| /* |
| * linux/drivers/clocksource/arm_arch_timer.c |
| * |
| * Copyright (C) 2011 ARM Ltd. |
| * All Rights Reserved |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| */ |
| |
| #define pr_fmt(fmt) "arm_arch_timer: " fmt |
| |
| #include <linux/init.h> |
| #include <linux/kernel.h> |
| #include <linux/device.h> |
| #include <linux/smp.h> |
| #include <linux/cpu.h> |
| #include <linux/cpu_pm.h> |
| #include <linux/clockchips.h> |
| #include <linux/clocksource.h> |
| #include <linux/interrupt.h> |
| #include <linux/of_irq.h> |
| #include <linux/of_address.h> |
| #include <linux/io.h> |
| #include <linux/slab.h> |
| #include <linux/sched_clock.h> |
| #include <linux/acpi.h> |
| |
| #include <asm/arch_timer.h> |
| #include <asm/virt.h> |
| |
| #include <clocksource/arm_arch_timer.h> |
| |
| #define CNTTIDR 0x08 |
| #define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4)) |
| |
| #define CNTACR(n) (0x40 + ((n) * 4)) |
| #define CNTACR_RPCT BIT(0) |
| #define CNTACR_RVCT BIT(1) |
| #define CNTACR_RFRQ BIT(2) |
| #define CNTACR_RVOFF BIT(3) |
| #define CNTACR_RWVT BIT(4) |
| #define CNTACR_RWPT BIT(5) |
| |
| #define CNTVCT_LO 0x08 |
| #define CNTVCT_HI 0x0c |
| #define CNTFRQ 0x10 |
| #define CNTP_TVAL 0x28 |
| #define CNTP_CTL 0x2c |
| #define CNTV_TVAL 0x38 |
| #define CNTV_CTL 0x3c |
| |
| #define ARCH_CP15_TIMER BIT(0) |
| #define ARCH_MEM_TIMER BIT(1) |
| static unsigned arch_timers_present __initdata; |
| |
| static void __iomem *arch_counter_base; |
| |
| struct arch_timer { |
| void __iomem *base; |
| struct clock_event_device evt; |
| }; |
| |
| #define to_arch_timer(e) container_of(e, struct arch_timer, evt) |
| |
| static u32 arch_timer_rate; |
| |
| enum ppi_nr { |
| PHYS_SECURE_PPI, |
| PHYS_NONSECURE_PPI, |
| VIRT_PPI, |
| HYP_PPI, |
| MAX_TIMER_PPI |
| }; |
| |
| static int arch_timer_ppi[MAX_TIMER_PPI]; |
| |
| static struct clock_event_device __percpu *arch_timer_evt; |
| |
| static enum ppi_nr arch_timer_uses_ppi = VIRT_PPI; |
| static bool arch_timer_c3stop; |
| static bool arch_timer_mem_use_virtual; |
| static bool arch_counter_suspend_stop; |
| |
| static bool evtstrm_enable = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM); |
| |
| static int __init early_evtstrm_cfg(char *buf) |
| { |
| return strtobool(buf, &evtstrm_enable); |
| } |
| early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg); |
| |
| /* |
| * Architected system timer support. |
| */ |
| |
| #ifdef CONFIG_FSL_ERRATUM_A008585 |
| DEFINE_STATIC_KEY_FALSE(arch_timer_read_ool_enabled); |
| EXPORT_SYMBOL_GPL(arch_timer_read_ool_enabled); |
| |
| static int fsl_a008585_enable = -1; |
| |
| static int __init early_fsl_a008585_cfg(char *buf) |
| { |
| int ret; |
| bool val; |
| |
| ret = strtobool(buf, &val); |
| if (ret) |
| return ret; |
| |
| fsl_a008585_enable = val; |
| return 0; |
| } |
| early_param("clocksource.arm_arch_timer.fsl-a008585", early_fsl_a008585_cfg); |
| |
| u32 __fsl_a008585_read_cntp_tval_el0(void) |
| { |
| return __fsl_a008585_read_reg(cntp_tval_el0); |
| } |
| |
| u32 __fsl_a008585_read_cntv_tval_el0(void) |
| { |
| return __fsl_a008585_read_reg(cntv_tval_el0); |
| } |
| |
| u64 __fsl_a008585_read_cntvct_el0(void) |
| { |
| return __fsl_a008585_read_reg(cntvct_el0); |
| } |
| EXPORT_SYMBOL(__fsl_a008585_read_cntvct_el0); |
| #endif /* CONFIG_FSL_ERRATUM_A008585 */ |
| |
| static __always_inline |
| void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val, |
| struct clock_event_device *clk) |
| { |
| if (access == ARCH_TIMER_MEM_PHYS_ACCESS) { |
| struct arch_timer *timer = to_arch_timer(clk); |
| switch (reg) { |
| case ARCH_TIMER_REG_CTRL: |
| writel_relaxed(val, timer->base + CNTP_CTL); |
| break; |
| case ARCH_TIMER_REG_TVAL: |
| writel_relaxed(val, timer->base + CNTP_TVAL); |
| break; |
| } |
| } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) { |
| struct arch_timer *timer = to_arch_timer(clk); |
| switch (reg) { |
| case ARCH_TIMER_REG_CTRL: |
| writel_relaxed(val, timer->base + CNTV_CTL); |
| break; |
| case ARCH_TIMER_REG_TVAL: |
| writel_relaxed(val, timer->base + CNTV_TVAL); |
| break; |
| } |
| } else { |
| arch_timer_reg_write_cp15(access, reg, val); |
| } |
| } |
| |
| static __always_inline |
| u32 arch_timer_reg_read(int access, enum arch_timer_reg reg, |
| struct clock_event_device *clk) |
| { |
| u32 val; |
| |
| if (access == ARCH_TIMER_MEM_PHYS_ACCESS) { |
| struct arch_timer *timer = to_arch_timer(clk); |
| switch (reg) { |
| case ARCH_TIMER_REG_CTRL: |
| val = readl_relaxed(timer->base + CNTP_CTL); |
| break; |
| case ARCH_TIMER_REG_TVAL: |
| val = readl_relaxed(timer->base + CNTP_TVAL); |
| break; |
| } |
| } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) { |
| struct arch_timer *timer = to_arch_timer(clk); |
| switch (reg) { |
| case ARCH_TIMER_REG_CTRL: |
| val = readl_relaxed(timer->base + CNTV_CTL); |
| break; |
| case ARCH_TIMER_REG_TVAL: |
| val = readl_relaxed(timer->base + CNTV_TVAL); |
| break; |
| } |
| } else { |
| val = arch_timer_reg_read_cp15(access, reg); |
| } |
| |
| return val; |
| } |
| |
| static __always_inline irqreturn_t timer_handler(const int access, |
| struct clock_event_device *evt) |
| { |
| unsigned long ctrl; |
| |
| ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt); |
| if (ctrl & ARCH_TIMER_CTRL_IT_STAT) { |
| ctrl |= ARCH_TIMER_CTRL_IT_MASK; |
| arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt); |
| evt->event_handler(evt); |
| return IRQ_HANDLED; |
| } |
| |
| return IRQ_NONE; |
| } |
| |
| static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id) |
| { |
| struct clock_event_device *evt = dev_id; |
| |
| return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt); |
| } |
| |
| static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id) |
| { |
| struct clock_event_device *evt = dev_id; |
| |
| return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt); |
| } |
| |
| static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id) |
| { |
| struct clock_event_device *evt = dev_id; |
| |
| return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt); |
| } |
| |
| static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id) |
| { |
| struct clock_event_device *evt = dev_id; |
| |
| return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt); |
| } |
| |
| static __always_inline int timer_shutdown(const int access, |
| struct clock_event_device *clk) |
| { |
| unsigned long ctrl; |
| |
| ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk); |
| ctrl &= ~ARCH_TIMER_CTRL_ENABLE; |
| arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk); |
| |
| return 0; |
| } |
| |
| static int arch_timer_shutdown_virt(struct clock_event_device *clk) |
| { |
| return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk); |
| } |
| |
| static int arch_timer_shutdown_phys(struct clock_event_device *clk) |
| { |
| return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk); |
| } |
| |
| static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk) |
| { |
| return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk); |
| } |
| |
| static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk) |
| { |
| return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk); |
| } |
| |
| static __always_inline void set_next_event(const int access, unsigned long evt, |
| struct clock_event_device *clk) |
| { |
| unsigned long ctrl; |
| ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk); |
| ctrl |= ARCH_TIMER_CTRL_ENABLE; |
| ctrl &= ~ARCH_TIMER_CTRL_IT_MASK; |
| arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk); |
| arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk); |
