(newrec);
out_reghost_failed:
*portptr = NULL;
return ret;
}
EXPORT_SYMBOL_GPL(nvme_fc_register_remoteport);
static void
nvme_fc_free_rport(struct kref *ref)
{
struct nvme_fc_rport *rport =
container_of(ref, struct nvme_fc_rport, ref);
struct nvme_fc_lport *lport =
localport_to_lport(rport->remoteport.localport);
unsigned long flags;
WARN_ON(rport->remoteport.port_state != FC_OBJSTATE_DELETED);
WARN_ON(!list_empty(&rport->ctrl_list));
/* remove from lport list */
spin_lock_irqsave(&nvme_fc_lock, flags);
list_del(&rport->endp_list);
spin_unlock_irqrestore(&nvme_fc_lock, flags);
/* let the LLDD know we've finished tearing it down */
lport->ops->remoteport_delete(&rport->remoteport);
ida_simple_remove(&lport->endp_cnt, rport->remoteport.port_num);
kfree(rport);
nvme_fc_lport_put(lport);
}
static void
nvme_fc_rport_put(struct nvme_fc_rport *rport)
{
kref_put(&rport->ref, nvme_fc_free_rport);
}
static int
nvme_fc_rport_get(struct nvme_fc_rport *rport)
{
return kref_get_unless_zero(&rport->ref);
}
/**
* nvme_fc_unregister_remoteport - transport entry point called by an
* LLDD to deregister/remove a previously
* registered a NVME subsystem FC port.
* @remoteport: pointer to the (registered) remote port that is to be
* deregistered.
*
* Returns:
* a completion status. Must be 0 upon success; a negative errno
* (ex: -ENXIO) upon failure.
*/
int
nvme_fc_unregister_remoteport(struct nvme_fc_remote_port *portptr)
{
struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
struct nvme_fc_ctrl *ctrl;
unsigned long flags;
if (!portptr)
return -EINVAL;
spin_lock_irqsave(&rport->lock, flags);
if (portptr->port_state != FC_OBJSTATE_ONLINE) {
spin_unlock_irqrestore(&rport->lock, flags);
return -EINVAL;
}
portptr->port_state = FC_OBJSTATE_DELETED;
/* tear down all associations to the remote port */
list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list)
__nvme_fc_del_ctrl(ctrl);
spin_unlock_irqrestore(&rport->lock, flags);
nvme_fc_rport_put(rport);
return 0;
}
EXPORT_SYMBOL_GPL(nvme_fc_unregister_remoteport);
/* *********************** FC-NVME DMA Handling **************************** */
/*
* The fcloop device passes in a NULL device pointer. Real LLD's will
* pass in a valid device pointer. If NULL is passed to the dma mapping
* routines, depending on the platform, it may or may not succeed, and
* may crash.
*
* As such:
* Wrapper all the dma routines and check the dev pointer.
*
* If simple mappings (return just a dma address, we'll noop them,
* returning a dma address of 0.
*
* On more complex mappings (dma_map_sg), a pseudo routine fills
* in the scatter list, setting all dma addresses to 0.
*/
static inline dma_addr_t
fc_dma_map_single(struct device *dev, void *ptr, size_t size,
enum dma_data_direction dir)
{
return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
}
static inline int
fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
{
return dev ? dma_mapping_error(dev, dma_addr) : 0;
}
static inline void
fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
enum dma_data_direction dir)
{
if (dev)
dma_unmap_single(dev, addr, size, dir);
}
static inline void
fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
enum dma_data_direction dir)
{
if (dev)
dma_sync_single_for_cpu(dev, addr, size, dir);
}
static inline void
fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
enum dma_data_direction dir)
{
if (dev)
dma_sync_single_for_device(dev, addr, size, dir);
}
/* pseudo dma_map_sg call */
static int
fc_map_sg(struct scatterlist *sg, int nents)
{
struct scatterlist *s;
int i;
WARN_ON(nents == 0 || sg[0].length == 0);
for_each_sg(sg, s, nents, i) {
s->dma_address = 0L;
#ifdef CONFIG_NEED_SG_DMA_LENGTH
s->dma_length = s->length;
#endif
}
return nents;
}
static inline int
fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
enum dma_data_direction dir)
{
return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
}
static inline void
fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
enum dma_data_direction dir)
{
if (dev)
dma_unmap_sg(dev, sg, nents, dir);
}
/* *********************** FC-NVME LS Handling **************************** */
static void nvme_fc_ctrl_put(struct nvme_fc_ctrl *);
static int nvme_fc_ctrl_get(struct nvme_fc_ctrl *);
static void
__nvme_fc_finish_ls_req(struct nvme_fc_ctrl *ctrl,
struct nvmefc_ls_req_op *lsop)
{
struct nvmefc_ls_req *lsreq = &lsop->ls_req;
unsigned long flags;
spin_lock_irqsave(&ctrl->lock, flags);
if (!lsop->req_queued) {
spin_unlock_irqrestore(&ctrl->lock, flags);
return;
}
list_del(&lsop->lsreq_list);
lsop->req_queued = false;
spin_unlock_irqrestore(&ctrl->lock, flags);
fc_dma_unmap_single(ctrl->dev, lsreq->rqstdma,
(lsreq->rqstlen + lsreq->rsplen),
DMA_BIDIRECTIONAL);
nvme_fc_ctrl_put(ctrl);
}
static int
__nvme_fc_send_ls_req(struct nvme_fc_ctrl *ctrl,
struct nvmefc_ls_req_op *lsop,
void (*done)(struct nvmefc_ls_req *req, int status))
{
struct nvmefc_ls_req *lsreq = &lsop->ls_req;
unsigned long flags;
int ret;
if (!nvme_fc_ctrl_get(ctrl))
return -ESHUTDOWN;
lsreq->done = done;
lsop->ctrl = ctrl;
lsop->req_queued = false;
INIT_LIST_HEAD(&lsop->lsreq_list);
init_completion(&lsop->ls_done);
lsreq->rqstdma = fc_dma_map_single(ctrl->dev, lsreq->rqstaddr,
lsreq->rqstlen + lsreq->rsplen,
DMA_BIDIRECTIONAL);
if (fc_dma_mapping_error(ctrl->dev, lsreq->rqstdma)) {
nvme_fc_ctrl_put(ctrl);
dev_err(ctrl->dev,
"els request command failed EFAULT.\n");
return -EFAULT;
}
lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen;
spin_lock_irqsave(&ctrl->lock, flags);
list_add_tail(&lsop->lsreq_list, &ctrl->ls_req_list);
lsop->req_queued = true;
spin_unlock_irqrestore(&ctrl->lock, flags);
ret = ctrl->lport->ops->ls_req(&ctrl->lport->localport,
&ctrl->rport->remoteport, lsreq);
if (ret)
lsop->ls_error = ret;
return ret;
}
static void
nvme_fc_send_ls_req_done(struct nvmefc_ls_req *lsreq, int status)
{
struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
lsop->ls_error = status;
complete(&lsop->ls_done);
}
static int
nvme_fc_send_ls_req(struct nvme_fc_ctrl *ctrl, struct nvmefc_ls_req_op *lsop)
{
struct nvmefc_ls_req *lsreq = &lsop->ls_req;
struct fcnvme_ls_rjt *rjt = lsreq->rspaddr;
int ret;
ret = __nvme_fc_send_ls_req(ctrl, lsop, nvme_fc_send_ls_req_done);
if (!ret)
/*
* No timeout/not interruptible as we need the struct
* to exist until the lldd calls us back. Thus mandate
* wait until driver calls back. lldd responsible for
* the timeout action
*/
wait_for_completion(&lsop->ls_done);
__nvme_fc_finish_ls_req(ctrl, lsop);
if (ret) {
dev_err(ctrl->dev,
"ls request command failed (%d).\n", ret);
return ret;
}
/* ACC or RJT payload ? */
if (rjt->w0.ls_cmd == FCNVME_LS_RJT)
return -ENXIO;
return 0;
}
static void
nvme_fc_send_ls_req_async(struct nvme_fc_ctrl *ctrl,
struct nvmefc_ls_req_op *lsop,
void (*done)(struct nvmefc_ls_req *req, int status))
{
int ret;
ret = __nvme_fc_send_ls_req(ctrl, lsop, done);
/* don't wait for completion */
if (ret)
done(&lsop->ls_req, ret);
}
/* Validation Error indexes into the string table below */
enum {
VERR_NO_ERROR = 0,
VERR_LSACC = 1,
VERR_LSDESC_RQST = 2,
VERR_LSDESC_RQST_LEN = 3,
VERR_ASSOC_ID = 4,
VERR_ASSOC_ID_LEN = 5,
VERR_CONN_ID = 6,
VERR_CONN_ID_LEN = 7,
VERR_CR_ASSOC = 8,
VERR_CR_ASSOC_ACC_LEN = 9,
VERR_CR_CONN = 10,
VERR_CR_CONN_ACC_LEN = 11,
VERR_DISCONN = 12,
VERR_DISCONN_ACC_LEN = 13,
};
static char *validation_errors[] = {
"OK",
"Not LS_ACC",
"Not LSDESC_RQST",
