| /* |
| * Performance events: |
| * |
| * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de> |
| * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar |
| * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra |
| * |
| * Data type definitions, declarations, prototypes. |
| * |
| * Started by: Thomas Gleixner and Ingo Molnar |
| * |
| * For licencing details see kernel-base/COPYING |
| */ |
| #ifndef _LINUX_PERF_EVENT_H |
| #define _LINUX_PERF_EVENT_H |
| |
| #include <uapi/linux/perf_event.h> |
| |
| /* |
| * Kernel-internal data types and definitions: |
| */ |
| |
| #ifdef CONFIG_PERF_EVENTS |
| # include <asm/perf_event.h> |
| # include <asm/local64.h> |
| #endif |
| |
| struct perf_guest_info_callbacks { |
| int (*is_in_guest)(void); |
| int (*is_user_mode)(void); |
| unsigned long (*get_guest_ip)(void); |
| }; |
| |
| #ifdef CONFIG_HAVE_HW_BREAKPOINT |
| #include <asm/hw_breakpoint.h> |
| #endif |
| |
| #include <linux/list.h> |
| #include <linux/mutex.h> |
| #include <linux/rculist.h> |
| #include <linux/rcupdate.h> |
| #include <linux/spinlock.h> |
| #include <linux/hrtimer.h> |
| #include <linux/fs.h> |
| #include <linux/pid_namespace.h> |
| #include <linux/workqueue.h> |
| #include <linux/ftrace.h> |
| #include <linux/cpu.h> |
| #include <linux/irq_work.h> |
| #include <linux/static_key.h> |
| #include <linux/jump_label_ratelimit.h> |
| #include <linux/atomic.h> |
| #include <linux/sysfs.h> |
| #include <linux/perf_regs.h> |
| #include <linux/workqueue.h> |
| #include <linux/cgroup.h> |
| #include <asm/local.h> |
| |
| struct perf_callchain_entry { |
| __u64 nr; |
| __u64 ip[0]; /* /proc/sys/kernel/perf_event_max_stack */ |
| }; |
| |
| struct perf_callchain_entry_ctx { |
| struct perf_callchain_entry *entry; |
| u32 max_stack; |
| u32 nr; |
| short contexts; |
| bool contexts_maxed; |
| }; |
| |
| typedef unsigned long (*perf_copy_f)(void *dst, const void *src, |
| unsigned long off, unsigned long len); |
| |
| struct perf_raw_frag { |
| union { |
| struct perf_raw_frag *next; |
| unsigned long pad; |
| }; |
| perf_copy_f copy; |
| void *data; |
| u32 size; |
| } __packed; |
| |
| struct perf_raw_record { |
| struct perf_raw_frag frag; |
| u32 size; |
| }; |
| |
| /* |
| * branch stack layout: |
| * nr: number of taken branches stored in entries[] |
| * |
| * Note that nr can vary from sample to sample |
| * branches (to, from) are stored from most recent |
| * to least recent, i.e., entries[0] contains the most |
| * recent branch. |
| */ |
| struct perf_branch_stack { |
| __u64 nr; |
| struct perf_branch_entry entries[0]; |
| }; |
| |
| struct task_struct; |
| |
| /* |
| * extra PMU register associated with an event |
| */ |
| struct hw_perf_event_extra { |
| u64 config; /* register value */ |
| unsigned int reg; /* register address or index */ |
| int alloc; /* extra register already allocated */ |
| int idx; /* index in shared_regs->regs[] */ |
| }; |
| |
| /** |
| * struct hw_perf_event - performance event hardware details: |
| */ |
| struct hw_perf_event { |
| #ifdef CONFIG_PERF_EVENTS |
| union { |
| struct { /* hardware */ |
| u64 config; |
| u64 last_tag; |
| unsigned long config_base; |
| unsigned long event_base; |
| int event_base_rdpmc; |
| int idx; |
| int last_cpu; |
| int flags; |
| |
| struct hw_perf_event_extra extra_reg; |
| struct hw_perf_event_extra branch_reg; |
| }; |
| struct { /* software */ |
| struct hrtimer hrtimer; |
| }; |
| struct { /* tracepoint */ |
| /* for tp_event->class */ |
| struct list_head tp_list; |
| }; |
| struct { /* amd_power */ |
| u64 pwr_acc; |
| u64 ptsc; |
| }; |
| #ifdef CONFIG_HAVE_HW_BREAKPOINT |
| struct { /* breakpoint */ |
| /* |
| * Crufty hack to avoid the chicken and egg |
| * problem hw_breakpoint has with context |
| * creation and event initalization. |
| */ |
| struct arch_hw_breakpoint info; |
| struct list_head bp_list; |
| }; |
| #endif |
| struct { /* amd_iommu */ |
| u8 iommu_bank; |
| u8 iommu_cntr; |
| u16 padding; |
| u64 conf; |
| u64 conf1; |
| }; |
| }; |
| /* |
| * If the event is a per task event, this will point to the task in |
| * question. See the comment in perf_event_alloc(). |
| */ |
| struct task_struct *target; |
| |
| /* |
| * PMU would store hardware filter configuration |
| * here. |
| */ |
| void *addr_filters; |
| |
| /* Last sync'ed generation of filters */ |
| unsigned long addr_filters_gen; |
| |
| /* |
| * hw_perf_event::state flags; used to track the PERF_EF_* state. |
| */ |
| #define PERF_HES_STOPPED 0x01 /* the counter is stopped */ |
| #define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */ |
| #define PERF_HES_ARCH 0x04 |
| |
| int state; |
| |
| /* |
| * The last observed hardware counter value, updated with a |
| * local64_cmpxchg() such that pmu::read() can be called nested. |
| */ |
| local64_t prev_count; |
| |
| /* |
| * The period to start the next sample with. |
| */ |
| u64 sample_period; |
| |
| /* |
| * The period we started this sample with. |
| */ |
| u64 last_period; |
| |
| /* |
| * However much is left of the current period; note that this is |
| * a full 64bit value and allows for generation of periods longer |
| * than hardware might allow. |
| */ |
| local64_t period_left; |
| |
| /* |
| * State for throttling the event, see __perf_event_overflow() and |
| * perf_adjust_freq_unthr_context(). |
| */ |
| u64 interrupts_seq; |
| u64 interrupts; |
| |
| /* |
| * State for freq target events, see __perf_event_overflow() and |
| * perf_adjust_freq_unthr_context(). |
| */ |
| u64 freq_time_stamp; |
| u64 freq_count_stamp; |
| #endif |
| }; |
| |
| struct perf_event; |
| |
| /* |
| * Common implementation detail of pmu::{start,commit,cancel}_txn |
| */ |
| #define PERF_PMU_TXN_ADD 0x1 /* txn to add/schedule event on PMU */ |
| #define PERF_PMU_TXN_READ 0x2 /* txn to read event group from PMU */ |
| |
| /** |
| * pmu::capabilities flags |
| */ |
| #define PERF_PMU_CAP_NO_INTERRUPT 0x01 |
| #define PERF_PMU_CAP_NO_NMI 0x02 |
| #define PERF_PMU_CAP_AUX_NO_SG 0x04 |
| #define PERF_PMU_CAP_AUX_SW_DOUBLEBUF 0x08 |
| #define PERF_PMU_CAP_EXCLUSIVE 0x10 |
| #define PERF_PMU_CAP_ITRACE 0x20 |
| #define PERF_PMU_CAP_HETEROGENEOUS_CPUS 0x40 |
| |
| /** |
| * struct pmu - generic performance monitoring unit |
| */ |
| struct pmu { |
| struct list_head entry; |
| |
| struct module *module; |
| struct device *dev; |
| const struct attribute_group **attr_groups; |
| const char *name; |
| int type; |
| |
| /* |
| * various common per-pmu feature flags |
| */ |
| int capabilities; |
| |
| int * __percpu pmu_disable_count; |
| struct perf_cpu_context * __percpu pmu_cpu_context; |
| atomic_t exclusive_cnt; /* < 0: cpu; > 0: tsk */ |
| int task_ctx_nr; |
| int hrtimer_interval_ms; |
| |
| /* number of address filters this PMU can do */ |
| unsigned int nr_addr_filters; |
| |
| /* |
| * Fully disable/enable this PMU, can be used to protect from the PMI |
| * as well as for lazy/batch writing of the MSRs. |
| */ |
| void (*pmu_enable) (struct pmu *pmu); /* optional */ |
| void (*pmu_disable) (struct pmu *pmu); /* optional */ |
| |
| /* |
| * Try and initialize the event for this PMU. |
| * |
| * Returns: |
| * -ENOENT -- @event is not for this PMU |
| * |
| * -ENODEV -- @event is for this PMU but PMU not present |
| * -EBUSY -- @event is for this PMU but PMU temporarily unavailable |
| * -EINVAL -- @event is for this PMU but @event is not valid |
| * -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported |
| * -EACCESS -- @event is for this PMU, @event is valid, but no privilidges |
| * |
| * 0 -- @event is for this PMU and valid |
| * |
| * Other error return values are allowed. |
| */ |
| int (*event_init) (struct perf_event *event); |
| |
| /* |
| * Notification that the event was mapped or unmapped. Called |
| * in the context of the mapping task. |
| */ |
| void (*event_mapped) (struct perf_event *event, struct mm_struct *mm); /* optional */ |
| void (*event_unmapped) (struct perf_event *event, struct mm_struct *mm); /* optional */ |
| |
| /* |
| * Flags for ->add()/->del()/ ->start()/->stop(). There are |
| * matching hw_perf_event::state flags. |
| */ |
| #define PERF_EF_START 0x01 /* start the counter when adding */ |
| #define PERF_EF_RELOAD 0x02 /* reload the counter when starting */ |
| #define PERF_EF_UPDATE 0x04 /* update the counter when stopping */ |
| |
| /* |
| * Adds/Removes a counter to/from the PMU, can be done inside a |
| * transaction, see the ->*_txn() methods. |
| * |
| * The add/del callbacks will reserve all hardware resources required |
| * to service the event, this includes any counter constraint |
| * scheduling etc. |
| * |
| * Called with IRQs disabled and the PMU disabled on the CPU the event |
| * is on. |
| * |
| * ->add() called without PERF_EF_START should result in the same state |
| * as ->add() followed by ->stop(). |
| * |
| * ->del() must always PERF_EF_UPDATE stop an event. If it calls |
| * ->stop() that must deal with already being stopped without |
| * PERF_EF_UPDATE. |
| */ |
| int (*add) (struct perf_event *event, int flags); |
| void (*del) (struct perf_event *event, int flags); |
| |
| /* |
| * Starts/Stops a counter present on the PMU. |
| * |
| * The PMI handler should stop the counter when perf_event_overflow() |
