| /* |
| * Copyright (C) 2008 Maarten Maathuis. |
| * All Rights Reserved. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining |
| * a copy of this software and associated documentation files (the |
| * "Software"), to deal in the Software without restriction, including |
| * without limitation the rights to use, copy, modify, merge, publish, |
| * distribute, sublicense, and/or sell copies of the Software, and to |
| * permit persons to whom the Software is furnished to do so, subject to |
| * the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the |
| * next paragraph) shall be included in all copies or substantial |
| * portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
| * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF |
| * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. |
| * IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE |
| * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION |
| * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION |
| * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. |
| * |
| */ |
| |
| #include "drmP.h" |
| #include "drm_mode.h" |
| #include "drm_crtc_helper.h" |
| |
| #define NOUVEAU_DMA_DEBUG (nouveau_reg_debug & NOUVEAU_REG_DEBUG_EVO) |
| #include "nouveau_reg.h" |
| #include "nouveau_drv.h" |
| #include "nouveau_hw.h" |
| #include "nouveau_encoder.h" |
| #include "nouveau_crtc.h" |
| #include "nouveau_fb.h" |
| #include "nouveau_connector.h" |
| #include "nv50_display.h" |
| |
| static void |
| nv50_crtc_lut_load(struct drm_crtc *crtc) |
| { |
| struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc); |
| void __iomem *lut = nvbo_kmap_obj_iovirtual(nv_crtc->lut.nvbo); |
| int i; |
| |
| NV_DEBUG_KMS(crtc->dev, "\n"); |
| |
| for (i = 0; i < 256; i++) { |
| writew(nv_crtc->lut.r[i] >> 2, lut + 8*i + 0); |
| writew(nv_crtc->lut.g[i] >> 2, lut + 8*i + 2); |
| writew(nv_crtc->lut.b[i] >> 2, lut + 8*i + 4); |
| } |
| |
| if (nv_crtc->lut.depth == 30) { |
| writew(nv_crtc->lut.r[i - 1] >> 2, lut + 8*i + 0); |
| writew(nv_crtc->lut.g[i - 1] >> 2, lut + 8*i + 2); |
| writew(nv_crtc->lut.b[i - 1] >> 2, lut + 8*i + 4); |
| } |
| } |
| |
| int |
| nv50_crtc_blank(struct nouveau_crtc *nv_crtc, bool blanked) |
| { |
| struct drm_device *dev = nv_crtc->base.dev; |
| struct drm_nouveau_private *dev_priv = dev->dev_private; |
| struct nouveau_channel *evo = nv50_display(dev)->master; |
| int index = nv_crtc->index, ret; |
| |
| NV_DEBUG_KMS(dev, "index %d\n", nv_crtc->index); |
| NV_DEBUG_KMS(dev, "%s\n", blanked ? "blanked" : "unblanked"); |
| |
| if (blanked) { |
| nv_crtc->cursor.hide(nv_crtc, false); |
| |
| ret = RING_SPACE(evo, dev_priv->chipset != 0x50 ? 7 : 5); |
| if (ret) { |
| NV_ERROR(dev, "no space while blanking crtc\n"); |
| return ret; |
| } |
| BEGIN_NV04(evo, 0, NV50_EVO_CRTC(index, CLUT_MODE), 2); |
| OUT_RING(evo, NV50_EVO_CRTC_CLUT_MODE_BLANK); |
| OUT_RING(evo, 0); |
| if (dev_priv->chipset != 0x50) { |
| BEGIN_NV04(evo, 0, NV84_EVO_CRTC(index, CLUT_DMA), 1); |