"Bad LSDESC_RQST Length",
"Not Association ID",
"Bad Association ID Length",
"Not Connection ID",
"Bad Connection ID Length",
"Not CR_ASSOC Rqst",
"Bad CR_ASSOC ACC Length",
"Not CR_CONN Rqst",
"Bad CR_CONN ACC Length",
"Not Disconnect Rqst",
"Bad Disconnect ACC Length",
};
static int
nvme_fc_connect_admin_queue(struct nvme_fc_ctrl *ctrl,
struct nvme_fc_queue *queue, u16 qsize, u16 ersp_ratio)
{
struct nvmefc_ls_req_op *lsop;
struct nvmefc_ls_req *lsreq;
struct fcnvme_ls_cr_assoc_rqst *assoc_rqst;
struct fcnvme_ls_cr_assoc_acc *assoc_acc;
int ret, fcret = 0;
lsop = kzalloc((sizeof(*lsop) +
ctrl->lport->ops->lsrqst_priv_sz +
sizeof(*assoc_rqst) + sizeof(*assoc_acc)), GFP_KERNEL);
if (!lsop) {
ret = -ENOMEM;
goto out_no_memory;
}
lsreq = &lsop->ls_req;
lsreq->private = (void *)&lsop[1];
assoc_rqst = (struct fcnvme_ls_cr_assoc_rqst *)
(lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
assoc_acc = (struct fcnvme_ls_cr_assoc_acc *)&assoc_rqst[1];
assoc_rqst->w0.ls_cmd = FCNVME_LS_CREATE_ASSOCIATION;
assoc_rqst->desc_list_len =
cpu_to_be32(sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
assoc_rqst->assoc_cmd.desc_tag =
cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD);
assoc_rqst->assoc_cmd.desc_len =
fcnvme_lsdesc_len(
sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
assoc_rqst->assoc_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
assoc_rqst->assoc_cmd.sqsize = cpu_to_be16(qsize);
/* Linux supports only Dynamic controllers */
assoc_rqst->assoc_cmd.cntlid = cpu_to_be16(0xffff);
memcpy(&assoc_rqst->assoc_cmd.hostid, &ctrl->ctrl.opts->host->id,
min_t(size_t, FCNVME_ASSOC_HOSTID_LEN, sizeof(uuid_be)));
strncpy(assoc_rqst->assoc_cmd.hostnqn, ctrl->ctrl.opts->host->nqn,
min(FCNVME_ASSOC_HOSTNQN_LEN, NVMF_NQN_SIZE));
strncpy(assoc_rqst->assoc_cmd.subnqn, ctrl->ctrl.opts->subsysnqn,
min(FCNVME_ASSOC_SUBNQN_LEN, NVMF_NQN_SIZE));
lsop->queue = queue;
lsreq->rqstaddr = assoc_rqst;
lsreq->rqstlen = sizeof(*assoc_rqst);
lsreq->rspaddr = assoc_acc;
lsreq->rsplen = sizeof(*assoc_acc);
lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
ret = nvme_fc_send_ls_req(ctrl, lsop);
if (ret)
goto out_free_buffer;
/* process connect LS completion */
/* validate the ACC response */
if (assoc_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
fcret = VERR_LSACC;
if (assoc_acc->hdr.desc_list_len !=
fcnvme_lsdesc_len(
sizeof(struct fcnvme_ls_cr_assoc_acc)))
fcret = VERR_CR_ASSOC_ACC_LEN;
if (assoc_acc->hdr.rqst.desc_tag != cpu_to_be32(FCNVME_LSDESC_RQST))
fcret = VERR_LSDESC_RQST;
else if (assoc_acc->hdr.rqst.desc_len !=
fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
fcret = VERR_LSDESC_RQST_LEN;
else if (assoc_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_ASSOCIATION)
fcret = VERR_CR_ASSOC;
else if (assoc_acc->associd.desc_tag !=
cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
fcret = VERR_ASSOC_ID;
else if (assoc_acc->associd.desc_len !=
fcnvme_lsdesc_len(
sizeof(struct fcnvme_lsdesc_assoc_id)))
fcret = VERR_ASSOC_ID_LEN;
else if (assoc_acc->connectid.desc_tag !=
cpu_to_be32(FCNVME_LSDESC_CONN_ID))
fcret = VERR_CONN_ID;
else if (assoc_acc->connectid.desc_len !=
fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
fcret = VERR_CONN_ID_LEN;
if (fcret) {
ret = -EBADF;
dev_err(ctrl->dev,
"q %d connect failed: %s\n",
queue->qnum, validation_errors[fcret]);
} else {
ctrl->association_id =
be64_to_cpu(assoc_acc->associd.association_id);
queue->connection_id =
be64_to_cpu(assoc_acc->connectid.connection_id);
set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
}
out_free_buffer:
kfree(lsop);
out_no_memory:
if (ret)
dev_err(ctrl->dev,
"queue %d connect admin queue failed (%d).\n",
queue->qnum, ret);
return ret;
}
static int
nvme_fc_connect_queue(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
u16 qsize, u16 ersp_ratio)
{
struct nvmefc_ls_req_op *lsop;
struct nvmefc_ls_req *lsreq;
struct fcnvme_ls_cr_conn_rqst *conn_rqst;
struct fcnvme_ls_cr_conn_acc *conn_acc;
int ret, fcret = 0;
lsop = kzalloc((sizeof(*lsop) +
ctrl->lport->ops->lsrqst_priv_sz +
sizeof(*conn_rqst) + sizeof(*conn_acc)), GFP_KERNEL);
if (!lsop) {
ret = -ENOMEM;
goto out_no_memory;
}
lsreq = &lsop->ls_req;
lsreq->private = (void *)&lsop[1];
conn_rqst = (struct fcnvme_ls_cr_conn_rqst *)
(lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
conn_acc = (struct fcnvme_ls_cr_conn_acc *)&conn_rqst[1];
conn_rqst->w0.ls_cmd = FCNVME_LS_CREATE_CONNECTION;
conn_rqst->desc_list_len = cpu_to_be32(
sizeof(struct fcnvme_lsdesc_assoc_id) +
sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
conn_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
conn_rqst->associd.desc_len =
fcnvme_lsdesc_len(
sizeof(struct fcnvme_lsdesc_assoc_id));
conn_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
conn_rqst->connect_cmd.desc_tag =
cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD);
conn_rqst->connect_cmd.desc_len =
fcnvme_lsdesc_len(
sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
conn_rqst->connect_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
conn_rqst->connect_cmd.qid = cpu_to_be16(queue->qnum);
conn_rqst->connect_cmd.sqsize = cpu_to_be16(qsize);
lsop->queue = queue;
lsreq->rqstaddr = conn_rqst;
lsreq->rqstlen = sizeof(*conn_rqst);
lsreq->rspaddr = conn_acc;
lsreq->rsplen = sizeof(*conn_acc);
lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
ret = nvme_fc_send_ls_req(ctrl, lsop);
if (ret)
goto out_free_buffer;
/* process connect LS completion */
/* validate the ACC response */
if (conn_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
fcret = VERR_LSACC;
if (conn_acc->hdr.desc_list_len !=
fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)))
fcret = VERR_CR_CONN_ACC_LEN;
if (conn_acc->hdr.rqst.desc_tag != cpu_to_be32(FCNVME_LSDESC_RQST))
fcret = VERR_LSDESC_RQST;
else if (conn_acc->hdr.rqst.desc_len !=
fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
fcret = VERR_LSDESC_RQST_LEN;
else if (conn_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_CONNECTION)
fcret = VERR_CR_CONN;
else if (conn_acc->connectid.desc_tag !=
cpu_to_be32(FCNVME_LSDESC_CONN_ID))
fcret = VERR_CONN_ID;
else if (conn_acc->connectid.desc_len !=
fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
fcret = VERR_CONN_ID_LEN;
if (fcret) {
ret = -EBADF;
dev_err(ctrl->dev,
"q %d connect failed: %s\n",
queue->qnum, validation_errors[fcret]);
} else {
queue->connection_id =
be64_to_cpu(conn_acc->connectid.connection_id);
set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
}
out_free_buffer:
kfree(lsop);
out_no_memory:
if (ret)
dev_err(ctrl->dev,
"queue %d connect command failed (%d).\n",
queue->qnum, ret);
return ret;
}
static void
nvme_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status)
{
struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
struct nvme_fc_ctrl *ctrl = lsop->ctrl;
__nvme_fc_finish_ls_req(ctrl, lsop);
if (status)
dev_err(ctrl->dev,
"disconnect assoc ls request command failed (%d).\n",
status);
/* fc-nvme iniator doesn't care about success or failure of cmd */
kfree(lsop);
}
/*
* This routine sends a FC-NVME LS to disconnect (aka terminate)
* the FC-NVME Association. Terminating the association also
* terminates the FC-NVME connections (per queue, both admin and io
* queues) that are part of the association. E.g. things are torn
* down, and the related FC-NVME Association ID and Connection IDs
* become invalid.
