| /* |
| * sata_mv.c - Marvell SATA support |
| * |
| * Copyright 2008: Marvell Corporation, all rights reserved. |
| * Copyright 2005: EMC Corporation, all rights reserved. |
| * Copyright 2005 Red Hat, Inc. All rights reserved. |
| * |
| * Please ALWAYS copy linux-ide@vger.kernel.org on emails. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; version 2 of the License. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| * |
| */ |
| |
| /* |
| sata_mv TODO list: |
| |
| 1) Needs a full errata audit for all chipsets. I implemented most |
| of the errata workarounds found in the Marvell vendor driver, but |
| I distinctly remember a couple workarounds (one related to PCI-X) |
| are still needed. |
| |
| 2) Improve/fix IRQ and error handling sequences. |
| |
| 3) ATAPI support (Marvell claims the 60xx/70xx chips can do it). |
| |
| 4) Think about TCQ support here, and for libata in general |
| with controllers that suppport it via host-queuing hardware |
| (a software-only implementation could be a nightmare). |
| |
| 5) Investigate problems with PCI Message Signalled Interrupts (MSI). |
| |
| 6) Cache frequently-accessed registers in mv_port_priv to reduce overhead. |
| |
| 7) Fix/reenable hot plug/unplug (should happen as a side-effect of (2) above). |
| |
| 8) Develop a low-power-consumption strategy, and implement it. |
| |
| 9) [Experiment, low priority] See if ATAPI can be supported using |
| "unknown FIS" or "vendor-specific FIS" support, or something creative |
| like that. |
| |
| 10) [Experiment, low priority] Investigate interrupt coalescing. |
| Quite often, especially with PCI Message Signalled Interrupts (MSI), |
| the overhead reduced by interrupt mitigation is quite often not |
| worth the latency cost. |
| |
| 11) [Experiment, Marvell value added] Is it possible to use target |
| mode to cross-connect two Linux boxes with Marvell cards? If so, |
| creating LibATA target mode support would be very interesting. |
| |
| Target mode, for those without docs, is the ability to directly |
| connect two SATA controllers. |
| |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/pci.h> |
| #include <linux/init.h> |
| #include <linux/blkdev.h> |
| #include <linux/delay.h> |
| #include <linux/interrupt.h> |
| #include <linux/dmapool.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/device.h> |
| #include <linux/platform_device.h> |
| #include <linux/ata_platform.h> |
| #include <scsi/scsi_host.h> |
| #include <scsi/scsi_cmnd.h> |
| #include <scsi/scsi_device.h> |
| #include <linux/libata.h> |
| |
| #define DRV_NAME "sata_mv" |
| #define DRV_VERSION "1.20" |
| |
| enum { |
| /* BAR's are enumerated in terms of pci_resource_start() terms */ |
| MV_PRIMARY_BAR = 0, /* offset 0x10: memory space */ |
| MV_IO_BAR = 2, /* offset 0x18: IO space */ |
| MV_MISC_BAR = 3, /* offset 0x1c: FLASH, NVRAM, SRAM */ |
| |
| MV_MAJOR_REG_AREA_SZ = 0x10000, /* 64KB */ |
| MV_MINOR_REG_AREA_SZ = 0x2000, /* 8KB */ |
| |
| MV_PCI_REG_BASE = 0, |
| MV_IRQ_COAL_REG_BASE = 0x18000, /* 6xxx part only */ |
| MV_IRQ_COAL_CAUSE = (MV_IRQ_COAL_REG_BASE + 0x08), |
| MV_IRQ_COAL_CAUSE_LO = (MV_IRQ_COAL_REG_BASE + 0x88), |
| MV_IRQ_COAL_CAUSE_HI = (MV_IRQ_COAL_REG_BASE + 0x8c), |
| MV_IRQ_COAL_THRESHOLD = (MV_IRQ_COAL_REG_BASE + 0xcc), |
| MV_IRQ_COAL_TIME_THRESHOLD = (MV_IRQ_COAL_REG_BASE + 0xd0), |
| |
| MV_SATAHC0_REG_BASE = 0x20000, |
| MV_FLASH_CTL = 0x1046c, |
| MV_GPIO_PORT_CTL = 0x104f0, |
| MV_RESET_CFG = 0x180d8, |
| |
| MV_PCI_REG_SZ = MV_MAJOR_REG_AREA_SZ, |
| MV_SATAHC_REG_SZ = MV_MAJOR_REG_AREA_SZ, |
| MV_SATAHC_ARBTR_REG_SZ = MV_MINOR_REG_AREA_SZ, /* arbiter */ |
| MV_PORT_REG_SZ = MV_MINOR_REG_AREA_SZ, |
| |
| MV_MAX_Q_DEPTH = 32, |
| MV_MAX_Q_DEPTH_MASK = MV_MAX_Q_DEPTH - 1, |
| |
| /* CRQB needs alignment on a 1KB boundary. Size == 1KB |
| * CRPB needs alignment on a 256B boundary. Size == 256B |
| * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B |
| */ |
| MV_CRQB_Q_SZ = (32 * MV_MAX_Q_DEPTH), |
| MV_CRPB_Q_SZ = (8 * MV_MAX_Q_DEPTH), |
| MV_MAX_SG_CT = 256, |
| MV_SG_TBL_SZ = (16 * MV_MAX_SG_CT), |
| |
| MV_PORTS_PER_HC = 4, |
| /* == (port / MV_PORTS_PER_HC) to determine HC from 0-7 port */ |
| MV_PORT_HC_SHIFT = 2, |
| /* == (port % MV_PORTS_PER_HC) to determine hard port from 0-7 port */ |
| MV_PORT_MASK = 3, |
| |
| /* Host Flags */ |
| MV_FLAG_DUAL_HC = (1 << 30), /* two SATA Host Controllers */ |
| MV_FLAG_IRQ_COALESCE = (1 << 29), /* IRQ coalescing capability */ |
| /* SoC integrated controllers, no PCI interface */ |
| MV_FLAG_SOC = (1 << 28), |
| |
| MV_COMMON_FLAGS = ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY | |
| ATA_FLAG_MMIO | ATA_FLAG_NO_ATAPI | |
| ATA_FLAG_PIO_POLLING, |
| MV_6XXX_FLAGS = MV_FLAG_IRQ_COALESCE, |
| |
| CRQB_FLAG_READ = (1 << 0), |
| CRQB_TAG_SHIFT = 1, |
| CRQB_IOID_SHIFT = 6, /* CRQB Gen-II/IIE IO Id shift */ |
| CRQB_PMP_SHIFT = 12, /* CRQB Gen-II/IIE PMP shift */ |
| CRQB_HOSTQ_SHIFT = 17, /* CRQB Gen-II/IIE HostQueTag shift */ |
| CRQB_CMD_ADDR_SHIFT = 8, |
| CRQB_CMD_CS = (0x2 << 11), |
| CRQB_CMD_LAST = (1 << 15), |
| |
| CRPB_FLAG_STATUS_SHIFT = 8, |
| CRPB_IOID_SHIFT_6 = 5, /* CRPB Gen-II IO Id shift */ |
| CRPB_IOID_SHIFT_7 = 7, /* CRPB Gen-IIE IO Id shift */ |
| |
| EPRD_FLAG_END_OF_TBL = (1 << 31), |
| |
| /* PCI interface registers */ |
| |
| PCI_COMMAND_OFS = 0xc00, |
| |
| PCI_MAIN_CMD_STS_OFS = 0xd30, |
| STOP_PCI_MASTER = (1 << 2), |
| PCI_MASTER_EMPTY = (1 << 3), |
| GLOB_SFT_RST = (1 << 4), |
| |
| MV_PCI_MODE = 0xd00, |
| MV_PCI_EXP_ROM_BAR_CTL = 0xd2c, |
| MV_PCI_DISC_TIMER = 0xd04, |
| MV_PCI_MSI_TRIGGER = 0xc38, |
| MV_PCI_SERR_MASK = 0xc28, |
| MV_PCI_XBAR_TMOUT = 0x1d04, |
| MV_PCI_ERR_LOW_ADDRESS = 0x1d40, |
| MV_PCI_ERR_HIGH_ADDRESS = 0x1d44, |
| MV_PCI_ERR_ATTRIBUTE = 0x1d48, |
| MV_PCI_ERR_COMMAND = 0x1d50, |
| |
| PCI_IRQ_CAUSE_OFS = 0x1d58, |
| PCI_IRQ_MASK_OFS = 0x1d5c, |
| PCI_UNMASK_ALL_IRQS = 0x7fffff, /* bits 22-0 */ |
| |
| PCIE_IRQ_CAUSE_OFS = 0x1900, |
| PCIE_IRQ_MASK_OFS = 0x1910, |
| PCIE_UNMASK_ALL_IRQS = 0x40a, /* assorted bits */ |
| |
| HC_MAIN_IRQ_CAUSE_OFS = 0x1d60, |
| HC_MAIN_IRQ_MASK_OFS = 0x1d64, |
| HC_SOC_MAIN_IRQ_CAUSE_OFS = 0x20020, |
| HC_SOC_MAIN_IRQ_MASK_OFS = 0x20024, |
| PORT0_ERR = (1 << 0), /* shift by port # */ |
| PORT0_DONE = (1 << 1), /* shift by port # */ |
| HC0_IRQ_PEND = 0x1ff, /* bits 0-8 = HC0's ports */ |
| HC_SHIFT = 9, /* bits 9-17 = HC1's ports */ |
| PCI_ERR = (1 << 18), |
| TRAN_LO_DONE = (1 << 19), /* 6xxx: IRQ coalescing */ |
| TRAN_HI_DONE = (1 << 20), /* 6xxx: IRQ coalescing */ |
| PORTS_0_3_COAL_DONE = (1 << 8), |
| PORTS_4_7_COAL_DONE = (1 << 17), |
| PORTS_0_7_COAL_DONE = (1 << 21), /* 6xxx: IRQ coalescing */ |
| GPIO_INT = (1 << 22), |
| SELF_INT = (1 << 23), |
| TWSI_INT = (1 << 24), |
| HC_MAIN_RSVD = (0x7f << 25), /* bits 31-25 */ |
| HC_MAIN_RSVD_5 = (0x1fff << 19), /* bits 31-19 */ |
| HC_MAIN_RSVD_SOC = (0x3fffffb << 6), /* bits 31-9, 7-6 */ |
| HC_MAIN_MASKED_IRQS = (TRAN_LO_DONE | TRAN_HI_DONE | |
| PORTS_0_7_COAL_DONE | GPIO_INT | TWSI_INT | |
| HC_MAIN_RSVD), |
| HC_MAIN_MASKED_IRQS_5 = (PORTS_0_3_COAL_DONE | PORTS_4_7_COAL_DONE | |
| HC_MAIN_RSVD_5), |
| HC_MAIN_MASKED_IRQS_SOC = (PORTS_0_3_COAL_DONE | HC_MAIN_RSVD_SOC), |
| |
| /* SATAHC registers */ |
| HC_CFG_OFS = 0, |
| |
| HC_IRQ_CAUSE_OFS = 0x14, |
| CRPB_DMA_DONE = (1 << 0), /* shift by port # */ |
| HC_IRQ_COAL = (1 << 4), /* IRQ coalescing */ |
| DEV_IRQ = (1 << 8), /* shift by port # */ |
| |
| /* Shadow block registers */ |
| SHD_BLK_OFS = 0x100, |
| SHD_CTL_AST_OFS = 0x20, /* ofs from SHD_BLK_OFS */ |
| |
| /* SATA registers */ |
| SATA_STATUS_OFS = 0x300, /* ctrl, err regs follow status */ |
| SATA_ACTIVE_OFS = 0x350, |
| SATA_FIS_IRQ_CAUSE_OFS = 0x364, |
| |
| LTMODE_OFS = 0x30c, |
| LTMODE_BIT8 = (1 << 8), /* unknown, but necessary */ |
| |
| PHY_MODE3 = 0x310, |
| PHY_MODE4 = 0x314, |
| PHY_MODE2 = 0x330, |
| SATA_IFCTL_OFS = 0x344, |
| SATA_IFSTAT_OFS = 0x34c, |
| VENDOR_UNIQUE_FIS_OFS = 0x35c, |
| |
| FIS_CFG_OFS = 0x360, |
| FIS_CFG_SINGLE_SYNC = (1 << 16), /* SYNC on DMA activation */ |
| |
| MV5_PHY_MODE = 0x74, |
| MV5_LT_MODE = 0x30, |
| MV5_PHY_CTL = 0x0C, |
| SATA_INTERFACE_CFG = 0x050, |
| |
| MV_M2_PREAMP_MASK = 0x7e0, |
| |
| /* Port registers */ |
| EDMA_CFG_OFS = 0, |
| EDMA_CFG_Q_DEPTH = 0x1f, /* max device queue depth */ |
| EDMA_CFG_NCQ = (1 << 5), /* for R/W FPDMA queued */ |
| EDMA_CFG_NCQ_GO_ON_ERR = (1 << 14), /* continue on error */ |
| EDMA_CFG_RD_BRST_EXT = (1 << 11), /* read burst 512B */ |
| EDMA_CFG_WR_BUFF_LEN = (1 << 13), /* write buffer 512B */ |
| EDMA_CFG_EDMA_FBS = (1 << 16), /* EDMA FIS-Based Switching */ |
| EDMA_CFG_FBS = (1 << 26), /* FIS-Based Switching */ |
| |
| EDMA_ERR_IRQ_CAUSE_OFS = 0x8, |
| EDMA_ERR_IRQ_MASK_OFS = 0xc, |
| EDMA_ERR_D_PAR = (1 << 0), /* UDMA data parity err */ |
| EDMA_ERR_PRD_PAR = (1 << 1), /* UDMA PRD parity err */ |
| EDMA_ERR_DEV = (1 << 2), /* device error */ |
| EDMA_ERR_DEV_DCON = (1 << 3), /* device disconnect */ |
| EDMA_ERR_DEV_CON = (1 << 4), /* device connected */ |
| EDMA_ERR_SERR = (1 << 5), /* SError bits [WBDST] raised */ |
| EDMA_ERR_SELF_DIS = (1 << 7), /* Gen II/IIE self-disable */ |
| EDMA_ERR_SELF_DIS_5 = (1 << 8), /* Gen I self-disable */ |
| EDMA_ERR_BIST_ASYNC = (1 << 8), /* BIST FIS or Async Notify */ |
| EDMA_ERR_TRANS_IRQ_7 = (1 << 8), /* Gen IIE transprt layer irq */ |
| EDMA_ERR_CRQB_PAR = (1 << 9), /* CRQB parity error */ |
| EDMA_ERR_CRPB_PAR = (1 << 10), /* CRPB parity error */ |
| EDMA_ERR_INTRL_PAR = (1 << 11), /* internal parity error */ |
| EDMA_ERR_IORDY = (1 << 12), /* IORdy timeout */ |
| |
| EDMA_ERR_LNK_CTRL_RX = (0xf << 13), /* link ctrl rx error */ |
| EDMA_ERR_LNK_CTRL_RX_0 = (1 << 13), /* transient: CRC err */ |
| EDMA_ERR_LNK_CTRL_RX_1 = (1 << 14), /* transient: FIFO err */ |
| EDMA_ERR_LNK_CTRL_RX_2 = (1 << 15), /* fatal: caught SYNC */ |
| EDMA_ERR_LNK_CTRL_RX_3 = (1 << 16), /* transient: FIS rx err */ |
| |
| EDMA_ERR_LNK_DATA_RX = (0xf << 17), /* link data rx error */ |
| |
| EDMA_ERR_LNK_CTRL_TX = (0x1f << 21), /* link ctrl tx error */ |
| EDMA_ERR_LNK_CTRL_TX_0 = (1 << 21), /* transient: CRC err */ |
| EDMA_ERR_LNK_CTRL_TX_1 = (1 << 22), /* transient: FIFO err */ |
| EDMA_ERR_LNK_CTRL_TX_2 = (1 << 23), /* transient: caught SYNC */ |
| EDMA_ERR_LNK_CTRL_TX_3 = (1 << 24), /* transient: caught DMAT */ |
| EDMA_ERR_LNK_CTRL_TX_4 = (1 << 25), /* transient: FIS collision */ |
| |
| EDMA_ERR_LNK_DATA_TX = (0x1f << 26), /* link data tx error */ |
| |
| EDMA_ERR_TRANS_PROTO = (1 << 31), /* transport protocol error */ |
| EDMA_ERR_OVERRUN_5 = (1 << 5), |
| EDMA_ERR_UNDERRUN_5 = (1 << 6), |
| |
| EDMA_ERR_IRQ_TRANSIENT = EDMA_ERR_LNK_CTRL_RX_0 | |
| EDMA_ERR_LNK_CTRL_RX_1 | |
| EDMA_ERR_LNK_CTRL_RX_3 | |
| EDMA_ERR_LNK_CTRL_TX | |
| /* temporary, until we fix hotplug: */ |
| (EDMA_ERR_DEV_DCON | EDMA_ERR_DEV_CON), |
| |
| EDMA_EH_FREEZE = EDMA_ERR_D_PAR | |
| EDMA_ERR_PRD_PAR | |
| EDMA_ERR_DEV_DCON | |
| EDMA_ERR_DEV_CON | |
| EDMA_ERR_SERR | |
| EDMA_ERR_SELF_DIS | |
| EDMA_ERR_CRQB_PAR | |
| EDMA_ERR_CRPB_PAR | |
| EDMA_ERR_INTRL_PAR | |
| EDMA_ERR_IORDY | |
| EDMA_ERR_LNK_CTRL_RX_2 | |
| EDMA_ERR_LNK_DATA_RX | |
| EDMA_ERR_LNK_DATA_TX | |
| EDMA_ERR_TRANS_PROTO, |
| |
| EDMA_EH_FREEZE_5 = EDMA_ERR_D_PAR | |
| EDMA_ERR_PRD_PAR | |
| EDMA_ERR_DEV_DCON | |
| EDMA_ERR_DEV_CON | |
| EDMA_ERR_OVERRUN_5 | |
| EDMA_ERR_UNDERRUN_5 | |