| } |
| |
| #ifdef CONFIG_FSL_ERRATUM_A008585 |
| static __always_inline void fsl_a008585_set_next_event(const int access, |
| unsigned long evt, struct clock_event_device *clk) |
| { |
| unsigned long ctrl; |
| u64 cval = evt + arch_counter_get_cntvct(); |
| |
| ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk); |
| ctrl |= ARCH_TIMER_CTRL_ENABLE; |
| ctrl &= ~ARCH_TIMER_CTRL_IT_MASK; |
| |
| if (access == ARCH_TIMER_PHYS_ACCESS) |
| write_sysreg(cval, cntp_cval_el0); |
| else if (access == ARCH_TIMER_VIRT_ACCESS) |
| write_sysreg(cval, cntv_cval_el0); |
| |
| arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk); |
| } |
| |
| static int fsl_a008585_set_next_event_virt(unsigned long evt, |
| struct clock_event_device *clk) |
| { |
| fsl_a008585_set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk); |
| return 0; |
| } |
| |
| static int fsl_a008585_set_next_event_phys(unsigned long evt, |
| struct clock_event_device *clk) |
| { |
| fsl_a008585_set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk); |
| return 0; |
| } |
| #endif /* CONFIG_FSL_ERRATUM_A008585 */ |
| |
| static int arch_timer_set_next_event_virt(unsigned long evt, |
| struct clock_event_device *clk) |
| { |
| set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk); |
| return 0; |
| } |
| |
| static int arch_timer_set_next_event_phys(unsigned long evt, |
| struct clock_event_device *clk) |
| { |
| set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk); |
| return 0; |
| } |
| |
| static int arch_timer_set_next_event_virt_mem(unsigned long evt, |
| struct clock_event_device *clk) |
| { |
| set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk); |
| return 0; |
| } |
| |
| static int arch_timer_set_next_event_phys_mem(unsigned long evt, |
| struct clock_event_device *clk) |
| { |
| set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk); |
| return 0; |
| } |
| |
| static void fsl_a008585_set_sne(struct clock_event_device *clk) |
| { |
| #ifdef CONFIG_FSL_ERRATUM_A008585 |
| if (!static_branch_unlikely(&arch_timer_read_ool_enabled)) |
| return; |
| |
| if (arch_timer_uses_ppi == VIRT_PPI) |
| clk->set_next_event = fsl_a008585_set_next_event_virt; |
| else |
| clk->set_next_event = fsl_a008585_set_next_event_phys; |
| #endif |
| } |
| |
| static void __arch_timer_setup(unsigned type, |
| struct clock_event_device *clk) |
| { |
| clk->features = CLOCK_EVT_FEAT_ONESHOT; |
| |
| if (type == ARCH_CP15_TIMER) { |
| if (arch_timer_c3stop) |
| clk->features |= CLOCK_EVT_FEAT_C3STOP; |
| clk->name = "arch_sys_timer"; |
| clk->rating = 450; |
| clk->cpumask = cpumask_of(smp_processor_id()); |
| clk->irq = arch_timer_ppi[arch_timer_uses_ppi]; |
| switch (arch_timer_uses_ppi) { |
| case VIRT_PPI: |
| clk->set_state_shutdown = arch_timer_shutdown_virt; |
| clk->set_state_oneshot_stopped = arch_timer_shutdown_virt; |
| clk->set_next_event = arch_timer_set_next_event_virt; |
| break; |
| case PHYS_SECURE_PPI: |
| case PHYS_NONSECURE_PPI: |
| case HYP_PPI: |
| clk->set_state_shutdown = arch_timer_shutdown_phys; |
| clk->set_state_oneshot_stopped = arch_timer_shutdown_phys; |
| clk->set_next_event = arch_timer_set_next_event_phys; |
| break; |
| default: |
| BUG(); |
| } |
| |
| fsl_a008585_set_sne(clk); |
| } else { |
| clk->features |= CLOCK_EVT_FEAT_DYNIRQ; |
| clk->name = "arch_mem_timer"; |
| clk->rating = 400; |
| clk->cpumask = cpu_all_mask; |
| if (arch_timer_mem_use_virtual) { |
| clk->set_state_shutdown = arch_timer_shutdown_virt_mem; |
| clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem; |
| clk->set_next_event = |
| arch_timer_set_next_event_virt_mem; |
| } else { |
| clk->set_state_shutdown = arch_timer_shutdown_phys_mem; |
| clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem; |
| clk->set_next_event = |
| arch_timer_set_next_event_phys_mem; |
