| /* |
| * This file is included twice from vdso2c.c. It generates code for 32-bit |
| * and 64-bit vDSOs. We need both for 64-bit builds, since 32-bit vDSOs |
| * are built for 32-bit userspace. |
| */ |
| |
| /* |
| * We're writing a section table for a few reasons: |
| * |
| * The Go runtime had a couple of bugs: it would read the section |
| * table to try to figure out how many dynamic symbols there were (it |
| * shouldn't have looked at the section table at all) and, if there |
| * were no SHT_SYNDYM section table entry, it would use an |
| * uninitialized value for the number of symbols. An empty DYNSYM |
| * table would work, but I see no reason not to write a valid one (and |
| * keep full performance for old Go programs). This hack is only |
| * needed on x86_64. |
| * |
| * The bug was introduced on 2012-08-31 by: |
| * https://code.google.com/p/go/source/detail?r=56ea40aac72b |
| * and was fixed on 2014-06-13 by: |
| * https://code.google.com/p/go/source/detail?r=fc1cd5e12595 |
| * |
| * Binutils has issues debugging the vDSO: it reads the section table to |
| * find SHT_NOTE; it won't look at PT_NOTE for the in-memory vDSO, which |
| * would break build-id if we removed the section table. Binutils |
| * also requires that shstrndx != 0. See: |
| * https://sourceware.org/bugzilla/show_bug.cgi?id=17064 |
| * |
| * elfutils might not look for PT_NOTE if there is a section table at |
| * all. I don't know whether this matters for any practical purpose. |
| * |
| * For simplicity, rather than hacking up a partial section table, we |
| * just write a mostly complete one. We omit non-dynamic symbols, |
| * though, since they're rather large. |
| * |
| * Once binutils gets fixed, we might be able to drop this for all but |
| * the 64-bit vdso, since build-id only works in kernel RPMs, and |
| * systems that update to new enough kernel RPMs will likely update |
| * binutils in sync. build-id has never worked for home-built kernel |
| * RPMs without manual symlinking, and I suspect that no one ever does |
| * that. |
| */ |
| struct BITSFUNC(fake_sections) |
| { |
| ELF(Shdr) *table; |
| unsigned long table_offset; |
| int count, max_count; |
| |
| int in_shstrndx; |
| unsigned long shstr_offset; |
| const char *shstrtab; |
| size_t shstrtab_len; |
| |
| int out_shstrndx; |
| }; |
| |
| static unsigned int BITSFUNC(find_shname)(struct BITSFUNC(fake_sections) *out, |
| const char *name) |
| { |
| const char *outname = out->shstrtab; |
| while (outname - out->shstrtab < out->shstrtab_len) { |
| if (!strcmp(name, outname)) |
| return (outname - out->shstrtab) + out->shstr_offset; |
| outname += strlen(outname) + 1; |
| } |
| |
| if (*name) |
| printf("Warning: could not find output name \"%s\"\n", name); |
| return out->shstr_offset + out->shstrtab_len - 1; /* Use a null. */ |
| } |
| |
| static void BITSFUNC(init_sections)(struct BITSFUNC(fake_sections) *out) |
| { |
| if (!out->in_shstrndx) |
| fail("didn't find the fake shstrndx\n"); |
| |
| memset(out->table, 0, out->max_count * sizeof(ELF(Shdr))); |
| |
| if (out->max_count < 1) |
| fail("we need at least two fake output sections\n"); |
| |
| PUT_LE(&out->table[0].sh_type, SHT_NULL); |
| PUT_LE(&out->table[0].sh_name, BITSFUNC(find_shname)(out, "")); |
| |
| out->count = 1; |
| } |
| |
| static void BITSFUNC(copy_section)(struct BITSFUNC(fake_sections) *out, |
| int in_idx, const ELF(Shdr) *in, |
| const char *name) |
| { |
| uint64_t flags = GET_LE(&in->sh_flags); |
| |
| bool copy = flags & SHF_ALLOC && |
| (GET_LE(&in->sh_size) || |
| (GET_LE(&in->sh_type) != SHT_RELA && |
| GET_LE(&in->sh_type) != SHT_REL)) && |
| strcmp(name, ".altinstructions") && |
| strcmp(name, ".altinstr_replacement"); |