*
* The behavior of the fc-nvme initiator is such that it's
* understanding of the association and connections will implicitly
* be torn down. The action is implicit as it may be due to a loss of
* connectivity with the fc-nvme target, so you may never get a
* response even if you tried. As such, the action of this routine
* is to asynchronously send the LS, ignore any results of the LS, and
* continue on with terminating the association. If the fc-nvme target
* is present and receives the LS, it too can tear down.
*/
static void
nvme_fc_xmt_disconnect_assoc(struct nvme_fc_ctrl *ctrl)
{
struct fcnvme_ls_disconnect_rqst *discon_rqst;
struct fcnvme_ls_disconnect_acc *discon_acc;
struct nvmefc_ls_req_op *lsop;
struct nvmefc_ls_req *lsreq;
lsop = kzalloc((sizeof(*lsop) +
ctrl->lport->ops->lsrqst_priv_sz +
sizeof(*discon_rqst) + sizeof(*discon_acc)),
GFP_KERNEL);
if (!lsop)
/* couldn't sent it... too bad */
return;
lsreq = &lsop->ls_req;
lsreq->private = (void *)&lsop[1];
discon_rqst = (struct fcnvme_ls_disconnect_rqst *)
(lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
discon_acc = (struct fcnvme_ls_disconnect_acc *)&discon_rqst[1];
discon_rqst->w0.ls_cmd = FCNVME_LS_DISCONNECT;
discon_rqst->desc_list_len = cpu_to_be32(
sizeof(struct fcnvme_lsdesc_assoc_id) +
sizeof(struct fcnvme_lsdesc_disconn_cmd));
discon_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
discon_rqst->associd.desc_len =
fcnvme_lsdesc_len(
sizeof(struct fcnvme_lsdesc_assoc_id));
discon_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
discon_rqst->discon_cmd.desc_tag = cpu_to_be32(
FCNVME_LSDESC_DISCONN_CMD);
discon_rqst->discon_cmd.desc_len =
fcnvme_lsdesc_len(
sizeof(struct fcnvme_lsdesc_disconn_cmd));
discon_rqst->discon_cmd.scope = FCNVME_DISCONN_ASSOCIATION;
discon_rqst->discon_cmd.id = cpu_to_be64(ctrl->association_id);
lsreq->rqstaddr = discon_rqst;
lsreq->rqstlen = sizeof(*discon_rqst);
lsreq->rspaddr = discon_acc;
lsreq->rsplen = sizeof(*discon_acc);
lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
nvme_fc_send_ls_req_async(ctrl, lsop, nvme_fc_disconnect_assoc_done);
/* only meaningful part to terminating the association */
ctrl->association_id = 0;
}
/* *********************** NVME Ctrl Routines **************************** */
static int
nvme_fc_reinit_request(void *data, struct request *rq)
{
struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
memset(cmdiu, 0, sizeof(*cmdiu));
cmdiu->scsi_id = NVME_CMD_SCSI_ID;
cmdiu->fc_id = NVME_CMD_FC_ID;
cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32));
memset(&op->rsp_iu, 0, sizeof(op->rsp_iu));
return 0;
}
static void
__nvme_fc_exit_request(struct nvme_fc_ctrl *ctrl,
struct nvme_fc_fcp_op *op)
{
fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.rspdma,
sizeof(op->rsp_iu), DMA_FROM_DEVICE);
fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.cmddma,
sizeof(op->cmd_iu), DMA_TO_DEVICE);
atomic_set(&op->state, FCPOP_STATE_UNINIT);
}
static void
nvme_fc_exit_request(void *data, struct request *rq,
unsigned int hctx_idx, unsigned int rq_idx)
{
struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
return __nvme_fc_exit_request(data, op);
}
static void
nvme_fc_exit_aen_ops(struct nvme_fc_ctrl *ctrl)
{
struct nvme_fc_fcp_op *aen_op = ctrl->aen_ops;
int i;
for (i = 0; i < NVME_FC_NR_AEN_COMMANDS; i++, aen_op++) {
if (atomic_read(&aen_op->state) == FCPOP_STATE_UNINIT)
continue;
__nvme_fc_exit_request(ctrl, aen_op);
nvme_fc_ctrl_put(ctrl);
}
}
void
nvme_fc_fcpio_done(struct nvmefc_fcp_req *req)
{
struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req);
struct request *rq = op->rq;
struct nvmefc_fcp_req *freq = &op->fcp_req;
struct nvme_fc_ctrl *ctrl = op->ctrl;
struct nvme_fc_queue *queue = op->queue;
struct nvme_completion *cqe = &op->rsp_iu.cqe;
u16 status;
/*
* WARNING:
* The current linux implementation of a nvme controller
* allocates a single tag set for all io queues and sizes
* the io queues to fully hold all possible tags. Thus, the
* implementation does not reference or care about the sqhd
* value as it never needs to use the sqhd/sqtail pointers
* for submission pacing.
*
* This affects the FC-NVME implementation in two ways:
* 1) As the value doesn't matter, we don't need to waste
* cycles extracting it from ERSPs and stamping it in the
* cases where the transport fabricates CQEs on successful
* completions.
* 2) The FC-NVME implementation requires that delivery of
* ERSP completions are to go back to the nvme layer in order
* relative to the rsn, such that the sqhd value will always
* be "in order" for the nvme layer. As the nvme layer in
* linux doesn't care about sqhd, there's no need to return
* them in order.
*
* Additionally:
* As the core nvme layer in linux currently does not look at
* every field in the cqe - in cases where the FC transport must
* fabricate a CQE, the following fields will not be set as they
* are not referenced:
* cqe.sqid, cqe.sqhd, cqe.command_id
*/
fc_dma_sync_single_for_cpu(ctrl->lport->dev, op->fcp_req.rspdma,
sizeof(op->rsp_iu), DMA_FROM_DEVICE);
if (atomic_read(&op->state) == FCPOP_STATE_ABORTED)
status = NVME_SC_ABORT_REQ | NVME_SC_DNR;
else
status = freq->status;
/*
* For the linux implementation, if we have an unsuccesful
* status, they blk-mq layer can typically be called with the
* non-zero status and the content of the cqe isn't important.
*/
if (status)
goto done;
/*
* command completed successfully relative to the wire
* protocol. However, validate anything received and
* extract the status and result from the cqe (create it
* where necessary).
*/
switch (freq->rcv_rsplen) {
case 0:
case NVME_FC_SIZEOF_ZEROS_RSP:
/*
* No response payload or 12 bytes of payload (which
* should all be zeros) are considered successful and
* no payload in the CQE by the transport.
*/
if (freq->transferred_length !=
be32_to_cpu(op->cmd_iu.data_len)) {
status = -EIO;
goto done;
}
op->nreq.result.u64 = 0;
break;
case sizeof(struct nvme_fc_ersp_iu):
/*
* The ERSP IU contains a full completion with CQE.
* Validate ERSP IU and look at cqe.