| OUT_RING(evo, NV84_EVO_CRTC_CLUT_DMA_HANDLE_NONE); |
| } |
| |
| BEGIN_NV04(evo, 0, NV50_EVO_CRTC(index, FB_DMA), 1); |
| OUT_RING(evo, NV50_EVO_CRTC_FB_DMA_HANDLE_NONE); |
| } else { |
| if (nv_crtc->cursor.visible) |
| nv_crtc->cursor.show(nv_crtc, false); |
| else |
| nv_crtc->cursor.hide(nv_crtc, false); |
| |
| ret = RING_SPACE(evo, dev_priv->chipset != 0x50 ? 10 : 8); |
| if (ret) { |
| NV_ERROR(dev, "no space while unblanking crtc\n"); |
| return ret; |
| } |
| BEGIN_NV04(evo, 0, NV50_EVO_CRTC(index, CLUT_MODE), 2); |
| OUT_RING(evo, nv_crtc->lut.depth == 8 ? |
| NV50_EVO_CRTC_CLUT_MODE_OFF : |
| NV50_EVO_CRTC_CLUT_MODE_ON); |
| OUT_RING(evo, nv_crtc->lut.nvbo->bo.offset >> 8); |
| if (dev_priv->chipset != 0x50) { |
| BEGIN_NV04(evo, 0, NV84_EVO_CRTC(index, CLUT_DMA), 1); |
| OUT_RING(evo, NvEvoVRAM); |
| } |
| |
| BEGIN_NV04(evo, 0, NV50_EVO_CRTC(index, FB_OFFSET), 2); |
| OUT_RING(evo, nv_crtc->fb.offset >> 8); |
| OUT_RING(evo, 0); |
| BEGIN_NV04(evo, 0, NV50_EVO_CRTC(index, FB_DMA), 1); |
| if (dev_priv->chipset != 0x50) |
| if (nv_crtc->fb.tile_flags == 0x7a00 || |
| nv_crtc->fb.tile_flags == 0xfe00) |
| OUT_RING(evo, NvEvoFB32); |
| else |
| if (nv_crtc->fb.tile_flags == 0x7000) |
| OUT_RING(evo, NvEvoFB16); |
| else |
| OUT_RING(evo, NvEvoVRAM_LP); |
| else |
| OUT_RING(evo, NvEvoVRAM_LP); |
| } |
| |
| nv_crtc->fb.blanked = blanked; |
| return 0; |
| } |
| |
| static int |
| nv50_crtc_set_dither(struct nouveau_crtc *nv_crtc, bool update) |
| { |
| struct nouveau_channel *evo = nv50_display(nv_crtc->base.dev)->master; |
| struct nouveau_connector *nv_connector; |
| struct drm_connector *connector; |
| int head = nv_crtc->index, ret; |
| u32 mode = 0x00; |
| |
| nv_connector = nouveau_crtc_connector_get(nv_crtc); |
| connector = &nv_connector->base; |
| if (nv_connector->dithering_mode == DITHERING_MODE_AUTO) { |
| if (nv_crtc->base.fb->depth > connector->display_info.bpc * 3) |
| mode = DITHERING_MODE_DYNAMIC2X2; |
| } else { |
| mode = nv_connector->dithering_mode; |
| } |
| |
| if (nv_connector->dithering_depth == DITHERING_DEPTH_AUTO) { |
| if (connector->display_info.bpc >= 8) |
| mode |= DITHERING_DEPTH_8BPC; |
| } else { |
| mode |= nv_connector->dithering_depth; |
| } |
| |
| ret = RING_SPACE(evo, 2 + (update ? 2 : 0)); |
| if (ret == 0) { |
| BEGIN_NV04(evo, 0, NV50_EVO_CRTC(head, DITHER_CTRL), 1); |
| OUT_RING (evo, mode); |
| if (update) { |
| BEGIN_NV04(evo, 0, NV50_EVO_UPDATE, 1); |
| OUT_RING (evo, 0); |
| FIRE_RING (evo); |
| } |
| } |
| |
| return ret; |
| } |
| |
| static int |
| nv50_crtc_set_color_vibrance(struct nouveau_crtc *nv_crtc, bool update) |
| { |
| struct drm_device *dev = nv_crtc->base.dev; |
| struct nouveau_channel *evo = nv50_display(dev)->master; |
| int ret; |
| int adj; |
| u32 hue, vib; |
| |
| NV_DEBUG_KMS(dev, "vibrance = %i, hue = %i\n", |
| nv_crtc->color_vibrance, nv_crtc->vibrant_hue); |
| |
| ret = RING_SPACE(evo, 2 + (update ? 2 : 0)); |
| if (ret) { |
| NV_ERROR(dev, "no space while setting color vibrance\n"); |