| |
| if (!copy) |
| return; |
| |
| if (out->count >= out->max_count) |
| fail("too many copied sections (max = %d)\n", out->max_count); |
| |
| if (in_idx == out->in_shstrndx) |
| out->out_shstrndx = out->count; |
| |
| out->table[out->count] = *in; |
| PUT_LE(&out->table[out->count].sh_name, |
| BITSFUNC(find_shname)(out, name)); |
| |
| /* elfutils requires that a strtab have the correct type. */ |
| if (!strcmp(name, ".fake_shstrtab")) |
| PUT_LE(&out->table[out->count].sh_type, SHT_STRTAB); |
| |
| out->count++; |
| } |
| |
| static void BITSFUNC(go)(void *addr, size_t len, |
| FILE *outfile, const char *name) |
| { |
| int found_load = 0; |
| unsigned long load_size = -1; /* Work around bogus warning */ |
| unsigned long data_size; |
| ELF(Ehdr) *hdr = (ELF(Ehdr) *)addr; |
| int i; |
| unsigned long j; |
| ELF(Shdr) *symtab_hdr = NULL, *strtab_hdr, *secstrings_hdr, |
| *alt_sec = NULL; |
| ELF(Dyn) *dyn = 0, *dyn_end = 0; |
| const char *secstrings; |
| INT_BITS syms[NSYMS] = {}; |
| |
| struct BITSFUNC(fake_sections) fake_sections = {}; |
| |
| ELF(Phdr) *pt = (ELF(Phdr) *)(addr + GET_LE(&hdr->e_phoff)); |
| |
| /* Walk the segment table. */ |
| for (i = 0; i < GET_LE(&hdr->e_phnum); i++) { |
| if (GET_LE(&pt[i].p_type) == PT_LOAD) { |
| if (found_load) |
| fail("multiple PT_LOAD segs\n"); |
| |
| if (GET_LE(&pt[i].p_offset) != 0 || |
| GET_LE(&pt[i].p_vaddr) != 0) |
| fail("PT_LOAD in wrong place\n"); |
| |
| if (GET_LE(&pt[i].p_memsz) != GET_LE(&pt[i].p_filesz)) |
| fail("cannot handle memsz != filesz\n"); |
| |
| load_size = GET_LE(&pt[i].p_memsz); |
| found_load = 1; |
| } else if (GET_LE(&pt[i].p_type) == PT_DYNAMIC) { |
| dyn = addr + GET_LE(&pt[i].p_offset); |
| dyn_end = addr + GET_LE(&pt[i].p_offset) + |
| GET_LE(&pt[i].p_memsz); |
| } |
| } |
| if (!found_load) |
| fail("no PT_LOAD seg\n"); |
| data_size = (load_size + 4095) / 4096 * 4096; |
| |
| /* Walk the dynamic table */ |
| for (i = 0; dyn + i < dyn_end && |
| GET_LE(&dyn[i].d_tag) != DT_NULL; i++) { |
| typeof(dyn[i].d_tag) tag = GET_LE(&dyn[i].d_tag); |
| if (tag == DT_REL || tag == DT_RELSZ || tag == DT_RELA || |
| tag == DT_RELENT || tag == DT_TEXTREL) |
| fail("vdso image contains dynamic relocations\n"); |
| } |
| |
| /* Walk the section table */ |
| secstrings_hdr = addr + GET_LE(&hdr->e_shoff) + |
| GET_LE(&hdr->e_shentsize)*GET_LE(&hdr->e_shstrndx); |
| secstrings = addr + GET_LE(&secstrings_hdr->sh_offset); |
| for (i = 0; i < GET_LE(&hdr->e_shnum); i++) { |
| ELF(Shdr) *sh = addr + GET_LE(&hdr->e_shoff) + |
| GET_LE(&hdr->e_shentsize) * i; |
| if (GET_LE(&sh->sh_type) == SHT_SYMTAB) |
| symtab_hdr = sh; |
| |
| if (!strcmp(secstrings + GET_LE(&sh->sh_name), |
| ".altinstructions")) |
| alt_sec = sh; |
| } |
| |
| if (!symtab_hdr) |
| fail("no symbol table\n"); |
| |
| strtab_hdr = addr + GET_LE(&hdr->e_shoff) + |
| GET_LE(&hdr->e_shentsize) * GET_LE(&symtab_hdr->sh_link); |
| |
| /* Walk the symbol table */ |
| for (i = 0; |
| i < GET_LE(&symtab_hdr->sh_size) / GET_LE(&symtab_hdr->sh_entsize); |
| i++) { |
| int k; |
| ELF(Sym) *sym = addr + GET_LE(&symtab_hdr->sh_offset) + |
| GET_LE(&symtab_hdr->sh_entsize) * i; |
| const char *name = addr + GET_LE(&strtab_hdr->sh_offset) + |
| GET_LE(&sym->st_name); |
| |
| for (k = 0; k < NSYMS; k++) { |
| if (!strcmp(name, required_syms[k].name)) { |
| if (syms[k]) { |
| fail("duplicate symbol %s\n", |
| required_syms[k].name); |
| } |
| |
| /* |
| * Careful: we use negative addresses, but |
| * st_value is unsigned, so we rely |
| * on syms[k] being a signed type of the |
| * correct width. |
| */ |
| syms[k] = GET_LE(&sym->st_value); |
| } |
| } |
| |
| if (!strcmp(name, "fake_shstrtab")) { |
| ELF(Shdr) *sh; |
| |