| * returns !0. ->start() will be used to continue. |
| * |
| * Also used to change the sample period. |
| * |
| * Called with IRQs disabled and the PMU disabled on the CPU the event |
| * is on -- will be called from NMI context with the PMU generates |
| * NMIs. |
| * |
| * ->stop() with PERF_EF_UPDATE will read the counter and update |
| * period/count values like ->read() would. |
| * |
| * ->start() with PERF_EF_RELOAD will reprogram the the counter |
| * value, must be preceded by a ->stop() with PERF_EF_UPDATE. |
| */ |
| void (*start) (struct perf_event *event, int flags); |
| void (*stop) (struct perf_event *event, int flags); |
| |
| /* |
| * Updates the counter value of the event. |
| * |
| * For sampling capable PMUs this will also update the software period |
| * hw_perf_event::period_left field. |
| */ |
| void (*read) (struct perf_event *event); |
| |
| /* |
| * Group events scheduling is treated as a transaction, add |
| * group events as a whole and perform one schedulability test. |
| * If the test fails, roll back the whole group |
| * |
| * Start the transaction, after this ->add() doesn't need to |
| * do schedulability tests. |
| * |
| * Optional. |
| */ |
| void (*start_txn) (struct pmu *pmu, unsigned int txn_flags); |
| /* |
| * If ->start_txn() disabled the ->add() schedulability test |
| * then ->commit_txn() is required to perform one. On success |
| * the transaction is closed. On error the transaction is kept |
| * open until ->cancel_txn() is called. |
| * |
| * Optional. |
| */ |
| int (*commit_txn) (struct pmu *pmu); |
| /* |
| * Will cancel the transaction, assumes ->del() is called |
| * for each successful ->add() during the transaction. |
| * |
| * Optional. |
| */ |
| void (*cancel_txn) (struct pmu *pmu); |
| |
| /* |
| * Will return the value for perf_event_mmap_page::index for this event, |
| * if no implementation is provided it will default to: event->hw.idx + 1. |
| */ |
| int (*event_idx) (struct perf_event *event); /*optional */ |
| |
| /* |
| * context-switches callback |
| */ |
| void (*sched_task) (struct perf_event_context *ctx, |
| bool sched_in); |
| /* |
| * PMU specific data size |
| */ |
| size_t task_ctx_size; |
| |
| |
| /* |
| * Set up pmu-private data structures for an AUX area |
| */ |
| void *(*setup_aux) (int cpu, void **pages, |
| int nr_pages, bool overwrite); |
| /* optional */ |
| |
| /* |
| * Free pmu-private AUX data structures |
| */ |
| void (*free_aux) (void *aux); /* optional */ |
| |
| /* |
| * Validate address range filters: make sure the HW supports the |
| * requested configuration and number of filters; return 0 if the |
| * supplied filters are valid, -errno otherwise. |
| * |
| * Runs in the context of the ioctl()ing process and is not serialized |
| * with the rest of the PMU callbacks. |
| */ |
| int (*addr_filters_validate) (struct list_head *filters); |
| /* optional */ |
| |
| /* |
| * Synchronize address range filter configuration: |
| * translate hw-agnostic filters into hardware configuration in |
| * event::hw::addr_filters. |
| * |
| * Runs as a part of filter sync sequence that is done in ->start() |
| * callback by calling perf_event_addr_filters_sync(). |
| * |
| * May (and should) traverse event::addr_filters::list, for which its |
| * caller provides necessary serialization. |
| */ |
| void (*addr_filters_sync) (struct perf_event *event); |
| /* optional */ |
| |
| /* |
| * Filter events for PMU-specific reasons. |
| */ |
| int (*filter_match) (struct perf_event *event); /* optional */ |
| }; |
| |
| /** |
| * struct perf_addr_filter - address range filter definition |
| * @entry: event's filter list linkage |
| * @inode: object file's inode for file-based filters |
| * @offset: filter range offset |
| * @size: filter range size |
| * @range: 1: range, 0: address |
| * @filter: 1: filter/start, 0: stop |
| * |
| * This is a hardware-agnostic filter configuration as specified by the user. |
| */ |
| struct perf_addr_filter { |
| struct list_head entry; |
| struct inode *inode; |
| unsigned long offset; |
| unsigned long size; |
| unsigned int range : 1, |
| filter : 1; |
| }; |
| |
| /** |
| * struct perf_addr_filters_head - container for address range filters |
| * @list: list of filters for this event |
| * @lock: spinlock that serializes accesses to the @list and event's |
| * (and its children's) filter generations. |
| * @nr_file_filters: number of file-based filters |
| * |
| * A child event will use parent's @list (and therefore @lock), so they are |
| * bundled together; see perf_event_addr_filters(). |
