blob: 2a4810d32182b460dac4000440145ccb5623b576 [file] [log] [blame]
/******************************************************************************
*
* Copyright(c) 2009-2012 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
*
* The full GNU General Public License is included in this distribution in the
* file called LICENSE.
*
* Contact Information:
* wlanfae <wlanfae@realtek.com>
* Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park,
* Hsinchu 300, Taiwan.
*
* Larry Finger <Larry.Finger@lwfinger.net>
*
*****************************************************************************/
#include "../wifi.h"
#include "../pci.h"
#include "../ps.h"
#include "../core.h"
#include "reg.h"
#include "def.h"
#include "phy.h"
#include "rf.h"
#include "dm.h"
#include "table.h"
#include "sw.h"
#include "hw.h"
#define MAX_RF_IMR_INDEX 12
#define MAX_RF_IMR_INDEX_NORMAL 13
#define RF_REG_NUM_FOR_C_CUT_5G 6
#define RF_REG_NUM_FOR_C_CUT_5G_INTERNALPA 7
#define RF_REG_NUM_FOR_C_CUT_2G 5
#define RF_CHNL_NUM_5G 19
#define RF_CHNL_NUM_5G_40M 17
#define TARGET_CHNL_NUM_5G 221
#define TARGET_CHNL_NUM_2G 14
#define CV_CURVE_CNT 64
static u32 rf_reg_for_5g_swchnl_normal[MAX_RF_IMR_INDEX_NORMAL] = {
0, 0x2f, 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x0
};
static u8 rf_reg_for_c_cut_5g[RF_REG_NUM_FOR_C_CUT_5G] = {
RF_SYN_G1, RF_SYN_G2, RF_SYN_G3, RF_SYN_G4, RF_SYN_G5, RF_SYN_G6
};
static u8 rf_reg_for_c_cut_2g[RF_REG_NUM_FOR_C_CUT_2G] = {
RF_SYN_G1, RF_SYN_G2, RF_SYN_G3, RF_SYN_G7, RF_SYN_G8
};
static u8 rf_for_c_cut_5g_internal_pa[RF_REG_NUM_FOR_C_CUT_5G_INTERNALPA] = {
0x0B, 0x48, 0x49, 0x4B, 0x03, 0x04, 0x0E
};
static u32 rf_reg_mask_for_c_cut_2g[RF_REG_NUM_FOR_C_CUT_2G] = {
BIT(19) | BIT(18) | BIT(17) | BIT(14) | BIT(1),
BIT(10) | BIT(9),
BIT(18) | BIT(17) | BIT(16) | BIT(1),
BIT(2) | BIT(1),
BIT(15) | BIT(14) | BIT(13) | BIT(12) | BIT(11)
};
static u8 rf_chnl_5g[RF_CHNL_NUM_5G] = {
36, 40, 44, 48, 52, 56, 60, 64, 100, 104, 108,
112, 116, 120, 124, 128, 132, 136, 140
};
static u8 rf_chnl_5g_40m[RF_CHNL_NUM_5G_40M] = {
38, 42, 46, 50, 54, 58, 62, 102, 106, 110, 114,
118, 122, 126, 130, 134, 138
};
static u32 rf_reg_pram_c_5g[5][RF_REG_NUM_FOR_C_CUT_5G] = {
{0xE43BE, 0xFC638, 0x77C0A, 0xDE471, 0xd7110, 0x8EB04},
{0xE43BE, 0xFC078, 0xF7C1A, 0xE0C71, 0xD7550, 0xAEB04},
{0xE43BF, 0xFF038, 0xF7C0A, 0xDE471, 0xE5550, 0xAEB04},
{0xE43BF, 0xFF079, 0xF7C1A, 0xDE471, 0xE5550, 0xAEB04},
{0xE43BF, 0xFF038, 0xF7C1A, 0xDE471, 0xd7550, 0xAEB04}
};
static u32 rf_reg_param_for_c_cut_2g[3][RF_REG_NUM_FOR_C_CUT_2G] = {
{0x643BC, 0xFC038, 0x77C1A, 0x41289, 0x01840},
{0x643BC, 0xFC038, 0x07C1A, 0x41289, 0x01840},
{0x243BC, 0xFC438, 0x07C1A, 0x4128B, 0x0FC41}
};
static u32 rf_syn_g4_for_c_cut_2g = 0xD1C31 & 0x7FF;
static u32 rf_pram_c_5g_int_pa[3][RF_REG_NUM_FOR_C_CUT_5G_INTERNALPA] = {
{0x01a00, 0x40443, 0x00eb5, 0x89bec, 0x94a12, 0x94a12, 0x94a12},
{0x01800, 0xc0443, 0x00730, 0x896ee, 0x94a52, 0x94a52, 0x94a52},
{0x01800, 0xc0443, 0x00730, 0x896ee, 0x94a12, 0x94a12, 0x94a12}
};
/* [mode][patha+b][reg] */
static u32 rf_imr_param_normal[1][3][MAX_RF_IMR_INDEX_NORMAL] = {
{
/* channel 1-14. */
{
0x70000, 0x00ff0, 0x4400f, 0x00ff0, 0x0, 0x0, 0x0,
0x0, 0x0, 0x64888, 0xe266c, 0x00090, 0x22fff
},
/* path 36-64 */
{
0x70000, 0x22880, 0x4470f, 0x55880, 0x00070, 0x88000,
0x0, 0x88080, 0x70000, 0x64a82, 0xe466c, 0x00090,
0x32c9a
},
/* 100 -165 */
{
0x70000, 0x44880, 0x4477f, 0x77880, 0x00070, 0x88000,
0x0, 0x880b0, 0x0, 0x64b82, 0xe466c, 0x00090, 0x32c9a
}
}
};
static u32 curveindex_5g[TARGET_CHNL_NUM_5G] = {0};
static u32 curveindex_2g[TARGET_CHNL_NUM_2G] = {0};
static u32 targetchnl_5g[TARGET_CHNL_NUM_5G] = {
25141, 25116, 25091, 25066, 25041,
25016, 24991, 24966, 24941, 24917,
24892, 24867, 24843, 24818, 24794,
24770, 24765, 24721, 24697, 24672,
24648, 24624, 24600, 24576, 24552,
24528, 24504, 24480, 24457, 24433,
24409, 24385, 24362, 24338, 24315,
24291, 24268, 24245, 24221, 24198,
24175, 24151, 24128, 24105, 24082,
24059, 24036, 24013, 23990, 23967,
23945, 23922, 23899, 23876, 23854,
23831, 23809, 23786, 23764, 23741,
23719, 23697, 23674, 23652, 23630,
23608, 23586, 23564, 23541, 23519,
23498, 23476, 23454, 23432, 23410,
23388, 23367, 23345, 23323, 23302,
23280, 23259, 23237, 23216, 23194,
23173, 23152, 23130, 23109, 23088,
23067, 23046, 23025, 23003, 22982,
22962, 22941, 22920, 22899, 22878,
22857, 22837, 22816, 22795, 22775,
22754, 22733, 22713, 22692, 22672,
22652, 22631, 22611, 22591, 22570,
22550, 22530, 22510, 22490, 22469,
22449, 22429, 22409, 22390, 22370,
22350, 22336, 22310, 22290, 22271,
22251, 22231, 22212, 22192, 22173,
22153, 22134, 22114, 22095, 22075,
22056, 22037, 22017, 21998, 21979,
21960, 21941, 21921, 21902, 21883,
21864, 21845, 21826, 21807, 21789,
21770, 21751, 21732, 21713, 21695,
21676, 21657, 21639, 21620, 21602,
21583, 21565, 21546, 21528, 21509,
21491, 21473, 21454, 21436, 21418,
21400, 21381, 21363, 21345, 21327,
21309, 21291, 21273, 21255, 21237,
21219, 21201, 21183, 21166, 21148,
21130, 21112, 21095, 21077, 21059,
21042, 21024, 21007, 20989, 20972,
25679, 25653, 25627, 25601, 25575,
25549, 25523, 25497, 25471, 25446,
25420, 25394, 25369, 25343, 25318,
25292, 25267, 25242, 25216, 25191,
25166
};
/* channel 1~14 */
static u32 targetchnl_2g[TARGET_CHNL_NUM_2G] = {
26084, 26030, 25976, 25923, 25869, 25816, 25764,
25711, 25658, 25606, 25554, 25502, 25451, 25328
};
static u32 _rtl92d_phy_calculate_bit_shift(u32 bitmask)
{
u32 i;
for (i = 0; i <= 31; i++) {
if (((bitmask >> i) & 0x1) == 1)
break;
}
return i;
}
u32 rtl92d_phy_query_bb_reg(struct ieee80211_hw *hw, u32 regaddr, u32 bitmask)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_hal *rtlhal = rtl_hal(rtlpriv);
u32 returnvalue, originalvalue, bitshift;
RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE, "regaddr(%#x), bitmask(%#x)\n",
regaddr, bitmask);
if (rtlhal->during_mac1init_radioa || rtlhal->during_mac0init_radiob) {
u8 dbi_direct = 0;
/* mac1 use phy0 read radio_b. */
/* mac0 use phy1 read radio_b. */
if (rtlhal->during_mac1init_radioa)
dbi_direct = BIT(3);
else if (rtlhal->during_mac0init_radiob)
dbi_direct = BIT(3) | BIT(2);
originalvalue = rtl92de_read_dword_dbi(hw, (u16)regaddr,
dbi_direct);
} else {
originalvalue = rtl_read_dword(rtlpriv, regaddr);
}
bitshift = _rtl92d_phy_calculate_bit_shift(bitmask);
returnvalue = (originalvalue & bitmask) >> bitshift;
RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE,
"BBR MASK=0x%x Addr[0x%x]=0x%x\n",
bitmask, regaddr, originalvalue);
return returnvalue;
}
void rtl92d_phy_set_bb_reg(struct ieee80211_hw *hw,
u32 regaddr, u32 bitmask, u32 data)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_hal *rtlhal = rtl_hal(rtlpriv);
u8 dbi_direct = 0;
u32 originalvalue, bitshift;
RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE,
"regaddr(%#x), bitmask(%#x), data(%#x)\n",
regaddr, bitmask, data);
if (rtlhal->during_mac1init_radioa)
dbi_direct = BIT(3);
else if (rtlhal->during_mac0init_radiob)
/* mac0 use phy1 write radio_b. */
dbi_direct = BIT(3) | BIT(2);
if (bitmask != MASKDWORD) {
if (rtlhal->during_mac1init_radioa ||
rtlhal->during_mac0init_radiob)
originalvalue = rtl92de_read_dword_dbi(hw,
(u16) regaddr,
dbi_direct);
else
originalvalue = rtl_read_dword(rtlpriv, regaddr);
bitshift = _rtl92d_phy_calculate_bit_shift(bitmask);
data = ((originalvalue & (~bitmask)) | (data << bitshift));
}
if (rtlhal->during_mac1init_radioa || rtlhal->during_mac0init_radiob)
rtl92de_write_dword_dbi(hw, (u16) regaddr, data, dbi_direct);
else
rtl_write_dword(rtlpriv, regaddr, data);
RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE,
"regaddr(%#x), bitmask(%#x), data(%#x)\n",
regaddr, bitmask, data);
}
static u32 _rtl92d_phy_rf_serial_read(struct ieee80211_hw *hw,
enum radio_path rfpath, u32 offset)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &(rtlpriv->phy);
struct bb_reg_def *pphyreg = &rtlphy->phyreg_def[rfpath];
u32 newoffset;
u32 tmplong, tmplong2;
u8 rfpi_enable = 0;
u32 retvalue;
newoffset = offset;
tmplong = rtl_get_bbreg(hw, RFPGA0_XA_HSSIPARAMETER2, MASKDWORD);
if (rfpath == RF90_PATH_A)
tmplong2 = tmplong;
else
tmplong2 = rtl_get_bbreg(hw, pphyreg->rfhssi_para2, MASKDWORD);
tmplong2 = (tmplong2 & (~BLSSIREADADDRESS)) |
(newoffset << 23) | BLSSIREADEDGE;
rtl_set_bbreg(hw, RFPGA0_XA_HSSIPARAMETER2, MASKDWORD,
tmplong & (~BLSSIREADEDGE));
udelay(10);
rtl_set_bbreg(hw, pphyreg->rfhssi_para2, MASKDWORD, tmplong2);
udelay(50);
udelay(50);
rtl_set_bbreg(hw, RFPGA0_XA_HSSIPARAMETER2, MASKDWORD,
tmplong | BLSSIREADEDGE);
udelay(10);
if (rfpath == RF90_PATH_A)
rfpi_enable = (u8) rtl_get_bbreg(hw, RFPGA0_XA_HSSIPARAMETER1,
BIT(8));
else if (rfpath == RF90_PATH_B)
rfpi_enable = (u8) rtl_get_bbreg(hw, RFPGA0_XB_HSSIPARAMETER1,
BIT(8));
if (rfpi_enable)
retvalue = rtl_get_bbreg(hw, pphyreg->rf_rbpi,
BLSSIREADBACKDATA);
else
retvalue = rtl_get_bbreg(hw, pphyreg->rf_rb,
BLSSIREADBACKDATA);
RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE, "RFR-%d Addr[0x%x] = 0x%x\n",
rfpath, pphyreg->rf_rb, retvalue);
return retvalue;
}
static void _rtl92d_phy_rf_serial_write(struct ieee80211_hw *hw,
enum radio_path rfpath,
u32 offset, u32 data)
{
u32 data_and_addr;
u32 newoffset;
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &(rtlpriv->phy);
struct bb_reg_def *pphyreg = &rtlphy->phyreg_def[rfpath];
newoffset = offset;
/* T65 RF */
data_and_addr = ((newoffset << 20) | (data & 0x000fffff)) & 0x0fffffff;
rtl_set_bbreg(hw, pphyreg->rf3wire_offset, MASKDWORD, data_and_addr);
RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE, "RFW-%d Addr[0x%x]=0x%x\n",
rfpath, pphyreg->rf3wire_offset, data_and_addr);
}
u32 rtl92d_phy_query_rf_reg(struct ieee80211_hw *hw,
enum radio_path rfpath, u32 regaddr, u32 bitmask)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
u32 original_value, readback_value, bitshift;
unsigned long flags;
RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE,
"regaddr(%#x), rfpath(%#x), bitmask(%#x)\n",
regaddr, rfpath, bitmask);
spin_lock_irqsave(&rtlpriv->locks.rf_lock, flags);
original_value = _rtl92d_phy_rf_serial_read(hw, rfpath, regaddr);
bitshift = _rtl92d_phy_calculate_bit_shift(bitmask);
readback_value = (original_value & bitmask) >> bitshift;
spin_unlock_irqrestore(&rtlpriv->locks.rf_lock, flags);
RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE,
"regaddr(%#x), rfpath(%#x), bitmask(%#x), original_value(%#x)\n",
regaddr, rfpath, bitmask, original_value);
return readback_value;
}
void rtl92d_phy_set_rf_reg(struct ieee80211_hw *hw, enum radio_path rfpath,
u32 regaddr, u32 bitmask, u32 data)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &(rtlpriv->phy);
u32 original_value, bitshift;
unsigned long flags;
RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE,
"regaddr(%#x), bitmask(%#x), data(%#x), rfpath(%#x)\n",
regaddr, bitmask, data, rfpath);
if (bitmask == 0)
return;
spin_lock_irqsave(&rtlpriv->locks.rf_lock, flags);
if (rtlphy->rf_mode != RF_OP_BY_FW) {
if (bitmask != RFREG_OFFSET_MASK) {
original_value = _rtl92d_phy_rf_serial_read(hw,
rfpath, regaddr);
bitshift = _rtl92d_phy_calculate_bit_shift(bitmask);
data = ((original_value & (~bitmask)) |
(data << bitshift));
}
_rtl92d_phy_rf_serial_write(hw, rfpath, regaddr, data);
}
spin_unlock_irqrestore(&rtlpriv->locks.rf_lock, flags);
RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE,
"regaddr(%#x), bitmask(%#x), data(%#x), rfpath(%#x)\n",
regaddr, bitmask, data, rfpath);
}
bool rtl92d_phy_mac_config(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
u32 i;
u32 arraylength;
u32 *ptrarray;
RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "Read Rtl819XMACPHY_Array\n");
arraylength = MAC_2T_ARRAYLENGTH;
ptrarray = rtl8192de_mac_2tarray;
RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "Img:Rtl819XMAC_Array\n");
for (i = 0; i < arraylength; i = i + 2)
rtl_write_byte(rtlpriv, ptrarray[i], (u8) ptrarray[i + 1]);
if (rtlpriv->rtlhal.macphymode == SINGLEMAC_SINGLEPHY) {
/* improve 2-stream TX EVM */
/* rtl_write_byte(rtlpriv, 0x14,0x71); */
/* AMPDU aggregation number 9 */
/* rtl_write_word(rtlpriv, REG_MAX_AGGR_NUM, MAX_AGGR_NUM); */
rtl_write_byte(rtlpriv, REG_MAX_AGGR_NUM, 0x0B);
} else {
/* 92D need to test to decide the num. */
rtl_write_byte(rtlpriv, REG_MAX_AGGR_NUM, 0x07);
}
return true;
}
static void _rtl92d_phy_init_bb_rf_register_definition(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &(rtlpriv->phy);
/* RF Interface Sowrtware Control */
/* 16 LSBs if read 32-bit from 0x870 */
rtlphy->phyreg_def[RF90_PATH_A].rfintfs = RFPGA0_XAB_RFINTERFACESW;
/* 16 MSBs if read 32-bit from 0x870 (16-bit for 0x872) */
rtlphy->phyreg_def[RF90_PATH_B].rfintfs = RFPGA0_XAB_RFINTERFACESW;
/* 16 LSBs if read 32-bit from 0x874 */
rtlphy->phyreg_def[RF90_PATH_C].rfintfs = RFPGA0_XCD_RFINTERFACESW;
/* 16 MSBs if read 32-bit from 0x874 (16-bit for 0x876) */
rtlphy->phyreg_def[RF90_PATH_D].rfintfs = RFPGA0_XCD_RFINTERFACESW;
/* RF Interface Readback Value */
/* 16 LSBs if read 32-bit from 0x8E0 */
rtlphy->phyreg_def[RF90_PATH_A].rfintfi = RFPGA0_XAB_RFINTERFACERB;
/* 16 MSBs if read 32-bit from 0x8E0 (16-bit for 0x8E2) */
rtlphy->phyreg_def[RF90_PATH_B].rfintfi = RFPGA0_XAB_RFINTERFACERB;
/* 16 LSBs if read 32-bit from 0x8E4 */
rtlphy->phyreg_def[RF90_PATH_C].rfintfi = RFPGA0_XCD_RFINTERFACERB;
/* 16 MSBs if read 32-bit from 0x8E4 (16-bit for 0x8E6) */
rtlphy->phyreg_def[RF90_PATH_D].rfintfi = RFPGA0_XCD_RFINTERFACERB;
/* RF Interface Output (and Enable) */
/* 16 LSBs if read 32-bit from 0x860 */
rtlphy->phyreg_def[RF90_PATH_A].rfintfo = RFPGA0_XA_RFINTERFACEOE;
/* 16 LSBs if read 32-bit from 0x864 */
rtlphy->phyreg_def[RF90_PATH_B].rfintfo = RFPGA0_XB_RFINTERFACEOE;
/* RF Interface (Output and) Enable */
/* 16 MSBs if read 32-bit from 0x860 (16-bit for 0x862) */
rtlphy->phyreg_def[RF90_PATH_A].rfintfe = RFPGA0_XA_RFINTERFACEOE;
/* 16 MSBs if read 32-bit from 0x864 (16-bit for 0x866) */
rtlphy->phyreg_def[RF90_PATH_B].rfintfe = RFPGA0_XB_RFINTERFACEOE;
/* Addr of LSSI. Wirte RF register by driver */
/* LSSI Parameter */
rtlphy->phyreg_def[RF90_PATH_A].rf3wire_offset =
RFPGA0_XA_LSSIPARAMETER;
rtlphy->phyreg_def[RF90_PATH_B].rf3wire_offset =
RFPGA0_XB_LSSIPARAMETER;
/* RF parameter */
/* BB Band Select */
rtlphy->phyreg_def[RF90_PATH_A].rflssi_select = RFPGA0_XAB_RFPARAMETER;
rtlphy->phyreg_def[RF90_PATH_B].rflssi_select = RFPGA0_XAB_RFPARAMETER;
rtlphy->phyreg_def[RF90_PATH_C].rflssi_select = RFPGA0_XCD_RFPARAMETER;
rtlphy->phyreg_def[RF90_PATH_D].rflssi_select = RFPGA0_XCD_RFPARAMETER;
/* Tx AGC Gain Stage (same for all path. Should we remove this?) */
/* Tx gain stage */
rtlphy->phyreg_def[RF90_PATH_A].rftxgain_stage = RFPGA0_TXGAINSTAGE;
/* Tx gain stage */
rtlphy->phyreg_def[RF90_PATH_B].rftxgain_stage = RFPGA0_TXGAINSTAGE;
/* Tx gain stage */
rtlphy->phyreg_def[RF90_PATH_C].rftxgain_stage = RFPGA0_TXGAINSTAGE;
/* Tx gain stage */
rtlphy->phyreg_def[RF90_PATH_D].rftxgain_stage = RFPGA0_TXGAINSTAGE;
/* Tranceiver A~D HSSI Parameter-1 */
/* wire control parameter1 */
rtlphy->phyreg_def[RF90_PATH_A].rfhssi_para1 = RFPGA0_XA_HSSIPARAMETER1;
/* wire control parameter1 */
rtlphy->phyreg_def[RF90_PATH_B].rfhssi_para1 = RFPGA0_XB_HSSIPARAMETER1;
/* Tranceiver A~D HSSI Parameter-2 */
/* wire control parameter2 */
rtlphy->phyreg_def[RF90_PATH_A].rfhssi_para2 = RFPGA0_XA_HSSIPARAMETER2;
/* wire control parameter2 */
rtlphy->phyreg_def[RF90_PATH_B].rfhssi_para2 = RFPGA0_XB_HSSIPARAMETER2;
/* RF switch Control */
/* TR/Ant switch control */
rtlphy->phyreg_def[RF90_PATH_A].rfsw_ctrl = RFPGA0_XAB_SWITCHCONTROL;
rtlphy->phyreg_def[RF90_PATH_B].rfsw_ctrl = RFPGA0_XAB_SWITCHCONTROL;
rtlphy->phyreg_def[RF90_PATH_C].rfsw_ctrl = RFPGA0_XCD_SWITCHCONTROL;
