| /* |
| * PowerPC64 port by Mike Corrigan and Dave Engebretsen |
| * {mikejc|engebret}@us.ibm.com |
| * |
| * Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com> |
| * |
| * SMP scalability work: |
| * Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM |
| * |
| * Module name: htab.c |
| * |
| * Description: |
| * PowerPC Hashed Page Table functions |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| */ |
| |
| #undef DEBUG |
| |
| #include <linux/config.h> |
| #include <linux/spinlock.h> |
| #include <linux/errno.h> |
| #include <linux/sched.h> |
| #include <linux/proc_fs.h> |
| #include <linux/stat.h> |
| #include <linux/sysctl.h> |
| #include <linux/ctype.h> |
| #include <linux/cache.h> |
| #include <linux/init.h> |
| #include <linux/signal.h> |
| |
| #include <asm/ppcdebug.h> |
| #include <asm/processor.h> |
| #include <asm/pgtable.h> |
| #include <asm/mmu.h> |
| #include <asm/mmu_context.h> |
| #include <asm/page.h> |
| #include <asm/types.h> |
| #include <asm/system.h> |
| #include <asm/uaccess.h> |
| #include <asm/machdep.h> |
| #include <asm/lmb.h> |
| #include <asm/abs_addr.h> |
| #include <asm/tlbflush.h> |
| #include <asm/io.h> |
| #include <asm/eeh.h> |
| #include <asm/tlb.h> |
| #include <asm/cacheflush.h> |
| #include <asm/cputable.h> |
| #include <asm/abs_addr.h> |
| #include <asm/sections.h> |
| |
| #ifdef DEBUG |
| #define DBG(fmt...) udbg_printf(fmt) |
| #else |
| #define DBG(fmt...) |
| #endif |
| |
| /* |
| * Note: pte --> Linux PTE |
| * HPTE --> PowerPC Hashed Page Table Entry |
| * |
| * Execution context: |
| * htab_initialize is called with the MMU off (of course), but |
| * the kernel has been copied down to zero so it can directly |
| * reference global data. At this point it is very difficult |
| * to print debug info. |
| * |
| */ |
| |
| #ifdef CONFIG_U3_DART |
| extern unsigned long dart_tablebase; |
| #endif /* CONFIG_U3_DART */ |
| |
| hpte_t *htab_address; |
| unsigned long htab_hash_mask; |
| |
| extern unsigned long _SDR1; |
| |
| #define KB (1024) |
| #define MB (1024*KB) |
| |
| static inline void loop_forever(void) |
| { |
| volatile unsigned long x = 1; |
| for(;x;x|=1) |
| ; |
| } |
| |
| #ifdef CONFIG_PPC_MULTIPLATFORM |
| static inline void create_pte_mapping(unsigned long start, unsigned long end, |
| unsigned long mode, int large) |
| { |
| unsigned long addr; |
| unsigned int step; |
| unsigned long tmp_mode; |
| unsigned long vflags; |
| |
| if (large) { |
| step = 16*MB; |
| vflags = HPTE_V_BOLTED | HPTE_V_LARGE; |
| } else { |
| step = 4*KB; |
| vflags = HPTE_V_BOLTED; |
| } |
| |
| for (addr = start; addr < end; addr += step) { |
| unsigned long vpn, hash, hpteg; |
| unsigned long vsid = get_kernel_vsid(addr); |
| unsigned long va = (vsid << 28) | (addr & 0xfffffff); |
| int ret; |
| |
| if (large) |
| vpn = va >> HPAGE_SHIFT; |
| else |
| vpn = va >> PAGE_SHIFT; |
| |
| |
| tmp_mode = mode; |
| |
| /* Make non-kernel text non-executable */ |
| if (!in_kernel_text(addr)) |
| tmp_mode = mode | HW_NO_EXEC; |
| |
| hash = hpt_hash(vpn, large); |
| |
| hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP); |
| |
| #ifdef CONFIG_PPC_PSERIES |
| if (systemcfg->platform & PLATFORM_LPAR) |
| ret = pSeries_lpar_hpte_insert(hpteg, va, |
| virt_to_abs(addr) >> PAGE_SHIFT, |
| vflags, tmp_mode); |
| else |
| #endif /* CONFIG_PPC_PSERIES */ |
| ret = native_hpte_insert(hpteg, va, |
| virt_to_abs(addr) >> PAGE_SHIFT, |
| vflags, tmp_mode); |
| |
| if (ret == -1) { |
| ppc64_terminate_msg(0x20, "create_pte_mapping"); |
| loop_forever(); |
| } |
| } |
| } |
| |
| void __init htab_initialize(void) |
| { |
| unsigned long table, htab_size_bytes; |
| unsigned long pteg_count; |
| unsigned long mode_rw; |
| int i, use_largepages = 0; |
| unsigned long base = 0, size = 0; |
| extern unsigned long tce_alloc_start, tce_alloc_end; |
| |
| DBG(" -> htab_initialize()\n"); |
| |
| /* |