*/
if (unlikely(be16_to_cpu(op->rsp_iu.iu_len) !=
(freq->rcv_rsplen / 4) ||
be32_to_cpu(op->rsp_iu.xfrd_len) !=
freq->transferred_length ||
op->rqno != le16_to_cpu(cqe->command_id))) {
status = -EIO;
goto done;
}
op->nreq.result = cqe->result;
status = le16_to_cpu(cqe->status) >> 1;
break;
default:
status = -EIO;
goto done;
}
done:
if (!queue->qnum && op->rqno >= AEN_CMDID_BASE) {
nvme_complete_async_event(&queue->ctrl->ctrl, status,
&op->nreq.result);
nvme_fc_ctrl_put(ctrl);
return;
}
blk_mq_complete_request(rq, status);
}
static int
__nvme_fc_init_request(struct nvme_fc_ctrl *ctrl,
struct nvme_fc_queue *queue, struct nvme_fc_fcp_op *op,
struct request *rq, u32 rqno)
{
struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
int ret = 0;
memset(op, 0, sizeof(*op));
op->fcp_req.cmdaddr = &op->cmd_iu;
op->fcp_req.cmdlen = sizeof(op->cmd_iu);
op->fcp_req.rspaddr = &op->rsp_iu;
op->fcp_req.rsplen = sizeof(op->rsp_iu);
op->fcp_req.done = nvme_fc_fcpio_done;
op->fcp_req.first_sgl = (struct scatterlist *)&op[1];
op->fcp_req.private = &op->fcp_req.first_sgl[SG_CHUNK_SIZE];
op->ctrl = ctrl;
op->queue = queue;
op->rq = rq;
op->rqno = rqno;
cmdiu->scsi_id = NVME_CMD_SCSI_ID;
cmdiu->fc_id = NVME_CMD_FC_ID;
cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32));
op->fcp_req.cmddma = fc_dma_map_single(ctrl->lport->dev,
&op->cmd_iu, sizeof(op->cmd_iu), DMA_TO_DEVICE);
if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.cmddma)) {
dev_err(ctrl->dev,
"FCP Op failed - cmdiu dma mapping failed.\n");
ret = EFAULT;
goto out_on_error;
}
op->fcp_req.rspdma = fc_dma_map_single(ctrl->lport->dev,
&op->rsp_iu, sizeof(op->rsp_iu),
DMA_FROM_DEVICE);
if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.rspdma)) {
dev_err(ctrl->dev,
"FCP Op failed - rspiu dma mapping failed.\n");
ret = EFAULT;
}
atomic_set(&op->state, FCPOP_STATE_IDLE);
out_on_error:
return ret;
}
static int
nvme_fc_init_request(void *data, struct request *rq,
unsigned int hctx_idx, unsigned int rq_idx,
unsigned int numa_node)
{
struct nvme_fc_ctrl *ctrl = data;
struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
struct nvme_fc_queue *queue = &ctrl->queues[hctx_idx+1];
return __nvme_fc_init_request(ctrl, queue, op, rq, queue->rqcnt++);
}
static int
nvme_fc_init_admin_request(void *data, struct request *rq,
unsigned int hctx_idx, unsigned int rq_idx,
unsigned int numa_node)
{
struct nvme_fc_ctrl *ctrl = data;
struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
struct nvme_fc_queue *queue = &ctrl->queues[0];
return __nvme_fc_init_request(ctrl, queue, op, rq, queue->rqcnt++);
}
static int
nvme_fc_init_aen_ops(struct nvme_fc_ctrl *ctrl)
{
struct nvme_fc_fcp_op *aen_op;
struct nvme_fc_cmd_iu *cmdiu;
struct nvme_command *sqe;
int i, ret;
aen_op = ctrl->aen_ops;
for (i = 0; i < NVME_FC_NR_AEN_COMMANDS; i++, aen_op++) {
cmdiu = &aen_op->cmd_iu;
sqe = &cmdiu->sqe;
ret = __nvme_fc_init_request(ctrl, &ctrl->queues[0],
aen_op, (struct request *)NULL,
(AEN_CMDID_BASE + i));
if (ret)
return ret;
memset(sqe, 0, sizeof(*sqe));
sqe->common.opcode = nvme_admin_async_event;
sqe->common.command_id = AEN_CMDID_BASE + i;
}
return 0;
}
static inline void
__nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, struct nvme_fc_ctrl *ctrl,
unsigned int qidx)
{
struct nvme_fc_queue *queue = &ctrl->queues[qidx];
hctx->driver_data = queue;
queue->hctx = hctx;
}
static int
nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
unsigned int hctx_idx)
{
struct nvme_fc_ctrl *ctrl = data;
__nvme_fc_init_hctx(hctx, ctrl, hctx_idx + 1);
return 0;
}
static int
nvme_fc_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
unsigned int hctx_idx)
{
struct nvme_fc_ctrl *ctrl = data;
__nvme_fc_init_hctx(hctx, ctrl, hctx_idx);
return 0;
}
static void
nvme_fc_init_queue(struct nvme_fc_ctrl *ctrl, int idx, size_t queue_size)
{
struct nvme_fc_queue *queue;
queue = &ctrl->queues[idx];
memset(queue, 0, sizeof(*queue));
queue->ctrl = ctrl;
queue->qnum = idx;
atomic_set(&queue->csn, 1);
queue->dev = ctrl->dev;
if (idx > 0)
queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
else
queue->cmnd_capsule_len = sizeof(struct nvme_command);
queue->queue_size = queue_size;
/*
* Considered whether we should allocate buffers for all SQEs
* and CQEs and dma map them - mapping their respective entries
* into the request structures (kernel vm addr and dma address)
* thus the driver could use the buffers/mappings directly.
* It only makes sense if the LLDD would use them for its
* messaging api. It's very unlikely most adapter api's would use
* a native NVME sqe/cqe. More reasonable if FC-NVME IU payload
* structures were used instead.
*/
}
/*
* This routine terminates a queue at the transport level.
* The transport has already ensured that all outstanding ios on
* the queue have been terminated.
* The transport will send a Disconnect LS request to terminate
* the queue's connection. Termination of the admin queue will also
* terminate the association at the target.
*/
static void
nvme_fc_free_queue(struct nvme_fc_queue *queue)
{
if (!test_and_clear_bit(NVME_FC_Q_CONNECTED, &queue->flags))
return;
/*
* Current implementation never disconnects a single queue.
* It always terminates a whole association. So there is never
* a disconnect(queue) LS sent to the target.
*/
queue->connection_id = 0;
clear_bit(NVME_FC_Q_CONNECTED, &queue->flags);
}
static void
__nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *ctrl,
struct nvme_fc_queue *queue, unsigned int qidx)
{
if (ctrl->lport->ops->delete_queue)
ctrl->lport->ops->delete_queue(&ctrl->lport->localport, qidx,
queue->lldd_handle);
queue->lldd_handle = NULL;
}
static void
nvme_fc_destroy_admin_queue(struct nvme_fc_ctrl *ctrl)
{
__nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
blk_cleanup_queue(ctrl->ctrl.admin_q);
blk_mq_free_tag_set(&ctrl->admin_tag_set);
nvme_fc_free_queue(&ctrl->queues[0]);
}
static void
nvme_fc_free_io_queues(struct nvme_fc_ctrl *ctrl)
{
int i;
for (i = 1; i < ctrl->queue_count; i++)
nvme_fc_free_queue(&ctrl->queues[i]);
}
static int
__nvme_fc_create_hw_queue(struct nvme_fc_ctrl *ctrl,
struct nvme_fc_queue *queue, unsigned int qidx, u16 qsize)
{
int ret = 0;
queue->lldd_handle = NULL;
if (ctrl->lport->ops->create_queue)
ret = ctrl->lport->ops->create_queue(&ctrl->lport->localport,
qidx, qsize, &queue->lldd_handle);
return ret;
}
static void
nvme_fc_delete_hw_io_queues(struct nvme_fc_ctrl *ctrl)
{
struct nvme_fc_queue *queue = &ctrl->queues[ctrl->queue_count - 1];
int i;
for (i = ctrl->queue_count - 1; i >= 1; i--, queue--)
__nvme_fc_delete_hw_queue(ctrl, queue, i);
}
static int
nvme_fc_create_hw_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
{
struct nvme_fc_queue *queue = &ctrl->queues[1];
int i, ret;
for (i = 1; i < ctrl->queue_count; i++, queue++) {
ret = __nvme_fc_create_hw_queue(ctrl, queue, i, qsize);
if (ret)
goto delete_queues;
}
return 0;
delete_queues:
for (; i >= 0; i--)
__nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[i], i);
return ret;
}
static int
nvme_fc_connect_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
{
int i, ret = 0;