| */ |
| struct perf_addr_filters_head { |
| struct list_head list; |
| raw_spinlock_t lock; |
| unsigned int nr_file_filters; |
| }; |
| |
| /** |
| * enum perf_event_state - the states of a event |
| */ |
| enum perf_event_state { |
| PERF_EVENT_STATE_DEAD = -4, |
| PERF_EVENT_STATE_EXIT = -3, |
| PERF_EVENT_STATE_ERROR = -2, |
| PERF_EVENT_STATE_OFF = -1, |
| PERF_EVENT_STATE_INACTIVE = 0, |
| PERF_EVENT_STATE_ACTIVE = 1, |
| }; |
| |
| struct file; |
| struct perf_sample_data; |
| |
| typedef void (*perf_overflow_handler_t)(struct perf_event *, |
| struct perf_sample_data *, |
| struct pt_regs *regs); |
| |
| /* |
| * Event capabilities. For event_caps and groups caps. |
| * |
| * PERF_EV_CAP_SOFTWARE: Is a software event. |
| * PERF_EV_CAP_READ_ACTIVE_PKG: A CPU event (or cgroup event) that can be read |
| * from any CPU in the package where it is active. |
| */ |
| #define PERF_EV_CAP_SOFTWARE BIT(0) |
| #define PERF_EV_CAP_READ_ACTIVE_PKG BIT(1) |
| |
| #define SWEVENT_HLIST_BITS 8 |
| #define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS) |
| |
| struct swevent_hlist { |
| struct hlist_head heads[SWEVENT_HLIST_SIZE]; |
| struct rcu_head rcu_head; |
| }; |
| |
| #define PERF_ATTACH_CONTEXT 0x01 |
| #define PERF_ATTACH_GROUP 0x02 |
| #define PERF_ATTACH_TASK 0x04 |
| #define PERF_ATTACH_TASK_DATA 0x08 |
| #define PERF_ATTACH_ITRACE 0x10 |
| |
| struct perf_cgroup; |
| struct ring_buffer; |
| |
| struct pmu_event_list { |
| raw_spinlock_t lock; |
| struct list_head list; |
| }; |
| |
| /** |
| * struct perf_event - performance event kernel representation: |
| */ |
| struct perf_event { |
| #ifdef CONFIG_PERF_EVENTS |
| /* |
| * entry onto perf_event_context::event_list; |
| * modifications require ctx->lock |
| * RCU safe iterations. |
| */ |
| struct list_head event_entry; |
| |
| /* |
| * XXX: group_entry and sibling_list should be mutually exclusive; |
| * either you're a sibling on a group, or you're the group leader. |
| * Rework the code to always use the same list element. |
| * |
| * Locked for modification by both ctx->mutex and ctx->lock; holding |
| * either sufficies for read. |
| */ |
| struct list_head group_entry; |
| struct list_head sibling_list; |
| |
| /* |
| * We need storage to track the entries in perf_pmu_migrate_context; we |
| * cannot use the event_entry because of RCU and we want to keep the |
| * group in tact which avoids us using the other two entries. |
| */ |
| struct list_head migrate_entry; |
| |
| struct hlist_node hlist_entry; |
| struct list_head active_entry; |
| int nr_siblings; |
| |
| /* Not serialized. Only written during event initialization. */ |
| int event_caps; |
| /* The cumulative AND of all event_caps for events in this group. */ |
| int group_caps; |
| |
| struct perf_event *group_leader; |
| struct pmu *pmu; |
| void *pmu_private; |
| |
| enum perf_event_state state; |
| unsigned int attach_state; |
| local64_t count; |
| atomic64_t child_count; |
| |
| /* |
| * These are the total time in nanoseconds that the event |
| * has been enabled (i.e. eligible to run, and the task has |
| * been scheduled in, if this is a per-task event) |
| * and running (scheduled onto the CPU), respectively. |
| */ |
| u64 total_time_enabled; |
| u64 total_time_running; |
| u64 tstamp; |
| |
| /* |
| * timestamp shadows the actual context timing but it can |
| * be safely used in NMI interrupt context. It reflects the |
| * context time as it was when the event was last scheduled in. |
| * |
| * ctx_time already accounts for ctx->timestamp. Therefore to |
| * compute ctx_time for a sample, simply add perf_clock(). |
| */ |
| u64 shadow_ctx_time; |
| |
| struct perf_event_attr attr; |
| u16 header_size; |
| u16 id_header_size; |
| u16 read_size; |
| struct hw_perf_event hw; |
| |
| struct perf_event_context *ctx; |
| atomic_long_t refcount; |
| |
| /* |
| * These accumulate total time (in nanoseconds) that children |
| * events have been enabled and running, respectively. |
| */ |
| atomic64_t child_total_time_enabled; |
| atomic64_t child_total_time_running; |
| |
| /* |
| * Protect attach/detach and child_list: |
| */ |
| struct mutex child_mutex; |
| struct list_head child_list; |
| struct perf_event *parent; |
| |
| int oncpu; |
| int cpu; |
| |
| struct list_head owner_entry; |
| struct task_struct *owner; |
| |
| /* mmap bits */ |
| struct mutex mmap_mutex; |
| atomic_t mmap_count; |
| |
| struct ring_buffer *rb; |
| struct list_head rb_entry; |
| unsigned long rcu_batches; |
| int rcu_pending; |
| |
| /* poll related */ |
| wait_queue_head_t waitq; |
| struct fasync_struct *fasync; |