| } |
| } |
| |
| clk->set_state_shutdown(clk); |
| |
| clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff); |
| } |
| |
| static void arch_timer_evtstrm_enable(int divider) |
| { |
| u32 cntkctl = arch_timer_get_cntkctl(); |
| |
| cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK; |
| /* Set the divider and enable virtual event stream */ |
| cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT) |
| | ARCH_TIMER_VIRT_EVT_EN; |
| arch_timer_set_cntkctl(cntkctl); |
| elf_hwcap |= HWCAP_EVTSTRM; |
| #ifdef CONFIG_COMPAT |
| compat_elf_hwcap |= COMPAT_HWCAP_EVTSTRM; |
| #endif |
| } |
| |
| static void arch_timer_configure_evtstream(void) |
| { |
| int evt_stream_div, pos; |
| |
| /* Find the closest power of two to the divisor */ |
| evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ; |
| pos = fls(evt_stream_div); |
| if (pos > 1 && !(evt_stream_div & (1 << (pos - 2)))) |
| pos--; |
| /* enable event stream */ |
| arch_timer_evtstrm_enable(min(pos, 15)); |
| } |
| |
| static void arch_counter_set_user_access(void) |
| { |
| u32 cntkctl = arch_timer_get_cntkctl(); |
| |
| /* Disable user access to the timers and the physical counter */ |
| /* Also disable virtual event stream */ |
| cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN |
| | ARCH_TIMER_USR_VT_ACCESS_EN |
| | ARCH_TIMER_VIRT_EVT_EN |
| | ARCH_TIMER_USR_PCT_ACCESS_EN); |
| |
| /* Enable user access to the virtual counter */ |
| cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN; |
| |
| arch_timer_set_cntkctl(cntkctl); |
| } |
| |
| static bool arch_timer_has_nonsecure_ppi(void) |
| { |
| return (arch_timer_uses_ppi == PHYS_SECURE_PPI && |
| arch_timer_ppi[PHYS_NONSECURE_PPI]); |
| } |
| |
| static u32 check_ppi_trigger(int irq) |
| { |
| u32 flags = irq_get_trigger_type(irq); |
| |
| if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) { |
| pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq); |
| pr_warn("WARNING: Please fix your firmware\n"); |
| flags = IRQF_TRIGGER_LOW; |
| } |
| |
| return flags; |
| } |
| |
| static int arch_timer_starting_cpu(unsigned int cpu) |
| { |
| struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt); |
| u32 flags; |
| |
| __arch_timer_setup(ARCH_CP15_TIMER, clk); |
| |
| flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]); |
| enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags); |
| |
| if (arch_timer_has_nonsecure_ppi()) { |
| flags = check_ppi_trigger(arch_timer_ppi[PHYS_NONSECURE_PPI]); |
| enable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], flags); |
| } |
| |
| arch_counter_set_user_access(); |
| if (evtstrm_enable) |
| arch_timer_configure_evtstream(); |
| |
| return 0; |
| } |
| |
| static void |
| arch_timer_detect_rate(void __iomem *cntbase, struct device_node *np) |
| { |
| /* Who has more than one independent system counter? */ |
| if (arch_timer_rate) |
| return; |
| |
| /* |
| * Try to determine the frequency from the device tree or CNTFRQ, |
| * if ACPI is enabled, get the frequency from CNTFRQ ONLY. |
| */ |
| if (!acpi_disabled || |
| of_property_read_u32(np, "clock-frequency", &arch_timer_rate)) { |
| if (cntbase) |
| arch_timer_rate = readl_relaxed(cntbase + CNTFRQ); |
| else |
| arch_timer_rate = arch_timer_get_cntfrq(); |
| } |
| |
| /* Check the timer frequency. */ |
| if (arch_timer_rate == 0) |
| pr_warn("Architected timer frequency not available\n"); |
| } |
| |
| static void arch_timer_banner(unsigned type) |
| { |
| pr_info("Architected %s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n", |
| type & ARCH_CP15_TIMER ? "cp15" : "", |
| type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ? " and " : "", |
| type & ARCH_MEM_TIMER ? "mmio" : "", |
| (unsigned long)arch_timer_rate / 1000000, |
| (unsigned long)(arch_timer_rate / 10000) % 100, |