rtlphy->phyreg_def[RF90_PATH_D].rfsw_ctrl = RFPGA0_XCD_SWITCHCONTROL;
/* AGC control 1 */
rtlphy->phyreg_def[RF90_PATH_A].rfagc_control1 = ROFDM0_XAAGCCORE1;
rtlphy->phyreg_def[RF90_PATH_B].rfagc_control1 = ROFDM0_XBAGCCORE1;
rtlphy->phyreg_def[RF90_PATH_C].rfagc_control1 = ROFDM0_XCAGCCORE1;
rtlphy->phyreg_def[RF90_PATH_D].rfagc_control1 = ROFDM0_XDAGCCORE1;
/* AGC control 2 */
rtlphy->phyreg_def[RF90_PATH_A].rfagc_control2 = ROFDM0_XAAGCCORE2;
rtlphy->phyreg_def[RF90_PATH_B].rfagc_control2 = ROFDM0_XBAGCCORE2;
rtlphy->phyreg_def[RF90_PATH_C].rfagc_control2 = ROFDM0_XCAGCCORE2;
rtlphy->phyreg_def[RF90_PATH_D].rfagc_control2 = ROFDM0_XDAGCCORE2;
/* RX AFE control 1 */
rtlphy->phyreg_def[RF90_PATH_A].rfrxiq_imbal = ROFDM0_XARXIQIMBALANCE;
rtlphy->phyreg_def[RF90_PATH_B].rfrxiq_imbal = ROFDM0_XBRXIQIMBALANCE;
rtlphy->phyreg_def[RF90_PATH_C].rfrxiq_imbal = ROFDM0_XCRXIQIMBALANCE;
rtlphy->phyreg_def[RF90_PATH_D].rfrxiq_imbal = ROFDM0_XDRXIQIMBALANCE;
/*RX AFE control 1 */
rtlphy->phyreg_def[RF90_PATH_A].rfrx_afe = ROFDM0_XARXAFE;
rtlphy->phyreg_def[RF90_PATH_B].rfrx_afe = ROFDM0_XBRXAFE;
rtlphy->phyreg_def[RF90_PATH_C].rfrx_afe = ROFDM0_XCRXAFE;
rtlphy->phyreg_def[RF90_PATH_D].rfrx_afe = ROFDM0_XDRXAFE;
/* Tx AFE control 1 */
rtlphy->phyreg_def[RF90_PATH_A].rftxiq_imbal = ROFDM0_XATxIQIMBALANCE;
rtlphy->phyreg_def[RF90_PATH_B].rftxiq_imbal = ROFDM0_XBTxIQIMBALANCE;
rtlphy->phyreg_def[RF90_PATH_C].rftxiq_imbal = ROFDM0_XCTxIQIMBALANCE;
rtlphy->phyreg_def[RF90_PATH_D].rftxiq_imbal = ROFDM0_XDTxIQIMBALANCE;
/* Tx AFE control 2 */
rtlphy->phyreg_def[RF90_PATH_A].rftx_afe = ROFDM0_XATxAFE;
rtlphy->phyreg_def[RF90_PATH_B].rftx_afe = ROFDM0_XBTxAFE;
rtlphy->phyreg_def[RF90_PATH_C].rftx_afe = ROFDM0_XCTxAFE;
rtlphy->phyreg_def[RF90_PATH_D].rftx_afe = ROFDM0_XDTxAFE;
/* Tranceiver LSSI Readback SI mode */
rtlphy->phyreg_def[RF90_PATH_A].rf_rb = RFPGA0_XA_LSSIREADBACK;
rtlphy->phyreg_def[RF90_PATH_B].rf_rb = RFPGA0_XB_LSSIREADBACK;
rtlphy->phyreg_def[RF90_PATH_C].rf_rb = RFPGA0_XC_LSSIREADBACK;
rtlphy->phyreg_def[RF90_PATH_D].rf_rb = RFPGA0_XD_LSSIREADBACK;
/* Tranceiver LSSI Readback PI mode */
rtlphy->phyreg_def[RF90_PATH_A].rf_rbpi = TRANSCEIVERA_HSPI_READBACK;
rtlphy->phyreg_def[RF90_PATH_B].rf_rbpi = TRANSCEIVERB_HSPI_READBACK;
}
static bool _rtl92d_phy_config_bb_with_headerfile(struct ieee80211_hw *hw,
u8 configtype)
{
int i;
u32 *phy_regarray_table;
u32 *agctab_array_table = NULL;
u32 *agctab_5garray_table;
u16 phy_reg_arraylen, agctab_arraylen = 0, agctab_5garraylen;
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
/* Normal chip,Mac0 use AGC_TAB.txt for 2G and 5G band. */
if (rtlhal->interfaceindex == 0) {
agctab_arraylen = AGCTAB_ARRAYLENGTH;
agctab_array_table = rtl8192de_agctab_array;
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
" ===> phy:MAC0, Rtl819XAGCTAB_Array\n");
} else {
if (rtlhal->current_bandtype == BAND_ON_2_4G) {
agctab_arraylen = AGCTAB_2G_ARRAYLENGTH;
agctab_array_table = rtl8192de_agctab_2garray;
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
" ===> phy:MAC1, Rtl819XAGCTAB_2GArray\n");
} else {
agctab_5garraylen = AGCTAB_5G_ARRAYLENGTH;
agctab_5garray_table = rtl8192de_agctab_5garray;
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
" ===> phy:MAC1, Rtl819XAGCTAB_5GArray\n");
}
}
phy_reg_arraylen = PHY_REG_2T_ARRAYLENGTH;
phy_regarray_table = rtl8192de_phy_reg_2tarray;
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
" ===> phy:Rtl819XPHY_REG_Array_PG\n");
if (configtype == BASEBAND_CONFIG_PHY_REG) {
for (i = 0; i < phy_reg_arraylen; i = i + 2) {
rtl_addr_delay(phy_regarray_table[i]);
rtl_set_bbreg(hw, phy_regarray_table[i], MASKDWORD,
phy_regarray_table[i + 1]);
udelay(1);
RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
"The phy_regarray_table[0] is %x Rtl819XPHY_REGArray[1] is %x\n",
phy_regarray_table[i],
phy_regarray_table[i + 1]);
}
} else if (configtype == BASEBAND_CONFIG_AGC_TAB) {
if (rtlhal->interfaceindex == 0) {
for (i = 0; i < agctab_arraylen; i = i + 2) {
rtl_set_bbreg(hw, agctab_array_table[i],
MASKDWORD,
agctab_array_table[i + 1]);
/* Add 1us delay between BB/RF register
* setting. */
udelay(1);
RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
"The Rtl819XAGCTAB_Array_Table[0] is %u Rtl819XPHY_REGArray[1] is %u\n",
agctab_array_table[i],
agctab_array_table[i + 1]);
}
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
"Normal Chip, MAC0, load Rtl819XAGCTAB_Array\n");
} else {
if (rtlhal->current_bandtype == BAND_ON_2_4G) {
for (i = 0; i < agctab_arraylen; i = i + 2) {
rtl_set_bbreg(hw, agctab_array_table[i],
MASKDWORD,
agctab_array_table[i + 1]);
/* Add 1us delay between BB/RF register
* setting. */
udelay(1);
RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
"The Rtl819XAGCTAB_Array_Table[0] is %u Rtl819XPHY_REGArray[1] is %u\n",
agctab_array_table[i],
agctab_array_table[i + 1]);
}
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
"Load Rtl819XAGCTAB_2GArray\n");
} else {
for (i = 0; i < agctab_5garraylen; i = i + 2) {
rtl_set_bbreg(hw,
agctab_5garray_table[i],
MASKDWORD,
agctab_5garray_table[i + 1]);
/* Add 1us delay between BB/RF registeri
* setting. */
udelay(1);
RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
"The Rtl819XAGCTAB_5GArray_Table[0] is %u Rtl819XPHY_REGArray[1] is %u\n",
agctab_5garray_table[i],
agctab_5garray_table[i + 1]);
}
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
"Load Rtl819XAGCTAB_5GArray\n");
}
}
}
return true;
}
static void _rtl92d_store_pwrindex_diffrate_offset(struct ieee80211_hw *hw,
u32 regaddr, u32 bitmask,
u32 data)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &(rtlpriv->phy);
int index;
if (regaddr == RTXAGC_A_RATE18_06)
index = 0;
else if (regaddr == RTXAGC_A_RATE54_24)
index = 1;
else if (regaddr == RTXAGC_A_CCK1_MCS32)
index = 6;
else if (regaddr == RTXAGC_B_CCK11_A_CCK2_11 && bitmask == 0xffffff00)
index = 7;
else if (regaddr == RTXAGC_A_MCS03_MCS00)
index = 2;
else if (regaddr == RTXAGC_A_MCS07_MCS04)
index = 3;
else if (regaddr == RTXAGC_A_MCS11_MCS08)
index = 4;
else if (regaddr == RTXAGC_A_MCS15_MCS12)
index = 5;
else if (regaddr == RTXAGC_B_RATE18_06)
index = 8;
else if (regaddr == RTXAGC_B_RATE54_24)
index = 9;
else if (regaddr == RTXAGC_B_CCK1_55_MCS32)
index = 14;
else if (regaddr == RTXAGC_B_CCK11_A_CCK2_11 && bitmask == 0x000000ff)
index = 15;
else if (regaddr == RTXAGC_B_MCS03_MCS00)
index = 10;
else if (regaddr == RTXAGC_B_MCS07_MCS04)
index = 11;
else if (regaddr == RTXAGC_B_MCS11_MCS08)
index = 12;
else if (regaddr == RTXAGC_B_MCS15_MCS12)
index = 13;
else
return;
rtlphy->mcs_offset[rtlphy->pwrgroup_cnt][index] = data;
RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
"MCSTxPowerLevelOriginalOffset[%d][%d] = 0x%x\n",
rtlphy->pwrgroup_cnt, index,
rtlphy->mcs_offset[rtlphy->pwrgroup_cnt][index]);
if (index == 13)
rtlphy->pwrgroup_cnt++;
}
static bool _rtl92d_phy_config_bb_with_pgheaderfile(struct ieee80211_hw *hw,
u8 configtype)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
int i;
u32 *phy_regarray_table_pg;
u16 phy_regarray_pg_len;
phy_regarray_pg_len = PHY_REG_ARRAY_PG_LENGTH;
phy_regarray_table_pg = rtl8192de_phy_reg_array_pg;
if (configtype == BASEBAND_CONFIG_PHY_REG) {
for (i = 0; i < phy_regarray_pg_len; i = i + 3) {
rtl_addr_delay(phy_regarray_table_pg[i]);
_rtl92d_store_pwrindex_diffrate_offset(hw,
phy_regarray_table_pg[i],
phy_regarray_table_pg[i + 1],
phy_regarray_table_pg[i + 2]);
}
} else {
RT_TRACE(rtlpriv, COMP_SEND, DBG_TRACE,
"configtype != BaseBand_Config_PHY_REG\n");
}
return true;
}
static bool _rtl92d_phy_bb_config(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &(rtlpriv->phy);
struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
bool rtstatus = true;
RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "==>\n");
rtstatus = _rtl92d_phy_config_bb_with_headerfile(hw,
BASEBAND_CONFIG_PHY_REG);
if (!rtstatus) {
RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "Write BB Reg Fail!!\n");
return false;
}
/* if (rtlphy->rf_type == RF_1T2R) {
* _rtl92c_phy_bb_config_1t(hw);
* RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "Config to 1T!!\n");
*} */
if (rtlefuse->autoload_failflag == false) {
rtlphy->pwrgroup_cnt = 0;
rtstatus = _rtl92d_phy_config_bb_with_pgheaderfile(hw,
BASEBAND_CONFIG_PHY_REG);
}
if (!rtstatus) {
RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "BB_PG Reg Fail!!\n");
return false;
}
rtstatus = _rtl92d_phy_config_bb_with_headerfile(hw,
BASEBAND_CONFIG_AGC_TAB);
if (!rtstatus) {
RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "AGC Table Fail\n");
return false;
}
rtlphy->cck_high_power = (bool) (rtl_get_bbreg(hw,
RFPGA0_XA_HSSIPARAMETER2, 0x200));
return true;
}
bool rtl92d_phy_bb_config(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
u16 regval;
u32 regvaldw;
u8 value;
_rtl92d_phy_init_bb_rf_register_definition(hw);
regval = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN);
rtl_write_word(rtlpriv, REG_SYS_FUNC_EN,
regval | BIT(13) | BIT(0) | BIT(1));
rtl_write_byte(rtlpriv, REG_AFE_PLL_CTRL, 0x83);
rtl_write_byte(rtlpriv, REG_AFE_PLL_CTRL + 1, 0xdb);
/* 0x1f bit7 bit6 represent for mac0/mac1 driver ready */
value = rtl_read_byte(rtlpriv, REG_RF_CTRL);
rtl_write_byte(rtlpriv, REG_RF_CTRL, value | RF_EN | RF_RSTB |
RF_SDMRSTB);
rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, FEN_PPLL | FEN_PCIEA |
FEN_DIO_PCIE | FEN_BB_GLB_RSTn | FEN_BBRSTB);
rtl_write_byte(rtlpriv, REG_AFE_XTAL_CTRL + 1, 0x80);
if (!(IS_92D_SINGLEPHY(rtlpriv->rtlhal.version))) {
regvaldw = rtl_read_dword(rtlpriv, REG_LEDCFG0);
rtl_write_dword(rtlpriv, REG_LEDCFG0, regvaldw | BIT(23));
}
return _rtl92d_phy_bb_config(hw);
}
bool rtl92d_phy_rf_config(struct ieee80211_hw *hw)
{
return rtl92d_phy_rf6052_config(hw);
}
bool rtl92d_phy_config_rf_with_headerfile(struct ieee80211_hw *hw,
enum rf_content content,
enum radio_path rfpath)
{
int i;
u32 *radioa_array_table;
u32 *radiob_array_table;
u16 radioa_arraylen, radiob_arraylen;
struct rtl_priv *rtlpriv = rtl_priv(hw);
radioa_arraylen = RADIOA_2T_ARRAYLENGTH;
radioa_array_table = rtl8192de_radioa_2tarray;
radiob_arraylen = RADIOB_2T_ARRAYLENGTH;
radiob_array_table = rtl8192de_radiob_2tarray;
if (rtlpriv->efuse.internal_pa_5g[0]) {
radioa_arraylen = RADIOA_2T_INT_PA_ARRAYLENGTH;
radioa_array_table = rtl8192de_radioa_2t_int_paarray;
}
if (rtlpriv->efuse.internal_pa_5g[1]) {
radiob_arraylen = RADIOB_2T_INT_PA_ARRAYLENGTH;
radiob_array_table = rtl8192de_radiob_2t_int_paarray;
}
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
"PHY_ConfigRFWithHeaderFile() Radio_A:Rtl819XRadioA_1TArray\n");
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
"PHY_ConfigRFWithHeaderFile() Radio_B:Rtl819XRadioB_1TArray\n");
RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "Radio No %x\n", rfpath);
/* this only happens when DMDP, mac0 start on 2.4G,
* mac1 start on 5G, mac 0 has to set phy0&phy1
* pathA or mac1 has to set phy0&phy1 pathA */
if ((content == radiob_txt) && (rfpath == RF90_PATH_A)) {
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
" ===> althougth Path A, we load radiob.txt\n");
radioa_arraylen = radiob_arraylen;
radioa_array_table = radiob_array_table;
}
switch (rfpath) {
case RF90_PATH_A:
for (i = 0; i < radioa_arraylen; i = i + 2) {
rtl_rfreg_delay(hw, rfpath, radioa_array_table[i],
RFREG_OFFSET_MASK,
radioa_array_table[i + 1]);
}
break;
case RF90_PATH_B:
for (i = 0; i < radiob_arraylen; i = i + 2) {
rtl_rfreg_delay(hw, rfpath, radiob_array_table[i],
RFREG_OFFSET_MASK,
radiob_array_table[i + 1]);
}
break;
case RF90_PATH_C:
RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
"switch case not processed\n");
break;
case RF90_PATH_D:
RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
"switch case not processed\n");
break;
}
return true;
}
void rtl92d_phy_get_hw_reg_originalvalue(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &(rtlpriv->phy);
rtlphy->default_initialgain[0] =
(u8) rtl_get_bbreg(hw, ROFDM0_XAAGCCORE1, MASKBYTE0);
rtlphy->default_initialgain[1] =
(u8) rtl_get_bbreg(hw, ROFDM0_XBAGCCORE1, MASKBYTE0);
rtlphy->default_initialgain[2] =
(u8) rtl_get_bbreg(hw, ROFDM0_XCAGCCORE1, MASKBYTE0);
rtlphy->default_initialgain[3] =
(u8) rtl_get_bbreg(hw, ROFDM0_XDAGCCORE1, MASKBYTE0);
RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
"Default initial gain (c50=0x%x, c58=0x%x, c60=0x%x, c68=0x%x\n",
rtlphy->default_initialgain[0],
rtlphy->default_initialgain[1],
rtlphy->default_initialgain[2],
rtlphy->default_initialgain[3]);
rtlphy->framesync = (u8)rtl_get_bbreg(hw, ROFDM0_RXDETECTOR3,
MASKBYTE0);
rtlphy->framesync_c34 = rtl_get_bbreg(hw, ROFDM0_RXDETECTOR2,
MASKDWORD);
RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
"Default framesync (0x%x) = 0x%x\n",
ROFDM0_RXDETECTOR3, rtlphy->framesync);
}
static void _rtl92d_get_txpower_index(struct ieee80211_hw *hw, u8 channel,
u8 *cckpowerlevel, u8 *ofdmpowerlevel)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &(rtlpriv->phy);
struct rtl_hal *rtlhal = &(rtlpriv->rtlhal);
struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
u8 index = (channel - 1);
/* 1. CCK */
if (rtlhal->current_bandtype == BAND_ON_2_4G) {
/* RF-A */
cckpowerlevel[RF90_PATH_A] =
rtlefuse->txpwrlevel_cck[RF90_PATH_A][index];
/* RF-B */
cckpowerlevel[RF90_PATH_B] =
rtlefuse->txpwrlevel_cck[RF90_PATH_B][index];
} else {
cckpowerlevel[RF90_PATH_A] = 0;
cckpowerlevel[RF90_PATH_B] = 0;
}
/* 2. OFDM for 1S or 2S */
if (rtlphy->rf_type == RF_1T2R || rtlphy->rf_type == RF_1T1R) {
/* Read HT 40 OFDM TX power */
ofdmpowerlevel[RF90_PATH_A] =
rtlefuse->txpwrlevel_ht40_1s[RF90_PATH_A][index];
ofdmpowerlevel[RF90_PATH_B] =
rtlefuse->txpwrlevel_ht40_1s[RF90_PATH_B][index];
} else if (rtlphy->rf_type == RF_2T2R) {
/* Read HT 40 OFDM TX power */
ofdmpowerlevel[RF90_PATH_A] =
rtlefuse->txpwrlevel_ht40_2s[RF90_PATH_A][index];
ofdmpowerlevel[RF90_PATH_B] =
rtlefuse->txpwrlevel_ht40_2s[RF90_PATH_B][index];
}
}
static void _rtl92d_ccxpower_index_check(struct ieee80211_hw *hw,
u8 channel, u8 *cckpowerlevel, u8 *ofdmpowerlevel)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &(rtlpriv->phy);
rtlphy->cur_cck_txpwridx = cckpowerlevel[0];
rtlphy->cur_ofdm24g_txpwridx = ofdmpowerlevel[0];
}
static u8 _rtl92c_phy_get_rightchnlplace(u8 chnl)
{
u8 place = chnl;
if (chnl > 14) {
for (place = 14; place < sizeof(channel5g); place++) {
if (channel5g[place] == chnl) {
place++;
break;
}
}
}
return place;
}
void rtl92d_phy_set_txpower_level(struct ieee80211_hw *hw, u8 channel)
{
struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
struct rtl_priv *rtlpriv = rtl_priv(hw);
u8 cckpowerlevel[2], ofdmpowerlevel[2];
if (!rtlefuse->txpwr_fromeprom)
return;
channel = _rtl92c_phy_get_rightchnlplace(channel);
_rtl92d_get_txpower_index(hw, channel, &cckpowerlevel[0],
&ofdmpowerlevel[0]);
if (rtlpriv->rtlhal.current_bandtype == BAND_ON_2_4G)
_rtl92d_ccxpower_index_check(hw, channel, &cckpowerlevel[0],
&ofdmpowerlevel[0]);
if (rtlpriv->rtlhal.current_bandtype == BAND_ON_2_4G)
rtl92d_phy_rf6052_set_cck_txpower(hw, &cckpowerlevel[0]);
rtl92d_phy_rf6052_set_ofdm_txpower(hw, &ofdmpowerlevel[0], channel);
}
void rtl92d_phy_set_bw_mode(struct ieee80211_hw *hw,
enum nl80211_channel_type ch_type)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &(rtlpriv->phy);
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
unsigned long flag = 0;
u8 reg_prsr_rsc;
u8 reg_bw_opmode;
if (rtlphy->set_bwmode_inprogress)
return;
if ((is_hal_stop(rtlhal)) || (RT_CANNOT_IO(hw))) {
RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
"FALSE driver sleep or unload\n");
return;
}
rtlphy->set_bwmode_inprogress = true;
RT_TRACE(rtlpriv, COMP_SCAN, DBG_TRACE, "Switch to %s bandwidth\n",
rtlphy->current_chan_bw == HT_CHANNEL_WIDTH_20 ?