| fake_sections.in_shstrndx = GET_LE(&sym->st_shndx); |
| fake_sections.shstrtab = addr + GET_LE(&sym->st_value); |
| fake_sections.shstrtab_len = GET_LE(&sym->st_size); |
| sh = addr + GET_LE(&hdr->e_shoff) + |
| GET_LE(&hdr->e_shentsize) * |
| fake_sections.in_shstrndx; |
| fake_sections.shstr_offset = GET_LE(&sym->st_value) - |
| GET_LE(&sh->sh_addr); |
| } |
| } |
| |
| /* Build the output section table. */ |
| if (!syms[sym_VDSO_FAKE_SECTION_TABLE_START] || |
| !syms[sym_VDSO_FAKE_SECTION_TABLE_END]) |
| fail("couldn't find fake section table\n"); |
| if ((syms[sym_VDSO_FAKE_SECTION_TABLE_END] - |
| syms[sym_VDSO_FAKE_SECTION_TABLE_START]) % sizeof(ELF(Shdr))) |
| fail("fake section table size isn't a multiple of sizeof(Shdr)\n"); |
| fake_sections.table = addr + syms[sym_VDSO_FAKE_SECTION_TABLE_START]; |
| fake_sections.table_offset = syms[sym_VDSO_FAKE_SECTION_TABLE_START]; |
| fake_sections.max_count = (syms[sym_VDSO_FAKE_SECTION_TABLE_END] - |
| syms[sym_VDSO_FAKE_SECTION_TABLE_START]) / |
| sizeof(ELF(Shdr)); |
| |
| BITSFUNC(init_sections)(&fake_sections); |
| for (i = 0; i < GET_LE(&hdr->e_shnum); i++) { |
| ELF(Shdr) *sh = addr + GET_LE(&hdr->e_shoff) + |
| GET_LE(&hdr->e_shentsize) * i; |
| BITSFUNC(copy_section)(&fake_sections, i, sh, |
| secstrings + GET_LE(&sh->sh_name)); |
| } |
| if (!fake_sections.out_shstrndx) |
| fail("didn't generate shstrndx?!?\n"); |
| |
| PUT_LE(&hdr->e_shoff, fake_sections.table_offset); |
| PUT_LE(&hdr->e_shentsize, sizeof(ELF(Shdr))); |
| PUT_LE(&hdr->e_shnum, fake_sections.count); |
| PUT_LE(&hdr->e_shstrndx, fake_sections.out_shstrndx); |
| |
| /* Validate mapping addresses. */ |
| for (i = 0; i < sizeof(special_pages) / sizeof(special_pages[0]); i++) { |
| if (!syms[i]) |
| continue; /* The mapping isn't used; ignore it. */ |
| |
| if (syms[i] % 4096) |
| fail("%s must be a multiple of 4096\n", |
| required_syms[i].name); |
| if (syms[sym_vvar_start] > syms[i] + 4096) |
| fail("%s underruns begin_vvar\n", |
| required_syms[i].name); |
| if (syms[i] + 4096 > 0) |
| fail("%s is on the wrong side of the vdso text\n", |
| required_syms[i].name); |
| } |
| if (syms[sym_vvar_start] % 4096) |
| fail("vvar_begin must be a multiple of 4096\n"); |
| |
| if (!name) { |
| fwrite(addr, load_size, 1, outfile); |
| return; |
| } |
| |
| fprintf(outfile, "/* AUTOMATICALLY GENERATED -- DO NOT EDIT */\n\n"); |
| fprintf(outfile, "#include <linux/linkage.h>\n"); |
| fprintf(outfile, "#include <asm/page_types.h>\n"); |
| fprintf(outfile, "#include <asm/vdso.h>\n"); |
| fprintf(outfile, "\n"); |
| fprintf(outfile, |
| "static unsigned char raw_data[%lu] __page_aligned_data = {", |
| data_size); |
| for (j = 0; j < load_size; j++) { |
| if (j % 10 == 0) |
| fprintf(outfile, "\n\t"); |
| fprintf(outfile, "0x%02X, ", (int)((unsigned char *)addr)[j]); |
| } |
| fprintf(outfile, "\n};\n\n"); |
| |
| fprintf(outfile, "static struct page *pages[%lu];\n\n", |
| data_size / 4096); |
| |
| fprintf(outfile, "const struct vdso_image %s = {\n", name); |
| fprintf(outfile, "\t.data = raw_data,\n"); |
| fprintf(outfile, "\t.size = %lu,\n", data_size); |
| fprintf(outfile, "\t.text_mapping = {\n"); |
| fprintf(outfile, "\t\t.name = \"[vdso]\",\n"); |
| fprintf(outfile, "\t\t.pages = pages,\n"); |
| fprintf(outfile, "\t},\n"); |
| if (alt_sec) { |
| fprintf(outfile, "\t.alt = %lu,\n", |
| (unsigned long)GET_LE(&alt_sec->sh_offset)); |
| fprintf(outfile, "\t.alt_len = %lu,\n", |
| (unsigned long)GET_LE(&alt_sec->sh_size)); |
| } |
| for (i = 0; i < NSYMS; i++) { |
| if (required_syms[i].export && syms[i]) |
| fprintf(outfile, "\t.sym_%s = %" PRIi64 ",\n", |
| required_syms[i].name, (int64_t)syms[i]); |
| } |
| fprintf(outfile, "};\n"); |
| } |