| return ret; |
| } |
| |
| adj = (nv_crtc->color_vibrance > 0) ? 50 : 0; |
| vib = ((nv_crtc->color_vibrance * 2047 + adj) / 100) & 0xfff; |
| |
| hue = ((nv_crtc->vibrant_hue * 2047) / 100) & 0xfff; |
| |
| BEGIN_NV04(evo, 0, NV50_EVO_CRTC(nv_crtc->index, COLOR_CTRL), 1); |
| OUT_RING (evo, (hue << 20) | (vib << 8)); |
| |
| if (update) { |
| BEGIN_NV04(evo, 0, NV50_EVO_UPDATE, 1); |
| OUT_RING (evo, 0); |
| FIRE_RING (evo); |
| } |
| |
| return 0; |
| } |
| |
| struct nouveau_connector * |
| nouveau_crtc_connector_get(struct nouveau_crtc *nv_crtc) |
| { |
| struct drm_device *dev = nv_crtc->base.dev; |
| struct drm_connector *connector; |
| struct drm_crtc *crtc = to_drm_crtc(nv_crtc); |
| |
| /* The safest approach is to find an encoder with the right crtc, that |
| * is also linked to a connector. */ |
| list_for_each_entry(connector, &dev->mode_config.connector_list, head) { |
| if (connector->encoder) |
| if (connector->encoder->crtc == crtc) |
| return nouveau_connector(connector); |
| } |
| |
| return NULL; |
| } |
| |
| static int |
| nv50_crtc_set_scale(struct nouveau_crtc *nv_crtc, bool update) |
| { |
| struct nouveau_connector *nv_connector; |
| struct drm_crtc *crtc = &nv_crtc->base; |
| struct drm_device *dev = crtc->dev; |
| struct nouveau_channel *evo = nv50_display(dev)->master; |
| struct drm_display_mode *umode = &crtc->mode; |
| struct drm_display_mode *omode; |
| int scaling_mode, ret; |
| u32 ctrl = 0, oX, oY; |
| |
| NV_DEBUG_KMS(dev, "\n"); |
| |
| nv_connector = nouveau_crtc_connector_get(nv_crtc); |
| if (!nv_connector || !nv_connector->native_mode) { |
| NV_ERROR(dev, "no native mode, forcing panel scaling\n"); |
| scaling_mode = DRM_MODE_SCALE_NONE; |
| } else { |
| scaling_mode = nv_connector->scaling_mode; |
| } |
| |
| /* start off at the resolution we programmed the crtc for, this |
| * effectively handles NONE/FULL scaling |
| */ |
| if (scaling_mode != DRM_MODE_SCALE_NONE) |
| omode = nv_connector->native_mode; |
| else |
| omode = umode; |
| |
| oX = omode->hdisplay; |
| oY = omode->vdisplay; |
| if (omode->flags & DRM_MODE_FLAG_DBLSCAN) |
| oY *= 2; |
| |
| /* add overscan compensation if necessary, will keep the aspect |
| * ratio the same as the backend mode unless overridden by the |
| * user setting both hborder and vborder properties. |
| */ |
| if (nv_connector && ( nv_connector->underscan == UNDERSCAN_ON || |
| (nv_connector->underscan == UNDERSCAN_AUTO && |
| nv_connector->edid && |
| drm_detect_hdmi_monitor(nv_connector->edid)))) { |
| u32 bX = nv_connector->underscan_hborder; |
| u32 bY = nv_connector->underscan_vborder; |
| u32 aspect = (oY << 19) / oX; |
| |
| if (bX) { |
| oX -= (bX * 2); |
| if (bY) oY -= (bY * 2); |
| else oY = ((oX * aspect) + (aspect / 2)) >> 19; |
| } else { |
| oX -= (oX >> 4) + 32; |
| if (bY) oY -= (bY * 2); |
| else oY = ((oX * aspect) + (aspect / 2)) >> 19; |
| } |
| } |
| |
| /* handle CENTER/ASPECT scaling, taking into account the areas |
| * removed already for overscan compensation |