| type & ARCH_CP15_TIMER ? |
| (arch_timer_uses_ppi == VIRT_PPI) ? "virt" : "phys" : |
| "", |
| type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ? "/" : "", |
| type & ARCH_MEM_TIMER ? |
| arch_timer_mem_use_virtual ? "virt" : "phys" : |
| ""); |
| } |
| |
| u32 arch_timer_get_rate(void) |
| { |
| return arch_timer_rate; |
| } |
| |
| static u64 arch_counter_get_cntvct_mem(void) |
| { |
| u32 vct_lo, vct_hi, tmp_hi; |
| |
| do { |
| vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI); |
| vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO); |
| tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI); |
| } while (vct_hi != tmp_hi); |
| |
| return ((u64) vct_hi << 32) | vct_lo; |
| } |
| |
| /* |
| * Default to cp15 based access because arm64 uses this function for |
| * sched_clock() before DT is probed and the cp15 method is guaranteed |
| * to exist on arm64. arm doesn't use this before DT is probed so even |
| * if we don't have the cp15 accessors we won't have a problem. |
| */ |
| u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct; |
| |
| static u64 arch_counter_read(struct clocksource *cs) |
| { |
| return arch_timer_read_counter(); |
| } |
| |
| static u64 arch_counter_read_cc(const struct cyclecounter *cc) |
| { |
| return arch_timer_read_counter(); |
| } |
| |
| static struct clocksource clocksource_counter = { |
| .name = "arch_sys_counter", |
| .rating = 400, |
| .read = arch_counter_read, |
| .mask = CLOCKSOURCE_MASK(56), |
| .flags = CLOCK_SOURCE_IS_CONTINUOUS, |
| }; |
| |
| static struct cyclecounter cyclecounter = { |
| .read = arch_counter_read_cc, |
| .mask = CLOCKSOURCE_MASK(56), |
| }; |
| |
| static struct arch_timer_kvm_info arch_timer_kvm_info; |
| |
| struct arch_timer_kvm_info *arch_timer_get_kvm_info(void) |
| { |
| return &arch_timer_kvm_info; |
| } |
| |
| static void __init arch_counter_register(unsigned type) |
| { |
| u64 start_count; |
| |
| /* Register the CP15 based counter if we have one */ |
| if (type & ARCH_CP15_TIMER) { |
| if (IS_ENABLED(CONFIG_ARM64) || arch_timer_uses_ppi == VIRT_PPI) |
| arch_timer_read_counter = arch_counter_get_cntvct; |
| else |
| arch_timer_read_counter = arch_counter_get_cntpct; |
| |
| clocksource_counter.archdata.vdso_direct = true; |
| |
| #ifdef CONFIG_FSL_ERRATUM_A008585 |
| /* |
| * Don't use the vdso fastpath if errata require using |
| * the out-of-line counter accessor. |
| */ |
| if (static_branch_unlikely(&arch_timer_read_ool_enabled)) |
| clocksource_counter.archdata.vdso_direct = false; |
| #endif |
| } else { |
| arch_timer_read_counter = arch_counter_get_cntvct_mem; |
| } |
| |
| if (!arch_counter_suspend_stop) |
| clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP; |
| start_count = arch_timer_read_counter(); |
| clocksource_register_hz(&clocksource_counter, arch_timer_rate); |
| cyclecounter.mult = clocksource_counter.mult; |
| cyclecounter.shift = clocksource_counter.shift; |
| timecounter_init(&arch_timer_kvm_info.timecounter, |
| &cyclecounter, start_count); |
| |
| /* 56 bits minimum, so we assume worst case rollover */ |
| sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate); |
| } |
| |
| static void arch_timer_stop(struct clock_event_device *clk) |
| { |
| pr_debug("arch_timer_teardown disable IRQ%d cpu #%d\n", |
| clk->irq, smp_processor_id()); |
| |
| disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]); |
| if (arch_timer_has_nonsecure_ppi()) |
| disable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI]); |
| |
| clk->set_state_shutdown(clk); |
| } |
| |
| static int arch_timer_dying_cpu(unsigned int cpu) |
| { |
| struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt); |
| |
| arch_timer_stop(clk); |
| return 0; |
| } |
| |
| #ifdef CONFIG_CPU_PM |
| static unsigned int saved_cntkctl; |