"20MHz" : "40MHz");
reg_bw_opmode = rtl_read_byte(rtlpriv, REG_BWOPMODE);
reg_prsr_rsc = rtl_read_byte(rtlpriv, REG_RRSR + 2);
switch (rtlphy->current_chan_bw) {
case HT_CHANNEL_WIDTH_20:
reg_bw_opmode |= BW_OPMODE_20MHZ;
rtl_write_byte(rtlpriv, REG_BWOPMODE, reg_bw_opmode);
break;
case HT_CHANNEL_WIDTH_20_40:
reg_bw_opmode &= ~BW_OPMODE_20MHZ;
rtl_write_byte(rtlpriv, REG_BWOPMODE, reg_bw_opmode);
reg_prsr_rsc = (reg_prsr_rsc & 0x90) |
(mac->cur_40_prime_sc << 5);
rtl_write_byte(rtlpriv, REG_RRSR + 2, reg_prsr_rsc);
break;
default:
RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
"unknown bandwidth: %#X\n", rtlphy->current_chan_bw);
break;
}
switch (rtlphy->current_chan_bw) {
case HT_CHANNEL_WIDTH_20:
rtl_set_bbreg(hw, RFPGA0_RFMOD, BRFMOD, 0x0);
rtl_set_bbreg(hw, RFPGA1_RFMOD, BRFMOD, 0x0);
/* SET BIT10 BIT11 for receive cck */
rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER2, BIT(10) |
BIT(11), 3);
break;
case HT_CHANNEL_WIDTH_20_40:
rtl_set_bbreg(hw, RFPGA0_RFMOD, BRFMOD, 0x1);
rtl_set_bbreg(hw, RFPGA1_RFMOD, BRFMOD, 0x1);
/* Set Control channel to upper or lower.
* These settings are required only for 40MHz */
if (rtlhal->current_bandtype == BAND_ON_2_4G) {
rtl92d_acquire_cckandrw_pagea_ctl(hw, &flag);
rtl_set_bbreg(hw, RCCK0_SYSTEM, BCCKSIDEBAND,
(mac->cur_40_prime_sc >> 1));
rtl92d_release_cckandrw_pagea_ctl(hw, &flag);
}
rtl_set_bbreg(hw, ROFDM1_LSTF, 0xC00, mac->cur_40_prime_sc);
/* SET BIT10 BIT11 for receive cck */
rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER2, BIT(10) |
BIT(11), 0);
rtl_set_bbreg(hw, 0x818, (BIT(26) | BIT(27)),
(mac->cur_40_prime_sc ==
HAL_PRIME_CHNL_OFFSET_LOWER) ? 2 : 1);
break;
default:
RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
"unknown bandwidth: %#X\n", rtlphy->current_chan_bw);
break;
}
rtl92d_phy_rf6052_set_bandwidth(hw, rtlphy->current_chan_bw);
rtlphy->set_bwmode_inprogress = false;
RT_TRACE(rtlpriv, COMP_SCAN, DBG_TRACE, "<==\n");
}
static void _rtl92d_phy_stop_trx_before_changeband(struct ieee80211_hw *hw)
{
rtl_set_bbreg(hw, RFPGA0_RFMOD, BCCKEN, 0);
rtl_set_bbreg(hw, RFPGA0_RFMOD, BOFDMEN, 0);
rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE, MASKBYTE0, 0x00);
rtl_set_bbreg(hw, ROFDM1_TRXPATHENABLE, BDWORD, 0x0);
}
static void rtl92d_phy_switch_wirelessband(struct ieee80211_hw *hw, u8 band)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
u8 value8;
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "==>\n");
rtlhal->bandset = band;
rtlhal->current_bandtype = band;
if (IS_92D_SINGLEPHY(rtlhal->version))
rtlhal->bandset = BAND_ON_BOTH;
/* stop RX/Tx */
_rtl92d_phy_stop_trx_before_changeband(hw);
/* reconfig BB/RF according to wireless mode */
if (rtlhal->current_bandtype == BAND_ON_2_4G) {
/* BB & RF Config */
RT_TRACE(rtlpriv, COMP_CMD, DBG_DMESG, "====>2.4G\n");
if (rtlhal->interfaceindex == 1)
_rtl92d_phy_config_bb_with_headerfile(hw,
BASEBAND_CONFIG_AGC_TAB);
} else {
/* 5G band */
RT_TRACE(rtlpriv, COMP_CMD, DBG_DMESG, "====>5G\n");
if (rtlhal->interfaceindex == 1)
_rtl92d_phy_config_bb_with_headerfile(hw,
BASEBAND_CONFIG_AGC_TAB);
}
rtl92d_update_bbrf_configuration(hw);
if (rtlhal->current_bandtype == BAND_ON_2_4G)
rtl_set_bbreg(hw, RFPGA0_RFMOD, BCCKEN, 0x1);
rtl_set_bbreg(hw, RFPGA0_RFMOD, BOFDMEN, 0x1);
/* 20M BW. */
/* rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER2, BIT(10), 1); */
rtlhal->reloadtxpowerindex = true;
/* notice fw know band status 0x81[1]/0x53[1] = 0: 5G, 1: 2G */
if (rtlhal->current_bandtype == BAND_ON_2_4G) {
value8 = rtl_read_byte(rtlpriv, (rtlhal->interfaceindex ==
0 ? REG_MAC0 : REG_MAC1));
value8 |= BIT(1);
rtl_write_byte(rtlpriv, (rtlhal->interfaceindex ==
0 ? REG_MAC0 : REG_MAC1), value8);
} else {
value8 = rtl_read_byte(rtlpriv, (rtlhal->interfaceindex ==
0 ? REG_MAC0 : REG_MAC1));
value8 &= (~BIT(1));
rtl_write_byte(rtlpriv, (rtlhal->interfaceindex ==
0 ? REG_MAC0 : REG_MAC1), value8);
}
mdelay(1);
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "<==Switch Band OK\n");
}
static void _rtl92d_phy_reload_imr_setting(struct ieee80211_hw *hw,
u8 channel, u8 rfpath)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
u32 imr_num = MAX_RF_IMR_INDEX;
u32 rfmask = RFREG_OFFSET_MASK;
u8 group, i;
unsigned long flag = 0;
RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD, "====>path %d\n", rfpath);
if (rtlpriv->rtlhal.current_bandtype == BAND_ON_5G) {
RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD, "====>5G\n");
rtl_set_bbreg(hw, RFPGA0_RFMOD, BIT(25) | BIT(24), 0);
rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER4, 0x00f00000, 0xf);
/* fc area 0xd2c */
if (channel > 99)
rtl_set_bbreg(hw, ROFDM1_CFOTRACKING, BIT(13) |
BIT(14), 2);
else
rtl_set_bbreg(hw, ROFDM1_CFOTRACKING, BIT(13) |
BIT(14), 1);
/* leave 0 for channel1-14. */
group = channel <= 64 ? 1 : 2;
imr_num = MAX_RF_IMR_INDEX_NORMAL;
for (i = 0; i < imr_num; i++)
rtl_set_rfreg(hw, (enum radio_path)rfpath,
rf_reg_for_5g_swchnl_normal[i], rfmask,
rf_imr_param_normal[0][group][i]);
rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER4, 0x00f00000, 0);
rtl_set_bbreg(hw, RFPGA0_RFMOD, BOFDMEN, 1);
} else {
/* G band. */
RT_TRACE(rtlpriv, COMP_SCAN, DBG_LOUD,
"Load RF IMR parameters for G band. IMR already setting %d\n",
rtlpriv->rtlhal.load_imrandiqk_setting_for2g);
RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD, "====>2.4G\n");
if (!rtlpriv->rtlhal.load_imrandiqk_setting_for2g) {
RT_TRACE(rtlpriv, COMP_SCAN, DBG_LOUD,
"Load RF IMR parameters for G band. %d\n",
rfpath);
rtl92d_acquire_cckandrw_pagea_ctl(hw, &flag);
rtl_set_bbreg(hw, RFPGA0_RFMOD, BIT(25) | BIT(24), 0);
rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER4,
0x00f00000, 0xf);
imr_num = MAX_RF_IMR_INDEX_NORMAL;
for (i = 0; i < imr_num; i++) {
rtl_set_rfreg(hw, (enum radio_path)rfpath,
rf_reg_for_5g_swchnl_normal[i],
RFREG_OFFSET_MASK,
rf_imr_param_normal[0][0][i]);
}
rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER4,
0x00f00000, 0);
rtl_set_bbreg(hw, RFPGA0_RFMOD, BOFDMEN | BCCKEN, 3);
rtl92d_release_cckandrw_pagea_ctl(hw, &flag);
}
}
RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD, "<====\n");
}
static void _rtl92d_phy_enable_rf_env(struct ieee80211_hw *hw,
u8 rfpath, u32 *pu4_regval)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &(rtlpriv->phy);
struct bb_reg_def *pphyreg = &rtlphy->phyreg_def[rfpath];
RT_TRACE(rtlpriv, COMP_RF, DBG_LOUD, "====>\n");
/*----Store original RFENV control type----*/
switch (rfpath) {
case RF90_PATH_A:
case RF90_PATH_C:
*pu4_regval = rtl_get_bbreg(hw, pphyreg->rfintfs, BRFSI_RFENV);
break;
case RF90_PATH_B:
case RF90_PATH_D:
*pu4_regval =
rtl_get_bbreg(hw, pphyreg->rfintfs, BRFSI_RFENV << 16);
break;
}
/*----Set RF_ENV enable----*/
rtl_set_bbreg(hw, pphyreg->rfintfe, BRFSI_RFENV << 16, 0x1);
udelay(1);
/*----Set RF_ENV output high----*/
rtl_set_bbreg(hw, pphyreg->rfintfo, BRFSI_RFENV, 0x1);
udelay(1);
/* Set bit number of Address and Data for RF register */
/* Set 1 to 4 bits for 8255 */
rtl_set_bbreg(hw, pphyreg->rfhssi_para2, B3WIREADDRESSLENGTH, 0x0);
udelay(1);
/*Set 0 to 12 bits for 8255 */
rtl_set_bbreg(hw, pphyreg->rfhssi_para2, B3WIREDATALENGTH, 0x0);
udelay(1);
RT_TRACE(rtlpriv, COMP_RF, DBG_LOUD, "<====\n");
}
static void _rtl92d_phy_restore_rf_env(struct ieee80211_hw *hw, u8 rfpath,
u32 *pu4_regval)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &(rtlpriv->phy);
struct bb_reg_def *pphyreg = &rtlphy->phyreg_def[rfpath];
RT_TRACE(rtlpriv, COMP_RF, DBG_LOUD, "=====>\n");
/*----Restore RFENV control type----*/
switch (rfpath) {
case RF90_PATH_A:
case RF90_PATH_C:
rtl_set_bbreg(hw, pphyreg->rfintfs, BRFSI_RFENV, *pu4_regval);
break;
case RF90_PATH_B:
case RF90_PATH_D:
rtl_set_bbreg(hw, pphyreg->rfintfs, BRFSI_RFENV << 16,
*pu4_regval);
break;
}
RT_TRACE(rtlpriv, COMP_RF, DBG_LOUD, "<=====\n");
}
static void _rtl92d_phy_switch_rf_setting(struct ieee80211_hw *hw, u8 channel)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &(rtlpriv->phy);
struct rtl_hal *rtlhal = &(rtlpriv->rtlhal);
u8 path = rtlhal->current_bandtype ==
BAND_ON_5G ? RF90_PATH_A : RF90_PATH_B;
u8 index = 0, i = 0, rfpath = RF90_PATH_A;
bool need_pwr_down = false, internal_pa = false;
u32 u4regvalue, mask = 0x1C000, value = 0, u4tmp, u4tmp2;
RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD, "====>\n");
/* config path A for 5G */
if (rtlhal->current_bandtype == BAND_ON_5G) {
RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD, "====>5G\n");
u4tmp = curveindex_5g[channel - 1];
RTPRINT(rtlpriv, FINIT, INIT_IQK,
"ver 1 set RF-A, 5G, 0x28 = 0x%x !!\n", u4tmp);
for (i = 0; i < RF_CHNL_NUM_5G; i++) {
if (channel == rf_chnl_5g[i] && channel <= 140)
index = 0;
}
for (i = 0; i < RF_CHNL_NUM_5G_40M; i++) {
if (channel == rf_chnl_5g_40m[i] && channel <= 140)
index = 1;
}
if (channel == 149 || channel == 155 || channel == 161)
index = 2;
else if (channel == 151 || channel == 153 || channel == 163
|| channel == 165)
index = 3;
else if (channel == 157 || channel == 159)
index = 4;
if (rtlhal->macphymode == DUALMAC_DUALPHY
&& rtlhal->interfaceindex == 1) {
need_pwr_down = rtl92d_phy_enable_anotherphy(hw, false);
rtlhal->during_mac1init_radioa = true;
/* asume no this case */
if (need_pwr_down)
_rtl92d_phy_enable_rf_env(hw, path,
&u4regvalue);
}
for (i = 0; i < RF_REG_NUM_FOR_C_CUT_5G; i++) {
if (i == 0 && (rtlhal->macphymode == DUALMAC_DUALPHY)) {
rtl_set_rfreg(hw, (enum radio_path)path,
rf_reg_for_c_cut_5g[i],
RFREG_OFFSET_MASK, 0xE439D);
} else if (rf_reg_for_c_cut_5g[i] == RF_SYN_G4) {
u4tmp2 = (rf_reg_pram_c_5g[index][i] &
0x7FF) | (u4tmp << 11);
if (channel == 36)
u4tmp2 &= ~(BIT(7) | BIT(6));
rtl_set_rfreg(hw, (enum radio_path)path,
rf_reg_for_c_cut_5g[i],
RFREG_OFFSET_MASK, u4tmp2);
} else {
rtl_set_rfreg(hw, (enum radio_path)path,
rf_reg_for_c_cut_5g[i],
RFREG_OFFSET_MASK,
rf_reg_pram_c_5g[index][i]);
}
RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE,
"offset 0x%x value 0x%x path %d index %d readback 0x%x\n",
rf_reg_for_c_cut_5g[i],
rf_reg_pram_c_5g[index][i],
path, index,
rtl_get_rfreg(hw, (enum radio_path)path,
rf_reg_for_c_cut_5g[i],
RFREG_OFFSET_MASK));
}
if (need_pwr_down)
_rtl92d_phy_restore_rf_env(hw, path, &u4regvalue);
if (rtlhal->during_mac1init_radioa)
rtl92d_phy_powerdown_anotherphy(hw, false);
if (channel < 149)
value = 0x07;
else if (channel >= 149)
value = 0x02;
if (channel >= 36 && channel <= 64)
index = 0;
else if (channel >= 100 && channel <= 140)
index = 1;
else
index = 2;
for (rfpath = RF90_PATH_A; rfpath < rtlphy->num_total_rfpath;
rfpath++) {
if (rtlhal->macphymode == DUALMAC_DUALPHY &&
rtlhal->interfaceindex == 1) /* MAC 1 5G */
internal_pa = rtlpriv->efuse.internal_pa_5g[1];
else
internal_pa =
rtlpriv->efuse.internal_pa_5g[rfpath];
if (internal_pa) {
for (i = 0;
i < RF_REG_NUM_FOR_C_CUT_5G_INTERNALPA;
i++) {
rtl_set_rfreg(hw, rfpath,
rf_for_c_cut_5g_internal_pa[i],
RFREG_OFFSET_MASK,
rf_pram_c_5g_int_pa[index][i]);
RT_TRACE(rtlpriv, COMP_RF, DBG_LOUD,
"offset 0x%x value 0x%x path %d index %d\n",
rf_for_c_cut_5g_internal_pa[i],
rf_pram_c_5g_int_pa[index][i],
rfpath, index);
}
} else {
rtl_set_rfreg(hw, (enum radio_path)rfpath, 0x0B,
mask, value);
}
}
} else if (rtlhal->current_bandtype == BAND_ON_2_4G) {
RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD, "====>2.4G\n");
u4tmp = curveindex_2g[channel - 1];
RTPRINT(rtlpriv, FINIT, INIT_IQK,
"ver 3 set RF-B, 2G, 0x28 = 0x%x !!\n", u4tmp);
if (channel == 1 || channel == 2 || channel == 4 || channel == 9
|| channel == 10 || channel == 11 || channel == 12)
index = 0;
else if (channel == 3 || channel == 13 || channel == 14)
index = 1;
else if (channel >= 5 && channel <= 8)
index = 2;
if (rtlhal->macphymode == DUALMAC_DUALPHY) {
path = RF90_PATH_A;
if (rtlhal->interfaceindex == 0) {
need_pwr_down =
rtl92d_phy_enable_anotherphy(hw, true);
rtlhal->during_mac0init_radiob = true;
if (need_pwr_down)
_rtl92d_phy_enable_rf_env(hw, path,
&u4regvalue);
}
}
for (i = 0; i < RF_REG_NUM_FOR_C_CUT_2G; i++) {
if (rf_reg_for_c_cut_2g[i] == RF_SYN_G7)
rtl_set_rfreg(hw, (enum radio_path)path,
rf_reg_for_c_cut_2g[i],
RFREG_OFFSET_MASK,
(rf_reg_param_for_c_cut_2g[index][i] |
BIT(17)));
else
rtl_set_rfreg(hw, (enum radio_path)path,
rf_reg_for_c_cut_2g[i],
RFREG_OFFSET_MASK,
rf_reg_param_for_c_cut_2g
[index][i]);
RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE,