| * Calculate the required size of the htab. We want the number of |
| * PTEGs to equal one half the number of real pages. |
| */ |
| htab_size_bytes = 1UL << ppc64_pft_size; |
| pteg_count = htab_size_bytes >> 7; |
| |
| /* For debug, make the HTAB 1/8 as big as it normally would be. */ |
| ifppcdebug(PPCDBG_HTABSIZE) { |
| pteg_count >>= 3; |
| htab_size_bytes = pteg_count << 7; |
| } |
| |
| htab_hash_mask = pteg_count - 1; |
| |
| if (systemcfg->platform & PLATFORM_LPAR) { |
| /* Using a hypervisor which owns the htab */ |
| htab_address = NULL; |
| _SDR1 = 0; |
| } else { |
| /* Find storage for the HPT. Must be contiguous in |
| * the absolute address space. |
| */ |
| table = lmb_alloc(htab_size_bytes, htab_size_bytes); |
| |
| DBG("Hash table allocated at %lx, size: %lx\n", table, |
| htab_size_bytes); |
| |
| if ( !table ) { |
| ppc64_terminate_msg(0x20, "hpt space"); |
| loop_forever(); |
| } |
| htab_address = abs_to_virt(table); |
| |
| /* htab absolute addr + encoded htabsize */ |
| _SDR1 = table + __ilog2(pteg_count) - 11; |
| |
| /* Initialize the HPT with no entries */ |
| memset((void *)table, 0, htab_size_bytes); |
| } |
| |
| mode_rw = _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_COHERENT | PP_RWXX; |
| |
| /* On U3 based machines, we need to reserve the DART area and |
| * _NOT_ map it to avoid cache paradoxes as it's remapped non |
| * cacheable later on |
| */ |
| if (cpu_has_feature(CPU_FTR_16M_PAGE)) |
| use_largepages = 1; |
| |
| /* create bolted the linear mapping in the hash table */ |
| for (i=0; i < lmb.memory.cnt; i++) { |
| base = lmb.memory.region[i].physbase + KERNELBASE; |
| size = lmb.memory.region[i].size; |
| |
| DBG("creating mapping for region: %lx : %lx\n", base, size); |
| |
| #ifdef CONFIG_U3_DART |
| /* Do not map the DART space. Fortunately, it will be aligned |
| * in such a way that it will not cross two lmb regions and will |
| * fit within a single 16Mb page. |
| * The DART space is assumed to be a full 16Mb region even if we |
| * only use 2Mb of that space. We will use more of it later for |
| * AGP GART. We have to use a full 16Mb large page. |
| */ |
| DBG("DART base: %lx\n", dart_tablebase); |
| |
| if (dart_tablebase != 0 && dart_tablebase >= base |
| && dart_tablebase < (base + size)) { |
| if (base != dart_tablebase) |
| create_pte_mapping(base, dart_tablebase, mode_rw, |
| use_largepages); |
| if ((base + size) > (dart_tablebase + 16*MB)) |
| create_pte_mapping(dart_tablebase + 16*MB, base + size, |
| mode_rw, use_largepages); |
| continue; |
| } |
| #endif /* CONFIG_U3_DART */ |
| create_pte_mapping(base, base + size, mode_rw, use_largepages); |
| } |
| |
| /* |
| * If we have a memory_limit and we've allocated TCEs then we need to |
| * explicitly map the TCE area at the top of RAM. We also cope with the |
| * case that the TCEs start below memory_limit. |
| * tce_alloc_start/end are 16MB aligned so the mapping should work |
| * for either 4K or 16MB pages. |
| */ |
| if (tce_alloc_start) { |
| tce_alloc_start += KERNELBASE; |
| tce_alloc_end += KERNELBASE; |
| |
| if (base + size >= tce_alloc_start) |
| tce_alloc_start = base + size + 1; |
| |
| create_pte_mapping(tce_alloc_start, tce_alloc_end, |
| mode_rw, use_largepages); |
| } |
| |
| DBG(" <- htab_initialize()\n"); |
| } |
| #undef KB |
| #undef MB |
| #endif /* CONFIG_PPC_MULTIPLATFORM */ |
| |
| /* |
| * Called by asm hashtable.S for doing lazy icache flush |
| */ |
| unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap) |
| { |
| struct page *page; |
| |
| if (!pfn_valid(pte_pfn(pte))) |
| return pp; |
| |
| page = pte_page(pte); |
| |
| /* page is dirty */ |
| if (!test_bit(PG_arch_1, &page->flags) && !PageReserved(page)) { |
| if (trap == 0x400) { |
| __flush_dcache_icache(page_address(page)); |
| set_bit(PG_arch_1, &page->flags); |
| } else |
| pp |= HW_NO_EXEC; |
| } |
| return pp; |
| } |
| |
| /* Result code is: |