| static int arch_timer_cpu_pm_notify(struct notifier_block *self, |
| unsigned long action, void *hcpu) |
| { |
| if (action == CPU_PM_ENTER) |
| saved_cntkctl = arch_timer_get_cntkctl(); |
| else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT) |
| arch_timer_set_cntkctl(saved_cntkctl); |
| return NOTIFY_OK; |
| } |
| |
| static struct notifier_block arch_timer_cpu_pm_notifier = { |
| .notifier_call = arch_timer_cpu_pm_notify, |
| }; |
| |
| static int __init arch_timer_cpu_pm_init(void) |
| { |
| return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier); |
| } |
| |
| static void __init arch_timer_cpu_pm_deinit(void) |
| { |
| WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier)); |
| } |
| |
| #else |
| static int __init arch_timer_cpu_pm_init(void) |
| { |
| return 0; |
| } |
| |
| static void __init arch_timer_cpu_pm_deinit(void) |
| { |
| } |
| #endif |
| |
| static int __init arch_timer_register(void) |
| { |
| int err; |
| int ppi; |
| |
| arch_timer_evt = alloc_percpu(struct clock_event_device); |
| if (!arch_timer_evt) { |
| err = -ENOMEM; |
| goto out; |
| } |
| |
| ppi = arch_timer_ppi[arch_timer_uses_ppi]; |
| switch (arch_timer_uses_ppi) { |
| case VIRT_PPI: |
| err = request_percpu_irq(ppi, arch_timer_handler_virt, |
| "arch_timer", arch_timer_evt); |
| break; |
| case PHYS_SECURE_PPI: |
| case PHYS_NONSECURE_PPI: |
| err = request_percpu_irq(ppi, arch_timer_handler_phys, |
| "arch_timer", arch_timer_evt); |
| if (!err && arch_timer_ppi[PHYS_NONSECURE_PPI]) { |
| ppi = arch_timer_ppi[PHYS_NONSECURE_PPI]; |
| err = request_percpu_irq(ppi, arch_timer_handler_phys, |
| "arch_timer", arch_timer_evt); |
| if (err) |
| free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI], |
| arch_timer_evt); |
| } |
| break; |
| case HYP_PPI: |
| err = request_percpu_irq(ppi, arch_timer_handler_phys, |
| "arch_timer", arch_timer_evt); |
| break; |
| default: |
| BUG(); |
| } |
| |
| if (err) { |
| pr_err("arch_timer: can't register interrupt %d (%d)\n", |
| ppi, err); |
| goto out_free; |
| } |
| |
| err = arch_timer_cpu_pm_init(); |
| if (err) |
| goto out_unreg_notify; |
| |
| |
| /* Register and immediately configure the timer on the boot CPU */ |
| err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING, |
| "clockevents/arm/arch_timer:starting", |
| arch_timer_starting_cpu, arch_timer_dying_cpu); |
| if (err) |
| goto out_unreg_cpupm; |
| return 0; |
| |
| out_unreg_cpupm: |
| arch_timer_cpu_pm_deinit(); |
| |
| out_unreg_notify: |
| free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt); |
| if (arch_timer_has_nonsecure_ppi()) |
| free_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], |
| arch_timer_evt); |
| |
| out_free: |
| free_percpu(arch_timer_evt); |
| out: |
| return err; |
| } |
| |
| static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq) |
| { |
| int ret; |
| irq_handler_t func; |
| struct arch_timer *t; |
| |
| t = kzalloc(sizeof(*t), GFP_KERNEL); |
| if (!t) |
| return -ENOMEM; |
| |
| t->base = base; |
| t->evt.irq = irq; |
| __arch_timer_setup(ARCH_MEM_TIMER, &t->evt); |
| |
| if (arch_timer_mem_use_virtual) |
| func = arch_timer_handler_virt_mem; |
| else |
| func = arch_timer_handler_phys_mem; |
| |
| ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt); |
| if (ret) { |
| pr_err("arch_timer: Failed to request mem timer irq\n"); |
| kfree(t); |
| } |
| |
| return ret; |
| } |
| |
| static const struct of_device_id arch_timer_of_match[] __initconst = { |
| { .compatible = "arm,armv7-timer", }, |
| { .compatible = "arm,armv8-timer", }, |
| {}, |
| }; |
| |
| static const struct of_device_id arch_timer_mem_of_match[] __initconst = { |
| { .compatible = "arm,armv7-timer-mem", }, |
| {}, |
| }; |
| |
| static bool __init |
| arch_timer_needs_probing(int type, const struct of_device_id *matches) |