"offset 0x%x value 0x%x mak 0x%x path %d index %d readback 0x%x\n",
rf_reg_for_c_cut_2g[i],
rf_reg_param_for_c_cut_2g[index][i],
rf_reg_mask_for_c_cut_2g[i], path, index,
rtl_get_rfreg(hw, (enum radio_path)path,
rf_reg_for_c_cut_2g[i],
RFREG_OFFSET_MASK));
}
RTPRINT(rtlpriv, FINIT, INIT_IQK,
"cosa ver 3 set RF-B, 2G, 0x28 = 0x%x !!\n",
rf_syn_g4_for_c_cut_2g | (u4tmp << 11));
rtl_set_rfreg(hw, (enum radio_path)path, RF_SYN_G4,
RFREG_OFFSET_MASK,
rf_syn_g4_for_c_cut_2g | (u4tmp << 11));
if (need_pwr_down)
_rtl92d_phy_restore_rf_env(hw, path, &u4regvalue);
if (rtlhal->during_mac0init_radiob)
rtl92d_phy_powerdown_anotherphy(hw, true);
}
RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD, "<====\n");
}
u8 rtl92d_get_rightchnlplace_for_iqk(u8 chnl)
{
u8 channel_all[59] = {
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58,
60, 62, 64, 100, 102, 104, 106, 108, 110, 112,
114, 116, 118, 120, 122, 124, 126, 128, 130,
132, 134, 136, 138, 140, 149, 151, 153, 155,
157, 159, 161, 163, 165
};
u8 place = chnl;
if (chnl > 14) {
for (place = 14; place < sizeof(channel_all); place++) {
if (channel_all[place] == chnl)
return place - 13;
}
}
return 0;
}
#define MAX_TOLERANCE 5
#define IQK_DELAY_TIME 1 /* ms */
#define MAX_TOLERANCE_92D 3
/* bit0 = 1 => Tx OK, bit1 = 1 => Rx OK */
static u8 _rtl92d_phy_patha_iqk(struct ieee80211_hw *hw, bool configpathb)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
u32 regeac, rege94, rege9c, regea4;
u8 result = 0;
RTPRINT(rtlpriv, FINIT, INIT_IQK, "Path A IQK!\n");
/* path-A IQK setting */
RTPRINT(rtlpriv, FINIT, INIT_IQK, "Path-A IQK setting!\n");
if (rtlhal->interfaceindex == 0) {
rtl_set_bbreg(hw, 0xe30, MASKDWORD, 0x10008c1f);
rtl_set_bbreg(hw, 0xe34, MASKDWORD, 0x10008c1f);
} else {
rtl_set_bbreg(hw, 0xe30, MASKDWORD, 0x10008c22);
rtl_set_bbreg(hw, 0xe34, MASKDWORD, 0x10008c22);
}
rtl_set_bbreg(hw, 0xe38, MASKDWORD, 0x82140102);
rtl_set_bbreg(hw, 0xe3c, MASKDWORD, 0x28160206);
/* path-B IQK setting */
if (configpathb) {
rtl_set_bbreg(hw, 0xe50, MASKDWORD, 0x10008c22);
rtl_set_bbreg(hw, 0xe54, MASKDWORD, 0x10008c22);
rtl_set_bbreg(hw, 0xe58, MASKDWORD, 0x82140102);
rtl_set_bbreg(hw, 0xe5c, MASKDWORD, 0x28160206);
}
/* LO calibration setting */
RTPRINT(rtlpriv, FINIT, INIT_IQK, "LO calibration setting!\n");
rtl_set_bbreg(hw, 0xe4c, MASKDWORD, 0x00462911);
/* One shot, path A LOK & IQK */
RTPRINT(rtlpriv, FINIT, INIT_IQK, "One shot, path A LOK & IQK!\n");
rtl_set_bbreg(hw, 0xe48, MASKDWORD, 0xf9000000);
rtl_set_bbreg(hw, 0xe48, MASKDWORD, 0xf8000000);
/* delay x ms */
RTPRINT(rtlpriv, FINIT, INIT_IQK,
"Delay %d ms for One shot, path A LOK & IQK\n",
IQK_DELAY_TIME);
mdelay(IQK_DELAY_TIME);
/* Check failed */
regeac = rtl_get_bbreg(hw, 0xeac, MASKDWORD);
RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xeac = 0x%x\n", regeac);
rege94 = rtl_get_bbreg(hw, 0xe94, MASKDWORD);
RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xe94 = 0x%x\n", rege94);
rege9c = rtl_get_bbreg(hw, 0xe9c, MASKDWORD);
RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xe9c = 0x%x\n", rege9c);
regea4 = rtl_get_bbreg(hw, 0xea4, MASKDWORD);
RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xea4 = 0x%x\n", regea4);
if (!(regeac & BIT(28)) && (((rege94 & 0x03FF0000) >> 16) != 0x142) &&
(((rege9c & 0x03FF0000) >> 16) != 0x42))
result |= 0x01;
else /* if Tx not OK, ignore Rx */
return result;
/* if Tx is OK, check whether Rx is OK */
if (!(regeac & BIT(27)) && (((regea4 & 0x03FF0000) >> 16) != 0x132) &&
(((regeac & 0x03FF0000) >> 16) != 0x36))
result |= 0x02;
else
RTPRINT(rtlpriv, FINIT, INIT_IQK, "Path A Rx IQK fail!!\n");
return result;
}
/* bit0 = 1 => Tx OK, bit1 = 1 => Rx OK */
static u8 _rtl92d_phy_patha_iqk_5g_normal(struct ieee80211_hw *hw,
bool configpathb)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
struct rtl_phy *rtlphy = &(rtlpriv->phy);
u32 regeac, rege94, rege9c, regea4;
u8 result = 0;
u8 i;
u8 retrycount = 2;
u32 TxOKBit = BIT(28), RxOKBit = BIT(27);
if (rtlhal->interfaceindex == 1) { /* PHY1 */
TxOKBit = BIT(31);
RxOKBit = BIT(30);
}
RTPRINT(rtlpriv, FINIT, INIT_IQK, "Path A IQK!\n");
/* path-A IQK setting */
RTPRINT(rtlpriv, FINIT, INIT_IQK, "Path-A IQK setting!\n");
rtl_set_bbreg(hw, 0xe30, MASKDWORD, 0x18008c1f);
rtl_set_bbreg(hw, 0xe34, MASKDWORD, 0x18008c1f);
rtl_set_bbreg(hw, 0xe38, MASKDWORD, 0x82140307);
rtl_set_bbreg(hw, 0xe3c, MASKDWORD, 0x68160960);
/* path-B IQK setting */
if (configpathb) {
rtl_set_bbreg(hw, 0xe50, MASKDWORD, 0x18008c2f);
rtl_set_bbreg(hw, 0xe54, MASKDWORD, 0x18008c2f);
rtl_set_bbreg(hw, 0xe58, MASKDWORD, 0x82110000);
rtl_set_bbreg(hw, 0xe5c, MASKDWORD, 0x68110000);
}
/* LO calibration setting */
RTPRINT(rtlpriv, FINIT, INIT_IQK, "LO calibration setting!\n");
rtl_set_bbreg(hw, 0xe4c, MASKDWORD, 0x00462911);
/* path-A PA on */
rtl_set_bbreg(hw, RFPGA0_XAB_RFINTERFACESW, MASKDWORD, 0x07000f60);
rtl_set_bbreg(hw, RFPGA0_XA_RFINTERFACEOE, MASKDWORD, 0x66e60e30);
for (i = 0; i < retrycount; i++) {
/* One shot, path A LOK & IQK */
RTPRINT(rtlpriv, FINIT, INIT_IQK,
"One shot, path A LOK & IQK!\n");
rtl_set_bbreg(hw, 0xe48, MASKDWORD, 0xf9000000);
rtl_set_bbreg(hw, 0xe48, MASKDWORD, 0xf8000000);
/* delay x ms */
RTPRINT(rtlpriv, FINIT, INIT_IQK,
"Delay %d ms for One shot, path A LOK & IQK.\n",
IQK_DELAY_TIME);
mdelay(IQK_DELAY_TIME * 10);
/* Check failed */
regeac = rtl_get_bbreg(hw, 0xeac, MASKDWORD);
RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xeac = 0x%x\n", regeac);
rege94 = rtl_get_bbreg(hw, 0xe94, MASKDWORD);
RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xe94 = 0x%x\n", rege94);
rege9c = rtl_get_bbreg(hw, 0xe9c, MASKDWORD);
RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xe9c = 0x%x\n", rege9c);
regea4 = rtl_get_bbreg(hw, 0xea4, MASKDWORD);
RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xea4 = 0x%x\n", regea4);
if (!(regeac & TxOKBit) &&
(((rege94 & 0x03FF0000) >> 16) != 0x142)) {
result |= 0x01;
} else { /* if Tx not OK, ignore Rx */
RTPRINT(rtlpriv, FINIT, INIT_IQK,
"Path A Tx IQK fail!!\n");
continue;
}
/* if Tx is OK, check whether Rx is OK */
if (!(regeac & RxOKBit) &&
(((regea4 & 0x03FF0000) >> 16) != 0x132)) {
result |= 0x02;
break;
} else {
RTPRINT(rtlpriv, FINIT, INIT_IQK,
"Path A Rx IQK fail!!\n");
}
}
/* path A PA off */
rtl_set_bbreg(hw, RFPGA0_XAB_RFINTERFACESW, MASKDWORD,
rtlphy->iqk_bb_backup[0]);
rtl_set_bbreg(hw, RFPGA0_XA_RFINTERFACEOE, MASKDWORD,
rtlphy->iqk_bb_backup[1]);
return result;
}
/* bit0 = 1 => Tx OK, bit1 = 1 => Rx OK */
static u8 _rtl92d_phy_pathb_iqk(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
u32 regeac, regeb4, regebc, regec4, regecc;
u8 result = 0;
RTPRINT(rtlpriv, FINIT, INIT_IQK, "Path B IQK!\n");
/* One shot, path B LOK & IQK */
RTPRINT(rtlpriv, FINIT, INIT_IQK, "One shot, path A LOK & IQK!\n");
rtl_set_bbreg(hw, 0xe60, MASKDWORD, 0x00000002);
rtl_set_bbreg(hw, 0xe60, MASKDWORD, 0x00000000);
/* delay x ms */
RTPRINT(rtlpriv, FINIT, INIT_IQK,
"Delay %d ms for One shot, path B LOK & IQK\n", IQK_DELAY_TIME);
mdelay(IQK_DELAY_TIME);
/* Check failed */
regeac = rtl_get_bbreg(hw, 0xeac, MASKDWORD);
RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xeac = 0x%x\n", regeac);
regeb4 = rtl_get_bbreg(hw, 0xeb4, MASKDWORD);
RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xeb4 = 0x%x\n", regeb4);
regebc = rtl_get_bbreg(hw, 0xebc, MASKDWORD);
RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xebc = 0x%x\n", regebc);
regec4 = rtl_get_bbreg(hw, 0xec4, MASKDWORD);
RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xec4 = 0x%x\n", regec4);
regecc = rtl_get_bbreg(hw, 0xecc, MASKDWORD);
RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xecc = 0x%x\n", regecc);
if (!(regeac & BIT(31)) && (((regeb4 & 0x03FF0000) >> 16) != 0x142) &&
(((regebc & 0x03FF0000) >> 16) != 0x42))
result |= 0x01;
else
return result;
if (!(regeac & BIT(30)) && (((regec4 & 0x03FF0000) >> 16) != 0x132) &&
(((regecc & 0x03FF0000) >> 16) != 0x36))
result |= 0x02;
else
RTPRINT(rtlpriv, FINIT, INIT_IQK, "Path B Rx IQK fail!!\n");
return result;
}
/* bit0 = 1 => Tx OK, bit1 = 1 => Rx OK */
static u8 _rtl92d_phy_pathb_iqk_5g_normal(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &(rtlpriv->phy);
u32 regeac, regeb4, regebc, regec4, regecc;
u8 result = 0;
u8 i;
u8 retrycount = 2;
RTPRINT(rtlpriv, FINIT, INIT_IQK, "Path B IQK!\n");
/* path-A IQK setting */
RTPRINT(rtlpriv, FINIT, INIT_IQK, "Path-A IQK setting!\n");
rtl_set_bbreg(hw, 0xe30, MASKDWORD, 0x18008c1f);
rtl_set_bbreg(hw, 0xe34, MASKDWORD, 0x18008c1f);
rtl_set_bbreg(hw, 0xe38, MASKDWORD, 0x82110000);
rtl_set_bbreg(hw, 0xe3c, MASKDWORD, 0x68110000);
/* path-B IQK setting */
rtl_set_bbreg(hw, 0xe50, MASKDWORD, 0x18008c2f);
rtl_set_bbreg(hw, 0xe54, MASKDWORD, 0x18008c2f);
rtl_set_bbreg(hw, 0xe58, MASKDWORD, 0x82140307);
rtl_set_bbreg(hw, 0xe5c, MASKDWORD, 0x68160960);
/* LO calibration setting */
RTPRINT(rtlpriv, FINIT, INIT_IQK, "LO calibration setting!\n");
rtl_set_bbreg(hw, 0xe4c, MASKDWORD, 0x00462911);
/* path-B PA on */
rtl_set_bbreg(hw, RFPGA0_XAB_RFINTERFACESW, MASKDWORD, 0x0f600700);
rtl_set_bbreg(hw, RFPGA0_XB_RFINTERFACEOE, MASKDWORD, 0x061f0d30);
for (i = 0; i < retrycount; i++) {
/* One shot, path B LOK & IQK */
RTPRINT(rtlpriv, FINIT, INIT_IQK,
"One shot, path A LOK & IQK!\n");
rtl_set_bbreg(hw, 0xe48, MASKDWORD, 0xfa000000);
rtl_set_bbreg(hw, 0xe48, MASKDWORD, 0xf8000000);
/* delay x ms */
RTPRINT(rtlpriv, FINIT, INIT_IQK,
"Delay %d ms for One shot, path B LOK & IQK.\n", 10);
mdelay(IQK_DELAY_TIME * 10);
/* Check failed */
regeac = rtl_get_bbreg(hw, 0xeac, MASKDWORD);
RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xeac = 0x%x\n", regeac);
regeb4 = rtl_get_bbreg(hw, 0xeb4, MASKDWORD);
RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xeb4 = 0x%x\n", regeb4);
regebc = rtl_get_bbreg(hw, 0xebc, MASKDWORD);
RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xebc = 0x%x\n", regebc);
regec4 = rtl_get_bbreg(hw, 0xec4, MASKDWORD);
RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xec4 = 0x%x\n", regec4);
regecc = rtl_get_bbreg(hw, 0xecc, MASKDWORD);
RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xecc = 0x%x\n", regecc);
if (!(regeac & BIT(31)) &&
(((regeb4 & 0x03FF0000) >> 16) != 0x142))
result |= 0x01;
else
continue;
if (!(regeac & BIT(30)) &&
(((regec4 & 0x03FF0000) >> 16) != 0x132)) {
result |= 0x02;
break;
} else {
RTPRINT(rtlpriv, FINIT, INIT_IQK,
"Path B Rx IQK fail!!\n");
}
}
/* path B PA off */
rtl_set_bbreg(hw, RFPGA0_XAB_RFINTERFACESW, MASKDWORD,
rtlphy->iqk_bb_backup[0]);
rtl_set_bbreg(hw, RFPGA0_XB_RFINTERFACEOE, MASKDWORD,
rtlphy->iqk_bb_backup[2]);
return result;
}
static void _rtl92d_phy_save_adda_registers(struct ieee80211_hw *hw,
u32 *adda_reg, u32 *adda_backup,
u32 regnum)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
u32 i;
RTPRINT(rtlpriv, FINIT, INIT_IQK, "Save ADDA parameters.\n");
for (i = 0; i < regnum; i++)
adda_backup[i] = rtl_get_bbreg(hw, adda_reg[i], MASKDWORD);
}
static void _rtl92d_phy_save_mac_registers(struct ieee80211_hw *hw,
u32 *macreg, u32 *macbackup)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
u32 i;
RTPRINT(rtlpriv, FINIT, INIT_IQK, "Save MAC parameters.\n");
for (i = 0; i < (IQK_MAC_REG_NUM - 1); i++)
macbackup[i] = rtl_read_byte(rtlpriv, macreg[i]);
macbackup[i] = rtl_read_dword(rtlpriv, macreg[i]);
}
static void _rtl92d_phy_reload_adda_registers(struct ieee80211_hw *hw,
u32 *adda_reg, u32 *adda_backup,
u32 regnum)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
u32 i;
RTPRINT(rtlpriv, FINIT, INIT_IQK,
"Reload ADDA power saving parameters !\n");
for (i = 0; i < regnum; i++)
rtl_set_bbreg(hw, adda_reg[i], MASKDWORD, adda_backup[i]);
}
static void _rtl92d_phy_reload_mac_registers(struct ieee80211_hw *hw,
u32 *macreg, u32 *macbackup)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
u32 i;
RTPRINT(rtlpriv, FINIT, INIT_IQK, "Reload MAC parameters !\n");
for (i = 0; i < (IQK_MAC_REG_NUM - 1); i++)
rtl_write_byte(rtlpriv, macreg[i], (u8) macbackup[i]);
rtl_write_byte(rtlpriv, macreg[i], macbackup[i]);
}
static void _rtl92d_phy_path_adda_on(struct ieee80211_hw *hw,
u32 *adda_reg, bool patha_on, bool is2t)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
u32 pathon;
u32 i;
RTPRINT(rtlpriv, FINIT, INIT_IQK, "ADDA ON.\n");
pathon = patha_on ? 0x04db25a4 : 0x0b1b25a4;
if (patha_on)
pathon = rtlpriv->rtlhal.interfaceindex == 0 ?