| EDMA_ERR_SELF_DIS_5 | |
| EDMA_ERR_CRQB_PAR | |
| EDMA_ERR_CRPB_PAR | |
| EDMA_ERR_INTRL_PAR | |
| EDMA_ERR_IORDY, |
| |
| EDMA_REQ_Q_BASE_HI_OFS = 0x10, |
| EDMA_REQ_Q_IN_PTR_OFS = 0x14, /* also contains BASE_LO */ |
| |
| EDMA_REQ_Q_OUT_PTR_OFS = 0x18, |
| EDMA_REQ_Q_PTR_SHIFT = 5, |
| |
| EDMA_RSP_Q_BASE_HI_OFS = 0x1c, |
| EDMA_RSP_Q_IN_PTR_OFS = 0x20, |
| EDMA_RSP_Q_OUT_PTR_OFS = 0x24, /* also contains BASE_LO */ |
| EDMA_RSP_Q_PTR_SHIFT = 3, |
| |
| EDMA_CMD_OFS = 0x28, /* EDMA command register */ |
| EDMA_EN = (1 << 0), /* enable EDMA */ |
| EDMA_DS = (1 << 1), /* disable EDMA; self-negated */ |
| ATA_RST = (1 << 2), /* reset trans/link/phy */ |
| |
| EDMA_IORDY_TMOUT = 0x34, |
| EDMA_ARB_CFG = 0x38, |
| |
| /* Host private flags (hp_flags) */ |
| MV_HP_FLAG_MSI = (1 << 0), |
| MV_HP_ERRATA_50XXB0 = (1 << 1), |
| MV_HP_ERRATA_50XXB2 = (1 << 2), |
| MV_HP_ERRATA_60X1B2 = (1 << 3), |
| MV_HP_ERRATA_60X1C0 = (1 << 4), |
| MV_HP_ERRATA_XX42A0 = (1 << 5), |
| MV_HP_GEN_I = (1 << 6), /* Generation I: 50xx */ |
| MV_HP_GEN_II = (1 << 7), /* Generation II: 60xx */ |
| MV_HP_GEN_IIE = (1 << 8), /* Generation IIE: 6042/7042 */ |
| MV_HP_PCIE = (1 << 9), /* PCIe bus/regs: 7042 */ |
| |
| /* Port private flags (pp_flags) */ |
| MV_PP_FLAG_EDMA_EN = (1 << 0), /* is EDMA engine enabled? */ |
| MV_PP_FLAG_NCQ_EN = (1 << 1), /* is EDMA set up for NCQ? */ |
| }; |
| |
| #define IS_GEN_I(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_I) |
| #define IS_GEN_II(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_II) |
| #define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE) |
| #define HAS_PCI(host) (!((host)->ports[0]->flags & MV_FLAG_SOC)) |
| |
| enum { |
| /* DMA boundary 0xffff is required by the s/g splitting |
| * we need on /length/ in mv_fill-sg(). |
| */ |
| MV_DMA_BOUNDARY = 0xffffU, |
| |
| /* mask of register bits containing lower 32 bits |
| * of EDMA request queue DMA address |
| */ |
| EDMA_REQ_Q_BASE_LO_MASK = 0xfffffc00U, |
| |
| /* ditto, for response queue */ |
| EDMA_RSP_Q_BASE_LO_MASK = 0xffffff00U, |
| }; |
| |
| enum chip_type { |
| chip_504x, |
| chip_508x, |
| chip_5080, |
| chip_604x, |
| chip_608x, |
| chip_6042, |
| chip_7042, |
| chip_soc, |
| }; |
| |
| /* Command ReQuest Block: 32B */ |
| struct mv_crqb { |
| __le32 sg_addr; |
| __le32 sg_addr_hi; |
| __le16 ctrl_flags; |
| __le16 ata_cmd[11]; |
| }; |
| |
| struct mv_crqb_iie { |
| __le32 addr; |
| __le32 addr_hi; |
| __le32 flags; |
| __le32 len; |
| __le32 ata_cmd[4]; |
| }; |
| |
| /* Command ResPonse Block: 8B */ |
| struct mv_crpb { |
| __le16 id; |
| __le16 flags; |
| __le32 tmstmp; |
| }; |
| |
| /* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */ |
| struct mv_sg { |
| __le32 addr; |
| __le32 flags_size; |
| __le32 addr_hi; |
| __le32 reserved; |
| }; |
| |
| struct mv_port_priv { |
| struct mv_crqb *crqb; |
| dma_addr_t crqb_dma; |
| struct mv_crpb *crpb; |
| dma_addr_t crpb_dma; |
| struct mv_sg *sg_tbl[MV_MAX_Q_DEPTH]; |
| dma_addr_t sg_tbl_dma[MV_MAX_Q_DEPTH]; |
| |
| unsigned int req_idx; |
| unsigned int resp_idx; |
| |
| u32 pp_flags; |
| }; |
| |
| struct mv_port_signal { |
| u32 amps; |
| u32 pre; |
| }; |
| |
| struct mv_host_priv { |
| u32 hp_flags; |
| struct mv_port_signal signal[8]; |
| const struct mv_hw_ops *ops; |
| int n_ports; |
| void __iomem *base; |
| void __iomem *main_cause_reg_addr; |
| void __iomem *main_mask_reg_addr; |
| u32 irq_cause_ofs; |
| u32 irq_mask_ofs; |
| u32 unmask_all_irqs; |
| /* |
| * These consistent DMA memory pools give us guaranteed |
| * alignment for hardware-accessed data structures, |
| * and less memory waste in accomplishing the alignment. |
| */ |
| struct dma_pool *crqb_pool; |
| struct dma_pool *crpb_pool; |
| struct dma_pool *sg_tbl_pool; |
| }; |
| |
| struct mv_hw_ops { |
| void (*phy_errata)(struct mv_host_priv *hpriv, void __iomem *mmio, |
| unsigned int port); |
| void (*enable_leds)(struct mv_host_priv *hpriv, void __iomem *mmio); |
| void (*read_preamp)(struct mv_host_priv *hpriv, int idx, |
| void __iomem *mmio); |
| int (*reset_hc)(struct mv_host_priv *hpriv, void __iomem *mmio, |
| unsigned int n_hc); |
| void (*reset_flash)(struct mv_host_priv *hpriv, void __iomem *mmio); |
| void (*reset_bus)(struct ata_host *host, void __iomem *mmio); |
| }; |
| |
| static int mv_scr_read(struct ata_port *ap, unsigned int sc_reg_in, u32 *val); |
| static int mv_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val); |
| static int mv5_scr_read(struct ata_port *ap, unsigned int sc_reg_in, u32 *val); |
| static int mv5_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val); |
| static int mv_port_start(struct ata_port *ap); |
| static void mv_port_stop(struct ata_port *ap); |
| static void mv_qc_prep(struct ata_queued_cmd *qc); |
| static void mv_qc_prep_iie(struct ata_queued_cmd *qc); |
| static unsigned int mv_qc_issue(struct ata_queued_cmd *qc); |
| static int mv_hardreset(struct ata_link *link, unsigned int *class, |
| unsigned long deadline); |
| static void mv_eh_freeze(struct ata_port *ap); |
| static void mv_eh_thaw(struct ata_port *ap); |
| static void mv6_dev_config(struct ata_device *dev); |
| |
| static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio, |
| unsigned int port); |
| static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio); |
| static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx, |
| void __iomem *mmio); |
| static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio, |
| unsigned int n_hc); |
| static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio); |
| static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio); |
| |
| static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio, |
| unsigned int port); |
| static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio); |
| static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx, |
| void __iomem *mmio); |
| static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio, |
| unsigned int n_hc); |
| static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio); |
| static void mv_soc_enable_leds(struct mv_host_priv *hpriv, |
| void __iomem *mmio); |
| static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx, |
| void __iomem *mmio); |
| static int mv_soc_reset_hc(struct mv_host_priv *hpriv, |
| void __iomem *mmio, unsigned int n_hc); |
| static void mv_soc_reset_flash(struct mv_host_priv *hpriv, |
| void __iomem *mmio); |
| static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio); |
| static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio); |
| static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio, |
| unsigned int port_no); |
| static int mv_stop_edma(struct ata_port *ap); |
| static int mv_stop_edma_engine(void __iomem *port_mmio); |
| static void mv_edma_cfg(struct ata_port *ap, int want_ncq); |
| |
| static void mv_pmp_select(struct ata_port *ap, int pmp); |
| static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class, |
| unsigned long deadline); |
| static int mv_softreset(struct ata_link *link, unsigned int *class, |
| unsigned long deadline); |
| |
| /* .sg_tablesize is (MV_MAX_SG_CT / 2) in the structures below |
| * because we have to allow room for worst case splitting of |
| * PRDs for 64K boundaries in mv_fill_sg(). |
| */ |
| static struct scsi_host_template mv5_sht = { |
| ATA_BASE_SHT(DRV_NAME), |
| .sg_tablesize = MV_MAX_SG_CT / 2, |
| .dma_boundary = MV_DMA_BOUNDARY, |
| }; |
| |
| static struct scsi_host_template mv6_sht = { |
| ATA_NCQ_SHT(DRV_NAME), |
| .can_queue = MV_MAX_Q_DEPTH - 1, |
| .sg_tablesize = MV_MAX_SG_CT / 2, |
| .dma_boundary = MV_DMA_BOUNDARY, |
| }; |
| |
| static struct ata_port_operations mv5_ops = { |
| .inherits = &ata_sff_port_ops, |
| |
| .qc_prep = mv_qc_prep, |
| .qc_issue = mv_qc_issue, |
| |
| .freeze = mv_eh_freeze, |
| .thaw = mv_eh_thaw, |
| .hardreset = mv_hardreset, |
| .error_handler = ata_std_error_handler, /* avoid SFF EH */ |
| .post_internal_cmd = ATA_OP_NULL, |
| |
| .scr_read = mv5_scr_read, |
| .scr_write = mv5_scr_write, |
| |
| .port_start = mv_port_start, |
| .port_stop = mv_port_stop, |
| }; |
| |
| static struct ata_port_operations mv6_ops = { |
| .inherits = &mv5_ops, |
| .qc_defer = sata_pmp_qc_defer_cmd_switch, |
| .dev_config = mv6_dev_config, |
| .scr_read = mv_scr_read, |
| .scr_write = mv_scr_write, |
| |
| .pmp_hardreset = mv_pmp_hardreset, |
| .pmp_softreset = mv_softreset, |
| .softreset = mv_softreset, |
| .error_handler = sata_pmp_error_handler, |
| }; |
| |
| static struct ata_port_operations mv_iie_ops = { |
| .inherits = &mv6_ops, |
| .qc_defer = ata_std_qc_defer, /* FIS-based switching */ |
| .dev_config = ATA_OP_NULL, |
| .qc_prep = mv_qc_prep_iie, |
| }; |
| |
| static const struct ata_port_info mv_port_info[] = { |
| { /* chip_504x */ |
| .flags = MV_COMMON_FLAGS, |
| .pio_mask = 0x1f, /* pio0-4 */ |
| .udma_mask = ATA_UDMA6, |
| .port_ops = &mv5_ops, |
| }, |
| { /* chip_508x */ |
| .flags = MV_COMMON_FLAGS | MV_FLAG_DUAL_HC, |
| .pio_mask = 0x1f, /* pio0-4 */ |
| .udma_mask = ATA_UDMA6, |
| .port_ops = &mv5_ops, |
| }, |
| { /* chip_5080 */ |
| .flags = MV_COMMON_FLAGS | MV_FLAG_DUAL_HC, |
| .pio_mask = 0x1f, /* pio0-4 */ |
| .udma_mask = ATA_UDMA6, |
| .port_ops = &mv5_ops, |
| }, |
| { /* chip_604x */ |
| .flags = MV_COMMON_FLAGS | MV_6XXX_FLAGS | |
| ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA | |
| ATA_FLAG_NCQ, |
| .pio_mask = 0x1f, /* pio0-4 */ |
| .udma_mask = ATA_UDMA6, |
| .port_ops = &mv6_ops, |
| }, |
| { /* chip_608x */ |
| .flags = MV_COMMON_FLAGS | MV_6XXX_FLAGS | |
| ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA | |
| ATA_FLAG_NCQ | MV_FLAG_DUAL_HC, |
| .pio_mask = 0x1f, /* pio0-4 */ |
| .udma_mask = ATA_UDMA6, |
| .port_ops = &mv6_ops, |
| }, |
| { /* chip_6042 */ |
| .flags = MV_COMMON_FLAGS | MV_6XXX_FLAGS | |
| ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA | |
| ATA_FLAG_NCQ, |
| .pio_mask = 0x1f, /* pio0-4 */ |
| .udma_mask = ATA_UDMA6, |
| .port_ops = &mv_iie_ops, |
| }, |
| { /* chip_7042 */ |
| .flags = MV_COMMON_FLAGS | MV_6XXX_FLAGS | |
| ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA | |
| ATA_FLAG_NCQ, |
| .pio_mask = 0x1f, /* pio0-4 */ |
| .udma_mask = ATA_UDMA6, |
| .port_ops = &mv_iie_ops, |
| }, |
| { /* chip_soc */ |
| .flags = MV_COMMON_FLAGS | MV_6XXX_FLAGS | |
| ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA | |
| ATA_FLAG_NCQ | MV_FLAG_SOC, |
| .pio_mask = 0x1f, /* pio0-4 */ |
| .udma_mask = ATA_UDMA6, |
| .port_ops = &mv_iie_ops, |
| }, |
| }; |
| |
| static const struct pci_device_id mv_pci_tbl[] = { |
| { PCI_VDEVICE(MARVELL, 0x5040), chip_504x }, |
| { PCI_VDEVICE(MARVELL, 0x5041), chip_504x }, |
| { PCI_VDEVICE(MARVELL, 0x5080), chip_5080 }, |
| { PCI_VDEVICE(MARVELL, 0x5081), chip_508x }, |
| /* RocketRAID 1740/174x have different identifiers */ |
| { PCI_VDEVICE(TTI, 0x1740), chip_508x }, |
| { PCI_VDEVICE(TTI, 0x1742), chip_508x }, |
| |
| { PCI_VDEVICE(MARVELL, 0x6040), chip_604x }, |
| { PCI_VDEVICE(MARVELL, 0x6041), chip_604x }, |
| { PCI_VDEVICE(MARVELL, 0x6042), chip_6042 }, |
| { PCI_VDEVICE(MARVELL, 0x6080), chip_608x }, |
| { PCI_VDEVICE(MARVELL, 0x6081), chip_608x }, |
| |
| { PCI_VDEVICE(ADAPTEC2, 0x0241), chip_604x }, |
| |
| /* Adaptec 1430SA */ |
| { PCI_VDEVICE(ADAPTEC2, 0x0243), chip_7042 }, |
| |
| /* Marvell 7042 support */ |