| |
| /* delayed work for NMIs and such */ |
| int pending_wakeup; |
| int pending_kill; |
| int pending_disable; |
| struct irq_work pending; |
| |
| atomic_t event_limit; |
| |
| /* address range filters */ |
| struct perf_addr_filters_head addr_filters; |
| /* vma address array for file-based filders */ |
| unsigned long *addr_filters_offs; |
| unsigned long addr_filters_gen; |
| |
| void (*destroy)(struct perf_event *); |
| struct rcu_head rcu_head; |
| |
| struct pid_namespace *ns; |
| u64 id; |
| |
| u64 (*clock)(void); |
| perf_overflow_handler_t overflow_handler; |
| void *overflow_handler_context; |
| #ifdef CONFIG_BPF_SYSCALL |
| perf_overflow_handler_t orig_overflow_handler; |
| struct bpf_prog *prog; |
| #endif |
| |
| #ifdef CONFIG_EVENT_TRACING |
| struct trace_event_call *tp_event; |
| struct event_filter *filter; |
| #ifdef CONFIG_FUNCTION_TRACER |
| struct ftrace_ops ftrace_ops; |
| #endif |
| #endif |
| |
| #ifdef CONFIG_CGROUP_PERF |
| struct perf_cgroup *cgrp; /* cgroup event is attach to */ |
| #endif |
| |
| struct list_head sb_list; |
| #endif /* CONFIG_PERF_EVENTS */ |
| }; |
| |
| /** |
| * struct perf_event_context - event context structure |
| * |
| * Used as a container for task events and CPU events as well: |
| */ |
| struct perf_event_context { |
| struct pmu *pmu; |
| /* |
| * Protect the states of the events in the list, |
| * nr_active, and the list: |
| */ |
| raw_spinlock_t lock; |
| /* |
| * Protect the list of events. Locking either mutex or lock |
| * is sufficient to ensure the list doesn't change; to change |
| * the list you need to lock both the mutex and the spinlock. |
| */ |
| struct mutex mutex; |
| |
| struct list_head active_ctx_list; |
| struct list_head pinned_groups; |
| struct list_head flexible_groups; |
| struct list_head event_list; |
| int nr_events; |
| int nr_active; |
| int is_active; |
| int nr_stat; |
| int nr_freq; |
| int rotate_disable; |
| atomic_t refcount; |
| struct task_struct *task; |
| |
| /* |
| * Context clock, runs when context enabled. |
| */ |
| u64 time; |
| u64 timestamp; |
| |
| /* |
| * These fields let us detect when two contexts have both |
| * been cloned (inherited) from a common ancestor. |
| */ |
| struct perf_event_context *parent_ctx; |
| u64 parent_gen; |
| u64 generation; |
| int pin_count; |
| #ifdef CONFIG_CGROUP_PERF |
| int nr_cgroups; /* cgroup evts */ |
| #endif |
| void *task_ctx_data; /* pmu specific data */ |
| struct rcu_head rcu_head; |
| }; |
| |
| /* |
| * Number of contexts where an event can trigger: |
| * task, softirq, hardirq, nmi. |
| */ |
| #define PERF_NR_CONTEXTS 4 |
| |
| /** |
| * struct perf_event_cpu_context - per cpu event context structure |
| */ |
| struct perf_cpu_context { |
| struct perf_event_context ctx; |
| struct perf_event_context *task_ctx; |
| int active_oncpu; |
| int exclusive; |
| |
| raw_spinlock_t hrtimer_lock; |
| struct hrtimer hrtimer; |
| ktime_t hrtimer_interval; |
| unsigned int hrtimer_active; |
| |
| #ifdef CONFIG_CGROUP_PERF |
| struct perf_cgroup *cgrp; |
| struct list_head cgrp_cpuctx_entry; |
| #endif |
| |
| struct list_head sched_cb_entry; |
| int sched_cb_usage; |
| |
| int online; |
| }; |
| |
| struct perf_output_handle { |
| struct perf_event *event; |
| struct ring_buffer *rb; |
| unsigned long wakeup; |
| unsigned long size; |
| u64 aux_flags; |
| union { |
| void *addr; |
| unsigned long head; |
| }; |
| int page; |
| }; |
| |
| struct bpf_perf_event_data_kern { |
| struct pt_regs *regs; |
| struct perf_sample_data *data; |
| struct perf_event *event; |
| }; |
| |
| #ifdef CONFIG_CGROUP_PERF |
| |
| /* |
| * perf_cgroup_info keeps track of time_enabled for a cgroup. |
| * This is a per-cpu dynamically allocated data structure. |
| */ |
| struct perf_cgroup_info { |
| u64 time; |
| u64 timestamp; |
| }; |
| |
| struct perf_cgroup { |
| struct cgroup_subsys_state css; |
| struct perf_cgroup_info __percpu *info; |
| }; |
| |
| /* |
| * Must ensure cgroup is pinned (css_get) before calling |
| * this function. In other words, we cannot call this function |
| * if there is no cgroup event for the current CPU context. |
| */ |
| static inline struct perf_cgroup * |
| perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx) |
| { |
| return container_of(task_css_check(task, perf_event_cgrp_id, |
| ctx ? lockdep_is_held(&ctx->lock) |
| : true), |
| struct perf_cgroup, css); |
| } |
| #endif /* CONFIG_CGROUP_PERF */ |
| |
| #ifdef CONFIG_PERF_EVENTS |
| |
| extern void *perf_aux_output_begin(struct perf_output_handle *handle, |
| struct perf_event *event); |