| * 0 - handled |
| * 1 - normal page fault |
| * -1 - critical hash insertion error |
| */ |
| int hash_page(unsigned long ea, unsigned long access, unsigned long trap) |
| { |
| void *pgdir; |
| unsigned long vsid; |
| struct mm_struct *mm; |
| pte_t *ptep; |
| int ret; |
| int user_region = 0; |
| int local = 0; |
| cpumask_t tmp; |
| |
| if ((ea & ~REGION_MASK) >= PGTABLE_RANGE) |
| return 1; |
| |
| switch (REGION_ID(ea)) { |
| case USER_REGION_ID: |
| user_region = 1; |
| mm = current->mm; |
| if (! mm) |
| return 1; |
| |
| vsid = get_vsid(mm->context.id, ea); |
| break; |
| case VMALLOC_REGION_ID: |
| mm = &init_mm; |
| vsid = get_kernel_vsid(ea); |
| break; |
| #if 0 |
| case KERNEL_REGION_ID: |
| /* |
| * Should never get here - entire 0xC0... region is bolted. |
| * Send the problem up to do_page_fault |
| */ |
| #endif |
| default: |
| /* Not a valid range |
| * Send the problem up to do_page_fault |
| */ |
| return 1; |
| break; |
| } |
| |
| pgdir = mm->pgd; |
| |
| if (pgdir == NULL) |
| return 1; |
| |
| tmp = cpumask_of_cpu(smp_processor_id()); |
| if (user_region && cpus_equal(mm->cpu_vm_mask, tmp)) |
| local = 1; |
| |
| /* Is this a huge page ? */ |
| if (unlikely(in_hugepage_area(mm->context, ea))) |
| ret = hash_huge_page(mm, access, ea, vsid, local); |
| else { |
| ptep = find_linux_pte(pgdir, ea); |
| if (ptep == NULL) |
| return 1; |
| ret = __hash_page(ea, access, vsid, ptep, trap, local); |
| } |
| |
| return ret; |
| } |
| |
| void flush_hash_page(unsigned long context, unsigned long ea, pte_t pte, |
| int local) |
| { |
| unsigned long vsid, vpn, va, hash, secondary, slot; |
| unsigned long huge = pte_huge(pte); |
| |
| if (ea < KERNELBASE) |
| vsid = get_vsid(context, ea); |
| else |
| vsid = get_kernel_vsid(ea); |
| |
| va = (vsid << 28) | (ea & 0x0fffffff); |
| if (huge) |
| vpn = va >> HPAGE_SHIFT; |
| else |
| vpn = va >> PAGE_SHIFT; |
| hash = hpt_hash(vpn, huge); |
| secondary = (pte_val(pte) & _PAGE_SECONDARY) >> 15; |
| if (secondary) |
| hash = ~hash; |
| slot = (hash & htab_hash_mask) * HPTES_PER_GROUP; |
| slot += (pte_val(pte) & _PAGE_GROUP_IX) >> 12; |
| |
| ppc_md.hpte_invalidate(slot, va, huge, local); |
| } |
| |
| void flush_hash_range(unsigned long context, unsigned long number, int local) |
| { |
| if (ppc_md.flush_hash_range) { |
| ppc_md.flush_hash_range(context, number, local); |
| } else { |
| int i; |
| struct ppc64_tlb_batch *batch = &__get_cpu_var(ppc64_tlb_batch); |
| |
| for (i = 0; i < number; i++) |
| flush_hash_page(context, batch->addr[i], batch->pte[i], |
| local); |
| } |
| } |
| |
| static inline void make_bl(unsigned int *insn_addr, void *func) |
| { |
| unsigned long funcp = *((unsigned long *)func); |
| int offset = funcp - (unsigned long)insn_addr; |
| |
| *insn_addr = (unsigned int)(0x48000001 | (offset & 0x03fffffc)); |
| flush_icache_range((unsigned long)insn_addr, 4+ |
| (unsigned long)insn_addr); |
| } |
| |
| /* |
| * low_hash_fault is called when we the low level hash code failed |
| * to instert a PTE due to an hypervisor error |
| */ |
| void low_hash_fault(struct pt_regs *regs, unsigned long address) |
| { |
| if (user_mode(regs)) { |
| siginfo_t info; |
| |
| info.si_signo = SIGBUS; |
| info.si_errno = 0; |
| info.si_code = BUS_ADRERR; |
| info.si_addr = (void __user *)address; |
| force_sig_info(SIGBUS, &info, current); |
| return; |
| } |
| bad_page_fault(regs, address, SIGBUS); |
| } |
| |
| void __init htab_finish_init(void) |
| { |
| extern unsigned int *htab_call_hpte_insert1; |
| extern unsigned int *htab_call_hpte_insert2; |
| extern unsigned int *htab_call_hpte_remove; |
| extern unsigned int *htab_call_hpte_updatepp; |
| |
| make_bl(htab_call_hpte_insert1, ppc_md.hpte_insert); |
| make_bl(htab_call_hpte_insert2, ppc_md.hpte_insert); |
| make_bl(htab_call_hpte_remove, ppc_md.hpte_remove); |
| make_bl(htab_call_hpte_updatepp, ppc_md.hpte_updatepp); |
| } |