| { PCI_VDEVICE(MARVELL, 0x7042), chip_7042 }, |
| |
| /* Highpoint RocketRAID PCIe series */ |
| { PCI_VDEVICE(TTI, 0x2300), chip_7042 }, |
| { PCI_VDEVICE(TTI, 0x2310), chip_7042 }, |
| |
| { } /* terminate list */ |
| }; |
| |
| static const struct mv_hw_ops mv5xxx_ops = { |
| .phy_errata = mv5_phy_errata, |
| .enable_leds = mv5_enable_leds, |
| .read_preamp = mv5_read_preamp, |
| .reset_hc = mv5_reset_hc, |
| .reset_flash = mv5_reset_flash, |
| .reset_bus = mv5_reset_bus, |
| }; |
| |
| static const struct mv_hw_ops mv6xxx_ops = { |
| .phy_errata = mv6_phy_errata, |
| .enable_leds = mv6_enable_leds, |
| .read_preamp = mv6_read_preamp, |
| .reset_hc = mv6_reset_hc, |
| .reset_flash = mv6_reset_flash, |
| .reset_bus = mv_reset_pci_bus, |
| }; |
| |
| static const struct mv_hw_ops mv_soc_ops = { |
| .phy_errata = mv6_phy_errata, |
| .enable_leds = mv_soc_enable_leds, |
| .read_preamp = mv_soc_read_preamp, |
| .reset_hc = mv_soc_reset_hc, |
| .reset_flash = mv_soc_reset_flash, |
| .reset_bus = mv_soc_reset_bus, |
| }; |
| |
| /* |
| * Functions |
| */ |
| |
| static inline void writelfl(unsigned long data, void __iomem *addr) |
| { |
| writel(data, addr); |
| (void) readl(addr); /* flush to avoid PCI posted write */ |
| } |
| |
| static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc) |
| { |
| return (base + MV_SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ)); |
| } |
| |
| static inline unsigned int mv_hc_from_port(unsigned int port) |
| { |
| return port >> MV_PORT_HC_SHIFT; |
| } |
| |
| static inline unsigned int mv_hardport_from_port(unsigned int port) |
| { |
| return port & MV_PORT_MASK; |
| } |
| |
| static inline void __iomem *mv_hc_base_from_port(void __iomem *base, |
| unsigned int port) |
| { |
| return mv_hc_base(base, mv_hc_from_port(port)); |
| } |
| |
| static inline void __iomem *mv_port_base(void __iomem *base, unsigned int port) |
| { |
| return mv_hc_base_from_port(base, port) + |
| MV_SATAHC_ARBTR_REG_SZ + |
| (mv_hardport_from_port(port) * MV_PORT_REG_SZ); |
| } |
| |
| static void __iomem *mv5_phy_base(void __iomem *mmio, unsigned int port) |
| { |
| void __iomem *hc_mmio = mv_hc_base_from_port(mmio, port); |
| unsigned long ofs = (mv_hardport_from_port(port) + 1) * 0x100UL; |
| |
| return hc_mmio + ofs; |
| } |
| |
| static inline void __iomem *mv_host_base(struct ata_host *host) |
| { |
| struct mv_host_priv *hpriv = host->private_data; |
| return hpriv->base; |
| } |
| |
| static inline void __iomem *mv_ap_base(struct ata_port *ap) |
| { |
| return mv_port_base(mv_host_base(ap->host), ap->port_no); |
| } |
| |
| static inline int mv_get_hc_count(unsigned long port_flags) |
| { |
| return ((port_flags & MV_FLAG_DUAL_HC) ? 2 : 1); |
| } |
| |
| static void mv_set_edma_ptrs(void __iomem *port_mmio, |
| struct mv_host_priv *hpriv, |
| struct mv_port_priv *pp) |
| { |
| u32 index; |
| |
| /* |
| * initialize request queue |
| */ |
| index = (pp->req_idx & MV_MAX_Q_DEPTH_MASK) << EDMA_REQ_Q_PTR_SHIFT; |
| |
| WARN_ON(pp->crqb_dma & 0x3ff); |
| writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI_OFS); |
| writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | index, |
| port_mmio + EDMA_REQ_Q_IN_PTR_OFS); |
| |
| if (hpriv->hp_flags & MV_HP_ERRATA_XX42A0) |
| writelfl((pp->crqb_dma & 0xffffffff) | index, |
| port_mmio + EDMA_REQ_Q_OUT_PTR_OFS); |
| else |
| writelfl(index, port_mmio + EDMA_REQ_Q_OUT_PTR_OFS); |
| |
| /* |
| * initialize response queue |
| */ |
| index = (pp->resp_idx & MV_MAX_Q_DEPTH_MASK) << EDMA_RSP_Q_PTR_SHIFT; |
| |
| WARN_ON(pp->crpb_dma & 0xff); |
| writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI_OFS); |
| |
| if (hpriv->hp_flags & MV_HP_ERRATA_XX42A0) |
| writelfl((pp->crpb_dma & 0xffffffff) | index, |
| port_mmio + EDMA_RSP_Q_IN_PTR_OFS); |
| else |
| writelfl(index, port_mmio + EDMA_RSP_Q_IN_PTR_OFS); |
| |
| writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) | index, |
| port_mmio + EDMA_RSP_Q_OUT_PTR_OFS); |
| } |
| |
| /** |
| * mv_start_dma - Enable eDMA engine |
| * @base: port base address |
| * @pp: port private data |
| * |
| * Verify the local cache of the eDMA state is accurate with a |
| * WARN_ON. |
| * |
| * LOCKING: |
| * Inherited from caller. |
| */ |
| static void mv_start_dma(struct ata_port *ap, void __iomem *port_mmio, |
| struct mv_port_priv *pp, u8 protocol) |
| { |
| int want_ncq = (protocol == ATA_PROT_NCQ); |
| |
| if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) { |
| int using_ncq = ((pp->pp_flags & MV_PP_FLAG_NCQ_EN) != 0); |
| if (want_ncq != using_ncq) |
| mv_stop_edma(ap); |
| } |
| if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) { |
| struct mv_host_priv *hpriv = ap->host->private_data; |
| int hard_port = mv_hardport_from_port(ap->port_no); |
| void __iomem *hc_mmio = mv_hc_base_from_port( |
| mv_host_base(ap->host), hard_port); |
| u32 hc_irq_cause, ipending; |
| |
| /* clear EDMA event indicators, if any */ |
| writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS); |
| |
| /* clear EDMA interrupt indicator, if any */ |
| hc_irq_cause = readl(hc_mmio + HC_IRQ_CAUSE_OFS); |
| ipending = (DEV_IRQ << hard_port) | |
| (CRPB_DMA_DONE << hard_port); |
| if (hc_irq_cause & ipending) { |
| writelfl(hc_irq_cause & ~ipending, |
| hc_mmio + HC_IRQ_CAUSE_OFS); |
| } |
| |
| mv_edma_cfg(ap, want_ncq); |
| |
| /* clear FIS IRQ Cause */ |
| writelfl(0, port_mmio + SATA_FIS_IRQ_CAUSE_OFS); |
| |
| mv_set_edma_ptrs(port_mmio, hpriv, pp); |
| |
| writelfl(EDMA_EN, port_mmio + EDMA_CMD_OFS); |
| pp->pp_flags |= MV_PP_FLAG_EDMA_EN; |
| } |
| WARN_ON(!(EDMA_EN & readl(port_mmio + EDMA_CMD_OFS))); |
| } |
| |
| /** |
| * mv_stop_edma_engine - Disable eDMA engine |
| * @port_mmio: io base address |
| * |
| * LOCKING: |
| * Inherited from caller. |
| */ |
| static int mv_stop_edma_engine(void __iomem *port_mmio) |
| { |
| int i; |
| |
| /* Disable eDMA. The disable bit auto clears. */ |
| writelfl(EDMA_DS, port_mmio + EDMA_CMD_OFS); |
| |
| /* Wait for the chip to confirm eDMA is off. */ |
| for (i = 10000; i > 0; i--) { |
| u32 reg = readl(port_mmio + EDMA_CMD_OFS); |
| if (!(reg & EDMA_EN)) |
| return 0; |
| udelay(10); |
| } |
| return -EIO; |
| } |
| |
| static int mv_stop_edma(struct ata_port *ap) |
| { |
| void __iomem *port_mmio = mv_ap_base(ap); |
| struct mv_port_priv *pp = ap->private_data; |
| |
| if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) |
| return 0; |
| pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN; |
| if (mv_stop_edma_engine(port_mmio)) { |
| ata_port_printk(ap, KERN_ERR, "Unable to stop eDMA\n"); |
| return -EIO; |
| } |
| return 0; |
| } |
| |
| #ifdef ATA_DEBUG |
| static void mv_dump_mem(void __iomem *start, unsigned bytes) |
| { |
| int b, w; |
| for (b = 0; b < bytes; ) { |
| DPRINTK("%p: ", start + b); |
| for (w = 0; b < bytes && w < 4; w++) { |
| printk("%08x ", readl(start + b)); |
| b += sizeof(u32); |
| } |
| printk("\n"); |
| } |
| } |
| #endif |
| |
| static void mv_dump_pci_cfg(struct pci_dev *pdev, unsigned bytes) |
| { |
| #ifdef ATA_DEBUG |
| int b, w; |
| u32 dw; |
| for (b = 0; b < bytes; ) { |
| DPRINTK("%02x: ", b); |
| for (w = 0; b < bytes && w < 4; w++) { |
| (void) pci_read_config_dword(pdev, b, &dw); |
| printk("%08x ", dw); |
| b += sizeof(u32); |
| } |
| printk("\n"); |
| } |
| #endif |
| } |
| static void mv_dump_all_regs(void __iomem *mmio_base, int port, |
| struct pci_dev *pdev) |
| { |
| #ifdef ATA_DEBUG |
| void __iomem *hc_base = mv_hc_base(mmio_base, |
| port >> MV_PORT_HC_SHIFT); |
| void __iomem *port_base; |
| int start_port, num_ports, p, start_hc, num_hcs, hc; |
| |
| if (0 > port) { |
| start_hc = start_port = 0; |
| num_ports = 8; /* shld be benign for 4 port devs */ |
| num_hcs = 2; |
| } else { |
| start_hc = port >> MV_PORT_HC_SHIFT; |
| start_port = port; |
| num_ports = num_hcs = 1; |
| } |
| DPRINTK("All registers for port(s) %u-%u:\n", start_port, |
| num_ports > 1 ? num_ports - 1 : start_port); |
| |
| if (NULL != pdev) { |
| DPRINTK("PCI config space regs:\n"); |
| mv_dump_pci_cfg(pdev, 0x68); |
| } |
| DPRINTK("PCI regs:\n"); |
| mv_dump_mem(mmio_base+0xc00, 0x3c); |
| mv_dump_mem(mmio_base+0xd00, 0x34); |
| mv_dump_mem(mmio_base+0xf00, 0x4); |
| mv_dump_mem(mmio_base+0x1d00, 0x6c); |
| for (hc = start_hc; hc < start_hc + num_hcs; hc++) { |
| hc_base = mv_hc_base(mmio_base, hc); |
| DPRINTK("HC regs (HC %i):\n", hc); |
| mv_dump_mem(hc_base, 0x1c); |
| } |
| for (p = start_port; p < start_port + num_ports; p++) { |
| port_base = mv_port_base(mmio_base, p); |
| DPRINTK("EDMA regs (port %i):\n", p); |
| mv_dump_mem(port_base, 0x54); |
| DPRINTK("SATA regs (port %i):\n", p); |
| mv_dump_mem(port_base+0x300, 0x60); |
| } |
| #endif |
| } |
| |
| static unsigned int mv_scr_offset(unsigned int sc_reg_in) |
| { |
| unsigned int ofs; |
| |
| switch (sc_reg_in) { |
| case SCR_STATUS: |
| case SCR_CONTROL: |
| case SCR_ERROR: |
| ofs = SATA_STATUS_OFS + (sc_reg_in * sizeof(u32)); |
| break; |
| case SCR_ACTIVE: |
| ofs = SATA_ACTIVE_OFS; /* active is not with the others */ |
| break; |
| default: |
| ofs = 0xffffffffU; |
| break; |
| } |
| return ofs; |
| } |
| |
| static int mv_scr_read(struct ata_port *ap, unsigned int sc_reg_in, u32 *val) |
| { |
| unsigned int ofs = mv_scr_offset(sc_reg_in); |
| |
| if (ofs != 0xffffffffU) { |
| *val = readl(mv_ap_base(ap) + ofs); |
| return 0; |
| } else |
| return -EINVAL; |
| } |
| |
| static int mv_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val) |
| { |
| unsigned int ofs = mv_scr_offset(sc_reg_in); |
| |
| if (ofs != 0xffffffffU) { |
| writelfl(val, mv_ap_base(ap) + ofs); |
| return 0; |
| } else |
| return -EINVAL; |
| } |
| |
| static void mv6_dev_config(struct ata_device *adev) |
| { |
| /* |
| * Deal with Gen-II ("mv6") hardware quirks/restrictions: |
| * |
| * Gen-II does not support NCQ over a port multiplier |
| * (no FIS-based switching). |
| * |
| * We don't have hob_nsect when doing NCQ commands on Gen-II. |
| * See mv_qc_prep() for more info. |
| */ |
| if (adev->flags & ATA_DFLAG_NCQ) { |
| if (sata_pmp_attached(adev->link->ap)) |
| adev->flags &= ~ATA_DFLAG_NCQ; |
| else if (adev->max_sectors > ATA_MAX_SECTORS) |
| adev->max_sectors = ATA_MAX_SECTORS; |
| } |
| } |
| |
| static void mv_config_fbs(void __iomem *port_mmio, int enable_fbs) |
| { |
| u32 old_fcfg, new_fcfg, old_ltmode, new_ltmode; |
| /* |
| * Various bit settings required for operation |
| * in FIS-based switching (fbs) mode on GenIIe: |
| */ |
| old_fcfg = readl(port_mmio + FIS_CFG_OFS); |
| old_ltmode = readl(port_mmio + LTMODE_OFS); |
| if (enable_fbs) { |
| new_fcfg = old_fcfg | FIS_CFG_SINGLE_SYNC; |
| new_ltmode = old_ltmode | LTMODE_BIT8; |
| } else { /* disable fbs */ |
| new_fcfg = old_fcfg & ~FIS_CFG_SINGLE_SYNC; |
| new_ltmode = old_ltmode & ~LTMODE_BIT8; |
| } |
| if (new_fcfg != old_fcfg) |
| writelfl(new_fcfg, port_mmio + FIS_CFG_OFS); |
| if (new_ltmode != old_ltmode) |
| writelfl(new_ltmode, port_mmio + LTMODE_OFS); |
| } |
| |
| static void mv_edma_cfg(struct ata_port *ap, int want_ncq) |
| { |
| u32 cfg; |
| struct mv_port_priv *pp = ap->private_data; |
| struct mv_host_priv *hpriv = ap->host->private_data; |
| void __iomem *port_mmio = mv_ap_base(ap); |
| |
| /* set up non-NCQ EDMA configuration */ |
| cfg = EDMA_CFG_Q_DEPTH; /* always 0x1f for *all* chips */ |
| |
| if (IS_GEN_I(hpriv)) |