| extern void perf_aux_output_end(struct perf_output_handle *handle, |
| unsigned long size); |
| extern int perf_aux_output_skip(struct perf_output_handle *handle, |
| unsigned long size); |
| extern void *perf_get_aux(struct perf_output_handle *handle); |
| extern void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags); |
| extern void perf_event_itrace_started(struct perf_event *event); |
| |
| extern int perf_pmu_register(struct pmu *pmu, const char *name, int type); |
| extern void perf_pmu_unregister(struct pmu *pmu); |
| |
| extern int perf_num_counters(void); |
| extern const char *perf_pmu_name(void); |
| extern void __perf_event_task_sched_in(struct task_struct *prev, |
| struct task_struct *task); |
| extern void __perf_event_task_sched_out(struct task_struct *prev, |
| struct task_struct *next); |
| extern int perf_event_init_task(struct task_struct *child); |
| extern void perf_event_exit_task(struct task_struct *child); |
| extern void perf_event_free_task(struct task_struct *task); |
| extern void perf_event_delayed_put(struct task_struct *task); |
| extern struct file *perf_event_get(unsigned int fd); |
| extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event); |
| extern void perf_event_print_debug(void); |
| extern void perf_pmu_disable(struct pmu *pmu); |
| extern void perf_pmu_enable(struct pmu *pmu); |
| extern void perf_sched_cb_dec(struct pmu *pmu); |
| extern void perf_sched_cb_inc(struct pmu *pmu); |
| extern int perf_event_task_disable(void); |
| extern int perf_event_task_enable(void); |
| extern int perf_event_refresh(struct perf_event *event, int refresh); |
| extern void perf_event_update_userpage(struct perf_event *event); |
| extern int perf_event_release_kernel(struct perf_event *event); |
| extern struct perf_event * |
| perf_event_create_kernel_counter(struct perf_event_attr *attr, |
| int cpu, |
| struct task_struct *task, |
| perf_overflow_handler_t callback, |
| void *context); |
| extern void perf_pmu_migrate_context(struct pmu *pmu, |
| int src_cpu, int dst_cpu); |
| int perf_event_read_local(struct perf_event *event, u64 *value, |
| u64 *enabled, u64 *running); |
| extern u64 perf_event_read_value(struct perf_event *event, |
| u64 *enabled, u64 *running); |
| |
| |
| struct perf_sample_data { |
| /* |
| * Fields set by perf_sample_data_init(), group so as to |
| * minimize the cachelines touched. |
| */ |
| u64 addr; |
| struct perf_raw_record *raw; |
| struct perf_branch_stack *br_stack; |
| u64 period; |
| u64 weight; |
| u64 txn; |
| union perf_mem_data_src data_src; |
| |
| /* |
| * The other fields, optionally {set,used} by |
| * perf_{prepare,output}_sample(). |
| */ |
| u64 type; |
| u64 ip; |
| struct { |
| u32 pid; |
| u32 tid; |
| } tid_entry; |
| u64 time; |
| u64 id; |
| u64 stream_id; |
| struct { |
| u32 cpu; |
| u32 reserved; |
| } cpu_entry; |
| struct perf_callchain_entry *callchain; |
| |
| /* |
| * regs_user may point to task_pt_regs or to regs_user_copy, depending |
| * on arch details. |
| */ |
| struct perf_regs regs_user; |
| struct pt_regs regs_user_copy; |
| |
| struct perf_regs regs_intr; |
| u64 stack_user_size; |
| |
| u64 phys_addr; |
| } ____cacheline_aligned; |
| |
| /* default value for data source */ |
| #define PERF_MEM_NA (PERF_MEM_S(OP, NA) |\ |
| PERF_MEM_S(LVL, NA) |\ |
| PERF_MEM_S(SNOOP, NA) |\ |
| PERF_MEM_S(LOCK, NA) |\ |
| PERF_MEM_S(TLB, NA)) |
| |
| static inline void perf_sample_data_init(struct perf_sample_data *data, |
| u64 addr, u64 period) |
| { |
| /* remaining struct members initialized in perf_prepare_sample() */ |
| data->addr = addr; |
| data->raw = NULL; |
| data->br_stack = NULL; |
| data->period = period; |
| data->weight = 0; |
| data->data_src.val = PERF_MEM_NA; |
| data->txn = 0; |
| } |
| |
| extern void perf_output_sample(struct perf_output_handle *handle, |
| struct perf_event_header *header, |
| struct perf_sample_data *data, |
| struct perf_event *event); |
| extern void perf_prepare_sample(struct perf_event_header *header, |
| struct perf_sample_data *data, |
| struct perf_event *event, |
| struct pt_regs *regs); |
| |
| extern int perf_event_overflow(struct perf_event *event, |
| struct perf_sample_data *data, |
| struct pt_regs *regs); |
| |
| extern void perf_event_output_forward(struct perf_event *event, |
| struct perf_sample_data *data, |
| struct pt_regs *regs); |
| extern void perf_event_output_backward(struct perf_event *event, |
| struct perf_sample_data *data, |
| struct pt_regs *regs); |
| extern void perf_event_output(struct perf_event *event, |
| struct perf_sample_data *data, |
| struct pt_regs *regs); |
| |