| { |
| struct device_node *dn; |
| bool needs_probing = false; |
| |
| dn = of_find_matching_node(NULL, matches); |
| if (dn && of_device_is_available(dn) && !(arch_timers_present & type)) |
| needs_probing = true; |
| of_node_put(dn); |
| |
| return needs_probing; |
| } |
| |
| static int __init arch_timer_common_init(void) |
| { |
| unsigned mask = ARCH_CP15_TIMER | ARCH_MEM_TIMER; |
| |
| /* Wait until both nodes are probed if we have two timers */ |
| if ((arch_timers_present & mask) != mask) { |
| if (arch_timer_needs_probing(ARCH_MEM_TIMER, arch_timer_mem_of_match)) |
| return 0; |
| if (arch_timer_needs_probing(ARCH_CP15_TIMER, arch_timer_of_match)) |
| return 0; |
| } |
| |
| arch_timer_banner(arch_timers_present); |
| arch_counter_register(arch_timers_present); |
| return arch_timer_arch_init(); |
| } |
| |
| static int __init arch_timer_init(void) |
| { |
| int ret; |
| /* |
| * If HYP mode is available, we know that the physical timer |
| * has been configured to be accessible from PL1. Use it, so |
| * that a guest can use the virtual timer instead. |
| * |
| * If no interrupt provided for virtual timer, we'll have to |
| * stick to the physical timer. It'd better be accessible... |
| * |
| * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE |
| * accesses to CNTP_*_EL1 registers are silently redirected to |
| * their CNTHP_*_EL2 counterparts, and use a different PPI |
| * number. |
| */ |
| if (is_hyp_mode_available() || !arch_timer_ppi[VIRT_PPI]) { |
| bool has_ppi; |
| |
| if (is_kernel_in_hyp_mode()) { |
| arch_timer_uses_ppi = HYP_PPI; |
| has_ppi = !!arch_timer_ppi[HYP_PPI]; |
| } else { |
| arch_timer_uses_ppi = PHYS_SECURE_PPI; |
| has_ppi = (!!arch_timer_ppi[PHYS_SECURE_PPI] || |
| !!arch_timer_ppi[PHYS_NONSECURE_PPI]); |
| } |
| |
| if (!has_ppi) { |
| pr_warn("arch_timer: No interrupt available, giving up\n"); |
| return -EINVAL; |
| } |
| } |
| |
| ret = arch_timer_register(); |
| if (ret) |
| return ret; |
| |
| ret = arch_timer_common_init(); |
| if (ret) |
| return ret; |
| |
| arch_timer_kvm_info.virtual_irq = arch_timer_ppi[VIRT_PPI]; |
| |
| return 0; |
| } |
| |
| static int __init arch_timer_of_init(struct device_node *np) |
| { |
| int i; |
| |
| if (arch_timers_present & ARCH_CP15_TIMER) { |
| pr_warn("arch_timer: multiple nodes in dt, skipping\n"); |
| return 0; |
| } |
| |
| arch_timers_present |= ARCH_CP15_TIMER; |
| for (i = PHYS_SECURE_PPI; i < MAX_TIMER_PPI; i++) |
| arch_timer_ppi[i] = irq_of_parse_and_map(np, i); |
| |
| arch_timer_detect_rate(NULL, np); |
| |
| arch_timer_c3stop = !of_property_read_bool(np, "always-on"); |
| |
| #ifdef CONFIG_FSL_ERRATUM_A008585 |
| if (fsl_a008585_enable < 0) |
| fsl_a008585_enable = of_property_read_bool(np, "fsl,erratum-a008585"); |
| if (fsl_a008585_enable) { |
| static_branch_enable(&arch_timer_read_ool_enabled); |
| pr_info("Enabling workaround for FSL erratum A-008585\n"); |
| } |
| #endif |
| |
| /* |
| * If we cannot rely on firmware initializing the timer registers then |
| * we should use the physical timers instead. |
| */ |
| if (IS_ENABLED(CONFIG_ARM) && |
| of_property_read_bool(np, "arm,cpu-registers-not-fw-configured")) |
| arch_timer_uses_ppi = PHYS_SECURE_PPI; |
| |
| /* On some systems, the counter stops ticking when in suspend. */ |
| arch_counter_suspend_stop = of_property_read_bool(np, |
| "arm,no-tick-in-suspend"); |
| |
| return arch_timer_init(); |
| } |
| CLOCKSOURCE_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init); |
| CLOCKSOURCE_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init); |
| |
| static int __init arch_timer_mem_init(struct device_node *np) |
| { |
| struct device_node *frame, *best_frame = NULL; |
| void __iomem *cntctlbase, *base; |
| unsigned int irq, ret = -EINVAL; |
| u32 cnttidr; |
| |