| cfg |= (1 << 8); /* enab config burst size mask */ |
| |
| else if (IS_GEN_II(hpriv)) |
| cfg |= EDMA_CFG_RD_BRST_EXT | EDMA_CFG_WR_BUFF_LEN; |
| |
| else if (IS_GEN_IIE(hpriv)) { |
| cfg |= (1 << 23); /* do not mask PM field in rx'd FIS */ |
| cfg |= (1 << 22); /* enab 4-entry host queue cache */ |
| cfg |= (1 << 18); /* enab early completion */ |
| cfg |= (1 << 17); /* enab cut-through (dis stor&forwrd) */ |
| |
| if (want_ncq && sata_pmp_attached(ap)) { |
| cfg |= EDMA_CFG_EDMA_FBS; /* FIS-based switching */ |
| mv_config_fbs(port_mmio, 1); |
| } else { |
| mv_config_fbs(port_mmio, 0); |
| } |
| } |
| |
| if (want_ncq) { |
| cfg |= EDMA_CFG_NCQ; |
| pp->pp_flags |= MV_PP_FLAG_NCQ_EN; |
| } else |
| pp->pp_flags &= ~MV_PP_FLAG_NCQ_EN; |
| |
| writelfl(cfg, port_mmio + EDMA_CFG_OFS); |
| } |
| |
| static void mv_port_free_dma_mem(struct ata_port *ap) |
| { |
| struct mv_host_priv *hpriv = ap->host->private_data; |
| struct mv_port_priv *pp = ap->private_data; |
| int tag; |
| |
| if (pp->crqb) { |
| dma_pool_free(hpriv->crqb_pool, pp->crqb, pp->crqb_dma); |
| pp->crqb = NULL; |
| } |
| if (pp->crpb) { |
| dma_pool_free(hpriv->crpb_pool, pp->crpb, pp->crpb_dma); |
| pp->crpb = NULL; |
| } |
| /* |
| * For GEN_I, there's no NCQ, so we have only a single sg_tbl. |
| * For later hardware, we have one unique sg_tbl per NCQ tag. |
| */ |
| for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) { |
| if (pp->sg_tbl[tag]) { |
| if (tag == 0 || !IS_GEN_I(hpriv)) |
| dma_pool_free(hpriv->sg_tbl_pool, |
| pp->sg_tbl[tag], |
| pp->sg_tbl_dma[tag]); |
| pp->sg_tbl[tag] = NULL; |
| } |
| } |
| } |
| |
| /** |
| * mv_port_start - Port specific init/start routine. |
| * @ap: ATA channel to manipulate |
| * |
| * Allocate and point to DMA memory, init port private memory, |
| * zero indices. |
| * |
| * LOCKING: |
| * Inherited from caller. |
| */ |
| static int mv_port_start(struct ata_port *ap) |
| { |
| struct device *dev = ap->host->dev; |
| struct mv_host_priv *hpriv = ap->host->private_data; |
| struct mv_port_priv *pp; |
| int tag; |
| |
| pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL); |
| if (!pp) |
| return -ENOMEM; |
| ap->private_data = pp; |
| |
| pp->crqb = dma_pool_alloc(hpriv->crqb_pool, GFP_KERNEL, &pp->crqb_dma); |
| if (!pp->crqb) |
| return -ENOMEM; |
| memset(pp->crqb, 0, MV_CRQB_Q_SZ); |
| |
| pp->crpb = dma_pool_alloc(hpriv->crpb_pool, GFP_KERNEL, &pp->crpb_dma); |
| if (!pp->crpb) |
| goto out_port_free_dma_mem; |
| memset(pp->crpb, 0, MV_CRPB_Q_SZ); |
| |
| /* |
| * For GEN_I, there's no NCQ, so we only allocate a single sg_tbl. |
| * For later hardware, we need one unique sg_tbl per NCQ tag. |
| */ |
| for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) { |
| if (tag == 0 || !IS_GEN_I(hpriv)) { |
| pp->sg_tbl[tag] = dma_pool_alloc(hpriv->sg_tbl_pool, |
| GFP_KERNEL, &pp->sg_tbl_dma[tag]); |
| if (!pp->sg_tbl[tag]) |
| goto out_port_free_dma_mem; |
| } else { |
| pp->sg_tbl[tag] = pp->sg_tbl[0]; |
| pp->sg_tbl_dma[tag] = pp->sg_tbl_dma[0]; |
| } |
| } |
| return 0; |
| |
| out_port_free_dma_mem: |
| mv_port_free_dma_mem(ap); |
| return -ENOMEM; |
| } |
| |
| /** |
| * mv_port_stop - Port specific cleanup/stop routine. |
| * @ap: ATA channel to manipulate |
| * |
| * Stop DMA, cleanup port memory. |
| * |
| * LOCKING: |
| * This routine uses the host lock to protect the DMA stop. |
| */ |
| static void mv_port_stop(struct ata_port *ap) |
| { |
| mv_stop_edma(ap); |
| mv_port_free_dma_mem(ap); |
| } |
| |
| /** |
| * mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries |
| * @qc: queued command whose SG list to source from |
| * |
| * Populate the SG list and mark the last entry. |
| * |
| * LOCKING: |
| * Inherited from caller. |
| */ |
| static void mv_fill_sg(struct ata_queued_cmd *qc) |
| { |
| struct mv_port_priv *pp = qc->ap->private_data; |
| struct scatterlist *sg; |
| struct mv_sg *mv_sg, *last_sg = NULL; |
| unsigned int si; |
| |
| mv_sg = pp->sg_tbl[qc->tag]; |
| for_each_sg(qc->sg, sg, qc->n_elem, si) { |
| dma_addr_t addr = sg_dma_address(sg); |
| u32 sg_len = sg_dma_len(sg); |
| |
| while (sg_len) { |
| u32 offset = addr & 0xffff; |
| u32 len = sg_len; |
| |
| if ((offset + sg_len > 0x10000)) |
| len = 0x10000 - offset; |
| |
| mv_sg->addr = cpu_to_le32(addr & 0xffffffff); |
| mv_sg->addr_hi = cpu_to_le32((addr >> 16) >> 16); |
| mv_sg->flags_size = cpu_to_le32(len & 0xffff); |
| |
| sg_len -= len; |
| addr += len; |
| |
| last_sg = mv_sg; |
| mv_sg++; |
| } |
| } |
| |
| if (likely(last_sg)) |
| last_sg->flags_size |= cpu_to_le32(EPRD_FLAG_END_OF_TBL); |
| } |
| |
| static void mv_crqb_pack_cmd(__le16 *cmdw, u8 data, u8 addr, unsigned last) |
| { |
| u16 tmp = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS | |
| (last ? CRQB_CMD_LAST : 0); |
| *cmdw = cpu_to_le16(tmp); |
| } |
| |
| /** |
| * mv_qc_prep - Host specific command preparation. |
| * @qc: queued command to prepare |
| * |
| * This routine simply redirects to the general purpose routine |
| * if command is not DMA. Else, it handles prep of the CRQB |
| * (command request block), does some sanity checking, and calls |
| * the SG load routine. |
| * |
| * LOCKING: |
| * Inherited from caller. |
| */ |
| static void mv_qc_prep(struct ata_queued_cmd *qc) |
| { |
| struct ata_port *ap = qc->ap; |
| struct mv_port_priv *pp = ap->private_data; |
| __le16 *cw; |
| struct ata_taskfile *tf; |
| u16 flags = 0; |
| unsigned in_index; |
| |
| if ((qc->tf.protocol != ATA_PROT_DMA) && |
| (qc->tf.protocol != ATA_PROT_NCQ)) |
| return; |
| |
| /* Fill in command request block |
| */ |
| if (!(qc->tf.flags & ATA_TFLAG_WRITE)) |
| flags |= CRQB_FLAG_READ; |
| WARN_ON(MV_MAX_Q_DEPTH <= qc->tag); |
| flags |= qc->tag << CRQB_TAG_SHIFT; |
| flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT; |
| |
| /* get current queue index from software */ |
| in_index = pp->req_idx & MV_MAX_Q_DEPTH_MASK; |
| |
| pp->crqb[in_index].sg_addr = |
| cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff); |
| pp->crqb[in_index].sg_addr_hi = |
| cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16); |
| pp->crqb[in_index].ctrl_flags = cpu_to_le16(flags); |
| |
| cw = &pp->crqb[in_index].ata_cmd[0]; |
| tf = &qc->tf; |
| |
| /* Sadly, the CRQB cannot accomodate all registers--there are |
| * only 11 bytes...so we must pick and choose required |
| * registers based on the command. So, we drop feature and |
| * hob_feature for [RW] DMA commands, but they are needed for |
| * NCQ. NCQ will drop hob_nsect. |
| */ |
| switch (tf->command) { |
| case ATA_CMD_READ: |
| case ATA_CMD_READ_EXT: |
| case ATA_CMD_WRITE: |
| case ATA_CMD_WRITE_EXT: |
| case ATA_CMD_WRITE_FUA_EXT: |
| mv_crqb_pack_cmd(cw++, tf->hob_nsect, ATA_REG_NSECT, 0); |
| break; |
| case ATA_CMD_FPDMA_READ: |
| case ATA_CMD_FPDMA_WRITE: |
| mv_crqb_pack_cmd(cw++, tf->hob_feature, ATA_REG_FEATURE, 0); |
| mv_crqb_pack_cmd(cw++, tf->feature, ATA_REG_FEATURE, 0); |
| break; |
| default: |
| /* The only other commands EDMA supports in non-queued and |
| * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none |
| * of which are defined/used by Linux. If we get here, this |
| * driver needs work. |
| * |
| * FIXME: modify libata to give qc_prep a return value and |
| * return error here. |
| */ |
| BUG_ON(tf->command); |
| break; |
| } |
| mv_crqb_pack_cmd(cw++, tf->nsect, ATA_REG_NSECT, 0); |
| mv_crqb_pack_cmd(cw++, tf->hob_lbal, ATA_REG_LBAL, 0); |
| mv_crqb_pack_cmd(cw++, tf->lbal, ATA_REG_LBAL, 0); |
| mv_crqb_pack_cmd(cw++, tf->hob_lbam, ATA_REG_LBAM, 0); |
| mv_crqb_pack_cmd(cw++, tf->lbam, ATA_REG_LBAM, 0); |
| mv_crqb_pack_cmd(cw++, tf->hob_lbah, ATA_REG_LBAH, 0); |
| mv_crqb_pack_cmd(cw++, tf->lbah, ATA_REG_LBAH, 0); |
| mv_crqb_pack_cmd(cw++, tf->device, ATA_REG_DEVICE, 0); |
| mv_crqb_pack_cmd(cw++, tf->command, ATA_REG_CMD, 1); /* last */ |
| |
| if (!(qc->flags & ATA_QCFLAG_DMAMAP)) |
| return; |
| mv_fill_sg(qc); |
| } |
| |
| /** |
| * mv_qc_prep_iie - Host specific command preparation. |
| * @qc: queued command to prepare |
| * |
| * This routine simply redirects to the general purpose routine |
| * if command is not DMA. Else, it handles prep of the CRQB |
| * (command request block), does some sanity checking, and calls |
| * the SG load routine. |
| * |
| * LOCKING: |
| * Inherited from caller. |
| */ |
| static void mv_qc_prep_iie(struct ata_queued_cmd *qc) |
| { |
| struct ata_port *ap = qc->ap; |
| struct mv_port_priv *pp = ap->private_data; |
| struct mv_crqb_iie *crqb; |
| struct ata_taskfile *tf; |
| unsigned in_index; |
| u32 flags = 0; |
| |
| if ((qc->tf.protocol != ATA_PROT_DMA) && |
| (qc->tf.protocol != ATA_PROT_NCQ)) |
| return; |
| |
| /* Fill in Gen IIE command request block */ |
| if (!(qc->tf.flags & ATA_TFLAG_WRITE)) |
| flags |= CRQB_FLAG_READ; |
| |
| WARN_ON(MV_MAX_Q_DEPTH <= qc->tag); |
| flags |= qc->tag << CRQB_TAG_SHIFT; |
| flags |= qc->tag << CRQB_HOSTQ_SHIFT; |
| flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT; |
| |
| /* get current queue index from software */ |
| in_index = pp->req_idx & MV_MAX_Q_DEPTH_MASK; |
| |
| crqb = (struct mv_crqb_iie *) &pp->crqb[in_index]; |
| crqb->addr = cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff); |
| crqb->addr_hi = cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16); |
| crqb->flags = cpu_to_le32(flags); |
| |
| tf = &qc->tf; |
| crqb->ata_cmd[0] = cpu_to_le32( |
| (tf->command << 16) | |
| (tf->feature << 24) |
| ); |
| crqb->ata_cmd[1] = cpu_to_le32( |
| (tf->lbal << 0) | |
| (tf->lbam << 8) | |
| (tf->lbah << 16) | |
| (tf->device << 24) |
| ); |
| crqb->ata_cmd[2] = cpu_to_le32( |
| (tf->hob_lbal << 0) | |
| (tf->hob_lbam << 8) | |
| (tf->hob_lbah << 16) | |
| (tf->hob_feature << 24) |
| ); |
| crqb->ata_cmd[3] = cpu_to_le32( |
| (tf->nsect << 0) | |
| (tf->hob_nsect << 8) |
| ); |
| |
| if (!(qc->flags & ATA_QCFLAG_DMAMAP)) |
| return; |
| mv_fill_sg(qc); |
| } |
| |
| /** |
| * mv_qc_issue - Initiate a command to the host |
| * @qc: queued command to start |
| * |
| * This routine simply redirects to the general purpose routine |
| * if command is not DMA. Else, it sanity checks our local |
| * caches of the request producer/consumer indices then enables |
| * DMA and bumps the request producer index. |
| * |
| * LOCKING: |
| * Inherited from caller. |
| */ |
| static unsigned int mv_qc_issue(struct ata_queued_cmd *qc) |
| { |
| struct ata_port *ap = qc->ap; |
| void __iomem *port_mmio = mv_ap_base(ap); |
| struct mv_port_priv *pp = ap->private_data; |
| u32 in_index; |
| |
| if ((qc->tf.protocol != ATA_PROT_DMA) && |
| (qc->tf.protocol != ATA_PROT_NCQ)) { |
| /* |
| * We're about to send a non-EDMA capable command to the |
| * port. Turn off EDMA so there won't be problems accessing |
| * shadow block, etc registers. |
| */ |
| mv_stop_edma(ap); |
| mv_pmp_select(ap, qc->dev->link->pmp); |
| return ata_sff_qc_issue(qc); |
| } |
| |
| mv_start_dma(ap, port_mmio, pp, qc->tf.protocol); |
| |
| pp->req_idx++; |
| |
| in_index = (pp->req_idx & MV_MAX_Q_DEPTH_MASK) << EDMA_REQ_Q_PTR_SHIFT; |
| |
| /* and write the request in pointer to kick the EDMA to life */ |
| writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | in_index, |
| port_mmio + EDMA_REQ_Q_IN_PTR_OFS); |
| |
| return 0; |
| } |
| |
| /** |
| * mv_err_intr - Handle error interrupts on the port |
| * @ap: ATA channel to manipulate |