for (i = 1; i < ctrl->queue_count; i++) {
ret = nvme_fc_connect_queue(ctrl, &ctrl->queues[i], qsize,
(qsize / 5));
if (ret)
break;
ret = nvmf_connect_io_queue(&ctrl->ctrl, i);
if (ret)
break;
}
return ret;
}
static void
nvme_fc_init_io_queues(struct nvme_fc_ctrl *ctrl)
{
int i;
for (i = 1; i < ctrl->queue_count; i++)
nvme_fc_init_queue(ctrl, i, ctrl->ctrl.sqsize);
}
static void
nvme_fc_ctrl_free(struct kref *ref)
{
struct nvme_fc_ctrl *ctrl =
container_of(ref, struct nvme_fc_ctrl, ref);
unsigned long flags;
if (ctrl->state != FCCTRL_INIT) {
/* remove from rport list */
spin_lock_irqsave(&ctrl->rport->lock, flags);
list_del(&ctrl->ctrl_list);
spin_unlock_irqrestore(&ctrl->rport->lock, flags);
}
put_device(ctrl->dev);
nvme_fc_rport_put(ctrl->rport);
kfree(ctrl->queues);
ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
nvmf_free_options(ctrl->ctrl.opts);
kfree(ctrl);
}
static void
nvme_fc_ctrl_put(struct nvme_fc_ctrl *ctrl)
{
kref_put(&ctrl->ref, nvme_fc_ctrl_free);
}
static int
nvme_fc_ctrl_get(struct nvme_fc_ctrl *ctrl)
{
return kref_get_unless_zero(&ctrl->ref);
}
/*
* All accesses from nvme core layer done - can now free the
* controller. Called after last nvme_put_ctrl() call
*/
static void
nvme_fc_free_nvme_ctrl(struct nvme_ctrl *nctrl)
{
struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
WARN_ON(nctrl != &ctrl->ctrl);
/*
* Tear down the association, which will generate link
* traffic to terminate connections
*/
if (ctrl->state != FCCTRL_INIT) {
/* send a Disconnect(association) LS to fc-nvme target */
nvme_fc_xmt_disconnect_assoc(ctrl);
if (ctrl->ctrl.tagset) {
blk_cleanup_queue(ctrl->ctrl.connect_q);
blk_mq_free_tag_set(&ctrl->tag_set);
nvme_fc_delete_hw_io_queues(ctrl);
nvme_fc_free_io_queues(ctrl);
}
nvme_fc_exit_aen_ops(ctrl);
nvme_fc_destroy_admin_queue(ctrl);
}
nvme_fc_ctrl_put(ctrl);
}
static int
__nvme_fc_abort_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_fcp_op *op)
{
int state;
state = atomic_xchg(&op->state, FCPOP_STATE_ABORTED);
if (state != FCPOP_STATE_ACTIVE) {
atomic_set(&op->state, state);
return -ECANCELED; /* fail */
}
ctrl->lport->ops->fcp_abort(&ctrl->lport->localport,
&ctrl->rport->remoteport,
op->queue->lldd_handle,
&op->fcp_req);
return 0;
}
enum blk_eh_timer_return
nvme_fc_timeout(struct request *rq, bool reserved)
{
struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
struct nvme_fc_ctrl *ctrl = op->ctrl;
int ret;
if (reserved)
return BLK_EH_RESET_TIMER;
ret = __nvme_fc_abort_op(ctrl, op);
if (ret)
/* io wasn't active to abort consider it done */
return BLK_EH_HANDLED;
/*
* TODO: force a controller reset
* when that happens, queues will be torn down and outstanding
* ios will be terminated, and the above abort, on a single io
* will no longer be needed.
*/
return BLK_EH_HANDLED;
}
static int
nvme_fc_map_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
struct nvme_fc_fcp_op *op)
{
struct nvmefc_fcp_req *freq = &op->fcp_req;
enum dma_data_direction dir;
int ret;
freq->sg_cnt = 0;
if (!blk_rq_payload_bytes(rq))
return 0;
freq->sg_table.sgl = freq->first_sgl;
ret = sg_alloc_table_chained(&freq->sg_table,
blk_rq_nr_phys_segments(rq), freq->sg_table.sgl);
if (ret)
return -ENOMEM;
op->nents = blk_rq_map_sg(rq->q, rq, freq->sg_table.sgl);
WARN_ON(op->nents > blk_rq_nr_phys_segments(rq));
dir = (rq_data_dir(rq) == WRITE) ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
freq->sg_cnt = fc_dma_map_sg(ctrl->lport->dev, freq->sg_table.sgl,
op->nents, dir);
if (unlikely(freq->sg_cnt <= 0)) {
sg_free_table_chained(&freq->sg_table, true);
freq->sg_cnt = 0;
return -EFAULT;
}
/*
* TODO: blk_integrity_rq(rq) for DIF
*/
return 0;
}
static void
nvme_fc_unmap_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
struct nvme_fc_fcp_op *op)
{
struct nvmefc_fcp_req *freq = &op->fcp_req;
if (!freq->sg_cnt)
return;
fc_dma_unmap_sg(ctrl->lport->dev, freq->sg_table.sgl, op->nents,
((rq_data_dir(rq) == WRITE) ?
DMA_TO_DEVICE : DMA_FROM_DEVICE));
nvme_cleanup_cmd(rq);
sg_free_table_chained(&freq->sg_table, true);
freq->sg_cnt = 0;
}
/*
* In FC, the queue is a logical thing. At transport connect, the target
* creates its "queue" and returns a handle that is to be given to the
* target whenever it posts something to the corresponding SQ. When an
* SQE is sent on a SQ, FC effectively considers the SQE, or rather the
* command contained within the SQE, an io, and assigns a FC exchange
* to it. The SQE and the associated SQ handle are sent in the initial
* CMD IU sents on the exchange. All transfers relative to the io occur
* as part of the exchange. The CQE is the last thing for the io,
* which is transferred (explicitly or implicitly) with the RSP IU
* sent on the exchange. After the CQE is received, the FC exchange is
* terminaed and the Exchange may be used on a different io.
*
* The transport to LLDD api has the transport making a request for a
* new fcp io request to the LLDD. The LLDD then allocates a FC exchange
* resource and transfers the command. The LLDD will then process all
* steps to complete the io. Upon completion, the transport done routine
* is called.
*
* So - while the operation is outstanding to the LLDD, there is a link
* level FC exchange resource that is also outstanding. This must be
* considered in all cleanup operations.
*/
static int
nvme_fc_start_fcp_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
struct nvme_fc_fcp_op *op, u32 data_len,
enum nvmefc_fcp_datadir io_dir)
{
struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
struct nvme_command *sqe = &cmdiu->sqe;
u32 csn;
int ret;
if (!nvme_fc_ctrl_get(ctrl))
return BLK_MQ_RQ_QUEUE_ERROR;
/* format the FC-NVME CMD IU and fcp_req */
cmdiu->connection_id = cpu_to_be64(queue->connection_id);
csn = atomic_inc_return(&queue->csn);
cmdiu->csn = cpu_to_be32(csn);
cmdiu->data_len = cpu_to_be32(data_len);
switch (io_dir) {
case NVMEFC_FCP_WRITE:
cmdiu->flags = FCNVME_CMD_FLAGS_WRITE;
break;
case NVMEFC_FCP_READ:
cmdiu->flags = FCNVME_CMD_FLAGS_READ;
break;
case NVMEFC_FCP_NODATA:
cmdiu->flags = 0;
break;
}
op->fcp_req.payload_length = data_len;
op->fcp_req.io_dir = io_dir;
op->fcp_req.transferred_length = 0;
op->fcp_req.rcv_rsplen = 0;
op->fcp_req.status = 0;
op->fcp_req.sqid = cpu_to_le16(queue->qnum);
/*
* validate per fabric rules, set fields mandated by fabric spec
* as well as those by FC-NVME spec.
*/
WARN_ON_ONCE(sqe->common.metadata);
WARN_ON_ONCE(sqe->common.dptr.prp1);
WARN_ON_ONCE(sqe->common.dptr.prp2);
sqe->common.flags |= NVME_CMD_SGL_METABUF;
/*
* format SQE DPTR field per FC-NVME rules
* type=data block descr; subtype=offset;
* offset is currently 0.
*/
sqe->rw.dptr.sgl.type = NVME_SGL_FMT_OFFSET;
sqe->rw.dptr.sgl.length = cpu_to_le32(data_len);
sqe->rw.dptr.sgl.addr = 0;
/* odd that we set the command_id - should come from nvme-fabrics */
WARN_ON_ONCE(sqe->common.command_id != cpu_to_le16(op->rqno));
if (op->rq) { /* skipped on aens */
ret = nvme_fc_map_data(ctrl, op->rq, op);
if (ret < 0) {
dev_err(queue->ctrl->ctrl.device,
"Failed to map data (%d)\n", ret);
nvme_cleanup_cmd(op->rq);
nvme_fc_ctrl_put(ctrl);
return (ret == -ENOMEM || ret == -EAGAIN) ?