0x04db25a4 : 0x0b1b25a4;
for (i = 0; i < IQK_ADDA_REG_NUM; i++)
rtl_set_bbreg(hw, adda_reg[i], MASKDWORD, pathon);
}
static void _rtl92d_phy_mac_setting_calibration(struct ieee80211_hw *hw,
u32 *macreg, u32 *macbackup)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
u32 i;
RTPRINT(rtlpriv, FINIT, INIT_IQK, "MAC settings for Calibration.\n");
rtl_write_byte(rtlpriv, macreg[0], 0x3F);
for (i = 1; i < (IQK_MAC_REG_NUM - 1); i++)
rtl_write_byte(rtlpriv, macreg[i], (u8)(macbackup[i] &
(~BIT(3))));
rtl_write_byte(rtlpriv, macreg[i], (u8) (macbackup[i] & (~BIT(5))));
}
static void _rtl92d_phy_patha_standby(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
RTPRINT(rtlpriv, FINIT, INIT_IQK, "Path-A standby mode!\n");
rtl_set_bbreg(hw, 0xe28, MASKDWORD, 0x0);
rtl_set_bbreg(hw, RFPGA0_XA_LSSIPARAMETER, MASKDWORD, 0x00010000);
rtl_set_bbreg(hw, 0xe28, MASKDWORD, 0x80800000);
}
static void _rtl92d_phy_pimode_switch(struct ieee80211_hw *hw, bool pi_mode)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
u32 mode;
RTPRINT(rtlpriv, FINIT, INIT_IQK,
"BB Switch to %s mode!\n", pi_mode ? "PI" : "SI");
mode = pi_mode ? 0x01000100 : 0x01000000;
rtl_set_bbreg(hw, 0x820, MASKDWORD, mode);
rtl_set_bbreg(hw, 0x828, MASKDWORD, mode);
}
static void _rtl92d_phy_iq_calibrate(struct ieee80211_hw *hw, long result[][8],
u8 t, bool is2t)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &(rtlpriv->phy);
u32 i;
u8 patha_ok, pathb_ok;
static u32 adda_reg[IQK_ADDA_REG_NUM] = {
RFPGA0_XCD_SWITCHCONTROL, 0xe6c, 0xe70, 0xe74,
0xe78, 0xe7c, 0xe80, 0xe84,
0xe88, 0xe8c, 0xed0, 0xed4,
0xed8, 0xedc, 0xee0, 0xeec
};
static u32 iqk_mac_reg[IQK_MAC_REG_NUM] = {
0x522, 0x550, 0x551, 0x040
};
static u32 iqk_bb_reg[IQK_BB_REG_NUM] = {
RFPGA0_XAB_RFINTERFACESW, RFPGA0_XA_RFINTERFACEOE,
RFPGA0_XB_RFINTERFACEOE, ROFDM0_TRMUXPAR,
RFPGA0_XCD_RFINTERFACESW, ROFDM0_TRXPATHENABLE,
RFPGA0_RFMOD, RFPGA0_ANALOGPARAMETER4,
ROFDM0_XAAGCCORE1, ROFDM0_XBAGCCORE1
};
const u32 retrycount = 2;
u32 bbvalue;
RTPRINT(rtlpriv, FINIT, INIT_IQK, "IQK for 2.4G :Start!!!\n");
if (t == 0) {
bbvalue = rtl_get_bbreg(hw, RFPGA0_RFMOD, MASKDWORD);
RTPRINT(rtlpriv, FINIT, INIT_IQK, "==>0x%08x\n", bbvalue);
RTPRINT(rtlpriv, FINIT, INIT_IQK, "IQ Calibration for %s\n",
is2t ? "2T2R" : "1T1R");
/* Save ADDA parameters, turn Path A ADDA on */
_rtl92d_phy_save_adda_registers(hw, adda_reg,
rtlphy->adda_backup, IQK_ADDA_REG_NUM);
_rtl92d_phy_save_mac_registers(hw, iqk_mac_reg,
rtlphy->iqk_mac_backup);
_rtl92d_phy_save_adda_registers(hw, iqk_bb_reg,
rtlphy->iqk_bb_backup, IQK_BB_REG_NUM);
}
_rtl92d_phy_path_adda_on(hw, adda_reg, true, is2t);
if (t == 0)
rtlphy->rfpi_enable = (u8) rtl_get_bbreg(hw,
RFPGA0_XA_HSSIPARAMETER1, BIT(8));
/* Switch BB to PI mode to do IQ Calibration. */
if (!rtlphy->rfpi_enable)
_rtl92d_phy_pimode_switch(hw, true);
rtl_set_bbreg(hw, RFPGA0_RFMOD, BIT(24), 0x00);
rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE, MASKDWORD, 0x03a05600);
rtl_set_bbreg(hw, ROFDM0_TRMUXPAR, MASKDWORD, 0x000800e4);
rtl_set_bbreg(hw, RFPGA0_XCD_RFINTERFACESW, MASKDWORD, 0x22204000);
rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER4, 0xf00000, 0x0f);
if (is2t) {
rtl_set_bbreg(hw, RFPGA0_XA_LSSIPARAMETER, MASKDWORD,
0x00010000);
rtl_set_bbreg(hw, RFPGA0_XB_LSSIPARAMETER, MASKDWORD,
0x00010000);
}
/* MAC settings */
_rtl92d_phy_mac_setting_calibration(hw, iqk_mac_reg,
rtlphy->iqk_mac_backup);
/* Page B init */
rtl_set_bbreg(hw, 0xb68, MASKDWORD, 0x0f600000);
if (is2t)
rtl_set_bbreg(hw, 0xb6c, MASKDWORD, 0x0f600000);
/* IQ calibration setting */
RTPRINT(rtlpriv, FINIT, INIT_IQK, "IQK setting!\n");
rtl_set_bbreg(hw, 0xe28, MASKDWORD, 0x80800000);
rtl_set_bbreg(hw, 0xe40, MASKDWORD, 0x01007c00);
rtl_set_bbreg(hw, 0xe44, MASKDWORD, 0x01004800);
for (i = 0; i < retrycount; i++) {
patha_ok = _rtl92d_phy_patha_iqk(hw, is2t);
if (patha_ok == 0x03) {
RTPRINT(rtlpriv, FINIT, INIT_IQK,
"Path A IQK Success!!\n");
result[t][0] = (rtl_get_bbreg(hw, 0xe94, MASKDWORD) &
0x3FF0000) >> 16;
result[t][1] = (rtl_get_bbreg(hw, 0xe9c, MASKDWORD) &
0x3FF0000) >> 16;
result[t][2] = (rtl_get_bbreg(hw, 0xea4, MASKDWORD) &
0x3FF0000) >> 16;
result[t][3] = (rtl_get_bbreg(hw, 0xeac, MASKDWORD) &
0x3FF0000) >> 16;
break;
} else if (i == (retrycount - 1) && patha_ok == 0x01) {
/* Tx IQK OK */
RTPRINT(rtlpriv, FINIT, INIT_IQK,
"Path A IQK Only Tx Success!!\n");
result[t][0] = (rtl_get_bbreg(hw, 0xe94, MASKDWORD) &
0x3FF0000) >> 16;
result[t][1] = (rtl_get_bbreg(hw, 0xe9c, MASKDWORD) &
0x3FF0000) >> 16;
}
}
if (0x00 == patha_ok)
RTPRINT(rtlpriv, FINIT, INIT_IQK, "Path A IQK failed!!\n");
if (is2t) {
_rtl92d_phy_patha_standby(hw);
/* Turn Path B ADDA on */
_rtl92d_phy_path_adda_on(hw, adda_reg, false, is2t);
for (i = 0; i < retrycount; i++) {
pathb_ok = _rtl92d_phy_pathb_iqk(hw);
if (pathb_ok == 0x03) {
RTPRINT(rtlpriv, FINIT, INIT_IQK,
"Path B IQK Success!!\n");
result[t][4] = (rtl_get_bbreg(hw, 0xeb4,
MASKDWORD) & 0x3FF0000) >> 16;
result[t][5] = (rtl_get_bbreg(hw, 0xebc,
MASKDWORD) & 0x3FF0000) >> 16;
result[t][6] = (rtl_get_bbreg(hw, 0xec4,
MASKDWORD) & 0x3FF0000) >> 16;
result[t][7] = (rtl_get_bbreg(hw, 0xecc,
MASKDWORD) & 0x3FF0000) >> 16;
break;
} else if (i == (retrycount - 1) && pathb_ok == 0x01) {
/* Tx IQK OK */
RTPRINT(rtlpriv, FINIT, INIT_IQK,
"Path B Only Tx IQK Success!!\n");
result[t][4] = (rtl_get_bbreg(hw, 0xeb4,
MASKDWORD) & 0x3FF0000) >> 16;
result[t][5] = (rtl_get_bbreg(hw, 0xebc,
MASKDWORD) & 0x3FF0000) >> 16;
}
}
if (0x00 == pathb_ok)
RTPRINT(rtlpriv, FINIT, INIT_IQK,
"Path B IQK failed!!\n");
}
/* Back to BB mode, load original value */
RTPRINT(rtlpriv, FINIT, INIT_IQK,
"IQK:Back to BB mode, load original value!\n");
rtl_set_bbreg(hw, 0xe28, MASKDWORD, 0);
if (t != 0) {
/* Switch back BB to SI mode after finish IQ Calibration. */
if (!rtlphy->rfpi_enable)
_rtl92d_phy_pimode_switch(hw, false);
/* Reload ADDA power saving parameters */
_rtl92d_phy_reload_adda_registers(hw, adda_reg,
rtlphy->adda_backup, IQK_ADDA_REG_NUM);
/* Reload MAC parameters */
_rtl92d_phy_reload_mac_registers(hw, iqk_mac_reg,
rtlphy->iqk_mac_backup);
if (is2t)
_rtl92d_phy_reload_adda_registers(hw, iqk_bb_reg,
rtlphy->iqk_bb_backup,
IQK_BB_REG_NUM);
else
_rtl92d_phy_reload_adda_registers(hw, iqk_bb_reg,
rtlphy->iqk_bb_backup,
IQK_BB_REG_NUM - 1);
/* load 0xe30 IQC default value */
rtl_set_bbreg(hw, 0xe30, MASKDWORD, 0x01008c00);
rtl_set_bbreg(hw, 0xe34, MASKDWORD, 0x01008c00);
}
RTPRINT(rtlpriv, FINIT, INIT_IQK, "<==\n");
}
static void _rtl92d_phy_iq_calibrate_5g_normal(struct ieee80211_hw *hw,
long result[][8], u8 t)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &(rtlpriv->phy);
struct rtl_hal *rtlhal = &(rtlpriv->rtlhal);
u8 patha_ok, pathb_ok;
static u32 adda_reg[IQK_ADDA_REG_NUM] = {
RFPGA0_XCD_SWITCHCONTROL, 0xe6c, 0xe70, 0xe74,
0xe78, 0xe7c, 0xe80, 0xe84,
0xe88, 0xe8c, 0xed0, 0xed4,
0xed8, 0xedc, 0xee0, 0xeec
};
static u32 iqk_mac_reg[IQK_MAC_REG_NUM] = {
0x522, 0x550, 0x551, 0x040
};
static u32 iqk_bb_reg[IQK_BB_REG_NUM] = {
RFPGA0_XAB_RFINTERFACESW, RFPGA0_XA_RFINTERFACEOE,
RFPGA0_XB_RFINTERFACEOE, ROFDM0_TRMUXPAR,
RFPGA0_XCD_RFINTERFACESW, ROFDM0_TRXPATHENABLE,
RFPGA0_RFMOD, RFPGA0_ANALOGPARAMETER4,
ROFDM0_XAAGCCORE1, ROFDM0_XBAGCCORE1
};
u32 bbvalue;
bool is2t = IS_92D_SINGLEPHY(rtlhal->version);
/* Note: IQ calibration must be performed after loading
* PHY_REG.txt , and radio_a, radio_b.txt */
RTPRINT(rtlpriv, FINIT, INIT_IQK, "IQK for 5G NORMAL:Start!!!\n");
mdelay(IQK_DELAY_TIME * 20);
if (t == 0) {
bbvalue = rtl_get_bbreg(hw, RFPGA0_RFMOD, MASKDWORD);
RTPRINT(rtlpriv, FINIT, INIT_IQK, "==>0x%08x\n", bbvalue);
RTPRINT(rtlpriv, FINIT, INIT_IQK, "IQ Calibration for %s\n",
is2t ? "2T2R" : "1T1R");
/* Save ADDA parameters, turn Path A ADDA on */
_rtl92d_phy_save_adda_registers(hw, adda_reg,
rtlphy->adda_backup,
IQK_ADDA_REG_NUM);
_rtl92d_phy_save_mac_registers(hw, iqk_mac_reg,
rtlphy->iqk_mac_backup);
if (is2t)
_rtl92d_phy_save_adda_registers(hw, iqk_bb_reg,
rtlphy->iqk_bb_backup,
IQK_BB_REG_NUM);
else
_rtl92d_phy_save_adda_registers(hw, iqk_bb_reg,
rtlphy->iqk_bb_backup,
IQK_BB_REG_NUM - 1);
}
_rtl92d_phy_path_adda_on(hw, adda_reg, true, is2t);
/* MAC settings */
_rtl92d_phy_mac_setting_calibration(hw, iqk_mac_reg,
rtlphy->iqk_mac_backup);
if (t == 0)
rtlphy->rfpi_enable = (u8) rtl_get_bbreg(hw,
RFPGA0_XA_HSSIPARAMETER1, BIT(8));
/* Switch BB to PI mode to do IQ Calibration. */
if (!rtlphy->rfpi_enable)
_rtl92d_phy_pimode_switch(hw, true);
rtl_set_bbreg(hw, RFPGA0_RFMOD, BIT(24), 0x00);
rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE, MASKDWORD, 0x03a05600);
rtl_set_bbreg(hw, ROFDM0_TRMUXPAR, MASKDWORD, 0x000800e4);
rtl_set_bbreg(hw, RFPGA0_XCD_RFINTERFACESW, MASKDWORD, 0x22208000);
rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER4, 0xf00000, 0x0f);
/* Page B init */
rtl_set_bbreg(hw, 0xb68, MASKDWORD, 0x0f600000);
if (is2t)
rtl_set_bbreg(hw, 0xb6c, MASKDWORD, 0x0f600000);
/* IQ calibration setting */
RTPRINT(rtlpriv, FINIT, INIT_IQK, "IQK setting!\n");
rtl_set_bbreg(hw, 0xe28, MASKDWORD, 0x80800000);
rtl_set_bbreg(hw, 0xe40, MASKDWORD, 0x10007c00);
rtl_set_bbreg(hw, 0xe44, MASKDWORD, 0x01004800);
patha_ok = _rtl92d_phy_patha_iqk_5g_normal(hw, is2t);
if (patha_ok == 0x03) {
RTPRINT(rtlpriv, FINIT, INIT_IQK, "Path A IQK Success!!\n");
result[t][0] = (rtl_get_bbreg(hw, 0xe94, MASKDWORD) &
0x3FF0000) >> 16;
result[t][1] = (rtl_get_bbreg(hw, 0xe9c, MASKDWORD) &
0x3FF0000) >> 16;
result[t][2] = (rtl_get_bbreg(hw, 0xea4, MASKDWORD) &
0x3FF0000) >> 16;
result[t][3] = (rtl_get_bbreg(hw, 0xeac, MASKDWORD) &
0x3FF0000) >> 16;
} else if (patha_ok == 0x01) { /* Tx IQK OK */
RTPRINT(rtlpriv, FINIT, INIT_IQK,
"Path A IQK Only Tx Success!!\n");
result[t][0] = (rtl_get_bbreg(hw, 0xe94, MASKDWORD) &
0x3FF0000) >> 16;
result[t][1] = (rtl_get_bbreg(hw, 0xe9c, MASKDWORD) &
0x3FF0000) >> 16;
} else {
RTPRINT(rtlpriv, FINIT, INIT_IQK, "Path A IQK Fail!!\n");
}
if (is2t) {
/* _rtl92d_phy_patha_standby(hw); */
/* Turn Path B ADDA on */
_rtl92d_phy_path_adda_on(hw, adda_reg, false, is2t);
pathb_ok = _rtl92d_phy_pathb_iqk_5g_normal(hw);
if (pathb_ok == 0x03) {
RTPRINT(rtlpriv, FINIT, INIT_IQK,
"Path B IQK Success!!\n");
result[t][4] = (rtl_get_bbreg(hw, 0xeb4, MASKDWORD) &
0x3FF0000) >> 16;
result[t][5] = (rtl_get_bbreg(hw, 0xebc, MASKDWORD) &
0x3FF0000) >> 16;
result[t][6] = (rtl_get_bbreg(hw, 0xec4, MASKDWORD) &
0x3FF0000) >> 16;
result[t][7] = (rtl_get_bbreg(hw, 0xecc, MASKDWORD) &
0x3FF0000) >> 16;
} else if (pathb_ok == 0x01) { /* Tx IQK OK */
RTPRINT(rtlpriv, FINIT, INIT_IQK,
"Path B Only Tx IQK Success!!\n");
result[t][4] = (rtl_get_bbreg(hw, 0xeb4, MASKDWORD) &
0x3FF0000) >> 16;
result[t][5] = (rtl_get_bbreg(hw, 0xebc, MASKDWORD) &
0x3FF0000) >> 16;
} else {
RTPRINT(rtlpriv, FINIT, INIT_IQK,
"Path B IQK failed!!\n");
}
}
/* Back to BB mode, load original value */
RTPRINT(rtlpriv, FINIT, INIT_IQK,
"IQK:Back to BB mode, load original value!\n");
rtl_set_bbreg(hw, 0xe28, MASKDWORD, 0);
if (t != 0) {
if (is2t)
_rtl92d_phy_reload_adda_registers(hw, iqk_bb_reg,
rtlphy->iqk_bb_backup,
IQK_BB_REG_NUM);
else
_rtl92d_phy_reload_adda_registers(hw, iqk_bb_reg,
rtlphy->iqk_bb_backup,
IQK_BB_REG_NUM - 1);
/* Reload MAC parameters */
_rtl92d_phy_reload_mac_registers(hw, iqk_mac_reg,
rtlphy->iqk_mac_backup);
/* Switch back BB to SI mode after finish IQ Calibration. */
if (!rtlphy->rfpi_enable)
_rtl92d_phy_pimode_switch(hw, false);
/* Reload ADDA power saving parameters */
_rtl92d_phy_reload_adda_registers(hw, adda_reg,
rtlphy->adda_backup,
IQK_ADDA_REG_NUM);
}
RTPRINT(rtlpriv, FINIT, INIT_IQK, "<==\n");
}
static bool _rtl92d_phy_simularity_compare(struct ieee80211_hw *hw,
long result[][8], u8 c1, u8 c2)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_hal *rtlhal = &(rtlpriv->rtlhal);
u32 i, j, diff, sim_bitmap, bound;
u8 final_candidate[2] = {0xFF, 0xFF}; /* for path A and path B */
bool bresult = true;
bool is2t = IS_92D_SINGLEPHY(rtlhal->version);
if (is2t)
bound = 8;
else
bound = 4;
sim_bitmap = 0;
for (i = 0; i < bound; i++) {
diff = (result[c1][i] > result[c2][i]) ? (result[c1][i] -
result[c2][i]) : (result[c2][i] - result[c1][i]);
if (diff > MAX_TOLERANCE_92D) {
if ((i == 2 || i == 6) && !sim_bitmap) {
if (result[c1][i] + result[c1][i + 1] == 0)
final_candidate[(i / 4)] = c2;
else if (result[c2][i] + result[c2][i + 1] == 0)
final_candidate[(i / 4)] = c1;
else
sim_bitmap = sim_bitmap | (1 << i);
} else {
sim_bitmap = sim_bitmap | (1 << i);
}
}
}
if (sim_bitmap == 0) {
for (i = 0; i < (bound / 4); i++) {
if (final_candidate[i] != 0xFF) {
for (j = i * 4; j < (i + 1) * 4 - 2; j++)
result[3][j] =
result[final_candidate[i]][j];
bresult = false;
}
}
return bresult;
}
if (!(sim_bitmap & 0x0F)) { /* path A OK */
for (i = 0; i < 4; i++)
result[3][i] = result[c1][i];
} else if (!(sim_bitmap & 0x03)) { /* path A, Tx OK */
for (i = 0; i < 2; i++)
result[3][i] = result[c1][i];
}
if (!(sim_bitmap & 0xF0) && is2t) { /* path B OK */
for (i = 4; i < 8; i++)
result[3][i] = result[c1][i];
} else if (!(sim_bitmap & 0x30)) { /* path B, Tx OK */
for (i = 4; i < 6; i++)
result[3][i] = result[c1][i];
}
return false;
}
static void _rtl92d_phy_patha_fill_iqk_matrix(struct ieee80211_hw *hw,
bool iqk_ok, long result[][8],
u8 final_candidate, bool txonly)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_hal *rtlhal = &(rtlpriv->rtlhal);
u32 oldval_0, val_x, tx0_a, reg;
long val_y, tx0_c;
bool is2t = IS_92D_SINGLEPHY(rtlhal->version) ||
rtlhal->macphymode == DUALMAC_DUALPHY;
RTPRINT(rtlpriv, FINIT, INIT_IQK,
"Path A IQ Calibration %s !\n", iqk_ok ? "Success" : "Failed");
if (final_candidate == 0xFF) {
return;
} else if (iqk_ok) {
oldval_0 = (rtl_get_bbreg(hw, ROFDM0_XATxIQIMBALANCE,
MASKDWORD) >> 22) & 0x3FF; /* OFDM0_D */
val_x = result[final_candidate][0];