| * @reset_allowed: bool: 0 == don't trigger from reset here |
| * |
| * In most cases, just clear the interrupt and move on. However, |
| * some cases require an eDMA reset, which also performs a COMRESET. |
| * The SERR case requires a clear of pending errors in the SATA |
| * SERROR register. Finally, if the port disabled DMA, |
| * update our cached copy to match. |
| * |
| * LOCKING: |
| * Inherited from caller. |
| */ |
| static void mv_err_intr(struct ata_port *ap, struct ata_queued_cmd *qc) |
| { |
| void __iomem *port_mmio = mv_ap_base(ap); |
| u32 edma_err_cause, eh_freeze_mask, serr = 0; |
| struct mv_port_priv *pp = ap->private_data; |
| struct mv_host_priv *hpriv = ap->host->private_data; |
| unsigned int edma_enabled = (pp->pp_flags & MV_PP_FLAG_EDMA_EN); |
| unsigned int action = 0, err_mask = 0; |
| struct ata_eh_info *ehi = &ap->link.eh_info; |
| |
| ata_ehi_clear_desc(ehi); |
| |
| if (!edma_enabled) { |
| /* just a guess: do we need to do this? should we |
| * expand this, and do it in all cases? |
| */ |
| sata_scr_read(&ap->link, SCR_ERROR, &serr); |
| sata_scr_write_flush(&ap->link, SCR_ERROR, serr); |
| } |
| |
| edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE_OFS); |
| |
| ata_ehi_push_desc(ehi, "edma_err 0x%08x", edma_err_cause); |
| |
| /* |
| * all generations share these EDMA error cause bits |
| */ |
| |
| if (edma_err_cause & EDMA_ERR_DEV) |
| err_mask |= AC_ERR_DEV; |
| if (edma_err_cause & (EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR | |
| EDMA_ERR_CRQB_PAR | EDMA_ERR_CRPB_PAR | |
| EDMA_ERR_INTRL_PAR)) { |
| err_mask |= AC_ERR_ATA_BUS; |
| action |= ATA_EH_RESET; |
| ata_ehi_push_desc(ehi, "parity error"); |
| } |
| if (edma_err_cause & (EDMA_ERR_DEV_DCON | EDMA_ERR_DEV_CON)) { |
| ata_ehi_hotplugged(ehi); |
| ata_ehi_push_desc(ehi, edma_err_cause & EDMA_ERR_DEV_DCON ? |
| "dev disconnect" : "dev connect"); |
| action |= ATA_EH_RESET; |
| } |
| |
| if (IS_GEN_I(hpriv)) { |
| eh_freeze_mask = EDMA_EH_FREEZE_5; |
| |
| if (edma_err_cause & EDMA_ERR_SELF_DIS_5) { |
| pp = ap->private_data; |
| pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN; |
| ata_ehi_push_desc(ehi, "EDMA self-disable"); |
| } |
| } else { |
| eh_freeze_mask = EDMA_EH_FREEZE; |
| |
| if (edma_err_cause & EDMA_ERR_SELF_DIS) { |
| pp = ap->private_data; |
| pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN; |
| ata_ehi_push_desc(ehi, "EDMA self-disable"); |
| } |
| |
| if (edma_err_cause & EDMA_ERR_SERR) { |
| sata_scr_read(&ap->link, SCR_ERROR, &serr); |
| sata_scr_write_flush(&ap->link, SCR_ERROR, serr); |
| err_mask = AC_ERR_ATA_BUS; |
| action |= ATA_EH_RESET; |
| } |
| } |
| |
| /* Clear EDMA now that SERR cleanup done */ |
| writelfl(~edma_err_cause, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS); |
| |
| if (!err_mask) { |
| err_mask = AC_ERR_OTHER; |
| action |= ATA_EH_RESET; |
| } |
| |
| ehi->serror |= serr; |
| ehi->action |= action; |
| |
| if (qc) |
| qc->err_mask |= err_mask; |
| else |
| ehi->err_mask |= err_mask; |
| |
| if (edma_err_cause & eh_freeze_mask) |
| ata_port_freeze(ap); |
| else |
| ata_port_abort(ap); |
| } |
| |
| static void mv_intr_pio(struct ata_port *ap) |
| { |
| struct ata_queued_cmd *qc; |
| u8 ata_status; |
| |
| /* ignore spurious intr if drive still BUSY */ |
| ata_status = readb(ap->ioaddr.status_addr); |
| if (unlikely(ata_status & ATA_BUSY)) |
| return; |
| |
| /* get active ATA command */ |
| qc = ata_qc_from_tag(ap, ap->link.active_tag); |
| if (unlikely(!qc)) /* no active tag */ |
| return; |
| if (qc->tf.flags & ATA_TFLAG_POLLING) /* polling; we don't own qc */ |
| return; |
| |
| /* and finally, complete the ATA command */ |
| qc->err_mask |= ac_err_mask(ata_status); |
| ata_qc_complete(qc); |
| } |
| |
| static void mv_intr_edma(struct ata_port *ap) |
| { |
| void __iomem *port_mmio = mv_ap_base(ap); |
| struct mv_host_priv *hpriv = ap->host->private_data; |
| struct mv_port_priv *pp = ap->private_data; |
| struct ata_queued_cmd *qc; |
| u32 out_index, in_index; |
| bool work_done = false; |
| |
| /* get h/w response queue pointer */ |
| in_index = (readl(port_mmio + EDMA_RSP_Q_IN_PTR_OFS) |
| >> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK; |
| |
| while (1) { |
| u16 status; |
| unsigned int tag; |
| |
| /* get s/w response queue last-read pointer, and compare */ |
| out_index = pp->resp_idx & MV_MAX_Q_DEPTH_MASK; |
| if (in_index == out_index) |
| break; |
| |
| /* 50xx: get active ATA command */ |
| if (IS_GEN_I(hpriv)) |
| tag = ap->link.active_tag; |
| |
| /* Gen II/IIE: get active ATA command via tag, to enable |
| * support for queueing. this works transparently for |
| * queued and non-queued modes. |
| */ |
| else |
| tag = le16_to_cpu(pp->crpb[out_index].id) & 0x1f; |
| |
| qc = ata_qc_from_tag(ap, tag); |
| |
| /* For non-NCQ mode, the lower 8 bits of status |
| * are from EDMA_ERR_IRQ_CAUSE_OFS, |
| * which should be zero if all went well. |
| */ |
| status = le16_to_cpu(pp->crpb[out_index].flags); |
| if ((status & 0xff) && !(pp->pp_flags & MV_PP_FLAG_NCQ_EN)) { |
| mv_err_intr(ap, qc); |
| return; |
| } |
| |
| /* and finally, complete the ATA command */ |
| if (qc) { |
| qc->err_mask |= |
| ac_err_mask(status >> CRPB_FLAG_STATUS_SHIFT); |
| ata_qc_complete(qc); |
| } |
| |
| /* advance software response queue pointer, to |
| * indicate (after the loop completes) to hardware |
| * that we have consumed a response queue entry. |
| */ |
| work_done = true; |
| pp->resp_idx++; |
| } |
| |
| if (work_done) |
| writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) | |
| (out_index << EDMA_RSP_Q_PTR_SHIFT), |
| port_mmio + EDMA_RSP_Q_OUT_PTR_OFS); |
| } |
| |
| /** |
| * mv_host_intr - Handle all interrupts on the given host controller |
| * @host: host specific structure |
| * @relevant: port error bits relevant to this host controller |
| * @hc: which host controller we're to look at |
| * |
| * Read then write clear the HC interrupt status then walk each |
| * port connected to the HC and see if it needs servicing. Port |
| * success ints are reported in the HC interrupt status reg, the |
| * port error ints are reported in the higher level main |
| * interrupt status register and thus are passed in via the |
| * 'relevant' argument. |
| * |
| * LOCKING: |
| * Inherited from caller. |
| */ |
| static void mv_host_intr(struct ata_host *host, u32 relevant, unsigned int hc) |
| { |
| struct mv_host_priv *hpriv = host->private_data; |
| void __iomem *mmio = hpriv->base; |
| void __iomem *hc_mmio = mv_hc_base(mmio, hc); |
| u32 hc_irq_cause; |
| int port, port0, last_port; |
| |
| if (hc == 0) |
| port0 = 0; |
| else |
| port0 = MV_PORTS_PER_HC; |
| |
| if (HAS_PCI(host)) |
| last_port = port0 + MV_PORTS_PER_HC; |
| else |
| last_port = port0 + hpriv->n_ports; |
| /* we'll need the HC success int register in most cases */ |
| hc_irq_cause = readl(hc_mmio + HC_IRQ_CAUSE_OFS); |
| if (!hc_irq_cause) |
| return; |
| |
| writelfl(~hc_irq_cause, hc_mmio + HC_IRQ_CAUSE_OFS); |
| |
| VPRINTK("ENTER, hc%u relevant=0x%08x HC IRQ cause=0x%08x\n", |
| hc, relevant, hc_irq_cause); |
| |
| for (port = port0; port < last_port; port++) { |
| struct ata_port *ap = host->ports[port]; |
| struct mv_port_priv *pp; |
| int have_err_bits, hard_port, shift; |
| |
| if ((!ap) || (ap->flags & ATA_FLAG_DISABLED)) |
| continue; |
| |
| pp = ap->private_data; |
| |
| shift = port << 1; /* (port * 2) */ |
| if (port >= MV_PORTS_PER_HC) |
| shift++; /* skip bit 8 in the HC Main IRQ reg */ |
| |
| have_err_bits = ((PORT0_ERR << shift) & relevant); |
| |
| if (unlikely(have_err_bits)) { |
| struct ata_queued_cmd *qc; |
| |
| qc = ata_qc_from_tag(ap, ap->link.active_tag); |
| if (qc && (qc->tf.flags & ATA_TFLAG_POLLING)) |
| continue; |
| |
| mv_err_intr(ap, qc); |
| continue; |
| } |
| |
| hard_port = mv_hardport_from_port(port); /* range 0..3 */ |
| |
| if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) { |
| if ((CRPB_DMA_DONE << hard_port) & hc_irq_cause) |
| mv_intr_edma(ap); |
| } else { |
| if ((DEV_IRQ << hard_port) & hc_irq_cause) |
| mv_intr_pio(ap); |
| } |
| } |
| VPRINTK("EXIT\n"); |
| } |
| |
| static void mv_pci_error(struct ata_host *host, void __iomem *mmio) |
| { |
| struct mv_host_priv *hpriv = host->private_data; |
| struct ata_port *ap; |
| struct ata_queued_cmd *qc; |
| struct ata_eh_info *ehi; |
| unsigned int i, err_mask, printed = 0; |
| u32 err_cause; |
| |
| err_cause = readl(mmio + hpriv->irq_cause_ofs); |
| |
| dev_printk(KERN_ERR, host->dev, "PCI ERROR; PCI IRQ cause=0x%08x\n", |
| err_cause); |
| |
| DPRINTK("All regs @ PCI error\n"); |
| mv_dump_all_regs(mmio, -1, to_pci_dev(host->dev)); |
| |
| writelfl(0, mmio + hpriv->irq_cause_ofs); |
| |
| for (i = 0; i < host->n_ports; i++) { |
| ap = host->ports[i]; |
| if (!ata_link_offline(&ap->link)) { |
| ehi = &ap->link.eh_info; |
| ata_ehi_clear_desc(ehi); |
| if (!printed++) |
| ata_ehi_push_desc(ehi, |
| "PCI err cause 0x%08x", err_cause); |
| err_mask = AC_ERR_HOST_BUS; |
| ehi->action = ATA_EH_RESET; |
| qc = ata_qc_from_tag(ap, ap->link.active_tag); |
| if (qc) |
| qc->err_mask |= err_mask; |
| else |
| ehi->err_mask |= err_mask; |
| |
| ata_port_freeze(ap); |
| } |
| } |
| } |
| |
| /** |
| * mv_interrupt - Main interrupt event handler |
| * @irq: unused |
| * @dev_instance: private data; in this case the host structure |
| * |
| * Read the read only register to determine if any host |
| * controllers have pending interrupts. If so, call lower level |
| * routine to handle. Also check for PCI errors which are only |
| * reported here. |
| * |
| * LOCKING: |
| * This routine holds the host lock while processing pending |
| * interrupts. |
| */ |
| static irqreturn_t mv_interrupt(int irq, void *dev_instance) |
| { |
| struct ata_host *host = dev_instance; |
| struct mv_host_priv *hpriv = host->private_data; |
| unsigned int hc, handled = 0, n_hcs; |
| void __iomem *mmio = hpriv->base; |
| u32 irq_stat, irq_mask; |
| |
| /* Note to self: &host->lock == &ap->host->lock == ap->lock */ |
| spin_lock(&host->lock); |
| |
| irq_stat = readl(hpriv->main_cause_reg_addr); |
| irq_mask = readl(hpriv->main_mask_reg_addr); |
| |
| /* check the cases where we either have nothing pending or have read |
| * a bogus register value which can indicate HW removal or PCI fault |
| */ |
| if (!(irq_stat & irq_mask) || (0xffffffffU == irq_stat)) |
| goto out_unlock; |
| |
| n_hcs = mv_get_hc_count(host->ports[0]->flags); |
| |
| if (unlikely((irq_stat & PCI_ERR) && HAS_PCI(host))) { |
| mv_pci_error(host, mmio); |
| handled = 1; |
| goto out_unlock; /* skip all other HC irq handling */ |
| } |
| |
| for (hc = 0; hc < n_hcs; hc++) { |
| u32 relevant = irq_stat & (HC0_IRQ_PEND << (hc * HC_SHIFT)); |
| if (relevant) { |
| mv_host_intr(host, relevant, hc); |
| handled = 1; |
| } |
| } |
| |
| out_unlock: |
| spin_unlock(&host->lock); |
| |
| return IRQ_RETVAL(handled); |
| } |
| |
| static unsigned int mv5_scr_offset(unsigned int sc_reg_in) |
| { |
| unsigned int ofs; |
| |
| switch (sc_reg_in) { |
| case SCR_STATUS: |
| case SCR_ERROR: |
| case SCR_CONTROL: |
| ofs = sc_reg_in * sizeof(u32); |
| break; |
| default: |
| ofs = 0xffffffffU; |
| break; |
| } |
| return ofs; |
| } |
| |
| static int mv5_scr_read(struct ata_port *ap, unsigned int sc_reg_in, u32 *val) |
| { |