BLK_MQ_RQ_QUEUE_BUSY : BLK_MQ_RQ_QUEUE_ERROR;
}
}
fc_dma_sync_single_for_device(ctrl->lport->dev, op->fcp_req.cmddma,
sizeof(op->cmd_iu), DMA_TO_DEVICE);
atomic_set(&op->state, FCPOP_STATE_ACTIVE);
if (op->rq)
blk_mq_start_request(op->rq);
ret = ctrl->lport->ops->fcp_io(&ctrl->lport->localport,
&ctrl->rport->remoteport,
queue->lldd_handle, &op->fcp_req);
if (ret) {
dev_err(ctrl->dev,
"Send nvme command failed - lldd returned %d.\n", ret);
if (op->rq) { /* normal request */
nvme_fc_unmap_data(ctrl, op->rq, op);
nvme_cleanup_cmd(op->rq);
}
/* else - aen. no cleanup needed */
nvme_fc_ctrl_put(ctrl);
if (ret != -EBUSY)
return BLK_MQ_RQ_QUEUE_ERROR;
if (op->rq) {
blk_mq_stop_hw_queues(op->rq->q);
blk_mq_delay_queue(queue->hctx, NVMEFC_QUEUE_DELAY);
}
return BLK_MQ_RQ_QUEUE_BUSY;
}
return BLK_MQ_RQ_QUEUE_OK;
}
static int
nvme_fc_queue_rq(struct blk_mq_hw_ctx *hctx,
const struct blk_mq_queue_data *bd)
{
struct nvme_ns *ns = hctx->queue->queuedata;
struct nvme_fc_queue *queue = hctx->driver_data;
struct nvme_fc_ctrl *ctrl = queue->ctrl;
struct request *rq = bd->rq;
struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
struct nvme_command *sqe = &cmdiu->sqe;
enum nvmefc_fcp_datadir io_dir;
u32 data_len;
int ret;
ret = nvme_setup_cmd(ns, rq, sqe);
if (ret)
return ret;
data_len = blk_rq_payload_bytes(rq);
if (data_len)
io_dir = ((rq_data_dir(rq) == WRITE) ?
NVMEFC_FCP_WRITE : NVMEFC_FCP_READ);
else
io_dir = NVMEFC_FCP_NODATA;
return nvme_fc_start_fcp_op(ctrl, queue, op, data_len, io_dir);
}
static struct blk_mq_tags *
nvme_fc_tagset(struct nvme_fc_queue *queue)
{
if (queue->qnum == 0)
return queue->ctrl->admin_tag_set.tags[queue->qnum];
return queue->ctrl->tag_set.tags[queue->qnum - 1];
}
static int
nvme_fc_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
{
struct nvme_fc_queue *queue = hctx->driver_data;
struct nvme_fc_ctrl *ctrl = queue->ctrl;
struct request *req;
struct nvme_fc_fcp_op *op;
req = blk_mq_tag_to_rq(nvme_fc_tagset(queue), tag);
if (!req) {
dev_err(queue->ctrl->ctrl.device,
"tag 0x%x on QNum %#x not found\n",
tag, queue->qnum);
return 0;
}
op = blk_mq_rq_to_pdu(req);
if ((atomic_read(&op->state) == FCPOP_STATE_ACTIVE) &&
(ctrl->lport->ops->poll_queue))
ctrl->lport->ops->poll_queue(&ctrl->lport->localport,
queue->lldd_handle);
return ((atomic_read(&op->state) != FCPOP_STATE_ACTIVE));
}
static void
nvme_fc_submit_async_event(struct nvme_ctrl *arg, int aer_idx)
{
struct nvme_fc_ctrl *ctrl = to_fc_ctrl(arg);
struct nvme_fc_fcp_op *aen_op;
int ret;
if (aer_idx > NVME_FC_NR_AEN_COMMANDS)
return;
aen_op = &ctrl->aen_ops[aer_idx];
ret = nvme_fc_start_fcp_op(ctrl, aen_op->queue, aen_op, 0,
NVMEFC_FCP_NODATA);
if (ret)
dev_err(ctrl->ctrl.device,
"failed async event work [%d]\n", aer_idx);
}
static void
nvme_fc_complete_rq(struct request *rq)
{
struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
struct nvme_fc_ctrl *ctrl = op->ctrl;
int error = 0, state;
state = atomic_xchg(&op->state, FCPOP_STATE_IDLE);
nvme_cleanup_cmd(rq);
nvme_fc_unmap_data(ctrl, rq, op);
if (unlikely(rq->errors)) {
if (nvme_req_needs_retry(rq, rq->errors)) {
nvme_requeue_req(rq);
return;
}
if (blk_rq_is_passthrough(rq))
error = rq->errors;
else
error = nvme_error_status(rq->errors);
}
nvme_fc_ctrl_put(ctrl);
blk_mq_end_request(rq, error);
}
static struct blk_mq_ops nvme_fc_mq_ops = {
.queue_rq = nvme_fc_queue_rq,
.complete = nvme_fc_complete_rq,
.init_request = nvme_fc_init_request,
.exit_request = nvme_fc_exit_request,
.reinit_request = nvme_fc_reinit_request,
.init_hctx = nvme_fc_init_hctx,
.poll = nvme_fc_poll,
.timeout = nvme_fc_timeout,
};
static struct blk_mq_ops nvme_fc_admin_mq_ops = {
.queue_rq = nvme_fc_queue_rq,
.complete = nvme_fc_complete_rq,
.init_request = nvme_fc_init_admin_request,
.exit_request = nvme_fc_exit_request,
.reinit_request = nvme_fc_reinit_request,
.init_hctx = nvme_fc_init_admin_hctx,
.timeout = nvme_fc_timeout,
};
static int
nvme_fc_configure_admin_queue(struct nvme_fc_ctrl *ctrl)
{
u32 segs;
int error;
nvme_fc_init_queue(ctrl, 0, NVME_FC_AQ_BLKMQ_DEPTH);
error = nvme_fc_connect_admin_queue(ctrl, &ctrl->queues[0],
NVME_FC_AQ_BLKMQ_DEPTH,
(NVME_FC_AQ_BLKMQ_DEPTH / 4));
if (error)
return error;
memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set));
ctrl->admin_tag_set.ops = &nvme_fc_admin_mq_ops;
ctrl->admin_tag_set.queue_depth = NVME_FC_AQ_BLKMQ_DEPTH;
ctrl->admin_tag_set.reserved_tags = 2; /* fabric connect + Keep-Alive */
ctrl->admin_tag_set.numa_node = NUMA_NO_NODE;
ctrl->admin_tag_set.cmd_size = sizeof(struct nvme_fc_fcp_op) +
(SG_CHUNK_SIZE *
sizeof(struct scatterlist)) +
ctrl->lport->ops->fcprqst_priv_sz;
ctrl->admin_tag_set.driver_data = ctrl;
ctrl->admin_tag_set.nr_hw_queues = 1;
ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT;
error = blk_mq_alloc_tag_set(&ctrl->admin_tag_set);
if (error)
goto out_free_queue;
ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
if (IS_ERR(ctrl->ctrl.admin_q)) {
error = PTR_ERR(ctrl->ctrl.admin_q);
goto out_free_tagset;
}
error = __nvme_fc_create_hw_queue(ctrl, &ctrl->queues[0], 0,
NVME_FC_AQ_BLKMQ_DEPTH);
if (error)
goto out_cleanup_queue;
error = nvmf_connect_admin_queue(&ctrl->ctrl);
if (error)
goto out_delete_hw_queue;
error = nvmf_reg_read64(&ctrl->ctrl, NVME_REG_CAP, &ctrl->cap);
if (error) {
dev_err(ctrl->ctrl.device,
"prop_get NVME_REG_CAP failed\n");
goto out_delete_hw_queue;
}
ctrl->ctrl.sqsize =
min_t(int, NVME_CAP_MQES(ctrl->cap) + 1, ctrl->ctrl.sqsize);
error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->cap);
if (error)
goto out_delete_hw_queue;
segs = min_t(u32, NVME_FC_MAX_SEGMENTS,
ctrl->lport->ops->max_sgl_segments);
ctrl->ctrl.max_hw_sectors = (segs - 1) << (PAGE_SHIFT - 9);
error = nvme_init_identify(&ctrl->ctrl);
if (error)
goto out_delete_hw_queue;
nvme_start_keep_alive(&ctrl->ctrl);
return 0;
out_delete_hw_queue:
__nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
out_cleanup_queue:
blk_cleanup_queue(ctrl->ctrl.admin_q);
out_free_tagset:
blk_mq_free_tag_set(&ctrl->admin_tag_set);
out_free_queue:
nvme_fc_free_queue(&ctrl->queues[0]);
return error;
}
/*
* This routine is used by the transport when it needs to find active
* io on a queue that is to be terminated. The transport uses
* blk_mq_tagset_busy_itr() to find the busy requests, which then invoke
* this routine to kill them on a 1 by 1 basis.