| */ |
| switch (scaling_mode) { |
| case DRM_MODE_SCALE_CENTER: |
| oX = min((u32)umode->hdisplay, oX); |
| oY = min((u32)umode->vdisplay, oY); |
| /* fall-through */ |
| case DRM_MODE_SCALE_ASPECT: |
| if (oY < oX) { |
| u32 aspect = (umode->hdisplay << 19) / umode->vdisplay; |
| oX = ((oY * aspect) + (aspect / 2)) >> 19; |
| } else { |
| u32 aspect = (umode->vdisplay << 19) / umode->hdisplay; |
| oY = ((oX * aspect) + (aspect / 2)) >> 19; |
| } |
| break; |
| default: |
| break; |
| } |
| |
| if (umode->hdisplay != oX || umode->vdisplay != oY || |
| umode->flags & DRM_MODE_FLAG_INTERLACE || |
| umode->flags & DRM_MODE_FLAG_DBLSCAN) |
| ctrl |= NV50_EVO_CRTC_SCALE_CTRL_ACTIVE; |
| |
| ret = RING_SPACE(evo, 5); |
| if (ret) |
| return ret; |
| |
| BEGIN_NV04(evo, 0, NV50_EVO_CRTC(nv_crtc->index, SCALE_CTRL), 1); |
| OUT_RING (evo, ctrl); |
| BEGIN_NV04(evo, 0, NV50_EVO_CRTC(nv_crtc->index, SCALE_RES1), 2); |
| OUT_RING (evo, oY << 16 | oX); |
| OUT_RING (evo, oY << 16 | oX); |
| |
| if (update) { |
| nv50_display_flip_stop(crtc); |
| nv50_display_sync(dev); |
| nv50_display_flip_next(crtc, crtc->fb, NULL); |
| } |
| |
| return 0; |
| } |
| |
| int |
| nv50_crtc_set_clock(struct drm_device *dev, int head, int pclk) |
| { |
| struct drm_nouveau_private *dev_priv = dev->dev_private; |
| struct pll_lims pll; |
| uint32_t reg1, reg2; |
| int ret, N1, M1, N2, M2, P; |
| |
| ret = get_pll_limits(dev, PLL_VPLL0 + head, &pll); |
| if (ret) |
| return ret; |
| |
| if (pll.vco2.maxfreq) { |
| ret = nv50_calc_pll(dev, &pll, pclk, &N1, &M1, &N2, &M2, &P); |
| if (ret <= 0) |
| return 0; |
| |
| NV_DEBUG(dev, "pclk %d out %d NM1 %d %d NM2 %d %d P %d\n", |
| pclk, ret, N1, M1, N2, M2, P); |
| |
| reg1 = nv_rd32(dev, pll.reg + 4) & 0xff00ff00; |
| reg2 = nv_rd32(dev, pll.reg + 8) & 0x8000ff00; |
| nv_wr32(dev, pll.reg + 0, 0x10000611); |
| nv_wr32(dev, pll.reg + 4, reg1 | (M1 << 16) | N1); |
| nv_wr32(dev, pll.reg + 8, reg2 | (P << 28) | (M2 << 16) | N2); |
| } else |
| if (dev_priv->chipset < NV_C0) { |
| ret = nva3_calc_pll(dev, &pll, pclk, &N1, &N2, &M1, &P); |
| if (ret <= 0) |
| return 0; |
| |
| NV_DEBUG(dev, "pclk %d out %d N %d fN 0x%04x M %d P %d\n", |
| pclk, ret, N1, N2, M1, P); |
| |
| reg1 = nv_rd32(dev, pll.reg + 4) & 0xffc00000; |
| nv_wr32(dev, pll.reg + 0, 0x50000610); |
| nv_wr32(dev, pll.reg + 4, reg1 | (P << 16) | (M1 << 8) | N1); |
| nv_wr32(dev, pll.reg + 8, N2); |
| } else { |
| ret = nva3_calc_pll(dev, &pll, pclk, &N1, &N2, &M1, &P); |
| if (ret <= 0) |
| return 0; |
| |
| NV_DEBUG(dev, "pclk %d out %d N %d fN 0x%04x M %d P %d\n", |
| pclk, ret, N1, N2, M1, P); |
| |
| nv_mask(dev, pll.reg + 0x0c, 0x00000000, 0x00000100); |
| nv_wr32(dev, pll.reg + 0x04, (P << 16) | (N1 << 8) | M1); |
| nv_wr32(dev, pll.reg + 0x10, N2 << 16); |
| } |
| |
| return 0; |
| } |
| |
| static void |
| nv50_crtc_destroy(struct drm_crtc *crtc) |
| { |
| struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc); |
| |
| NV_DEBUG_KMS(crtc->dev, "\n"); |
| |