| struct mv_host_priv *hpriv = ap->host->private_data; |
| void __iomem *mmio = hpriv->base; |
| void __iomem *addr = mv5_phy_base(mmio, ap->port_no); |
| unsigned int ofs = mv5_scr_offset(sc_reg_in); |
| |
| if (ofs != 0xffffffffU) { |
| *val = readl(addr + ofs); |
| return 0; |
| } else |
| return -EINVAL; |
| } |
| |
| static int mv5_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val) |
| { |
| struct mv_host_priv *hpriv = ap->host->private_data; |
| void __iomem *mmio = hpriv->base; |
| void __iomem *addr = mv5_phy_base(mmio, ap->port_no); |
| unsigned int ofs = mv5_scr_offset(sc_reg_in); |
| |
| if (ofs != 0xffffffffU) { |
| writelfl(val, addr + ofs); |
| return 0; |
| } else |
| return -EINVAL; |
| } |
| |
| static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio) |
| { |
| struct pci_dev *pdev = to_pci_dev(host->dev); |
| int early_5080; |
| |
| early_5080 = (pdev->device == 0x5080) && (pdev->revision == 0); |
| |
| if (!early_5080) { |
| u32 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL); |
| tmp |= (1 << 0); |
| writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL); |
| } |
| |
| mv_reset_pci_bus(host, mmio); |
| } |
| |
| static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio) |
| { |
| writel(0x0fcfffff, mmio + MV_FLASH_CTL); |
| } |
| |
| static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx, |
| void __iomem *mmio) |
| { |
| void __iomem *phy_mmio = mv5_phy_base(mmio, idx); |
| u32 tmp; |
| |
| tmp = readl(phy_mmio + MV5_PHY_MODE); |
| |
| hpriv->signal[idx].pre = tmp & 0x1800; /* bits 12:11 */ |
| hpriv->signal[idx].amps = tmp & 0xe0; /* bits 7:5 */ |
| } |
| |
| static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio) |
| { |
| u32 tmp; |
| |
| writel(0, mmio + MV_GPIO_PORT_CTL); |
| |
| /* FIXME: handle MV_HP_ERRATA_50XXB2 errata */ |
| |
| tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL); |
| tmp |= ~(1 << 0); |
| writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL); |
| } |
| |
| static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio, |
| unsigned int port) |
| { |
| void __iomem *phy_mmio = mv5_phy_base(mmio, port); |
| const u32 mask = (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5); |
| u32 tmp; |
| int fix_apm_sq = (hpriv->hp_flags & MV_HP_ERRATA_50XXB0); |
| |
| if (fix_apm_sq) { |
| tmp = readl(phy_mmio + MV5_LT_MODE); |
| tmp |= (1 << 19); |
| writel(tmp, phy_mmio + MV5_LT_MODE); |
| |
| tmp = readl(phy_mmio + MV5_PHY_CTL); |
| tmp &= ~0x3; |
| tmp |= 0x1; |
| writel(tmp, phy_mmio + MV5_PHY_CTL); |
| } |
| |
| tmp = readl(phy_mmio + MV5_PHY_MODE); |
| tmp &= ~mask; |
| tmp |= hpriv->signal[port].pre; |
| tmp |= hpriv->signal[port].amps; |
| writel(tmp, phy_mmio + MV5_PHY_MODE); |
| } |
| |
| |
| #undef ZERO |
| #define ZERO(reg) writel(0, port_mmio + (reg)) |
| static void mv5_reset_hc_port(struct mv_host_priv *hpriv, void __iomem *mmio, |
| unsigned int port) |
| { |
| void __iomem *port_mmio = mv_port_base(mmio, port); |
| |
| /* |
| * The datasheet warns against setting ATA_RST when EDMA is active |
| * (but doesn't say what the problem might be). So we first try |
| * to disable the EDMA engine before doing the ATA_RST operation. |
| */ |
| mv_reset_channel(hpriv, mmio, port); |
| |
| ZERO(0x028); /* command */ |
| writel(0x11f, port_mmio + EDMA_CFG_OFS); |
| ZERO(0x004); /* timer */ |
| ZERO(0x008); /* irq err cause */ |
| ZERO(0x00c); /* irq err mask */ |
| ZERO(0x010); /* rq bah */ |
| ZERO(0x014); /* rq inp */ |
| ZERO(0x018); /* rq outp */ |
| ZERO(0x01c); /* respq bah */ |
| ZERO(0x024); /* respq outp */ |
| ZERO(0x020); /* respq inp */ |
| ZERO(0x02c); /* test control */ |
| writel(0xbc, port_mmio + EDMA_IORDY_TMOUT); |
| } |
| #undef ZERO |
| |
| #define ZERO(reg) writel(0, hc_mmio + (reg)) |
| static void mv5_reset_one_hc(struct mv_host_priv *hpriv, void __iomem *mmio, |
| unsigned int hc) |
| { |
| void __iomem *hc_mmio = mv_hc_base(mmio, hc); |
| u32 tmp; |
| |
| ZERO(0x00c); |
| ZERO(0x010); |
| ZERO(0x014); |
| ZERO(0x018); |
| |
| tmp = readl(hc_mmio + 0x20); |
| tmp &= 0x1c1c1c1c; |
| tmp |= 0x03030303; |
| writel(tmp, hc_mmio + 0x20); |
| } |
| #undef ZERO |
| |
| static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio, |
| unsigned int n_hc) |
| { |
| unsigned int hc, port; |
| |
| for (hc = 0; hc < n_hc; hc++) { |
| for (port = 0; port < MV_PORTS_PER_HC; port++) |
| mv5_reset_hc_port(hpriv, mmio, |
| (hc * MV_PORTS_PER_HC) + port); |
| |
| mv5_reset_one_hc(hpriv, mmio, hc); |
| } |
| |
| return 0; |
| } |
| |
| #undef ZERO |
| #define ZERO(reg) writel(0, mmio + (reg)) |
| static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio) |
| { |
| struct mv_host_priv *hpriv = host->private_data; |
| u32 tmp; |
| |
| tmp = readl(mmio + MV_PCI_MODE); |
| tmp &= 0xff00ffff; |
| writel(tmp, mmio + MV_PCI_MODE); |
| |
| ZERO(MV_PCI_DISC_TIMER); |
| ZERO(MV_PCI_MSI_TRIGGER); |
| writel(0x000100ff, mmio + MV_PCI_XBAR_TMOUT); |
| ZERO(HC_MAIN_IRQ_MASK_OFS); |
| ZERO(MV_PCI_SERR_MASK); |
| ZERO(hpriv->irq_cause_ofs); |
| ZERO(hpriv->irq_mask_ofs); |
| ZERO(MV_PCI_ERR_LOW_ADDRESS); |
| ZERO(MV_PCI_ERR_HIGH_ADDRESS); |
| ZERO(MV_PCI_ERR_ATTRIBUTE); |
| ZERO(MV_PCI_ERR_COMMAND); |
| } |
| #undef ZERO |
| |
| static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio) |
| { |
| u32 tmp; |
| |
| mv5_reset_flash(hpriv, mmio); |
| |
| tmp = readl(mmio + MV_GPIO_PORT_CTL); |
| tmp &= 0x3; |
| tmp |= (1 << 5) | (1 << 6); |
| writel(tmp, mmio + MV_GPIO_PORT_CTL); |
| } |
| |
| /** |
| * mv6_reset_hc - Perform the 6xxx global soft reset |
| * @mmio: base address of the HBA |
| * |
| * This routine only applies to 6xxx parts. |
| * |
| * LOCKING: |
| * Inherited from caller. |
| */ |
| static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio, |
| unsigned int n_hc) |
| { |
| void __iomem *reg = mmio + PCI_MAIN_CMD_STS_OFS; |
| int i, rc = 0; |
| u32 t; |
| |
| /* Following procedure defined in PCI "main command and status |
| * register" table. |
| */ |
| t = readl(reg); |
| writel(t | STOP_PCI_MASTER, reg); |
| |
| for (i = 0; i < 1000; i++) { |
| udelay(1); |
| t = readl(reg); |
| if (PCI_MASTER_EMPTY & t) |
| break; |
| } |
| if (!(PCI_MASTER_EMPTY & t)) { |
| printk(KERN_ERR DRV_NAME ": PCI master won't flush\n"); |
| rc = 1; |
| goto done; |
| } |
| |
| /* set reset */ |
| i = 5; |
| do { |
| writel(t | GLOB_SFT_RST, reg); |
| t = readl(reg); |
| udelay(1); |
| } while (!(GLOB_SFT_RST & t) && (i-- > 0)); |
| |
| if (!(GLOB_SFT_RST & t)) { |
| printk(KERN_ERR DRV_NAME ": can't set global reset\n"); |
| rc = 1; |
| goto done; |
| } |
| |
| /* clear reset and *reenable the PCI master* (not mentioned in spec) */ |
| i = 5; |
| do { |
| writel(t & ~(GLOB_SFT_RST | STOP_PCI_MASTER), reg); |
| t = readl(reg); |
| udelay(1); |
| } while ((GLOB_SFT_RST & t) && (i-- > 0)); |
| |
| if (GLOB_SFT_RST & t) { |
| printk(KERN_ERR DRV_NAME ": can't clear global reset\n"); |
| rc = 1; |
| } |
| /* |
| * Temporary: wait 3 seconds before port-probing can happen, |
| * so that we don't miss finding sleepy SilXXXX port-multipliers. |
| * This can go away once hotplug is fully/correctly implemented. |
| */ |
| if (rc == 0) |
| msleep(3000); |
| done: |
| return rc; |
| } |
| |
| static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx, |
| void __iomem *mmio) |
| { |
| void __iomem *port_mmio; |
| u32 tmp; |
| |
| tmp = readl(mmio + MV_RESET_CFG); |
| if ((tmp & (1 << 0)) == 0) { |
| hpriv->signal[idx].amps = 0x7 << 8; |
| hpriv->signal[idx].pre = 0x1 << 5; |
| return; |
| } |
| |
| port_mmio = mv_port_base(mmio, idx); |
| tmp = readl(port_mmio + PHY_MODE2); |
| |
| hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */ |
| hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */ |
| } |
| |
| static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio) |
| { |
| writel(0x00000060, mmio + MV_GPIO_PORT_CTL); |
| } |
| |
| static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio, |
| unsigned int port) |
| { |
| void __iomem *port_mmio = mv_port_base(mmio, port); |
| |
| u32 hp_flags = hpriv->hp_flags; |
| int fix_phy_mode2 = |
| hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0); |
| int fix_phy_mode4 = |
| hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0); |
| u32 m2, tmp; |
| |
| if (fix_phy_mode2) { |
| m2 = readl(port_mmio + PHY_MODE2); |
| m2 &= ~(1 << 16); |
| m2 |= (1 << 31); |
| writel(m2, port_mmio + PHY_MODE2); |
| |
| udelay(200); |
| |
| m2 = readl(port_mmio + PHY_MODE2); |
| m2 &= ~((1 << 16) | (1 << 31)); |
| writel(m2, port_mmio + PHY_MODE2); |
| |
| udelay(200); |
| } |
| |
| /* who knows what this magic does */ |
| tmp = readl(port_mmio + PHY_MODE3); |
| tmp &= ~0x7F800000; |
| tmp |= 0x2A800000; |
| writel(tmp, port_mmio + PHY_MODE3); |
| |
| if (fix_phy_mode4) { |
| u32 m4; |
| |
| m4 = readl(port_mmio + PHY_MODE4); |
| |
| if (hp_flags & MV_HP_ERRATA_60X1B2) |
| tmp = readl(port_mmio + PHY_MODE3); |
| |
| /* workaround for errata FEr SATA#10 (part 1) */ |
| m4 = (m4 & ~(1 << 1)) | (1 << 0); |
| |
| writel(m4, port_mmio + PHY_MODE4); |
| |
| if (hp_flags & MV_HP_ERRATA_60X1B2) |
| writel(tmp, port_mmio + PHY_MODE3); |
| } |
| |
| /* Revert values of pre-emphasis and signal amps to the saved ones */ |
| m2 = readl(port_mmio + PHY_MODE2); |
| |
| m2 &= ~MV_M2_PREAMP_MASK; |
| m2 |= hpriv->signal[port].amps; |
| m2 |= hpriv->signal[port].pre; |
| m2 &= ~(1 << 16); |
| |
| /* according to mvSata 3.6.1, some IIE values are fixed */ |
| if (IS_GEN_IIE(hpriv)) { |
| m2 &= ~0xC30FF01F; |
| m2 |= 0x0000900F; |
| } |
| |
| writel(m2, port_mmio + PHY_MODE2); |
| } |
| |
| /* TODO: use the generic LED interface to configure the SATA Presence */ |
| /* & Acitivy LEDs on the board */ |
| static void mv_soc_enable_leds(struct mv_host_priv *hpriv, |
| void __iomem *mmio) |
| { |
| return; |
| } |
| |
| static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx, |
| void __iomem *mmio) |
| { |
| void __iomem *port_mmio; |
| u32 tmp; |
| |
| port_mmio = mv_port_base(mmio, idx); |
| tmp = readl(port_mmio + PHY_MODE2); |
| |
| hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */ |
| hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */ |
| } |
| |
| #undef ZERO |
| #define ZERO(reg) writel(0, port_mmio + (reg)) |
| static void mv_soc_reset_hc_port(struct mv_host_priv *hpriv, |
| void __iomem *mmio, unsigned int port) |
| { |
| void __iomem *port_mmio = mv_port_base(mmio, port); |
| |
| /* |
| * The datasheet warns against setting ATA_RST when EDMA is active |
| * (but doesn't say what the problem might be). So we first try |
| * to disable the EDMA engine before doing the ATA_RST operation. |
| */ |
| mv_reset_channel(hpriv, mmio, port); |
| |
| ZERO(0x028); /* command */ |
| writel(0x101f, port_mmio + EDMA_CFG_OFS); |
| ZERO(0x004); /* timer */ |
| ZERO(0x008); /* irq err cause */ |
| ZERO(0x00c); /* irq err mask */ |
| ZERO(0x010); /* rq bah */ |
| ZERO(0x014); /* rq inp */ |
| ZERO(0x018); /* rq outp */ |
| ZERO(0x01c); /* respq bah */ |
| ZERO(0x024); /* respq outp */ |
| ZERO(0x020); /* respq inp */ |
| ZERO(0x02c); /* test control */ |
| writel(0xbc, port_mmio + EDMA_IORDY_TMOUT); |
| } |
| |
| #undef ZERO |
| |
| #define ZERO(reg) writel(0, hc_mmio + (reg)) |
| static void mv_soc_reset_one_hc(struct mv_host_priv *hpriv, |
| void __iomem *mmio) |
| { |
| void __iomem *hc_mmio = mv_hc_base(mmio, 0); |
| |
| ZERO(0x00c); |
| ZERO(0x010); |