if ((val_x & 0x00000200) != 0)
val_x = val_x | 0xFFFFFC00;
tx0_a = (val_x * oldval_0) >> 8;
RTPRINT(rtlpriv, FINIT, INIT_IQK,
"X = 0x%x, tx0_a = 0x%x, oldval_0 0x%x\n",
val_x, tx0_a, oldval_0);
rtl_set_bbreg(hw, ROFDM0_XATxIQIMBALANCE, 0x3FF, tx0_a);
rtl_set_bbreg(hw, ROFDM0_ECCATHRESHOLD, BIT(24),
((val_x * oldval_0 >> 7) & 0x1));
val_y = result[final_candidate][1];
if ((val_y & 0x00000200) != 0)
val_y = val_y | 0xFFFFFC00;
/* path B IQK result + 3 */
if (rtlhal->interfaceindex == 1 &&
rtlhal->current_bandtype == BAND_ON_5G)
val_y += 3;
tx0_c = (val_y * oldval_0) >> 8;
RTPRINT(rtlpriv, FINIT, INIT_IQK,
"Y = 0x%lx, tx0_c = 0x%lx\n",
val_y, tx0_c);
rtl_set_bbreg(hw, ROFDM0_XCTxAFE, 0xF0000000,
((tx0_c & 0x3C0) >> 6));
rtl_set_bbreg(hw, ROFDM0_XATxIQIMBALANCE, 0x003F0000,
(tx0_c & 0x3F));
if (is2t)
rtl_set_bbreg(hw, ROFDM0_ECCATHRESHOLD, BIT(26),
((val_y * oldval_0 >> 7) & 0x1));
RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xC80 = 0x%x\n",
rtl_get_bbreg(hw, ROFDM0_XATxIQIMBALANCE,
MASKDWORD));
if (txonly) {
RTPRINT(rtlpriv, FINIT, INIT_IQK, "only Tx OK\n");
return;
}
reg = result[final_candidate][2];
rtl_set_bbreg(hw, ROFDM0_XARXIQIMBALANCE, 0x3FF, reg);
reg = result[final_candidate][3] & 0x3F;
rtl_set_bbreg(hw, ROFDM0_XARXIQIMBALANCE, 0xFC00, reg);
reg = (result[final_candidate][3] >> 6) & 0xF;
rtl_set_bbreg(hw, 0xca0, 0xF0000000, reg);
}
}
static void _rtl92d_phy_pathb_fill_iqk_matrix(struct ieee80211_hw *hw,
bool iqk_ok, long result[][8], u8 final_candidate, bool txonly)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_hal *rtlhal = &(rtlpriv->rtlhal);
u32 oldval_1, val_x, tx1_a, reg;
long val_y, tx1_c;
RTPRINT(rtlpriv, FINIT, INIT_IQK, "Path B IQ Calibration %s !\n",
iqk_ok ? "Success" : "Failed");
if (final_candidate == 0xFF) {
return;
} else if (iqk_ok) {
oldval_1 = (rtl_get_bbreg(hw, ROFDM0_XBTxIQIMBALANCE,
MASKDWORD) >> 22) & 0x3FF;
val_x = result[final_candidate][4];
if ((val_x & 0x00000200) != 0)
val_x = val_x | 0xFFFFFC00;
tx1_a = (val_x * oldval_1) >> 8;
RTPRINT(rtlpriv, FINIT, INIT_IQK, "X = 0x%x, tx1_a = 0x%x\n",
val_x, tx1_a);
rtl_set_bbreg(hw, ROFDM0_XBTxIQIMBALANCE, 0x3FF, tx1_a);
rtl_set_bbreg(hw, ROFDM0_ECCATHRESHOLD, BIT(28),
((val_x * oldval_1 >> 7) & 0x1));
val_y = result[final_candidate][5];
if ((val_y & 0x00000200) != 0)
val_y = val_y | 0xFFFFFC00;
if (rtlhal->current_bandtype == BAND_ON_5G)
val_y += 3;
tx1_c = (val_y * oldval_1) >> 8;
RTPRINT(rtlpriv, FINIT, INIT_IQK, "Y = 0x%lx, tx1_c = 0x%lx\n",
val_y, tx1_c);
rtl_set_bbreg(hw, ROFDM0_XDTxAFE, 0xF0000000,
((tx1_c & 0x3C0) >> 6));
rtl_set_bbreg(hw, ROFDM0_XBTxIQIMBALANCE, 0x003F0000,
(tx1_c & 0x3F));
rtl_set_bbreg(hw, ROFDM0_ECCATHRESHOLD, BIT(30),
((val_y * oldval_1 >> 7) & 0x1));
if (txonly)
return;
reg = result[final_candidate][6];
rtl_set_bbreg(hw, ROFDM0_XBRXIQIMBALANCE, 0x3FF, reg);
reg = result[final_candidate][7] & 0x3F;
rtl_set_bbreg(hw, ROFDM0_XBRXIQIMBALANCE, 0xFC00, reg);
reg = (result[final_candidate][7] >> 6) & 0xF;
rtl_set_bbreg(hw, ROFDM0_AGCRSSITABLE, 0x0000F000, reg);
}
}
void rtl92d_phy_iq_calibrate(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &(rtlpriv->phy);
struct rtl_hal *rtlhal = &(rtlpriv->rtlhal);
long result[4][8];
u8 i, final_candidate, indexforchannel;
bool patha_ok, pathb_ok;
long rege94, rege9c, regea4, regeac, regeb4;
long regebc, regec4, regecc, regtmp = 0;
bool is12simular, is13simular, is23simular;
unsigned long flag = 0;
RTPRINT(rtlpriv, FINIT, INIT_IQK,
"IQK:Start!!!channel %d\n", rtlphy->current_channel);
for (i = 0; i < 8; i++) {
result[0][i] = 0;
result[1][i] = 0;
result[2][i] = 0;
result[3][i] = 0;
}
final_candidate = 0xff;
patha_ok = false;
pathb_ok = false;
is12simular = false;
is23simular = false;
is13simular = false;
RTPRINT(rtlpriv, FINIT, INIT_IQK,
"IQK !!!currentband %d\n", rtlhal->current_bandtype);
rtl92d_acquire_cckandrw_pagea_ctl(hw, &flag);
for (i = 0; i < 3; i++) {
if (rtlhal->current_bandtype == BAND_ON_5G) {
_rtl92d_phy_iq_calibrate_5g_normal(hw, result, i);
} else if (rtlhal->current_bandtype == BAND_ON_2_4G) {
if (IS_92D_SINGLEPHY(rtlhal->version))
_rtl92d_phy_iq_calibrate(hw, result, i, true);
else
_rtl92d_phy_iq_calibrate(hw, result, i, false);
}
if (i == 1) {
is12simular = _rtl92d_phy_simularity_compare(hw, result,
0, 1);
if (is12simular) {
final_candidate = 0;
break;
}
}
if (i == 2) {
is13simular = _rtl92d_phy_simularity_compare(hw, result,
0, 2);
if (is13simular) {
final_candidate = 0;
break;
}
is23simular = _rtl92d_phy_simularity_compare(hw, result,
1, 2);
if (is23simular) {
final_candidate = 1;
} else {
for (i = 0; i < 8; i++)
regtmp += result[3][i];
if (regtmp != 0)
final_candidate = 3;
else
final_candidate = 0xFF;
}
}
}
rtl92d_release_cckandrw_pagea_ctl(hw, &flag);
for (i = 0; i < 4; i++) {
rege94 = result[i][0];
rege9c = result[i][1];
regea4 = result[i][2];
regeac = result[i][3];
regeb4 = result[i][4];
regebc = result[i][5];
regec4 = result[i][6];
regecc = result[i][7];
RTPRINT(rtlpriv, FINIT, INIT_IQK,
"IQK: rege94=%lx rege9c=%lx regea4=%lx regeac=%lx regeb4=%lx regebc=%lx regec4=%lx regecc=%lx\n",
rege94, rege9c, regea4, regeac, regeb4, regebc, regec4,
regecc);
}
if (final_candidate != 0xff) {
rtlphy->reg_e94 = rege94 = result[final_candidate][0];
rtlphy->reg_e9c = rege9c = result[final_candidate][1];
regea4 = result[final_candidate][2];
regeac = result[final_candidate][3];
rtlphy->reg_eb4 = regeb4 = result[final_candidate][4];
rtlphy->reg_ebc = regebc = result[final_candidate][5];
regec4 = result[final_candidate][6];
regecc = result[final_candidate][7];
RTPRINT(rtlpriv, FINIT, INIT_IQK,
"IQK: final_candidate is %x\n", final_candidate);
RTPRINT(rtlpriv, FINIT, INIT_IQK,
"IQK: rege94=%lx rege9c=%lx regea4=%lx regeac=%lx regeb4=%lx regebc=%lx regec4=%lx regecc=%lx\n",
rege94, rege9c, regea4, regeac, regeb4, regebc, regec4,
regecc);
patha_ok = pathb_ok = true;
} else {
rtlphy->reg_e94 = rtlphy->reg_eb4 = 0x100; /* X default value */
rtlphy->reg_e9c = rtlphy->reg_ebc = 0x0; /* Y default value */
}
if ((rege94 != 0) /*&&(regea4 != 0) */)
_rtl92d_phy_patha_fill_iqk_matrix(hw, patha_ok, result,
final_candidate, (regea4 == 0));
if (IS_92D_SINGLEPHY(rtlhal->version)) {
if ((regeb4 != 0) /*&&(regec4 != 0) */)
_rtl92d_phy_pathb_fill_iqk_matrix(hw, pathb_ok, result,
final_candidate, (regec4 == 0));
}
if (final_candidate != 0xFF) {
indexforchannel = rtl92d_get_rightchnlplace_for_iqk(
rtlphy->current_channel);
for (i = 0; i < IQK_MATRIX_REG_NUM; i++)
rtlphy->iqk_matrix[indexforchannel].
value[0][i] = result[final_candidate][i];
rtlphy->iqk_matrix[indexforchannel].iqk_done =
true;
RT_TRACE(rtlpriv, COMP_SCAN | COMP_MLME, DBG_LOUD,
"IQK OK indexforchannel %d\n", indexforchannel);
}
}
void rtl92d_phy_reload_iqk_setting(struct ieee80211_hw *hw, u8 channel)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &(rtlpriv->phy);
struct rtl_hal *rtlhal = &(rtlpriv->rtlhal);
u8 indexforchannel;
RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD, "channel %d\n", channel);
/*------Do IQK for normal chip and test chip 5G band------- */
indexforchannel = rtl92d_get_rightchnlplace_for_iqk(channel);
RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD, "indexforchannel %d done %d\n",
indexforchannel,
rtlphy->iqk_matrix[indexforchannel].iqk_done);
if (0 && !rtlphy->iqk_matrix[indexforchannel].iqk_done &&
rtlphy->need_iqk) {
/* Re Do IQK. */
RT_TRACE(rtlpriv, COMP_SCAN | COMP_INIT, DBG_LOUD,
"Do IQK Matrix reg for channel:%d....\n", channel);
rtl92d_phy_iq_calibrate(hw);
} else {
/* Just load the value. */
/* 2G band just load once. */
if (((!rtlhal->load_imrandiqk_setting_for2g) &&
indexforchannel == 0) || indexforchannel > 0) {
RT_TRACE(rtlpriv, COMP_SCAN, DBG_LOUD,
"Just Read IQK Matrix reg for channel:%d....\n",
channel);
if ((rtlphy->iqk_matrix[indexforchannel].
value[0] != NULL)
/*&&(regea4 != 0) */)
_rtl92d_phy_patha_fill_iqk_matrix(hw, true,
rtlphy->iqk_matrix[
indexforchannel].value, 0,
(rtlphy->iqk_matrix[
indexforchannel].value[0][2] == 0));
if (IS_92D_SINGLEPHY(rtlhal->version)) {
if ((rtlphy->iqk_matrix[
indexforchannel].value[0][4] != 0)
/*&&(regec4 != 0) */)
_rtl92d_phy_pathb_fill_iqk_matrix(hw,
true,
rtlphy->iqk_matrix[
indexforchannel].value, 0,
(rtlphy->iqk_matrix[
indexforchannel].value[0][6]
== 0));
}
}
}
rtlphy->need_iqk = false;
RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD, "<====\n");
}
static u32 _rtl92d_phy_get_abs(u32 val1, u32 val2)
{
u32 ret;
if (val1 >= val2)
ret = val1 - val2;
else
ret = val2 - val1;
return ret;
}
static bool _rtl92d_is_legal_5g_channel(struct ieee80211_hw *hw, u8 channel)
{
int i;
for (i = 0; i < sizeof(channel5g); i++)
if (channel == channel5g[i])
return true;
return false;
}
static void _rtl92d_phy_calc_curvindex(struct ieee80211_hw *hw,
u32 *targetchnl, u32 * curvecount_val,
bool is5g, u32 *curveindex)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
u32 smallest_abs_val = 0xffffffff, u4tmp;
u8 i, j;
u8 chnl_num = is5g ? TARGET_CHNL_NUM_5G : TARGET_CHNL_NUM_2G;
for (i = 0; i < chnl_num; i++) {
if (is5g && !_rtl92d_is_legal_5g_channel(hw, i + 1))
continue;
curveindex[i] = 0;
for (j = 0; j < (CV_CURVE_CNT * 2); j++) {
u4tmp = _rtl92d_phy_get_abs(targetchnl[i],
curvecount_val[j]);
if (u4tmp < smallest_abs_val) {
curveindex[i] = j;
smallest_abs_val = u4tmp;
}
}
smallest_abs_val = 0xffffffff;
RTPRINT(rtlpriv, FINIT, INIT_IQK, "curveindex[%d] = %x\n",
i, curveindex[i]);
}
}
static void _rtl92d_phy_reload_lck_setting(struct ieee80211_hw *hw,
u8 channel)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
u8 erfpath = rtlpriv->rtlhal.current_bandtype ==
BAND_ON_5G ? RF90_PATH_A :
IS_92D_SINGLEPHY(rtlpriv->rtlhal.version) ?
RF90_PATH_B : RF90_PATH_A;
u32 u4tmp = 0, u4regvalue = 0;
bool bneed_powerdown_radio = false;
RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD, "path %d\n", erfpath);
RTPRINT(rtlpriv, FINIT, INIT_IQK, "band type = %d\n",
rtlpriv->rtlhal.current_bandtype);
RTPRINT(rtlpriv, FINIT, INIT_IQK, "channel = %d\n", channel);
if (rtlpriv->rtlhal.current_bandtype == BAND_ON_5G) {/* Path-A for 5G */
u4tmp = curveindex_5g[channel-1];
RTPRINT(rtlpriv, FINIT, INIT_IQK,
"ver 1 set RF-A, 5G, 0x28 = 0x%x !!\n", u4tmp);
if (rtlpriv->rtlhal.macphymode == DUALMAC_DUALPHY &&
rtlpriv->rtlhal.interfaceindex == 1) {
bneed_powerdown_radio =
rtl92d_phy_enable_anotherphy(hw, false);
rtlpriv->rtlhal.during_mac1init_radioa = true;
/* asume no this case */
if (bneed_powerdown_radio)
_rtl92d_phy_enable_rf_env(hw, erfpath,
&u4regvalue);
}
rtl_set_rfreg(hw, erfpath, RF_SYN_G4, 0x3f800, u4tmp);
if (bneed_powerdown_radio)
_rtl92d_phy_restore_rf_env(hw, erfpath, &u4regvalue);
if (rtlpriv->rtlhal.during_mac1init_radioa)
rtl92d_phy_powerdown_anotherphy(hw, false);
} else if (rtlpriv->rtlhal.current_bandtype == BAND_ON_2_4G) {
u4tmp = curveindex_2g[channel-1];
RTPRINT(rtlpriv, FINIT, INIT_IQK,
"ver 3 set RF-B, 2G, 0x28 = 0x%x !!\n", u4tmp);
if (rtlpriv->rtlhal.macphymode == DUALMAC_DUALPHY &&
rtlpriv->rtlhal.interfaceindex == 0) {
bneed_powerdown_radio =
rtl92d_phy_enable_anotherphy(hw, true);
rtlpriv->rtlhal.during_mac0init_radiob = true;
if (bneed_powerdown_radio)
_rtl92d_phy_enable_rf_env(hw, erfpath,
&u4regvalue);
}
rtl_set_rfreg(hw, erfpath, RF_SYN_G4, 0x3f800, u4tmp);
RTPRINT(rtlpriv, FINIT, INIT_IQK,
"ver 3 set RF-B, 2G, 0x28 = 0x%x !!\n",
rtl_get_rfreg(hw, erfpath, RF_SYN_G4, 0x3f800));
if (bneed_powerdown_radio)
_rtl92d_phy_restore_rf_env(hw, erfpath, &u4regvalue);
if (rtlpriv->rtlhal.during_mac0init_radiob)
rtl92d_phy_powerdown_anotherphy(hw, true);
}
RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD, "<====\n");
}
static void _rtl92d_phy_lc_calibrate_sw(struct ieee80211_hw *hw, bool is2t)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_hal *rtlhal = &(rtlpriv->rtlhal);
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
u8 tmpreg, index, rf_mode[2];
u8 path = is2t ? 2 : 1;
u8 i;
u32 u4tmp, offset;
u32 curvecount_val[CV_CURVE_CNT * 2] = {0};
u16 timeout = 800, timecount = 0;
/* Check continuous TX and Packet TX */
tmpreg = rtl_read_byte(rtlpriv, 0xd03);
/* if Deal with contisuous TX case, disable all continuous TX */
/* if Deal with Packet TX case, block all queues */
if ((tmpreg & 0x70) != 0)
rtl_write_byte(rtlpriv, 0xd03, tmpreg & 0x8F);
else
rtl_write_byte(rtlpriv, REG_TXPAUSE, 0xFF);
rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER4, 0xF00000, 0x0F);
for (index = 0; index < path; index++) {
/* 1. Read original RF mode */
offset = index == 0 ? ROFDM0_XAAGCCORE1 : ROFDM0_XBAGCCORE1;
rf_mode[index] = rtl_read_byte(rtlpriv, offset);
/* 2. Set RF mode = standby mode */
rtl_set_rfreg(hw, (enum radio_path)index, RF_AC,
RFREG_OFFSET_MASK, 0x010000);
if (rtlpci->init_ready) {
/* switch CV-curve control by LC-calibration */
rtl_set_rfreg(hw, (enum radio_path)index, RF_SYN_G7,
BIT(17), 0x0);
/* 4. Set LC calibration begin */
rtl_set_rfreg(hw, (enum radio_path)index, RF_CHNLBW,
0x08000, 0x01);
}
u4tmp = rtl_get_rfreg(hw, (enum radio_path)index, RF_SYN_G6,
RFREG_OFFSET_MASK);
while ((!(u4tmp & BIT(11))) && timecount <= timeout) {
mdelay(50);
timecount += 50;
u4tmp = rtl_get_rfreg(hw, (enum radio_path)index,
RF_SYN_G6, RFREG_OFFSET_MASK);
}
RTPRINT(rtlpriv, FINIT, INIT_IQK,
"PHY_LCK finish delay for %d ms=2\n", timecount);
u4tmp = rtl_get_rfreg(hw, index, RF_SYN_G4, RFREG_OFFSET_MASK);
if (index == 0 && rtlhal->interfaceindex == 0) {
RTPRINT(rtlpriv, FINIT, INIT_IQK,
"path-A / 5G LCK\n");
} else {
RTPRINT(rtlpriv, FINIT, INIT_IQK,
"path-B / 2.4G LCK\n");
}
memset(&curvecount_val[0], 0, CV_CURVE_CNT * 2);
/* Set LC calibration off */
rtl_set_rfreg(hw, (enum radio_path)index, RF_CHNLBW,
0x08000, 0x0);
RTPRINT(rtlpriv, FINIT, INIT_IQK, "set RF 0x18[15] = 0\n");
/* save Curve-counting number */
for (i = 0; i < CV_CURVE_CNT; i++) {
u32 readval = 0, readval2 = 0;