| nouveau_bo_unmap(nv_crtc->lut.nvbo); |
| nouveau_bo_ref(NULL, &nv_crtc->lut.nvbo); |
| nouveau_bo_unmap(nv_crtc->cursor.nvbo); |
| nouveau_bo_ref(NULL, &nv_crtc->cursor.nvbo); |
| drm_crtc_cleanup(&nv_crtc->base); |
| kfree(nv_crtc); |
| } |
| |
| int |
| nv50_crtc_cursor_set(struct drm_crtc *crtc, struct drm_file *file_priv, |
| uint32_t buffer_handle, uint32_t width, uint32_t height) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc); |
| struct nouveau_bo *cursor = NULL; |
| struct drm_gem_object *gem; |
| int ret = 0, i; |
| |
| if (!buffer_handle) { |
| nv_crtc->cursor.hide(nv_crtc, true); |
| return 0; |
| } |
| |
| if (width != 64 || height != 64) |
| return -EINVAL; |
| |
| gem = drm_gem_object_lookup(dev, file_priv, buffer_handle); |
| if (!gem) |
| return -ENOENT; |
| cursor = nouveau_gem_object(gem); |
| |
| ret = nouveau_bo_map(cursor); |
| if (ret) |
| goto out; |
| |
| /* The simple will do for now. */ |
| for (i = 0; i < 64 * 64; i++) |
| nouveau_bo_wr32(nv_crtc->cursor.nvbo, i, nouveau_bo_rd32(cursor, i)); |
| |
| nouveau_bo_unmap(cursor); |
| |
| nv_crtc->cursor.set_offset(nv_crtc, nv_crtc->cursor.nvbo->bo.offset); |
| nv_crtc->cursor.show(nv_crtc, true); |
| |
| out: |
| drm_gem_object_unreference_unlocked(gem); |
| return ret; |
| } |
| |
| int |
| nv50_crtc_cursor_move(struct drm_crtc *crtc, int x, int y) |
| { |
| struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc); |
| |
| nv_crtc->cursor.set_pos(nv_crtc, x, y); |
| return 0; |
| } |
| |
| static void |
| nv50_crtc_gamma_set(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b, |
| uint32_t start, uint32_t size) |
| { |
| int end = (start + size > 256) ? 256 : start + size, i; |
| struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc); |
| |
| for (i = start; i < end; i++) { |
| nv_crtc->lut.r[i] = r[i]; |
| nv_crtc->lut.g[i] = g[i]; |
| nv_crtc->lut.b[i] = b[i]; |
| } |
| |
| /* We need to know the depth before we upload, but it's possible to |
| * get called before a framebuffer is bound. If this is the case, |
| * mark the lut values as dirty by setting depth==0, and it'll be |
| * uploaded on the first mode_set_base() |
| */ |
| if (!nv_crtc->base.fb) { |
| nv_crtc->lut.depth = 0; |
| return; |
| } |
| |
| nv50_crtc_lut_load(crtc); |
| } |
| |
| static void |
| nv50_crtc_save(struct drm_crtc *crtc) |
| { |
| NV_ERROR(crtc->dev, "!!\n"); |
| } |
| |
| static void |
| nv50_crtc_restore(struct drm_crtc *crtc) |
| { |
| NV_ERROR(crtc->dev, "!!\n"); |
| } |
| |
| static const struct drm_crtc_funcs nv50_crtc_funcs = { |
| .save = nv50_crtc_save, |
| .restore = nv50_crtc_restore, |
| .cursor_set = nv50_crtc_cursor_set, |
| .cursor_move = nv50_crtc_cursor_move, |
| .gamma_set = nv50_crtc_gamma_set, |
| .set_config = drm_crtc_helper_set_config, |
| .page_flip = nouveau_crtc_page_flip, |
| .destroy = nv50_crtc_destroy, |
| }; |
| |
| static void |
| nv50_crtc_dpms(struct drm_crtc *crtc, int mode) |
| { |
| } |
| |
| static void |
| nv50_crtc_prepare(struct drm_crtc *crtc) |
| { |
| struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc); |
| struct drm_device *dev = crtc->dev; |
| |
| NV_DEBUG_KMS(dev, "index %d\n", nv_crtc->index); |
| |
| nv50_display_flip_stop(crtc); |
| drm_vblank_pre_modeset(dev, nv_crtc->index); |
| nv50_crtc_blank(nv_crtc, true); |
| } |
| |
| static void |
| nv50_crtc_commit(struct drm_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc); |
| |
| NV_DEBUG_KMS(dev, "index %d\n", nv_crtc->index); |
| |
| nv50_crtc_blank(nv_crtc, false); |
| drm_vblank_post_modeset(dev, nv_crtc->index); |
| nv50_display_sync(dev); |
| nv50_display_flip_next(crtc, crtc->fb, NULL); |
| } |
| |
| static bool |
| nv50_crtc_mode_fixup(struct drm_crtc *crtc, const struct drm_display_mode *mode, |
| struct drm_display_mode *adjusted_mode) |
| { |
| return true; |
| } |
| |
| static int |
| nv50_crtc_do_mode_set_base(struct drm_crtc *crtc, |
| struct drm_framebuffer *passed_fb, |
| int x, int y, bool atomic) |
| { |
| struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc); |
| struct drm_device *dev = nv_crtc->base.dev; |
| struct drm_nouveau_private *dev_priv = dev->dev_private; |
| struct nouveau_channel *evo = nv50_display(dev)->master; |
| struct drm_framebuffer *drm_fb; |
| struct nouveau_framebuffer *fb; |
| int ret; |
| |
| NV_DEBUG_KMS(dev, "index %d\n", nv_crtc->index); |
| |
| /* no fb bound */ |
| if (!atomic && !crtc->fb) { |
| NV_DEBUG_KMS(dev, "No FB bound\n"); |
| return 0; |
| } |
| |
| /* If atomic, we want to switch to the fb we were passed, so |
| * now we update pointers to do that. (We don't pin; just |
| * assume we're already pinned and update the base address.) |
| */ |
| if (atomic) { |
| drm_fb = passed_fb; |
| fb = nouveau_framebuffer(passed_fb); |
| } else { |
| drm_fb = crtc->fb; |
| fb = nouveau_framebuffer(crtc->fb); |
| /* If not atomic, we can go ahead and pin, and unpin the |
| * old fb we were passed. |
| */ |
| ret = nouveau_bo_pin(fb->nvbo, TTM_PL_FLAG_VRAM); |
| if (ret) |
| return ret; |
| |
| if (passed_fb) { |
| struct nouveau_framebuffer *ofb = nouveau_framebuffer(passed_fb); |
| nouveau_bo_unpin(ofb->nvbo); |
| } |
| } |
| |
| nv_crtc->fb.offset = fb->nvbo->bo.offset; |
| nv_crtc->fb.tile_flags = nouveau_bo_tile_layout(fb->nvbo); |
| nv_crtc->fb.cpp = drm_fb->bits_per_pixel / 8; |
| if (!nv_crtc->fb.blanked && dev_priv->chipset != 0x50) { |
| ret = RING_SPACE(evo, 2); |
| if (ret) |
| return ret; |
| |
| BEGIN_NV04(evo, 0, NV50_EVO_CRTC(nv_crtc->index, FB_DMA), 1); |
| OUT_RING (evo, fb->r_dma); |
| } |
| |
| ret = RING_SPACE(evo, 12); |
| if (ret) |
| return ret; |
| |
| BEGIN_NV04(evo, 0, NV50_EVO_CRTC(nv_crtc->index, FB_OFFSET), 5); |
| OUT_RING (evo, nv_crtc->fb.offset >> 8); |
| OUT_RING (evo, 0); |
| OUT_RING (evo, (drm_fb->height << 16) | drm_fb->width); |
| OUT_RING (evo, fb->r_pitch); |
| OUT_RING (evo, fb->r_format); |
| |
| BEGIN_NV04(evo, 0, NV50_EVO_CRTC(nv_crtc->index, CLUT_MODE), 1); |
| OUT_RING (evo, fb->base.depth == 8 ? |
| NV50_EVO_CRTC_CLUT_MODE_OFF : NV50_EVO_CRTC_CLUT_MODE_ON); |