| ZERO(0x014); |
| |
| } |
| |
| #undef ZERO |
| |
| static int mv_soc_reset_hc(struct mv_host_priv *hpriv, |
| void __iomem *mmio, unsigned int n_hc) |
| { |
| unsigned int port; |
| |
| for (port = 0; port < hpriv->n_ports; port++) |
| mv_soc_reset_hc_port(hpriv, mmio, port); |
| |
| mv_soc_reset_one_hc(hpriv, mmio); |
| |
| return 0; |
| } |
| |
| static void mv_soc_reset_flash(struct mv_host_priv *hpriv, |
| void __iomem *mmio) |
| { |
| return; |
| } |
| |
| static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio) |
| { |
| return; |
| } |
| |
| static void mv_setup_ifctl(void __iomem *port_mmio, int want_gen2i) |
| { |
| u32 ifctl = readl(port_mmio + SATA_INTERFACE_CFG); |
| |
| ifctl = (ifctl & 0xf7f) | 0x9b1000; /* from chip spec */ |
| if (want_gen2i) |
| ifctl |= (1 << 7); /* enable gen2i speed */ |
| writelfl(ifctl, port_mmio + SATA_INTERFACE_CFG); |
| } |
| |
| /* |
| * Caller must ensure that EDMA is not active, |
| * by first doing mv_stop_edma() where needed. |
| */ |
| static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio, |
| unsigned int port_no) |
| { |
| void __iomem *port_mmio = mv_port_base(mmio, port_no); |
| |
| mv_stop_edma_engine(port_mmio); |
| writelfl(ATA_RST, port_mmio + EDMA_CMD_OFS); |
| |
| if (!IS_GEN_I(hpriv)) { |
| /* Enable 3.0gb/s link speed */ |
| mv_setup_ifctl(port_mmio, 1); |
| } |
| /* |
| * Strobing ATA_RST here causes a hard reset of the SATA transport, |
| * link, and physical layers. It resets all SATA interface registers |
| * (except for SATA_INTERFACE_CFG), and issues a COMRESET to the dev. |
| */ |
| writelfl(ATA_RST, port_mmio + EDMA_CMD_OFS); |
| udelay(25); /* allow reset propagation */ |
| writelfl(0, port_mmio + EDMA_CMD_OFS); |
| |
| hpriv->ops->phy_errata(hpriv, mmio, port_no); |
| |
| if (IS_GEN_I(hpriv)) |
| mdelay(1); |
| } |
| |
| static void mv_pmp_select(struct ata_port *ap, int pmp) |
| { |
| if (sata_pmp_supported(ap)) { |
| void __iomem *port_mmio = mv_ap_base(ap); |
| u32 reg = readl(port_mmio + SATA_IFCTL_OFS); |
| int old = reg & 0xf; |
| |
| if (old != pmp) { |
| reg = (reg & ~0xf) | pmp; |
| writelfl(reg, port_mmio + SATA_IFCTL_OFS); |
| } |
| } |
| } |
| |
| static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class, |
| unsigned long deadline) |
| { |
| mv_pmp_select(link->ap, sata_srst_pmp(link)); |
| return sata_std_hardreset(link, class, deadline); |
| } |
| |
| static int mv_softreset(struct ata_link *link, unsigned int *class, |
| unsigned long deadline) |
| { |
| mv_pmp_select(link->ap, sata_srst_pmp(link)); |
| return ata_sff_softreset(link, class, deadline); |
| } |
| |
| static int mv_hardreset(struct ata_link *link, unsigned int *class, |
| unsigned long deadline) |
| { |
| struct ata_port *ap = link->ap; |
| struct mv_host_priv *hpriv = ap->host->private_data; |
| struct mv_port_priv *pp = ap->private_data; |
| void __iomem *mmio = hpriv->base; |
| int rc, attempts = 0, extra = 0; |
| u32 sstatus; |
| bool online; |
| |
| mv_reset_channel(hpriv, mmio, ap->port_no); |
| pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN; |
| |
| /* Workaround for errata FEr SATA#10 (part 2) */ |
| do { |
| const unsigned long *timing = |
| sata_ehc_deb_timing(&link->eh_context); |
| |
| rc = sata_link_hardreset(link, timing, deadline + extra, |
| &online, NULL); |
| if (rc) |
| return rc; |
| sata_scr_read(link, SCR_STATUS, &sstatus); |
| if (!IS_GEN_I(hpriv) && ++attempts >= 5 && sstatus == 0x121) { |
| /* Force 1.5gb/s link speed and try again */ |
| mv_setup_ifctl(mv_ap_base(ap), 0); |
| if (time_after(jiffies + HZ, deadline)) |
| extra = HZ; /* only extend it once, max */ |
| } |
| } while (sstatus != 0x0 && sstatus != 0x113 && sstatus != 0x123); |
| |
| return rc; |
| } |
| |
| static void mv_eh_freeze(struct ata_port *ap) |
| { |
| struct mv_host_priv *hpriv = ap->host->private_data; |
| unsigned int hc = (ap->port_no > 3) ? 1 : 0; |
| u32 tmp, mask; |
| unsigned int shift; |
| |
| /* FIXME: handle coalescing completion events properly */ |
| |
| shift = ap->port_no * 2; |
| if (hc > 0) |
| shift++; |
| |
| mask = 0x3 << shift; |
| |
| /* disable assertion of portN err, done events */ |
| tmp = readl(hpriv->main_mask_reg_addr); |
| writelfl(tmp & ~mask, hpriv->main_mask_reg_addr); |
| } |
| |
| static void mv_eh_thaw(struct ata_port *ap) |
| { |
| struct mv_host_priv *hpriv = ap->host->private_data; |
| void __iomem *mmio = hpriv->base; |
| unsigned int hc = (ap->port_no > 3) ? 1 : 0; |
| void __iomem *hc_mmio = mv_hc_base(mmio, hc); |
| void __iomem *port_mmio = mv_ap_base(ap); |
| u32 tmp, mask, hc_irq_cause; |
| unsigned int shift, hc_port_no = ap->port_no; |
| |
| /* FIXME: handle coalescing completion events properly */ |
| |
| shift = ap->port_no * 2; |
| if (hc > 0) { |
| shift++; |
| hc_port_no -= 4; |
| } |
| |
| mask = 0x3 << shift; |
| |
| /* clear EDMA errors on this port */ |
| writel(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS); |
| |
| /* clear pending irq events */ |
| hc_irq_cause = readl(hc_mmio + HC_IRQ_CAUSE_OFS); |
| hc_irq_cause &= ~(1 << hc_port_no); /* clear CRPB-done */ |
| hc_irq_cause &= ~(1 << (hc_port_no + 8)); /* clear Device int */ |
| writel(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE_OFS); |
| |
| /* enable assertion of portN err, done events */ |
| tmp = readl(hpriv->main_mask_reg_addr); |
| writelfl(tmp | mask, hpriv->main_mask_reg_addr); |
| } |
| |
| /** |
| * mv_port_init - Perform some early initialization on a single port. |
| * @port: libata data structure storing shadow register addresses |
| * @port_mmio: base address of the port |
| * |
| * Initialize shadow register mmio addresses, clear outstanding |
| * interrupts on the port, and unmask interrupts for the future |
| * start of the port. |
| * |
| * LOCKING: |
| * Inherited from caller. |
| */ |
| static void mv_port_init(struct ata_ioports *port, void __iomem *port_mmio) |
| { |
| void __iomem *shd_base = port_mmio + SHD_BLK_OFS; |
| unsigned serr_ofs; |
| |
| /* PIO related setup |
| */ |
| port->data_addr = shd_base + (sizeof(u32) * ATA_REG_DATA); |
| port->error_addr = |
| port->feature_addr = shd_base + (sizeof(u32) * ATA_REG_ERR); |
| port->nsect_addr = shd_base + (sizeof(u32) * ATA_REG_NSECT); |
| port->lbal_addr = shd_base + (sizeof(u32) * ATA_REG_LBAL); |
| port->lbam_addr = shd_base + (sizeof(u32) * ATA_REG_LBAM); |
| port->lbah_addr = shd_base + (sizeof(u32) * ATA_REG_LBAH); |
| port->device_addr = shd_base + (sizeof(u32) * ATA_REG_DEVICE); |
| port->status_addr = |
| port->command_addr = shd_base + (sizeof(u32) * ATA_REG_STATUS); |
| /* special case: control/altstatus doesn't have ATA_REG_ address */ |
| port->altstatus_addr = port->ctl_addr = shd_base + SHD_CTL_AST_OFS; |
| |
| /* unused: */ |
| port->cmd_addr = port->bmdma_addr = port->scr_addr = NULL; |
| |
| /* Clear any currently outstanding port interrupt conditions */ |
| serr_ofs = mv_scr_offset(SCR_ERROR); |
| writelfl(readl(port_mmio + serr_ofs), port_mmio + serr_ofs); |
| writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS); |
| |
| /* unmask all non-transient EDMA error interrupts */ |
| writelfl(~EDMA_ERR_IRQ_TRANSIENT, port_mmio + EDMA_ERR_IRQ_MASK_OFS); |
| |
| VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n", |
| readl(port_mmio + EDMA_CFG_OFS), |
| readl(port_mmio + EDMA_ERR_IRQ_CAUSE_OFS), |
| readl(port_mmio + EDMA_ERR_IRQ_MASK_OFS)); |
| } |
| |
| static int mv_chip_id(struct ata_host *host, unsigned int board_idx) |
| { |
| struct pci_dev *pdev = to_pci_dev(host->dev); |
| struct mv_host_priv *hpriv = host->private_data; |
| u32 hp_flags = hpriv->hp_flags; |
| |
| switch (board_idx) { |
| case chip_5080: |
| hpriv->ops = &mv5xxx_ops; |
| hp_flags |= MV_HP_GEN_I; |
| |
| switch (pdev->revision) { |
| case 0x1: |
| hp_flags |= MV_HP_ERRATA_50XXB0; |
| break; |
| case 0x3: |
| hp_flags |= MV_HP_ERRATA_50XXB2; |
| break; |
| default: |
| dev_printk(KERN_WARNING, &pdev->dev, |
| "Applying 50XXB2 workarounds to unknown rev\n"); |
| hp_flags |= MV_HP_ERRATA_50XXB2; |
| break; |
| } |
| break; |
| |
| case chip_504x: |
| case chip_508x: |
| hpriv->ops = &mv5xxx_ops; |
| hp_flags |= MV_HP_GEN_I; |
| |
| switch (pdev->revision) { |
| case 0x0: |
| hp_flags |= MV_HP_ERRATA_50XXB0; |
| break; |
| case 0x3: |
| hp_flags |= MV_HP_ERRATA_50XXB2; |
| break; |
| default: |
| dev_printk(KERN_WARNING, &pdev->dev, |
| "Applying B2 workarounds to unknown rev\n"); |
| hp_flags |= MV_HP_ERRATA_50XXB2; |
| break; |
| } |
| break; |
| |
| case chip_604x: |
| case chip_608x: |
| hpriv->ops = &mv6xxx_ops; |
| hp_flags |= MV_HP_GEN_II; |
| |
| switch (pdev->revision) { |
| case 0x7: |
| hp_flags |= MV_HP_ERRATA_60X1B2; |
| break; |
| case 0x9: |
| hp_flags |= MV_HP_ERRATA_60X1C0; |
| break; |
| default: |
| dev_printk(KERN_WARNING, &pdev->dev, |
| "Applying B2 workarounds to unknown rev\n"); |
| hp_flags |= MV_HP_ERRATA_60X1B2; |
| break; |
| } |
| break; |
| |
| case chip_7042: |
| hp_flags |= MV_HP_PCIE; |
| if (pdev->vendor == PCI_VENDOR_ID_TTI && |
| (pdev->device == 0x2300 || pdev->device == 0x2310)) |
| { |
| /* |
| * Highpoint RocketRAID PCIe 23xx series cards: |
| * |
| * Unconfigured drives are treated as "Legacy" |
| * by the BIOS, and it overwrites sector 8 with |
| * a "Lgcy" metadata block prior to Linux boot. |
| * |
| * Configured drives (RAID or JBOD) leave sector 8 |
| * alone, but instead overwrite a high numbered |
| * sector for the RAID metadata. This sector can |
| * be determined exactly, by truncating the physical |
| * drive capacity to a nice even GB value. |
| * |
| * RAID metadata is at: (dev->n_sectors & ~0xfffff) |
| * |
| * Warn the user, lest they think we're just buggy. |
| */ |
| printk(KERN_WARNING DRV_NAME ": Highpoint RocketRAID" |
| " BIOS CORRUPTS DATA on all attached drives," |
| " regardless of if/how they are configured." |
| " BEWARE!\n"); |
| printk(KERN_WARNING DRV_NAME ": For data safety, do not" |
| " use sectors 8-9 on \"Legacy\" drives," |
| " and avoid the final two gigabytes on" |
| " all RocketRAID BIOS initialized drives.\n"); |
| } |
| case chip_6042: |
| hpriv->ops = &mv6xxx_ops; |
| hp_flags |= MV_HP_GEN_IIE; |
| |
| switch (pdev->revision) { |
| case 0x0: |
| hp_flags |= MV_HP_ERRATA_XX42A0; |
| break; |
| case 0x1: |
| hp_flags |= MV_HP_ERRATA_60X1C0; |
| break; |
| default: |
| dev_printk(KERN_WARNING, &pdev->dev, |
| "Applying 60X1C0 workarounds to unknown rev\n"); |
| hp_flags |= MV_HP_ERRATA_60X1C0; |
| break; |
| } |
| break; |
| case chip_soc: |
| hpriv->ops = &mv_soc_ops; |
| hp_flags |= MV_HP_ERRATA_60X1C0; |
| break; |
| |
| default: |
| dev_printk(KERN_ERR, host->dev, |
| "BUG: invalid board index %u\n", board_idx); |
| return 1; |
| } |
| |
| hpriv->hp_flags = hp_flags; |
| if (hp_flags & MV_HP_PCIE) { |
| hpriv->irq_cause_ofs = PCIE_IRQ_CAUSE_OFS; |
| hpriv->irq_mask_ofs = PCIE_IRQ_MASK_OFS; |
| hpriv->unmask_all_irqs = PCIE_UNMASK_ALL_IRQS; |
| } else { |
| hpriv->irq_cause_ofs = PCI_IRQ_CAUSE_OFS; |
| hpriv->irq_mask_ofs = PCI_IRQ_MASK_OFS; |
| hpriv->unmask_all_irqs = PCI_UNMASK_ALL_IRQS; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * mv_init_host - Perform some early initialization of the host. |
| * @host: ATA host to initialize |
| * @board_idx: controller index |
| * |
| * If possible, do an early global reset of the host. Then do |