| static inline bool |
| is_default_overflow_handler(struct perf_event *event) |
| { |
| if (likely(event->overflow_handler == perf_event_output_forward)) |
| return true; |
| if (unlikely(event->overflow_handler == perf_event_output_backward)) |
| return true; |
| return false; |
| } |
| |
| extern void |
| perf_event_header__init_id(struct perf_event_header *header, |
| struct perf_sample_data *data, |
| struct perf_event *event); |
| extern void |
| perf_event__output_id_sample(struct perf_event *event, |
| struct perf_output_handle *handle, |
| struct perf_sample_data *sample); |
| |
| extern void |
| perf_log_lost_samples(struct perf_event *event, u64 lost); |
| |
| static inline bool is_sampling_event(struct perf_event *event) |
| { |
| return event->attr.sample_period != 0; |
| } |
| |
| /* |
| * Return 1 for a software event, 0 for a hardware event |
| */ |
| static inline int is_software_event(struct perf_event *event) |
| { |
| return event->event_caps & PERF_EV_CAP_SOFTWARE; |
| } |
| |
| extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; |
| |
| extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64); |
| extern void __perf_sw_event(u32, u64, struct pt_regs *, u64); |
| |
| #ifndef perf_arch_fetch_caller_regs |
| static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { } |
| #endif |
| |
| /* |
| * Take a snapshot of the regs. Skip ip and frame pointer to |
| * the nth caller. We only need a few of the regs: |
| * - ip for PERF_SAMPLE_IP |
| * - cs for user_mode() tests |
| * - bp for callchains |
| * - eflags, for future purposes, just in case |
| */ |
| static inline void perf_fetch_caller_regs(struct pt_regs *regs) |
| { |
| perf_arch_fetch_caller_regs(regs, CALLER_ADDR0); |
| } |
| |
| static __always_inline void |
| perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) |
| { |
| if (static_key_false(&perf_swevent_enabled[event_id])) |
| __perf_sw_event(event_id, nr, regs, addr); |
| } |
| |
| DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]); |
| |
| /* |
| * 'Special' version for the scheduler, it hard assumes no recursion, |
| * which is guaranteed by us not actually scheduling inside other swevents |
| * because those disable preemption. |
| */ |
| static __always_inline void |
| perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) |
| { |
| if (static_key_false(&perf_swevent_enabled[event_id])) { |
| struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]); |
| |
| perf_fetch_caller_regs(regs); |
| ___perf_sw_event(event_id, nr, regs, addr); |
| } |
| } |
| |
| extern struct static_key_false perf_sched_events; |
| |
| static __always_inline bool |
| perf_sw_migrate_enabled(void) |
| { |
| if (static_key_false(&perf_swevent_enabled[PERF_COUNT_SW_CPU_MIGRATIONS])) |
| return true; |
| return false; |
| } |
| |
| static inline void perf_event_task_migrate(struct task_struct *task) |
| { |
| if (perf_sw_migrate_enabled()) |
| task->sched_migrated = 1; |
| } |
| |
| static inline void perf_event_task_sched_in(struct task_struct *prev, |
| struct task_struct *task) |
| { |
| if (static_branch_unlikely(&perf_sched_events)) |
| __perf_event_task_sched_in(prev, task); |
| |
| if (perf_sw_migrate_enabled() && task->sched_migrated) { |
| struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]); |
| |
| perf_fetch_caller_regs(regs); |
| ___perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, regs, 0); |
| task->sched_migrated = 0; |
| } |
| } |
| |
| static inline void perf_event_task_sched_out(struct task_struct *prev, |
| struct task_struct *next) |
| { |
| perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0); |
| |
| if (static_branch_unlikely(&perf_sched_events)) |
| __perf_event_task_sched_out(prev, next); |
| } |
| |
| extern void perf_event_mmap(struct vm_area_struct *vma); |
| extern struct perf_guest_info_callbacks *perf_guest_cbs; |
| extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); |
| extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); |
| |
| extern void perf_event_exec(void); |
| extern void perf_event_comm(struct task_struct *tsk, bool exec); |
| extern void perf_event_namespaces(struct task_struct *tsk); |
| extern void perf_event_fork(struct task_struct *tsk); |
| |
| /* Callchains */ |
| DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry); |
| |
| extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs); |
| extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs); |
| extern struct perf_callchain_entry * |
| get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user, |
| u32 max_stack, bool crosstask, bool add_mark); |