| |
| BEGIN_NV04(evo, 0, NV50_EVO_CRTC(nv_crtc->index, FB_POS), 1); |
| OUT_RING (evo, (y << 16) | x); |
| |
| if (nv_crtc->lut.depth != fb->base.depth) { |
| nv_crtc->lut.depth = fb->base.depth; |
| nv50_crtc_lut_load(crtc); |
| } |
| |
| return 0; |
| } |
| |
| static int |
| nv50_crtc_mode_set(struct drm_crtc *crtc, struct drm_display_mode *umode, |
| struct drm_display_mode *mode, int x, int y, |
| struct drm_framebuffer *old_fb) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct nouveau_channel *evo = nv50_display(dev)->master; |
| struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc); |
| u32 head = nv_crtc->index * 0x400; |
| u32 ilace = (mode->flags & DRM_MODE_FLAG_INTERLACE) ? 2 : 1; |
| u32 vscan = (mode->flags & DRM_MODE_FLAG_DBLSCAN) ? 2 : 1; |
| u32 hactive, hsynce, hbackp, hfrontp, hblanke, hblanks; |
| u32 vactive, vsynce, vbackp, vfrontp, vblanke, vblanks; |
| u32 vblan2e = 0, vblan2s = 1; |
| int ret; |
| |
| /* hw timing description looks like this: |
| * |
| * <sync> <back porch> <---------display---------> <front porch> |
| * ______ |
| * |____________|---------------------------|____________| |
| * |
| * ^ synce ^ blanke ^ blanks ^ active |
| * |
| * interlaced modes also have 2 additional values pointing at the end |
| * and start of the next field's blanking period. |
| */ |
| |
| hactive = mode->htotal; |
| hsynce = mode->hsync_end - mode->hsync_start - 1; |
| hbackp = mode->htotal - mode->hsync_end; |
| hblanke = hsynce + hbackp; |
| hfrontp = mode->hsync_start - mode->hdisplay; |
| hblanks = mode->htotal - hfrontp - 1; |
| |
| vactive = mode->vtotal * vscan / ilace; |
| vsynce = ((mode->vsync_end - mode->vsync_start) * vscan / ilace) - 1; |
| vbackp = (mode->vtotal - mode->vsync_end) * vscan / ilace; |
| vblanke = vsynce + vbackp; |
| vfrontp = (mode->vsync_start - mode->vdisplay) * vscan / ilace; |
| vblanks = vactive - vfrontp - 1; |
| if (mode->flags & DRM_MODE_FLAG_INTERLACE) { |
| vblan2e = vactive + vsynce + vbackp; |
| vblan2s = vblan2e + (mode->vdisplay * vscan / ilace); |
| vactive = (vactive * 2) + 1; |
| } |
| |
| ret = RING_SPACE(evo, 18); |
| if (ret == 0) { |
| BEGIN_NV04(evo, 0, 0x0804 + head, 2); |
| OUT_RING (evo, 0x00800000 | mode->clock); |
| OUT_RING (evo, (ilace == 2) ? 2 : 0); |
| BEGIN_NV04(evo, 0, 0x0810 + head, 6); |
| OUT_RING (evo, 0x00000000); /* border colour */ |
| OUT_RING (evo, (vactive << 16) | hactive); |
| OUT_RING (evo, ( vsynce << 16) | hsynce); |
| OUT_RING (evo, (vblanke << 16) | hblanke); |
| OUT_RING (evo, (vblanks << 16) | hblanks); |
| OUT_RING (evo, (vblan2e << 16) | vblan2s); |
| BEGIN_NV04(evo, 0, 0x082c + head, 1); |
| OUT_RING (evo, 0x00000000); |
| BEGIN_NV04(evo, 0, 0x0900 + head, 1); |
| OUT_RING (evo, 0x00000311); /* makes sync channel work */ |
| BEGIN_NV04(evo, 0, 0x08c8 + head, 1); |
| OUT_RING (evo, (umode->vdisplay << 16) | umode->hdisplay); |
| BEGIN_NV04(evo, 0, 0x08d4 + head, 1); |
| OUT_RING (evo, 0x00000000); /* screen position */ |
| } |
| |
| nv_crtc->set_dither(nv_crtc, false); |