rtl_set_rfreg(hw, (enum radio_path)index, 0x3F,
0x7f, i);
rtl_set_rfreg(hw, (enum radio_path)index, 0x4D,
RFREG_OFFSET_MASK, 0x0);
readval = rtl_get_rfreg(hw, (enum radio_path)index,
0x4F, RFREG_OFFSET_MASK);
curvecount_val[2 * i + 1] = (readval & 0xfffe0) >> 5;
/* reg 0x4f [4:0] */
/* reg 0x50 [19:10] */
readval2 = rtl_get_rfreg(hw, (enum radio_path)index,
0x50, 0xffc00);
curvecount_val[2 * i] = (((readval & 0x1F) << 10) |
readval2);
}
if (index == 0 && rtlhal->interfaceindex == 0)
_rtl92d_phy_calc_curvindex(hw, targetchnl_5g,
curvecount_val,
true, curveindex_5g);
else
_rtl92d_phy_calc_curvindex(hw, targetchnl_2g,
curvecount_val,
false, curveindex_2g);
/* switch CV-curve control mode */
rtl_set_rfreg(hw, (enum radio_path)index, RF_SYN_G7,
BIT(17), 0x1);
}
/* Restore original situation */
for (index = 0; index < path; index++) {
offset = index == 0 ? ROFDM0_XAAGCCORE1 : ROFDM0_XBAGCCORE1;
rtl_write_byte(rtlpriv, offset, 0x50);
rtl_write_byte(rtlpriv, offset, rf_mode[index]);
}
if ((tmpreg & 0x70) != 0)
rtl_write_byte(rtlpriv, 0xd03, tmpreg);
else /*Deal with Packet TX case */
rtl_write_byte(rtlpriv, REG_TXPAUSE, 0x00);
rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER4, 0xF00000, 0x00);
_rtl92d_phy_reload_lck_setting(hw, rtlpriv->phy.current_channel);
}
static void _rtl92d_phy_lc_calibrate(struct ieee80211_hw *hw, bool is2t)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
RTPRINT(rtlpriv, FINIT, INIT_IQK, "cosa PHY_LCK ver=2\n");
_rtl92d_phy_lc_calibrate_sw(hw, is2t);
}
void rtl92d_phy_lc_calibrate(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &(rtlpriv->phy);
struct rtl_hal *rtlhal = &(rtlpriv->rtlhal);
u32 timeout = 2000, timecount = 0;
while (rtlpriv->mac80211.act_scanning && timecount < timeout) {
udelay(50);
timecount += 50;
}
rtlphy->lck_inprogress = true;
RTPRINT(rtlpriv, FINIT, INIT_IQK,
"LCK:Start!!! currentband %x delay %d ms\n",
rtlhal->current_bandtype, timecount);
if (IS_92D_SINGLEPHY(rtlhal->version)) {
_rtl92d_phy_lc_calibrate(hw, true);
} else {
/* For 1T1R */
_rtl92d_phy_lc_calibrate(hw, false);
}
rtlphy->lck_inprogress = false;
RTPRINT(rtlpriv, FINIT, INIT_IQK, "LCK:Finish!!!\n");
}
void rtl92d_phy_ap_calibrate(struct ieee80211_hw *hw, s8 delta)
{
return;
}
static bool _rtl92d_phy_set_sw_chnl_cmdarray(struct swchnlcmd *cmdtable,
u32 cmdtableidx, u32 cmdtablesz, enum swchnlcmd_id cmdid,
u32 para1, u32 para2, u32 msdelay)
{
struct swchnlcmd *pcmd;
if (cmdtable == NULL) {
RT_ASSERT(false, "cmdtable cannot be NULL\n");
return false;
}
if (cmdtableidx >= cmdtablesz)
return false;
pcmd = cmdtable + cmdtableidx;
pcmd->cmdid = cmdid;
pcmd->para1 = para1;
pcmd->para2 = para2;
pcmd->msdelay = msdelay;
return true;
}
void rtl92d_phy_reset_iqk_result(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &(rtlpriv->phy);
u8 i;
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
"settings regs %d default regs %d\n",
(int)(sizeof(rtlphy->iqk_matrix) /
sizeof(struct iqk_matrix_regs)),
IQK_MATRIX_REG_NUM);
/* 0xe94, 0xe9c, 0xea4, 0xeac, 0xeb4, 0xebc, 0xec4, 0xecc */
for (i = 0; i < IQK_MATRIX_SETTINGS_NUM; i++) {
rtlphy->iqk_matrix[i].value[0][0] = 0x100;
rtlphy->iqk_matrix[i].value[0][2] = 0x100;
rtlphy->iqk_matrix[i].value[0][4] = 0x100;
rtlphy->iqk_matrix[i].value[0][6] = 0x100;
rtlphy->iqk_matrix[i].value[0][1] = 0x0;
rtlphy->iqk_matrix[i].value[0][3] = 0x0;
rtlphy->iqk_matrix[i].value[0][5] = 0x0;
rtlphy->iqk_matrix[i].value[0][7] = 0x0;
rtlphy->iqk_matrix[i].iqk_done = false;
}
}
static bool _rtl92d_phy_sw_chnl_step_by_step(struct ieee80211_hw *hw,
u8 channel, u8 *stage, u8 *step,
u32 *delay)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &(rtlpriv->phy);
struct swchnlcmd precommoncmd[MAX_PRECMD_CNT];
u32 precommoncmdcnt;
struct swchnlcmd postcommoncmd[MAX_POSTCMD_CNT];
u32 postcommoncmdcnt;
struct swchnlcmd rfdependcmd[MAX_RFDEPENDCMD_CNT];
u32 rfdependcmdcnt;
struct swchnlcmd *currentcmd = NULL;
u8 rfpath;
u8 num_total_rfpath = rtlphy->num_total_rfpath;
precommoncmdcnt = 0;
_rtl92d_phy_set_sw_chnl_cmdarray(precommoncmd, precommoncmdcnt++,
MAX_PRECMD_CNT,
CMDID_SET_TXPOWEROWER_LEVEL, 0, 0, 0);
_rtl92d_phy_set_sw_chnl_cmdarray(precommoncmd, precommoncmdcnt++,
MAX_PRECMD_CNT, CMDID_END, 0, 0, 0);
postcommoncmdcnt = 0;
_rtl92d_phy_set_sw_chnl_cmdarray(postcommoncmd, postcommoncmdcnt++,
MAX_POSTCMD_CNT, CMDID_END, 0, 0, 0);
rfdependcmdcnt = 0;
_rtl92d_phy_set_sw_chnl_cmdarray(rfdependcmd, rfdependcmdcnt++,
MAX_RFDEPENDCMD_CNT, CMDID_RF_WRITEREG,
RF_CHNLBW, channel, 0);
_rtl92d_phy_set_sw_chnl_cmdarray(rfdependcmd, rfdependcmdcnt++,
MAX_RFDEPENDCMD_CNT, CMDID_END,
0, 0, 0);
do {
switch (*stage) {
case 0:
currentcmd = &precommoncmd[*step];
break;
case 1:
currentcmd = &rfdependcmd[*step];
break;
case 2:
currentcmd = &postcommoncmd[*step];
break;
}
if (currentcmd->cmdid == CMDID_END) {
if ((*stage) == 2) {
return true;
} else {
(*stage)++;
(*step) = 0;
continue;
}
}
switch (currentcmd->cmdid) {
case CMDID_SET_TXPOWEROWER_LEVEL:
rtl92d_phy_set_txpower_level(hw, channel);
break;
case CMDID_WRITEPORT_ULONG:
rtl_write_dword(rtlpriv, currentcmd->para1,
currentcmd->para2);
break;
case CMDID_WRITEPORT_USHORT:
rtl_write_word(rtlpriv, currentcmd->para1,
(u16)currentcmd->para2);
break;
case CMDID_WRITEPORT_UCHAR:
rtl_write_byte(rtlpriv, currentcmd->para1,
(u8)currentcmd->para2);
break;
case CMDID_RF_WRITEREG:
for (rfpath = 0; rfpath < num_total_rfpath; rfpath++) {
rtlphy->rfreg_chnlval[rfpath] =
((rtlphy->rfreg_chnlval[rfpath] &
0xffffff00) | currentcmd->para2);
if (rtlpriv->rtlhal.current_bandtype ==
BAND_ON_5G) {
if (currentcmd->para2 > 99)
rtlphy->rfreg_chnlval[rfpath] =
rtlphy->rfreg_chnlval
[rfpath] | (BIT(18));
else
rtlphy->rfreg_chnlval[rfpath] =
rtlphy->rfreg_chnlval
[rfpath] & (~BIT(18));
rtlphy->rfreg_chnlval[rfpath] |=
(BIT(16) | BIT(8));
} else {
rtlphy->rfreg_chnlval[rfpath] &=
~(BIT(8) | BIT(16) | BIT(18));
}
rtl_set_rfreg(hw, (enum radio_path)rfpath,
currentcmd->para1,
RFREG_OFFSET_MASK,
rtlphy->rfreg_chnlval[rfpath]);
_rtl92d_phy_reload_imr_setting(hw, channel,
rfpath);
}
_rtl92d_phy_switch_rf_setting(hw, channel);
/* do IQK when all parameters are ready */
rtl92d_phy_reload_iqk_setting(hw, channel);
break;
default:
RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
"switch case not processed\n");
break;
}
break;
} while (true);
(*delay) = currentcmd->msdelay;
(*step)++;
return false;
}
u8 rtl92d_phy_sw_chnl(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &(rtlpriv->phy);
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
u32 delay;
u32 timeout = 1000, timecount = 0;
u8 channel = rtlphy->current_channel;
u32 ret_value;
if (rtlphy->sw_chnl_inprogress)
return 0;
if (rtlphy->set_bwmode_inprogress)
return 0;
if ((is_hal_stop(rtlhal)) || (RT_CANNOT_IO(hw))) {
RT_TRACE(rtlpriv, COMP_CHAN, DBG_LOUD,
"sw_chnl_inprogress false driver sleep or unload\n");
return 0;
}
while (rtlphy->lck_inprogress && timecount < timeout) {
mdelay(50);
timecount += 50;
}
if (rtlhal->macphymode == SINGLEMAC_SINGLEPHY &&
rtlhal->bandset == BAND_ON_BOTH) {
ret_value = rtl_get_bbreg(hw, RFPGA0_XAB_RFPARAMETER,
MASKDWORD);
if (rtlphy->current_channel > 14 && !(ret_value & BIT(0)))
rtl92d_phy_switch_wirelessband(hw, BAND_ON_5G);
else if (rtlphy->current_channel <= 14 && (ret_value & BIT(0)))
rtl92d_phy_switch_wirelessband(hw, BAND_ON_2_4G);
}
switch (rtlhal->current_bandtype) {
case BAND_ON_5G:
/* Get first channel error when change between
* 5G and 2.4G band. */
if (channel <= 14)
return 0;
RT_ASSERT((channel > 14), "5G but channel<=14\n");
break;
case BAND_ON_2_4G:
/* Get first channel error when change between
* 5G and 2.4G band. */
if (channel > 14)
return 0;
RT_ASSERT((channel <= 14), "2G but channel>14\n");
break;
default:
RT_ASSERT(false, "Invalid WirelessMode(%#x)!!\n",
rtlpriv->mac80211.mode);
break;
}
rtlphy->sw_chnl_inprogress = true;
if (channel == 0)
channel = 1;
rtlphy->sw_chnl_stage = 0;
rtlphy->sw_chnl_step = 0;
RT_TRACE(rtlpriv, COMP_SCAN, DBG_TRACE,
"switch to channel%d\n", rtlphy->current_channel);
do {
if (!rtlphy->sw_chnl_inprogress)
break;
if (!_rtl92d_phy_sw_chnl_step_by_step(hw,
rtlphy->current_channel,
&rtlphy->sw_chnl_stage, &rtlphy->sw_chnl_step, &delay)) {
if (delay > 0)
mdelay(delay);
else
continue;
} else {
rtlphy->sw_chnl_inprogress = false;
}
break;
} while (true);
RT_TRACE(rtlpriv, COMP_SCAN, DBG_TRACE, "<==\n");
rtlphy->sw_chnl_inprogress = false;
return 1;
}
static void rtl92d_phy_set_io(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct dig_t *de_digtable = &rtlpriv->dm_digtable;
struct rtl_phy *rtlphy = &(rtlpriv->phy);
RT_TRACE(rtlpriv, COMP_CMD, DBG_TRACE,
"--->Cmd(%#x), set_io_inprogress(%d)\n",
rtlphy->current_io_type, rtlphy->set_io_inprogress);
switch (rtlphy->current_io_type) {
case IO_CMD_RESUME_DM_BY_SCAN:
de_digtable->cur_igvalue = rtlphy->initgain_backup.xaagccore1;
rtl92d_dm_write_dig(hw);
rtl92d_phy_set_txpower_level(hw, rtlphy->current_channel);
break;
case IO_CMD_PAUSE_DM_BY_SCAN:
rtlphy->initgain_backup.xaagccore1 = de_digtable->cur_igvalue;
de_digtable->cur_igvalue = 0x37;
rtl92d_dm_write_dig(hw);
break;
default:
RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
"switch case not processed\n");
break;
}
rtlphy->set_io_inprogress = false;
RT_TRACE(rtlpriv, COMP_CMD, DBG_TRACE, "<---(%#x)\n",
rtlphy->current_io_type);
}
bool rtl92d_phy_set_io_cmd(struct ieee80211_hw *hw, enum io_type iotype)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &(rtlpriv->phy);
bool postprocessing = false;
RT_TRACE(rtlpriv, COMP_CMD, DBG_TRACE,
"-->IO Cmd(%#x), set_io_inprogress(%d)\n",
iotype, rtlphy->set_io_inprogress);
do {
switch (iotype) {
case IO_CMD_RESUME_DM_BY_SCAN:
RT_TRACE(rtlpriv, COMP_CMD, DBG_TRACE,
"[IO CMD] Resume DM after scan\n");
postprocessing = true;
break;
case IO_CMD_PAUSE_DM_BY_SCAN:
RT_TRACE(rtlpriv, COMP_CMD, DBG_TRACE,
"[IO CMD] Pause DM before scan\n");
postprocessing = true;
break;
default:
RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
"switch case not processed\n");
break;
}
} while (false);
if (postprocessing && !rtlphy->set_io_inprogress) {
rtlphy->set_io_inprogress = true;
rtlphy->current_io_type = iotype;
} else {
return false;
}
rtl92d_phy_set_io(hw);
RT_TRACE(rtlpriv, COMP_CMD, DBG_TRACE, "<--IO Type(%#x)\n", iotype);
return true;
}
static void _rtl92d_phy_set_rfon(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
/* a. SYS_CLKR 0x08[11] = 1 restore MAC clock */
/* b. SPS_CTRL 0x11[7:0] = 0x2b */
if (rtlpriv->rtlhal.macphymode == SINGLEMAC_SINGLEPHY)
rtl_write_byte(rtlpriv, REG_SPS0_CTRL, 0x2b);
/* c. For PCIE: SYS_FUNC_EN 0x02[7:0] = 0xE3 enable BB TRX function */
rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE3);
/* RF_ON_EXCEP(d~g): */
/* d. APSD_CTRL 0x600[7:0] = 0x00 */
rtl_write_byte(rtlpriv, REG_APSD_CTRL, 0x00);
/* e. SYS_FUNC_EN 0x02[7:0] = 0xE2 reset BB TRX function again */
/* f. SYS_FUNC_EN 0x02[7:0] = 0xE3 enable BB TRX function*/
rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE2);
rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE3);
/* g. txpause 0x522[7:0] = 0x00 enable mac tx queue */
rtl_write_byte(rtlpriv, REG_TXPAUSE, 0x00);
}
static void _rtl92d_phy_set_rfsleep(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
u32 u4btmp;
u8 delay = 5;
/* a. TXPAUSE 0x522[7:0] = 0xFF Pause MAC TX queue */
rtl_write_byte(rtlpriv, REG_TXPAUSE, 0xFF);
/* b. RF path 0 offset 0x00 = 0x00 disable RF */
rtl_set_rfreg(hw, RF90_PATH_A, 0x00, RFREG_OFFSET_MASK, 0x00);
/* c. APSD_CTRL 0x600[7:0] = 0x40 */
rtl_write_byte(rtlpriv, REG_APSD_CTRL, 0x40);
/* d. APSD_CTRL 0x600[7:0] = 0x00
* APSD_CTRL 0x600[7:0] = 0x00
* RF path 0 offset 0x00 = 0x00
* APSD_CTRL 0x600[7:0] = 0x40
* */
u4btmp = rtl_get_rfreg(hw, RF90_PATH_A, 0, RFREG_OFFSET_MASK);
while (u4btmp != 0 && delay > 0) {
rtl_write_byte(rtlpriv, REG_APSD_CTRL, 0x0);
rtl_set_rfreg(hw, RF90_PATH_A, 0x00, RFREG_OFFSET_MASK, 0x00);
rtl_write_byte(rtlpriv, REG_APSD_CTRL, 0x40);
u4btmp = rtl_get_rfreg(hw, RF90_PATH_A, 0, RFREG_OFFSET_MASK);
delay--;
}
if (delay == 0) {
/* Jump out the LPS turn off sequence to RF_ON_EXCEP */
rtl_write_byte(rtlpriv, REG_APSD_CTRL, 0x00);
rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE2);
rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE3);
rtl_write_byte(rtlpriv, REG_TXPAUSE, 0x00);
RT_TRACE(rtlpriv, COMP_POWER, DBG_LOUD,
"Fail !!! Switch RF timeout\n");
return;
}
/* e. For PCIE: SYS_FUNC_EN 0x02[7:0] = 0xE2 reset BB TRX function */
rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE2);
/* f. SPS_CTRL 0x11[7:0] = 0x22 */
if (rtlpriv->rtlhal.macphymode == SINGLEMAC_SINGLEPHY)
rtl_write_byte(rtlpriv, REG_SPS0_CTRL, 0x22);
/* g. SYS_CLKR 0x08[11] = 0 gated MAC clock */
}
bool rtl92d_phy_set_rf_power_state(struct ieee80211_hw *hw,
enum rf_pwrstate rfpwr_state)
{
bool bresult = true;
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
u8 i, queue_id;
struct rtl8192_tx_ring *ring = NULL;
if (rfpwr_state == ppsc->rfpwr_state)
return false;
switch (rfpwr_state) {
case ERFON:
if ((ppsc->rfpwr_state == ERFOFF) &&
RT_IN_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC)) {
bool rtstatus;
u32 InitializeCount = 0;
do {
InitializeCount++;
RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG,
"IPS Set eRf nic enable\n");
rtstatus = rtl_ps_enable_nic(hw);
} while (!rtstatus && (InitializeCount < 10));
RT_CLEAR_PS_LEVEL(ppsc,
RT_RF_OFF_LEVL_HALT_NIC);
} else {
RT_TRACE(rtlpriv, COMP_POWER, DBG_DMESG,
"awake, sleeped:%d ms state_inap:%x\n",
jiffies_to_msecs(jiffies -
ppsc->last_sleep_jiffies),
rtlpriv->psc.state_inap);
ppsc->last_awake_jiffies = jiffies;
_rtl92d_phy_set_rfon(hw);
}
if (mac->link_state == MAC80211_LINKED)
rtlpriv->cfg->ops->led_control(hw,
LED_CTL_LINK);
else
rtlpriv->cfg->ops->led_control(hw,
LED_CTL_NO_LINK);
break;
case ERFOFF:
if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_HALT_NIC) {
RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG,
"IPS Set eRf nic disable\n");
rtl_ps_disable_nic(hw);
RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
} else {
if (ppsc->rfoff_reason == RF_CHANGE_BY_IPS)
rtlpriv->cfg->ops->led_control(hw,
LED_CTL_NO_LINK);
else
rtlpriv->cfg->ops->led_control(hw,
LED_CTL_POWER_OFF);
}
break;
case ERFSLEEP:
if (ppsc->rfpwr_state == ERFOFF)
return false;
for (queue_id = 0, i = 0;
queue_id < RTL_PCI_MAX_TX_QUEUE_COUNT;) {
ring = &pcipriv->dev.tx_ring[queue_id];
if (skb_queue_len(&ring->queue) == 0 ||
queue_id == BEACON_QUEUE) {
queue_id++;
continue;
} else if (rtlpci->pdev->current_state != PCI_D0) {
RT_TRACE(rtlpriv, COMP_POWER, DBG_LOUD,
"eRf Off/Sleep: %d times TcbBusyQueue[%d] !=0 but lower power state!\n",
i + 1, queue_id);
break;
} else {
RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
"eRf Off/Sleep: %d times TcbBusyQueue[%d] =%d before doze!\n",
i + 1, queue_id,
skb_queue_len(&ring->queue));
udelay(10);
i++;
}
if (i >= MAX_DOZE_WAITING_TIMES_9x) {
RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
"ERFOFF: %d times TcbBusyQueue[%d] = %d !\n",
MAX_DOZE_WAITING_TIMES_9x, queue_id,
skb_queue_len(&ring->queue));
break;
}
}
RT_TRACE(rtlpriv, COMP_POWER, DBG_DMESG,
"Set rfsleep awaked:%d ms\n",
jiffies_to_msecs(jiffies - ppsc->last_awake_jiffies));
RT_TRACE(rtlpriv, COMP_POWER, DBG_DMESG,
"sleep awaked:%d ms state_inap:%x\n",
jiffies_to_msecs(jiffies -
ppsc->last_awake_jiffies),
rtlpriv->psc.state_inap);
ppsc->last_sleep_jiffies = jiffies;
_rtl92d_phy_set_rfsleep(hw);
break;
default:
RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
"switch case not processed\n");
bresult = false;
break;
}
if (bresult)
ppsc->rfpwr_state = rfpwr_state;
return bresult;
}
void rtl92d_phy_config_macphymode(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
u8 offset = REG_MAC_PHY_CTRL_NORMAL;
switch (rtlhal->macphymode) {
case DUALMAC_DUALPHY:
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
"MacPhyMode: DUALMAC_DUALPHY\n");
rtl_write_byte(rtlpriv, offset, 0xF3);
break;
case SINGLEMAC_SINGLEPHY:
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
"MacPhyMode: SINGLEMAC_SINGLEPHY\n");
rtl_write_byte(rtlpriv, offset, 0xF4);
break;
case DUALMAC_SINGLEPHY:
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
"MacPhyMode: DUALMAC_SINGLEPHY\n");
rtl_write_byte(rtlpriv, offset, 0xF1);
break;
}
}
void rtl92d_phy_config_macphymode_info(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
struct rtl_phy *rtlphy = &(rtlpriv->phy);
switch (rtlhal->macphymode) {
case DUALMAC_SINGLEPHY:
rtlphy->rf_type = RF_2T2R;
rtlhal->version |= RF_TYPE_2T2R;
rtlhal->bandset = BAND_ON_BOTH;
rtlhal->current_bandtype = BAND_ON_2_4G;
break;
case SINGLEMAC_SINGLEPHY:
rtlphy->rf_type = RF_2T2R;
rtlhal->version |= RF_TYPE_2T2R;
rtlhal->bandset = BAND_ON_BOTH;
rtlhal->current_bandtype = BAND_ON_2_4G;
break;
case DUALMAC_DUALPHY:
rtlphy->rf_type = RF_1T1R;
rtlhal->version &= RF_TYPE_1T1R;
/* Now we let MAC0 run on 5G band. */
if (rtlhal->interfaceindex == 0) {
rtlhal->bandset = BAND_ON_5G;
rtlhal->current_bandtype = BAND_ON_5G;
} else {
rtlhal->bandset = BAND_ON_2_4G;
rtlhal->current_bandtype = BAND_ON_2_4G;
}
break;
default:
break;
}
}
u8 rtl92d_get_chnlgroup_fromarray(u8 chnl)
{
u8 group;
u8 channel_info[59] = {
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56,
58, 60, 62, 64, 100, 102, 104, 106, 108,
110, 112, 114, 116, 118, 120, 122, 124,
126, 128, 130, 132, 134, 136, 138, 140,
149, 151, 153, 155, 157, 159, 161, 163,
165
};
if (channel_info[chnl] <= 3)
group = 0;
else if (channel_info[chnl] <= 9)
group = 1;
else if (channel_info[chnl] <= 14)
group = 2;
else if (channel_info[chnl] <= 44)
group = 3;
else if (channel_info[chnl] <= 54)
group = 4;
else if (channel_info[chnl] <= 64)
group = 5;
else if (channel_info[chnl] <= 112)
group = 6;
else if (channel_info[chnl] <= 126)
group = 7;
else if (channel_info[chnl] <= 140)
group = 8;
else if (channel_info[chnl] <= 153)
group = 9;
else if (channel_info[chnl] <= 159)
group = 10;
else
group = 11;
return group;
}
void rtl92d_phy_set_poweron(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
unsigned long flags;
u8 value8;
u16 i;
u32 mac_reg = (rtlhal->interfaceindex == 0 ? REG_MAC0 : REG_MAC1);
/* notice fw know band status 0x81[1]/0x53[1] = 0: 5G, 1: 2G */
if (rtlhal->current_bandtype == BAND_ON_2_4G) {
value8 = rtl_read_byte(rtlpriv, mac_reg);
value8 |= BIT(1);
rtl_write_byte(rtlpriv, mac_reg, value8);
} else {
value8 = rtl_read_byte(rtlpriv, mac_reg);
value8 &= (~BIT(1));
rtl_write_byte(rtlpriv, mac_reg, value8);
}
if (rtlhal->macphymode == SINGLEMAC_SINGLEPHY) {
value8 = rtl_read_byte(rtlpriv, REG_MAC0);
rtl_write_byte(rtlpriv, REG_MAC0, value8 | MAC0_ON);
} else {
spin_lock_irqsave(&globalmutex_power, flags);
if (rtlhal->interfaceindex == 0) {
value8 = rtl_read_byte(rtlpriv, REG_MAC0);
rtl_write_byte(rtlpriv, REG_MAC0, value8 | MAC0_ON);
} else {
value8 = rtl_read_byte(rtlpriv, REG_MAC1);
rtl_write_byte(rtlpriv, REG_MAC1, value8 | MAC1_ON);
}
value8 = rtl_read_byte(rtlpriv, REG_POWER_OFF_IN_PROCESS);
spin_unlock_irqrestore(&globalmutex_power, flags);
for (i = 0; i < 200; i++) {
if ((value8 & BIT(7)) == 0) {
break;
} else {
udelay(500);
spin_lock_irqsave(&globalmutex_power, flags);
value8 = rtl_read_byte(rtlpriv,
REG_POWER_OFF_IN_PROCESS);
spin_unlock_irqrestore(&globalmutex_power,
flags);
}
}
if (i == 200)
RT_ASSERT(false, "Another mac power off over time\n");
}
}
void rtl92d_phy_config_maccoexist_rfpage(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
switch (rtlpriv->rtlhal.macphymode) {
case DUALMAC_DUALPHY:
rtl_write_byte(rtlpriv, REG_DMC, 0x0);
rtl_write_byte(rtlpriv, REG_RX_PKT_LIMIT, 0x08);
rtl_write_word(rtlpriv, REG_TRXFF_BNDY + 2, 0x13ff);
break;
case DUALMAC_SINGLEPHY:
rtl_write_byte(rtlpriv, REG_DMC, 0xf8);
rtl_write_byte(rtlpriv, REG_RX_PKT_LIMIT, 0x08);
rtl_write_word(rtlpriv, REG_TRXFF_BNDY + 2, 0x13ff);
break;
case SINGLEMAC_SINGLEPHY:
rtl_write_byte(rtlpriv, REG_DMC, 0x0);
rtl_write_byte(rtlpriv, REG_RX_PKT_LIMIT, 0x10);
rtl_write_word(rtlpriv, (REG_TRXFF_BNDY + 2), 0x27FF);
break;
default:
break;
}
}
void rtl92d_update_bbrf_configuration(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
struct rtl_phy *rtlphy = &(rtlpriv->phy);
struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
u8 rfpath, i;
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "==>\n");
/* r_select_5G for path_A/B 0 for 2.4G, 1 for 5G */
if (rtlhal->current_bandtype == BAND_ON_2_4G) {
/* r_select_5G for path_A/B,0x878 */
rtl_set_bbreg(hw, RFPGA0_XAB_RFPARAMETER, BIT(0), 0x0);
rtl_set_bbreg(hw, RFPGA0_XAB_RFPARAMETER, BIT(15), 0x0);
if (rtlhal->macphymode != DUALMAC_DUALPHY) {
rtl_set_bbreg(hw, RFPGA0_XAB_RFPARAMETER, BIT(16), 0x0);
rtl_set_bbreg(hw, RFPGA0_XAB_RFPARAMETER, BIT(31), 0x0);
}
/* rssi_table_select:index 0 for 2.4G.1~3 for 5G,0xc78 */
rtl_set_bbreg(hw, ROFDM0_AGCRSSITABLE, BIT(6) | BIT(7), 0x0);
/* fc_area 0xd2c */
rtl_set_bbreg(hw, ROFDM1_CFOTRACKING, BIT(14) | BIT(13), 0x0);
/* 5G LAN ON */
rtl_set_bbreg(hw, 0xB30, 0x00F00000, 0xa);
/* TX BB gain shift*1,Just for testchip,0xc80,0xc88 */
rtl_set_bbreg(hw, ROFDM0_XATxIQIMBALANCE, MASKDWORD,
0x40000100);
rtl_set_bbreg(hw, ROFDM0_XBTxIQIMBALANCE, MASKDWORD,
0x40000100);
if (rtlhal->macphymode == DUALMAC_DUALPHY) {
rtl_set_bbreg(hw, RFPGA0_XAB_RFINTERFACESW,
BIT(10) | BIT(6) | BIT(5),
((rtlefuse->eeprom_c9 & BIT(3)) >> 3) |
(rtlefuse->eeprom_c9 & BIT(1)) |
((rtlefuse->eeprom_cc & BIT(1)) << 4));
rtl_set_bbreg(hw, RFPGA0_XA_RFINTERFACEOE,
BIT(10) | BIT(6) | BIT(5),
((rtlefuse->eeprom_c9 & BIT(2)) >> 2) |
((rtlefuse->eeprom_c9 & BIT(0)) << 1) |
((rtlefuse->eeprom_cc & BIT(0)) << 5));
rtl_set_bbreg(hw, RFPGA0_XAB_RFPARAMETER, BIT(15), 0);
} else {
rtl_set_bbreg(hw, RFPGA0_XAB_RFINTERFACESW,
BIT(26) | BIT(22) | BIT(21) | BIT(10) |
BIT(6) | BIT(5),
((rtlefuse->eeprom_c9 & BIT(3)) >> 3) |
(rtlefuse->eeprom_c9 & BIT(1)) |
((rtlefuse->eeprom_cc & BIT(1)) << 4) |
((rtlefuse->eeprom_c9 & BIT(7)) << 9) |
((rtlefuse->eeprom_c9 & BIT(5)) << 12) |
((rtlefuse->eeprom_cc & BIT(3)) << 18));
rtl_set_bbreg(hw, RFPGA0_XA_RFINTERFACEOE,
BIT(10) | BIT(6) | BIT(5),
((rtlefuse->eeprom_c9 & BIT(2)) >> 2) |
((rtlefuse->eeprom_c9 & BIT(0)) << 1) |
((rtlefuse->eeprom_cc & BIT(0)) << 5));
rtl_set_bbreg(hw, RFPGA0_XB_RFINTERFACEOE,
BIT(10) | BIT(6) | BIT(5),
((rtlefuse->eeprom_c9 & BIT(6)) >> 6) |
((rtlefuse->eeprom_c9 & BIT(4)) >> 3) |
((rtlefuse->eeprom_cc & BIT(2)) << 3));
rtl_set_bbreg(hw, RFPGA0_XAB_RFPARAMETER,
BIT(31) | BIT(15), 0);
}
/* 1.5V_LDO */
} else {
/* r_select_5G for path_A/B */
rtl_set_bbreg(hw, RFPGA0_XAB_RFPARAMETER, BIT(0), 0x1);
rtl_set_bbreg(hw, RFPGA0_XAB_RFPARAMETER, BIT(15), 0x1);
if (rtlhal->macphymode != DUALMAC_DUALPHY) {
rtl_set_bbreg(hw, RFPGA0_XAB_RFPARAMETER, BIT(16), 0x1);
rtl_set_bbreg(hw, RFPGA0_XAB_RFPARAMETER, BIT(31), 0x1);
}
/* rssi_table_select:index 0 for 2.4G.1~3 for 5G */
rtl_set_bbreg(hw, ROFDM0_AGCRSSITABLE, BIT(6) | BIT(7), 0x1);
/* fc_area */
rtl_set_bbreg(hw, ROFDM1_CFOTRACKING, BIT(14) | BIT(13), 0x1);
/* 5G LAN ON */
rtl_set_bbreg(hw, 0xB30, 0x00F00000, 0x0);
/* TX BB gain shift,Just for testchip,0xc80,0xc88 */
if (rtlefuse->internal_pa_5g[0])
rtl_set_bbreg(hw, ROFDM0_XATxIQIMBALANCE, MASKDWORD,
0x2d4000b5);
else
rtl_set_bbreg(hw, ROFDM0_XATxIQIMBALANCE, MASKDWORD,
0x20000080);
if (rtlefuse->internal_pa_5g[1])
rtl_set_bbreg(hw, ROFDM0_XBTxIQIMBALANCE, MASKDWORD,
0x2d4000b5);
else
rtl_set_bbreg(hw, ROFDM0_XBTxIQIMBALANCE, MASKDWORD,
0x20000080);
if (rtlhal->macphymode == DUALMAC_DUALPHY) {
rtl_set_bbreg(hw, RFPGA0_XAB_RFINTERFACESW,
BIT(10) | BIT(6) | BIT(5),
(rtlefuse->eeprom_cc & BIT(5)));
rtl_set_bbreg(hw, RFPGA0_XA_RFINTERFACEOE, BIT(10),
((rtlefuse->eeprom_cc & BIT(4)) >> 4));
rtl_set_bbreg(hw, RFPGA0_XAB_RFPARAMETER, BIT(15),
(rtlefuse->eeprom_cc & BIT(4)) >> 4);
} else {
rtl_set_bbreg(hw, RFPGA0_XAB_RFINTERFACESW,
BIT(26) | BIT(22) | BIT(21) | BIT(10) |
BIT(6) | BIT(5),
(rtlefuse->eeprom_cc & BIT(5)) |
((rtlefuse->eeprom_cc & BIT(7)) << 14));
rtl_set_bbreg(hw, RFPGA0_XA_RFINTERFACEOE, BIT(10),
((rtlefuse->eeprom_cc & BIT(4)) >> 4));
rtl_set_bbreg(hw, RFPGA0_XB_RFINTERFACEOE, BIT(10),
((rtlefuse->eeprom_cc & BIT(6)) >> 6));
rtl_set_bbreg(hw, RFPGA0_XAB_RFPARAMETER,
BIT(31) | BIT(15),
((rtlefuse->eeprom_cc & BIT(4)) >> 4) |
((rtlefuse->eeprom_cc & BIT(6)) << 10));
}
}
/* update IQK related settings */
rtl_set_bbreg(hw, ROFDM0_XARXIQIMBALANCE, MASKDWORD, 0x40000100);
rtl_set_bbreg(hw, ROFDM0_XBRXIQIMBALANCE, MASKDWORD, 0x40000100);
rtl_set_bbreg(hw, ROFDM0_XCTxAFE, 0xF0000000, 0x00);
rtl_set_bbreg(hw, ROFDM0_ECCATHRESHOLD, BIT(30) | BIT(28) |
BIT(26) | BIT(24), 0x00);
rtl_set_bbreg(hw, ROFDM0_XDTxAFE, 0xF0000000, 0x00);
rtl_set_bbreg(hw, 0xca0, 0xF0000000, 0x00);
rtl_set_bbreg(hw, ROFDM0_AGCRSSITABLE, 0x0000F000, 0x00);
/* Update RF */
for (rfpath = RF90_PATH_A; rfpath < rtlphy->num_total_rfpath;
rfpath++) {
if (rtlhal->current_bandtype == BAND_ON_2_4G) {
/* MOD_AG for RF path_A 0x18 BIT8,BIT16 */
rtl_set_rfreg(hw, rfpath, RF_CHNLBW, BIT(8) | BIT(16) |
BIT(18), 0);
/* RF0x0b[16:14] =3b'111 */
rtl_set_rfreg(hw, (enum radio_path)rfpath, 0x0B,
0x1c000, 0x07);
} else {
/* MOD_AG for RF path_A 0x18 BIT8,BIT16 */
rtl_set_rfreg(hw, rfpath, RF_CHNLBW, BIT(8) |
BIT(16) | BIT(18),
(BIT(16) | BIT(8)) >> 8);
}
}
/* Update for all band. */
/* DMDP */
if (rtlphy->rf_type == RF_1T1R) {
/* Use antenna 0,0xc04,0xd04 */
rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE, MASKBYTE0, 0x11);
rtl_set_bbreg(hw, ROFDM1_TRXPATHENABLE, BDWORD, 0x1);
/* enable ad/da clock1 for dual-phy reg0x888 */
if (rtlhal->interfaceindex == 0) {
rtl_set_bbreg(hw, RFPGA0_ADDALLOCKEN, BIT(12) |
BIT(13), 0x3);
} else {
rtl92d_phy_enable_anotherphy(hw, false);
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
"MAC1 use DBI to update 0x888\n");
/* 0x888 */
rtl92de_write_dword_dbi(hw, RFPGA0_ADDALLOCKEN,
rtl92de_read_dword_dbi(hw,
RFPGA0_ADDALLOCKEN,
BIT(3)) | BIT(12) | BIT(13),
BIT(3));
rtl92d_phy_powerdown_anotherphy(hw, false);
}
} else {
/* Single PHY */
/* Use antenna 0 & 1,0xc04,0xd04 */
rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE, MASKBYTE0, 0x33);
rtl_set_bbreg(hw, ROFDM1_TRXPATHENABLE, BDWORD, 0x3);
/* disable ad/da clock1,0x888 */
rtl_set_bbreg(hw, RFPGA0_ADDALLOCKEN, BIT(12) | BIT(13), 0);
}
for (rfpath = RF90_PATH_A; rfpath < rtlphy->num_total_rfpath;
rfpath++) {
rtlphy->rfreg_chnlval[rfpath] = rtl_get_rfreg(hw, rfpath,
RF_CHNLBW, RFREG_OFFSET_MASK);
rtlphy->reg_rf3c[rfpath] = rtl_get_rfreg(hw, rfpath, 0x3C,
RFREG_OFFSET_MASK);
}
for (i = 0; i < 2; i++)
RT_TRACE(rtlpriv, COMP_RF, DBG_LOUD, "RF 0x18 = 0x%x\n",
rtlphy->rfreg_chnlval[i]);
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "<==\n");
}
bool rtl92d_phy_check_poweroff(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
u8 u1btmp;
unsigned long flags;
if (rtlhal->macphymode == SINGLEMAC_SINGLEPHY) {
u1btmp = rtl_read_byte(rtlpriv, REG_MAC0);
rtl_write_byte(rtlpriv, REG_MAC0, u1btmp & (~MAC0_ON));
return true;
}
spin_lock_irqsave(&globalmutex_power, flags);
if (rtlhal->interfaceindex == 0) {
u1btmp = rtl_read_byte(rtlpriv, REG_MAC0);
rtl_write_byte(rtlpriv, REG_MAC0, u1btmp & (~MAC0_ON));
u1btmp = rtl_read_byte(rtlpriv, REG_MAC1);
u1btmp &= MAC1_ON;
} else {
u1btmp = rtl_read_byte(rtlpriv, REG_MAC1);
rtl_write_byte(rtlpriv, REG_MAC1, u1btmp & (~MAC1_ON));
u1btmp = rtl_read_byte(rtlpriv, REG_MAC0);
u1btmp &= MAC0_ON;
}
if (u1btmp) {
spin_unlock_irqrestore(&globalmutex_power, flags);
return false;
}
u1btmp = rtl_read_byte(rtlpriv, REG_POWER_OFF_IN_PROCESS);
u1btmp |= BIT(7);
rtl_write_byte(rtlpriv, REG_POWER_OFF_IN_PROCESS, u1btmp);
spin_unlock_irqrestore(&globalmutex_power, flags);
return true;
}