*
* As FC allocates FC exchange for each io, the transport must contact
* the LLDD to terminate the exchange, thus releasing the FC exchange.
* After terminating the exchange the LLDD will call the transport's
* normal io done path for the request, but it will have an aborted
* status. The done path will return the io request back to the block
* layer with an error status.
*/
static void
nvme_fc_terminate_exchange(struct request *req, void *data, bool reserved)
{
struct nvme_ctrl *nctrl = data;
struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(req);
int status;
if (!blk_mq_request_started(req))
return;
/* this performs an ABTS-LS on the FC exchange for the io */
status = __nvme_fc_abort_op(ctrl, op);
/*
* if __nvme_fc_abort_op failed: io wasn't active to abort
* consider it done. Assume completion path already completing
* in parallel
*/
if (status)
/* io wasn't active to abort consider it done */
/* assume completion path already completing in parallel */
return;
}
/*
* This routine stops operation of the controller. Admin and IO queues
* are stopped, outstanding ios on them terminated, and the nvme ctrl
* is shutdown.
*/
static void
nvme_fc_shutdown_ctrl(struct nvme_fc_ctrl *ctrl)
{
/*
* If io queues are present, stop them and terminate all outstanding
* ios on them. As FC allocates FC exchange for each io, the
* transport must contact the LLDD to terminate the exchange,
* thus releasing the FC exchange. We use blk_mq_tagset_busy_itr()
* to tell us what io's are busy and invoke a transport routine
* to kill them with the LLDD. After terminating the exchange
* the LLDD will call the transport's normal io done path, but it
* will have an aborted status. The done path will return the
* io requests back to the block layer as part of normal completions
* (but with error status).
*/
if (ctrl->queue_count > 1) {
nvme_stop_queues(&ctrl->ctrl);
blk_mq_tagset_busy_iter(&ctrl->tag_set,
nvme_fc_terminate_exchange, &ctrl->ctrl);
}
if (ctrl->ctrl.state == NVME_CTRL_LIVE)
nvme_shutdown_ctrl(&ctrl->ctrl);
/*
* now clean up the admin queue. Same thing as above.
* use blk_mq_tagset_busy_itr() and the transport routine to
* terminate the exchanges.
*/
blk_mq_stop_hw_queues(ctrl->ctrl.admin_q);
blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
nvme_fc_terminate_exchange, &ctrl->ctrl);
}
/*
* Called to teardown an association.
* May be called with association fully in place or partially in place.
*/
static void
__nvme_fc_remove_ctrl(struct nvme_fc_ctrl *ctrl)
{
nvme_stop_keep_alive(&ctrl->ctrl);
/* stop and terminate ios on admin and io queues */
nvme_fc_shutdown_ctrl(ctrl);
/*
* tear down the controller
* This will result in the last reference on the nvme ctrl to
* expire, calling the transport nvme_fc_free_nvme_ctrl() callback.
* From there, the transport will tear down it's logical queues and
* association.
*/
nvme_uninit_ctrl(&ctrl->ctrl);
nvme_put_ctrl(&ctrl->ctrl);
}
static void
nvme_fc_del_ctrl_work(struct work_struct *work)
{
struct nvme_fc_ctrl *ctrl =
container_of(work, struct nvme_fc_ctrl, delete_work);
__nvme_fc_remove_ctrl(ctrl);
}
static int
__nvme_fc_del_ctrl(struct nvme_fc_ctrl *ctrl)
{
if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING))
return -EBUSY;
if (!queue_work(nvme_fc_wq, &ctrl->delete_work))
return -EBUSY;
return 0;
}
/*
* Request from nvme core layer to delete the controller
*/
static int
nvme_fc_del_nvme_ctrl(struct nvme_ctrl *nctrl)
{
struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
struct nvme_fc_rport *rport = ctrl->rport;
unsigned long flags;
int ret;
spin_lock_irqsave(&rport->lock, flags);
ret = __nvme_fc_del_ctrl(ctrl);
spin_unlock_irqrestore(&rport->lock, flags);
if (ret)
return ret;
flush_work(&ctrl->delete_work);
return 0;
}
static int
nvme_fc_reset_nvme_ctrl(struct nvme_ctrl *nctrl)
{
return -EIO;
}
static const struct nvme_ctrl_ops nvme_fc_ctrl_ops = {
.name = "fc",
.module = THIS_MODULE,
.is_fabrics = true,
.reg_read32 = nvmf_reg_read32,
.reg_read64 = nvmf_reg_read64,
.reg_write32 = nvmf_reg_write32,
.reset_ctrl = nvme_fc_reset_nvme_ctrl,
.free_ctrl = nvme_fc_free_nvme_ctrl,
.submit_async_event = nvme_fc_submit_async_event,
.delete_ctrl = nvme_fc_del_nvme_ctrl,
.get_subsysnqn = nvmf_get_subsysnqn,
.get_address = nvmf_get_address,
};
static int
nvme_fc_create_io_queues(struct nvme_fc_ctrl *ctrl)
{
struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
int ret;
ret = nvme_set_queue_count(&ctrl->ctrl, &opts->nr_io_queues);
if (ret) {
dev_info(ctrl->ctrl.device,
"set_queue_count failed: %d\n", ret);
return ret;
}
ctrl->queue_count = opts->nr_io_queues + 1;
if (!opts->nr_io_queues)
return 0;
dev_info(ctrl->ctrl.device, "creating %d I/O queues.\n",
opts->nr_io_queues);
nvme_fc_init_io_queues(ctrl);
memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set));
ctrl->tag_set.ops = &nvme_fc_mq_ops;
ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size;
ctrl->tag_set.reserved_tags = 1; /* fabric connect */
ctrl->tag_set.numa_node = NUMA_NO_NODE;
ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
ctrl->tag_set.cmd_size = sizeof(struct nvme_fc_fcp_op) +
(SG_CHUNK_SIZE *
sizeof(struct scatterlist)) +
ctrl->lport->ops->fcprqst_priv_sz;
ctrl->tag_set.driver_data = ctrl;
ctrl->tag_set.nr_hw_queues = ctrl->queue_count - 1;
ctrl->tag_set.timeout = NVME_IO_TIMEOUT;
ret = blk_mq_alloc_tag_set(&ctrl->tag_set);
if (ret)
return ret;
ctrl->ctrl.tagset = &ctrl->tag_set;
ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
if (IS_ERR(ctrl->ctrl.connect_q)) {
ret = PTR_ERR(ctrl->ctrl.connect_q);
goto out_free_tag_set;
}
ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
if (ret)
goto out_cleanup_blk_queue;
ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
if (ret)
goto out_delete_hw_queues;
return 0;
out_delete_hw_queues:
nvme_fc_delete_hw_io_queues(ctrl);
out_cleanup_blk_queue:
nvme_stop_keep_alive(&ctrl->ctrl);
blk_cleanup_queue(ctrl->ctrl.connect_q);
out_free_tag_set:
blk_mq_free_tag_set(&ctrl->tag_set);
nvme_fc_free_io_queues(ctrl);
/* force put free routine to ignore io queues */
ctrl->ctrl.tagset = NULL;
return ret;
}
static struct nvme_ctrl *
__nvme_fc_create_ctrl(struct device *dev, struct nvmf_ctrl_options *opts,
struct nvme_fc_lport *lport, struct nvme_fc_rport *rport)
{
struct nvme_fc_ctrl *ctrl;
unsigned long flags;
int ret, idx;
bool changed;
ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