| arch_timers_present |= ARCH_MEM_TIMER; |
| cntctlbase = of_iomap(np, 0); |
| if (!cntctlbase) { |
| pr_err("arch_timer: Can't find CNTCTLBase\n"); |
| return -ENXIO; |
| } |
| |
| cnttidr = readl_relaxed(cntctlbase + CNTTIDR); |
| |
| /* |
| * Try to find a virtual capable frame. Otherwise fall back to a |
| * physical capable frame. |
| */ |
| for_each_available_child_of_node(np, frame) { |
| int n; |
| u32 cntacr; |
| |
| if (of_property_read_u32(frame, "frame-number", &n)) { |
| pr_err("arch_timer: Missing frame-number\n"); |
| of_node_put(frame); |
| goto out; |
| } |
| |
| /* Try enabling everything, and see what sticks */ |
| cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT | |
| CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT; |
| writel_relaxed(cntacr, cntctlbase + CNTACR(n)); |
| cntacr = readl_relaxed(cntctlbase + CNTACR(n)); |
| |
| if ((cnttidr & CNTTIDR_VIRT(n)) && |
| !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) { |
| of_node_put(best_frame); |
| best_frame = frame; |
| arch_timer_mem_use_virtual = true; |
| break; |
| } |
| |
| if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT)) |
| continue; |
| |
| of_node_put(best_frame); |
| best_frame = of_node_get(frame); |
| } |
| |
| ret= -ENXIO; |
| base = arch_counter_base = of_io_request_and_map(best_frame, 0, |
| "arch_mem_timer"); |
| if (IS_ERR(base)) { |
| pr_err("arch_timer: Can't map frame's registers\n"); |
| goto out; |
| } |
| |
| if (arch_timer_mem_use_virtual) |
| irq = irq_of_parse_and_map(best_frame, 1); |
| else |
| irq = irq_of_parse_and_map(best_frame, 0); |
| |
| ret = -EINVAL; |
| if (!irq) { |
| pr_err("arch_timer: Frame missing %s irq", |
| arch_timer_mem_use_virtual ? "virt" : "phys"); |
| goto out; |
| } |
| |
| arch_timer_detect_rate(base, np); |
| ret = arch_timer_mem_register(base, irq); |
| if (ret) |
| goto out; |
| |
| return arch_timer_common_init(); |
| out: |
| iounmap(cntctlbase); |
| of_node_put(best_frame); |
| return ret; |
| } |
| CLOCKSOURCE_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem", |
| arch_timer_mem_init); |
| |
| #ifdef CONFIG_ACPI |
| static int __init map_generic_timer_interrupt(u32 interrupt, u32 flags) |
| { |
| int trigger, polarity; |
| |
| if (!interrupt) |
| return 0; |
| |
| trigger = (flags & ACPI_GTDT_INTERRUPT_MODE) ? ACPI_EDGE_SENSITIVE |
| : ACPI_LEVEL_SENSITIVE; |
| |
| polarity = (flags & ACPI_GTDT_INTERRUPT_POLARITY) ? ACPI_ACTIVE_LOW |
| : ACPI_ACTIVE_HIGH; |
| |
| return acpi_register_gsi(NULL, interrupt, trigger, polarity); |
| } |
| |
| /* Initialize per-processor generic timer */ |
| static int __init arch_timer_acpi_init(struct acpi_table_header *table) |
| { |
| struct acpi_table_gtdt *gtdt; |
| |
| if (arch_timers_present & ARCH_CP15_TIMER) { |
| pr_warn("arch_timer: already initialized, skipping\n"); |
| return -EINVAL; |
| } |
| |
| gtdt = container_of(table, struct acpi_table_gtdt, header); |
| |
| arch_timers_present |= ARCH_CP15_TIMER; |
| |
| arch_timer_ppi[PHYS_SECURE_PPI] = |
| map_generic_timer_interrupt(gtdt->secure_el1_interrupt, |
| gtdt->secure_el1_flags); |
| |
| arch_timer_ppi[PHYS_NONSECURE_PPI] = |
| map_generic_timer_interrupt(gtdt->non_secure_el1_interrupt, |
| gtdt->non_secure_el1_flags); |
| |
| arch_timer_ppi[VIRT_PPI] = |
| map_generic_timer_interrupt(gtdt->virtual_timer_interrupt, |
| gtdt->virtual_timer_flags); |
| |
| arch_timer_ppi[HYP_PPI] = |
| map_generic_timer_interrupt(gtdt->non_secure_el2_interrupt, |
| gtdt->non_secure_el2_flags); |
| |
| /* Get the frequency from CNTFRQ */ |
| arch_timer_detect_rate(NULL, NULL); |
| |
| /* Always-on capability */ |
| arch_timer_c3stop = !(gtdt->non_secure_el1_flags & ACPI_GTDT_ALWAYS_ON); |
| |
| arch_timer_init(); |
| return 0; |
| } |
| CLOCKSOURCE_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init); |
| #endif |