| nv_crtc->set_scale(nv_crtc, false); |
| nv_crtc->set_color_vibrance(nv_crtc, false); |
| |
| return nv50_crtc_do_mode_set_base(crtc, old_fb, x, y, false); |
| } |
| |
| static int |
| nv50_crtc_mode_set_base(struct drm_crtc *crtc, int x, int y, |
| struct drm_framebuffer *old_fb) |
| { |
| int ret; |
| |
| nv50_display_flip_stop(crtc); |
| ret = nv50_crtc_do_mode_set_base(crtc, old_fb, x, y, false); |
| if (ret) |
| return ret; |
| |
| ret = nv50_display_sync(crtc->dev); |
| if (ret) |
| return ret; |
| |
| return nv50_display_flip_next(crtc, crtc->fb, NULL); |
| } |
| |
| static int |
| nv50_crtc_mode_set_base_atomic(struct drm_crtc *crtc, |
| struct drm_framebuffer *fb, |
| int x, int y, enum mode_set_atomic state) |
| { |
| int ret; |
| |
| nv50_display_flip_stop(crtc); |
| ret = nv50_crtc_do_mode_set_base(crtc, fb, x, y, true); |
| if (ret) |
| return ret; |
| |
| return nv50_display_sync(crtc->dev); |
| } |
| |
| static const struct drm_crtc_helper_funcs nv50_crtc_helper_funcs = { |
| .dpms = nv50_crtc_dpms, |
| .prepare = nv50_crtc_prepare, |
| .commit = nv50_crtc_commit, |
| .mode_fixup = nv50_crtc_mode_fixup, |
| .mode_set = nv50_crtc_mode_set, |
| .mode_set_base = nv50_crtc_mode_set_base, |
| .mode_set_base_atomic = nv50_crtc_mode_set_base_atomic, |
| .load_lut = nv50_crtc_lut_load, |
| }; |
| |
| int |
| nv50_crtc_create(struct drm_device *dev, int index) |
| { |
| struct nouveau_crtc *nv_crtc = NULL; |
| int ret, i; |
| |
| NV_DEBUG_KMS(dev, "\n"); |
| |
| nv_crtc = kzalloc(sizeof(*nv_crtc), GFP_KERNEL); |
| if (!nv_crtc) |
| return -ENOMEM; |
| |
| nv_crtc->index = index; |
| nv_crtc->set_dither = nv50_crtc_set_dither; |
| nv_crtc->set_scale = nv50_crtc_set_scale; |
| nv_crtc->set_color_vibrance = nv50_crtc_set_color_vibrance; |
| nv_crtc->color_vibrance = 50; |
| nv_crtc->vibrant_hue = 0; |
| nv_crtc->lut.depth = 0; |
| for (i = 0; i < 256; i++) { |
| nv_crtc->lut.r[i] = i << 8; |
| nv_crtc->lut.g[i] = i << 8; |
| nv_crtc->lut.b[i] = i << 8; |
| } |
| |
| drm_crtc_init(dev, &nv_crtc->base, &nv50_crtc_funcs); |
| drm_crtc_helper_add(&nv_crtc->base, &nv50_crtc_helper_funcs); |
| drm_mode_crtc_set_gamma_size(&nv_crtc->base, 256); |
| |
| ret = nouveau_bo_new(dev, 4096, 0x100, TTM_PL_FLAG_VRAM, |
| 0, 0x0000, NULL, &nv_crtc->lut.nvbo); |
| if (!ret) { |
| ret = nouveau_bo_pin(nv_crtc->lut.nvbo, TTM_PL_FLAG_VRAM); |
| if (!ret) |
| ret = nouveau_bo_map(nv_crtc->lut.nvbo); |
| if (ret) |
| nouveau_bo_ref(NULL, &nv_crtc->lut.nvbo); |
| } |
| |
| if (ret) |
| goto out; |
| |
| |
| ret = nouveau_bo_new(dev, 64*64*4, 0x100, TTM_PL_FLAG_VRAM, |
| 0, 0x0000, NULL, &nv_crtc->cursor.nvbo); |
| if (!ret) { |
| ret = nouveau_bo_pin(nv_crtc->cursor.nvbo, TTM_PL_FLAG_VRAM); |
| if (!ret) |
| ret = nouveau_bo_map(nv_crtc->cursor.nvbo); |
| if (ret) |
| nouveau_bo_ref(NULL, &nv_crtc->cursor.nvbo); |
| } |
| |
| if (ret) |
| goto out; |
| |
| nv50_cursor_init(nv_crtc); |
| out: |
| if (ret) |
| nv50_crtc_destroy(&nv_crtc->base); |
| return ret; |
| } |