if (!ctrl) {
ret = -ENOMEM;
goto out_fail;
}
idx = ida_simple_get(&nvme_fc_ctrl_cnt, 0, 0, GFP_KERNEL);
if (idx < 0) {
ret = -ENOSPC;
goto out_free_ctrl;
}
ctrl->ctrl.opts = opts;
INIT_LIST_HEAD(&ctrl->ctrl_list);
INIT_LIST_HEAD(&ctrl->ls_req_list);
ctrl->lport = lport;
ctrl->rport = rport;
ctrl->dev = lport->dev;
ctrl->state = FCCTRL_INIT;
ctrl->cnum = idx;
ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_fc_ctrl_ops, 0);
if (ret)
goto out_free_ida;
get_device(ctrl->dev);
kref_init(&ctrl->ref);
INIT_WORK(&ctrl->delete_work, nvme_fc_del_ctrl_work);
spin_lock_init(&ctrl->lock);
/* io queue count */
ctrl->queue_count = min_t(unsigned int,
opts->nr_io_queues,
lport->ops->max_hw_queues);
opts->nr_io_queues = ctrl->queue_count; /* so opts has valid value */
ctrl->queue_count++; /* +1 for admin queue */
ctrl->ctrl.sqsize = opts->queue_size - 1;
ctrl->ctrl.kato = opts->kato;
ret = -ENOMEM;
ctrl->queues = kcalloc(ctrl->queue_count, sizeof(struct nvme_fc_queue),
GFP_KERNEL);
if (!ctrl->queues)
goto out_uninit_ctrl;
ret = nvme_fc_configure_admin_queue(ctrl);
if (ret)
goto out_uninit_ctrl;
/* sanity checks */
/* FC-NVME supports 64-byte SQE only */
if (ctrl->ctrl.ioccsz != 4) {
dev_err(ctrl->ctrl.device, "ioccsz %d is not supported!\n",
ctrl->ctrl.ioccsz);
goto out_remove_admin_queue;
}
/* FC-NVME supports 16-byte CQE only */
if (ctrl->ctrl.iorcsz != 1) {
dev_err(ctrl->ctrl.device, "iorcsz %d is not supported!\n",
ctrl->ctrl.iorcsz);
goto out_remove_admin_queue;
}
/* FC-NVME does not have other data in the capsule */
if (ctrl->ctrl.icdoff) {
dev_err(ctrl->ctrl.device, "icdoff %d is not supported!\n",
ctrl->ctrl.icdoff);
goto out_remove_admin_queue;
}
/* FC-NVME supports normal SGL Data Block Descriptors */
if (opts->queue_size > ctrl->ctrl.maxcmd) {
/* warn if maxcmd is lower than queue_size */
dev_warn(ctrl->ctrl.device,
"queue_size %zu > ctrl maxcmd %u, reducing "
"to queue_size\n",
opts->queue_size, ctrl->ctrl.maxcmd);
opts->queue_size = ctrl->ctrl.maxcmd;
}
ret = nvme_fc_init_aen_ops(ctrl);
if (ret)
goto out_exit_aen_ops;
if (ctrl->queue_count > 1) {
ret = nvme_fc_create_io_queues(ctrl);
if (ret)
goto out_exit_aen_ops;
}
spin_lock_irqsave(&ctrl->lock, flags);
ctrl->state = FCCTRL_ACTIVE;
spin_unlock_irqrestore(&ctrl->lock, flags);
changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
WARN_ON_ONCE(!changed);
dev_info(ctrl->ctrl.device,
"NVME-FC{%d}: new ctrl: NQN \"%s\"\n",
ctrl->cnum, ctrl->ctrl.opts->subsysnqn);
kref_get(&ctrl->ctrl.kref);
spin_lock_irqsave(&rport->lock, flags);
list_add_tail(&ctrl->ctrl_list, &rport->ctrl_list);
spin_unlock_irqrestore(&rport->lock, flags);
if (opts->nr_io_queues) {
nvme_queue_scan(&ctrl->ctrl);
nvme_queue_async_events(&ctrl->ctrl);
}
return &ctrl->ctrl;
out_exit_aen_ops:
nvme_fc_exit_aen_ops(ctrl);
out_remove_admin_queue:
/* send a Disconnect(association) LS to fc-nvme target */
nvme_fc_xmt_disconnect_assoc(ctrl);
nvme_stop_keep_alive(&ctrl->ctrl);
nvme_fc_destroy_admin_queue(ctrl);
out_uninit_ctrl:
nvme_uninit_ctrl(&ctrl->ctrl);
nvme_put_ctrl(&ctrl->ctrl);
if (ret > 0)
ret = -EIO;
/* exit via here will follow ctlr ref point callbacks to free */
return ERR_PTR(ret);
out_free_ida:
ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
out_free_ctrl:
kfree(ctrl);
out_fail:
nvme_fc_rport_put(rport);
/* exit via here doesn't follow ctlr ref points */
return ERR_PTR(ret);
}
enum {
FCT_TRADDR_ERR = 0,
FCT_TRADDR_WWNN = 1 << 0,
FCT_TRADDR_WWPN = 1 << 1,
};
struct nvmet_fc_traddr {
u64 nn;
u64 pn;
};
static const match_table_t traddr_opt_tokens = {
{ FCT_TRADDR_WWNN, "nn-%s" },
{ FCT_TRADDR_WWPN, "pn-%s" },
{ FCT_TRADDR_ERR, NULL }
};
static int
nvme_fc_parse_address(struct nvmet_fc_traddr *traddr, char *buf)
{
substring_t args[MAX_OPT_ARGS];
char *options, *o, *p;
int token, ret = 0;
u64 token64;
options = o = kstrdup(buf, GFP_KERNEL);
if (!options)
return -ENOMEM;
while ((p = strsep(&o, ":\n")) != NULL) {
if (!*p)
continue;
token = match_token(p, traddr_opt_tokens, args);
switch (token) {
case FCT_TRADDR_WWNN:
if (match_u64(args, &token64)) {
ret = -EINVAL;
goto out;
}
traddr->nn = token64;
break;
case FCT_TRADDR_WWPN:
if (match_u64(args, &token64)) {
ret = -EINVAL;
goto out;
}
traddr->pn = token64;
break;
default:
pr_warn("unknown traddr token or missing value '%s'\n",
p);
ret = -EINVAL;
goto out;
}
}
out:
kfree(options);
return ret;
}
static struct nvme_ctrl *
nvme_fc_create_ctrl(struct device *dev, struct nvmf_ctrl_options *opts)
{
struct nvme_fc_lport *lport;
struct nvme_fc_rport *rport;
struct nvmet_fc_traddr laddr = { 0L, 0L };
struct nvmet_fc_traddr raddr = { 0L, 0L };
unsigned long flags;
int ret;
ret = nvme_fc_parse_address(&raddr, opts->traddr);
if (ret || !raddr.nn || !raddr.pn)
return ERR_PTR(-EINVAL);
ret = nvme_fc_parse_address(&laddr, opts->host_traddr);
if (ret || !laddr.nn || !laddr.pn)
return ERR_PTR(-EINVAL);
/* find the host and remote ports to connect together */
spin_lock_irqsave(&nvme_fc_lock, flags);
list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
if (lport->localport.node_name != laddr.nn ||
lport->localport.port_name != laddr.pn)
continue;
list_for_each_entry(rport, &lport->endp_list, endp_list) {
if (rport->remoteport.node_name != raddr.nn ||
rport->remoteport.port_name != raddr.pn)
continue;
/* if fail to get reference fall through. Will error */
if (!nvme_fc_rport_get(rport))
break;
spin_unlock_irqrestore(&nvme_fc_lock, flags);
return __nvme_fc_create_ctrl(dev, opts, lport, rport);
}
}
spin_unlock_irqrestore(&nvme_fc_lock, flags);
return ERR_PTR(-ENOENT);
}
static struct nvmf_transport_ops nvme_fc_transport = {
.name = "fc",
.required_opts = NVMF_OPT_TRADDR | NVMF_OPT_HOST_TRADDR,
.allowed_opts = NVMF_OPT_RECONNECT_DELAY,
.create_ctrl = nvme_fc_create_ctrl,
};
static int __init nvme_fc_init_module(void)
{
nvme_fc_wq = create_workqueue("nvme_fc_wq");
if (!nvme_fc_wq)
return -ENOMEM;
return nvmf_register_transport(&nvme_fc_transport);
}
static void __exit nvme_fc_exit_module(void)
{
/* sanity check - all lports should be removed */
if (!list_empty(&nvme_fc_lport_list))
pr_warn("%s: localport list not empty\n", __func__);
nvmf_unregister_transport(&nvme_fc_transport);
destroy_workqueue(nvme_fc_wq);
ida_destroy(&nvme_fc_local_port_cnt);
ida_destroy(&nvme_fc_ctrl_cnt);
}
module_init(nvme_fc_init_module);
module_exit(nvme_fc_exit_module);
MODULE_LICENSE("GPL v2");