| * our port init and clear/unmask all/relevant host interrupts. |
| * |
| * LOCKING: |
| * Inherited from caller. |
| */ |
| static int mv_init_host(struct ata_host *host, unsigned int board_idx) |
| { |
| int rc = 0, n_hc, port, hc; |
| struct mv_host_priv *hpriv = host->private_data; |
| void __iomem *mmio = hpriv->base; |
| |
| rc = mv_chip_id(host, board_idx); |
| if (rc) |
| goto done; |
| |
| if (HAS_PCI(host)) { |
| hpriv->main_cause_reg_addr = hpriv->base + |
| HC_MAIN_IRQ_CAUSE_OFS; |
| hpriv->main_mask_reg_addr = hpriv->base + HC_MAIN_IRQ_MASK_OFS; |
| } else { |
| hpriv->main_cause_reg_addr = hpriv->base + |
| HC_SOC_MAIN_IRQ_CAUSE_OFS; |
| hpriv->main_mask_reg_addr = hpriv->base + |
| HC_SOC_MAIN_IRQ_MASK_OFS; |
| } |
| /* global interrupt mask */ |
| writel(0, hpriv->main_mask_reg_addr); |
| |
| n_hc = mv_get_hc_count(host->ports[0]->flags); |
| |
| for (port = 0; port < host->n_ports; port++) |
| hpriv->ops->read_preamp(hpriv, port, mmio); |
| |
| rc = hpriv->ops->reset_hc(hpriv, mmio, n_hc); |
| if (rc) |
| goto done; |
| |
| hpriv->ops->reset_flash(hpriv, mmio); |
| hpriv->ops->reset_bus(host, mmio); |
| hpriv->ops->enable_leds(hpriv, mmio); |
| |
| for (port = 0; port < host->n_ports; port++) { |
| struct ata_port *ap = host->ports[port]; |
| void __iomem *port_mmio = mv_port_base(mmio, port); |
| |
| mv_port_init(&ap->ioaddr, port_mmio); |
| |
| #ifdef CONFIG_PCI |
| if (HAS_PCI(host)) { |
| unsigned int offset = port_mmio - mmio; |
| ata_port_pbar_desc(ap, MV_PRIMARY_BAR, -1, "mmio"); |
| ata_port_pbar_desc(ap, MV_PRIMARY_BAR, offset, "port"); |
| } |
| #endif |
| } |
| |
| for (hc = 0; hc < n_hc; hc++) { |
| void __iomem *hc_mmio = mv_hc_base(mmio, hc); |
| |
| VPRINTK("HC%i: HC config=0x%08x HC IRQ cause " |
| "(before clear)=0x%08x\n", hc, |
| readl(hc_mmio + HC_CFG_OFS), |
| readl(hc_mmio + HC_IRQ_CAUSE_OFS)); |
| |
| /* Clear any currently outstanding hc interrupt conditions */ |
| writelfl(0, hc_mmio + HC_IRQ_CAUSE_OFS); |
| } |
| |
| if (HAS_PCI(host)) { |
| /* Clear any currently outstanding host interrupt conditions */ |
| writelfl(0, mmio + hpriv->irq_cause_ofs); |
| |
| /* and unmask interrupt generation for host regs */ |
| writelfl(hpriv->unmask_all_irqs, mmio + hpriv->irq_mask_ofs); |
| if (IS_GEN_I(hpriv)) |
| writelfl(~HC_MAIN_MASKED_IRQS_5, |
| hpriv->main_mask_reg_addr); |
| else |
| writelfl(~HC_MAIN_MASKED_IRQS, |
| hpriv->main_mask_reg_addr); |
| |
| VPRINTK("HC MAIN IRQ cause/mask=0x%08x/0x%08x " |
| "PCI int cause/mask=0x%08x/0x%08x\n", |
| readl(hpriv->main_cause_reg_addr), |
| readl(hpriv->main_mask_reg_addr), |
| readl(mmio + hpriv->irq_cause_ofs), |
| readl(mmio + hpriv->irq_mask_ofs)); |
| } else { |
| writelfl(~HC_MAIN_MASKED_IRQS_SOC, |
| hpriv->main_mask_reg_addr); |
| VPRINTK("HC MAIN IRQ cause/mask=0x%08x/0x%08x\n", |
| readl(hpriv->main_cause_reg_addr), |
| readl(hpriv->main_mask_reg_addr)); |
| } |
| done: |
| return rc; |
| } |
| |
| static int mv_create_dma_pools(struct mv_host_priv *hpriv, struct device *dev) |
| { |
| hpriv->crqb_pool = dmam_pool_create("crqb_q", dev, MV_CRQB_Q_SZ, |
| MV_CRQB_Q_SZ, 0); |
| if (!hpriv->crqb_pool) |
| return -ENOMEM; |
| |
| hpriv->crpb_pool = dmam_pool_create("crpb_q", dev, MV_CRPB_Q_SZ, |
| MV_CRPB_Q_SZ, 0); |
| if (!hpriv->crpb_pool) |
| return -ENOMEM; |
| |
| hpriv->sg_tbl_pool = dmam_pool_create("sg_tbl", dev, MV_SG_TBL_SZ, |
| MV_SG_TBL_SZ, 0); |
| if (!hpriv->sg_tbl_pool) |
| return -ENOMEM; |
| |
| return 0; |
| } |
| |
| /** |
| * mv_platform_probe - handle a positive probe of an soc Marvell |
| * host |
| * @pdev: platform device found |
| * |
| * LOCKING: |
| * Inherited from caller. |
| */ |
| static int mv_platform_probe(struct platform_device *pdev) |
| { |
| static int printed_version; |
| const struct mv_sata_platform_data *mv_platform_data; |
| const struct ata_port_info *ppi[] = |
| { &mv_port_info[chip_soc], NULL }; |
| struct ata_host *host; |
| struct mv_host_priv *hpriv; |
| struct resource *res; |
| int n_ports, rc; |
| |
| if (!printed_version++) |
| dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n"); |
| |
| /* |
| * Simple resource validation .. |
| */ |
| if (unlikely(pdev->num_resources != 2)) { |
| dev_err(&pdev->dev, "invalid number of resources\n"); |
| return -EINVAL; |
| } |
| |
| /* |
| * Get the register base first |
| */ |
| res = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| if (res == NULL) |
| return -EINVAL; |
| |
| /* allocate host */ |
| mv_platform_data = pdev->dev.platform_data; |
| n_ports = mv_platform_data->n_ports; |
| |
| host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports); |
| hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL); |
| |
| if (!host || !hpriv) |
| return -ENOMEM; |
| host->private_data = hpriv; |
| hpriv->n_ports = n_ports; |
| |
| host->iomap = NULL; |
| hpriv->base = devm_ioremap(&pdev->dev, res->start, |
| res->end - res->start + 1); |
| hpriv->base -= MV_SATAHC0_REG_BASE; |
| |
| rc = mv_create_dma_pools(hpriv, &pdev->dev); |
| if (rc) |
| return rc; |
| |
| /* initialize adapter */ |
| rc = mv_init_host(host, chip_soc); |
| if (rc) |
| return rc; |
| |
| dev_printk(KERN_INFO, &pdev->dev, |
| "slots %u ports %d\n", (unsigned)MV_MAX_Q_DEPTH, |
| host->n_ports); |
| |
| return ata_host_activate(host, platform_get_irq(pdev, 0), mv_interrupt, |
| IRQF_SHARED, &mv6_sht); |
| } |
| |
| /* |
| * |
| * mv_platform_remove - unplug a platform interface |
| * @pdev: platform device |
| * |
| * A platform bus SATA device has been unplugged. Perform the needed |
| * cleanup. Also called on module unload for any active devices. |
| */ |
| static int __devexit mv_platform_remove(struct platform_device *pdev) |
| { |
| struct device *dev = &pdev->dev; |
| struct ata_host *host = dev_get_drvdata(dev); |
| |
| ata_host_detach(host); |
| return 0; |
| } |
| |
| static struct platform_driver mv_platform_driver = { |
| .probe = mv_platform_probe, |
| .remove = __devexit_p(mv_platform_remove), |
| .driver = { |
| .name = DRV_NAME, |
| .owner = THIS_MODULE, |
| }, |
| }; |
| |
| |
| #ifdef CONFIG_PCI |
| static int mv_pci_init_one(struct pci_dev *pdev, |
| const struct pci_device_id *ent); |
| |
| |
| static struct pci_driver mv_pci_driver = { |
| .name = DRV_NAME, |
| .id_table = mv_pci_tbl, |
| .probe = mv_pci_init_one, |
| .remove = ata_pci_remove_one, |
| }; |
| |
| /* |
| * module options |
| */ |
| static int msi; /* Use PCI msi; either zero (off, default) or non-zero */ |
| |
| |
| /* move to PCI layer or libata core? */ |
| static int pci_go_64(struct pci_dev *pdev) |
| { |
| int rc; |
| |
| if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) { |
| rc = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK); |
| if (rc) { |
| rc = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK); |
| if (rc) { |
| dev_printk(KERN_ERR, &pdev->dev, |
| "64-bit DMA enable failed\n"); |
| return rc; |
| } |
| } |
| } else { |
| rc = pci_set_dma_mask(pdev, DMA_32BIT_MASK); |
| if (rc) { |
| dev_printk(KERN_ERR, &pdev->dev, |
| "32-bit DMA enable failed\n"); |
| return rc; |
| } |
| rc = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK); |
| if (rc) { |
| dev_printk(KERN_ERR, &pdev->dev, |
| "32-bit consistent DMA enable failed\n"); |
| return rc; |
| } |
| } |
| |
| return rc; |
| } |
| |
| /** |
| * mv_print_info - Dump key info to kernel log for perusal. |
| * @host: ATA host to print info about |
| * |
| * FIXME: complete this. |
| * |
| * LOCKING: |
| * Inherited from caller. |
| */ |
| static void mv_print_info(struct ata_host *host) |
| { |
| struct pci_dev *pdev = to_pci_dev(host->dev); |
| struct mv_host_priv *hpriv = host->private_data; |
| u8 scc; |
| const char *scc_s, *gen; |
| |
| /* Use this to determine the HW stepping of the chip so we know |
| * what errata to workaround |
| */ |
| pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &scc); |
| if (scc == 0) |
| scc_s = "SCSI"; |
| else if (scc == 0x01) |
| scc_s = "RAID"; |
| else |
| scc_s = "?"; |
| |
| if (IS_GEN_I(hpriv)) |
| gen = "I"; |
| else if (IS_GEN_II(hpriv)) |
| gen = "II"; |
| else if (IS_GEN_IIE(hpriv)) |
| gen = "IIE"; |
| else |
| gen = "?"; |
| |
| dev_printk(KERN_INFO, &pdev->dev, |
| "Gen-%s %u slots %u ports %s mode IRQ via %s\n", |
| gen, (unsigned)MV_MAX_Q_DEPTH, host->n_ports, |
| scc_s, (MV_HP_FLAG_MSI & hpriv->hp_flags) ? "MSI" : "INTx"); |
| } |
| |
| /** |
| * mv_pci_init_one - handle a positive probe of a PCI Marvell host |
| * @pdev: PCI device found |
| * @ent: PCI device ID entry for the matched host |
| * |
| * LOCKING: |
| * Inherited from caller. |
| */ |
| static int mv_pci_init_one(struct pci_dev *pdev, |
| const struct pci_device_id *ent) |
| { |
| static int printed_version; |
| unsigned int board_idx = (unsigned int)ent->driver_data; |
| const struct ata_port_info *ppi[] = { &mv_port_info[board_idx], NULL }; |
| struct ata_host *host; |
| struct mv_host_priv *hpriv; |
| int n_ports, rc; |
| |
| if (!printed_version++) |
| dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n"); |
| |
| /* allocate host */ |
| n_ports = mv_get_hc_count(ppi[0]->flags) * MV_PORTS_PER_HC; |
| |
| host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports); |
| hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL); |
| if (!host || !hpriv) |
| return -ENOMEM; |
| host->private_data = hpriv; |
| hpriv->n_ports = n_ports; |
| |
| /* acquire resources */ |
| rc = pcim_enable_device(pdev); |
| if (rc) |
| return rc; |
| |
| rc = pcim_iomap_regions(pdev, 1 << MV_PRIMARY_BAR, DRV_NAME); |
| if (rc == -EBUSY) |
| pcim_pin_device(pdev); |
| if (rc) |
| return rc; |
| host->iomap = pcim_iomap_table(pdev); |
| hpriv->base = host->iomap[MV_PRIMARY_BAR]; |
| |
| rc = pci_go_64(pdev); |
| if (rc) |
| return rc; |
| |
| rc = mv_create_dma_pools(hpriv, &pdev->dev); |
| if (rc) |
| return rc; |
| |
| /* initialize adapter */ |
| rc = mv_init_host(host, board_idx); |
| if (rc) |
| return rc; |
| |
| /* Enable interrupts */ |
| if (msi && pci_enable_msi(pdev)) |
| pci_intx(pdev, 1); |
| |
| mv_dump_pci_cfg(pdev, 0x68); |
| mv_print_info(host); |
| |
| pci_set_master(pdev); |
| pci_try_set_mwi(pdev); |
| return ata_host_activate(host, pdev->irq, mv_interrupt, IRQF_SHARED, |
| IS_GEN_I(hpriv) ? &mv5_sht : &mv6_sht); |
| } |
| #endif |
| |
| static int mv_platform_probe(struct platform_device *pdev); |
| static int __devexit mv_platform_remove(struct platform_device *pdev); |
| |
| static int __init mv_init(void) |
| { |
| int rc = -ENODEV; |
| #ifdef CONFIG_PCI |
| rc = pci_register_driver(&mv_pci_driver); |
| if (rc < 0) |
| return rc; |
| #endif |
| rc = platform_driver_register(&mv_platform_driver); |
| |
| #ifdef CONFIG_PCI |
| if (rc < 0) |
| pci_unregister_driver(&mv_pci_driver); |
| #endif |
| return rc; |
| } |
| |
| static void __exit mv_exit(void) |
| { |
| #ifdef CONFIG_PCI |
| pci_unregister_driver(&mv_pci_driver); |
| #endif |
| platform_driver_unregister(&mv_platform_driver); |
| } |
| |
| MODULE_AUTHOR("Brett Russ"); |
| MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers"); |
| MODULE_LICENSE("GPL"); |
| MODULE_DEVICE_TABLE(pci, mv_pci_tbl); |
| MODULE_VERSION(DRV_VERSION); |
| MODULE_ALIAS("platform:" DRV_NAME); |
| |
| #ifdef CONFIG_PCI |
| module_param(msi, int, 0444); |
| MODULE_PARM_DESC(msi, "Enable use of PCI MSI (0=off, 1=on)"); |
| #endif |
| |
| module_init(mv_init); |
| module_exit(mv_exit); |