| extern int get_callchain_buffers(int max_stack); |
| extern void put_callchain_buffers(void); |
| |
| extern int sysctl_perf_event_max_stack; |
| extern int sysctl_perf_event_max_contexts_per_stack; |
| |
| static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip) |
| { |
| if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) { |
| struct perf_callchain_entry *entry = ctx->entry; |
| entry->ip[entry->nr++] = ip; |
| ++ctx->contexts; |
| return 0; |
| } else { |
| ctx->contexts_maxed = true; |
| return -1; /* no more room, stop walking the stack */ |
| } |
| } |
| |
| static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip) |
| { |
| if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) { |
| struct perf_callchain_entry *entry = ctx->entry; |
| entry->ip[entry->nr++] = ip; |
| ++ctx->nr; |
| return 0; |
| } else { |
| return -1; /* no more room, stop walking the stack */ |
| } |
| } |
| |
| extern int sysctl_perf_event_paranoid; |
| extern int sysctl_perf_event_mlock; |
| extern int sysctl_perf_event_sample_rate; |
| extern int sysctl_perf_cpu_time_max_percent; |
| |
| extern void perf_sample_event_took(u64 sample_len_ns); |
| |
| extern int perf_proc_update_handler(struct ctl_table *table, int write, |
| void __user *buffer, size_t *lenp, |
| loff_t *ppos); |
| extern int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, |
| void __user *buffer, size_t *lenp, |
| loff_t *ppos); |
| |
| int perf_event_max_stack_handler(struct ctl_table *table, int write, |
| void __user *buffer, size_t *lenp, loff_t *ppos); |
| |
| static inline bool perf_paranoid_tracepoint_raw(void) |
| { |
| return sysctl_perf_event_paranoid > -1; |
| } |
| |
| static inline bool perf_paranoid_cpu(void) |
| { |
| return sysctl_perf_event_paranoid > 0; |
| } |
| |
| static inline bool perf_paranoid_kernel(void) |
| { |
| return sysctl_perf_event_paranoid > 1; |
| } |
| |
| extern void perf_event_init(void); |
| extern void perf_tp_event(u16 event_type, u64 count, void *record, |
| int entry_size, struct pt_regs *regs, |
| struct hlist_head *head, int rctx, |
| struct task_struct *task); |
| extern void perf_bp_event(struct perf_event *event, void *data); |
| |
| #ifndef perf_misc_flags |
| # define perf_misc_flags(regs) \ |
| (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL) |
| # define perf_instruction_pointer(regs) instruction_pointer(regs) |
| #endif |
| |
| static inline bool has_branch_stack(struct perf_event *event) |
| { |
| return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK; |
| } |
| |
| static inline bool needs_branch_stack(struct perf_event *event) |
| { |
| return event->attr.branch_sample_type != 0; |
| } |
| |
| static inline bool has_aux(struct perf_event *event) |
| { |
| return event->pmu->setup_aux; |
| } |
| |
| static inline bool is_write_backward(struct perf_event *event) |
| { |
| return !!event->attr.write_backward; |
| } |
| |
| static inline bool has_addr_filter(struct perf_event *event) |
| { |
| return event->pmu->nr_addr_filters; |
| } |
| |
| /* |
| * An inherited event uses parent's filters |
| */ |
| static inline struct perf_addr_filters_head * |
| perf_event_addr_filters(struct perf_event *event) |
| { |
| struct perf_addr_filters_head *ifh = &event->addr_filters; |
| |
| if (event->parent) |
| ifh = &event->parent->addr_filters; |
| |
| return ifh; |
| } |
| |
| extern void perf_event_addr_filters_sync(struct perf_event *event); |
| |
| extern int perf_output_begin(struct perf_output_handle *handle, |
| struct perf_event *event, unsigned int size); |
| extern int perf_output_begin_forward(struct perf_output_handle *handle, |
| struct perf_event *event, |
| unsigned int size); |
| extern int perf_output_begin_backward(struct perf_output_handle *handle, |
| struct perf_event *event, |
| unsigned int size); |
| |
| extern void perf_output_end(struct perf_output_handle *handle); |
| extern unsigned int perf_output_copy(struct perf_output_handle *handle, |
| const void *buf, unsigned int len); |
| extern unsigned int perf_output_skip(struct perf_output_handle *handle, |
| unsigned int len); |
| extern int perf_swevent_get_recursion_context(void); |
| extern void perf_swevent_put_recursion_context(int rctx); |
| extern u64 perf_swevent_set_period(struct perf_event *event); |
| extern void perf_event_enable(struct perf_event *event); |
| extern void perf_event_disable(struct perf_event *event); |
| extern void perf_event_disable_local(struct perf_event *event); |
| extern void perf_event_disable_inatomic(struct perf_event *event); |
| extern void perf_event_task_tick(void); |
| extern int perf_event_account_interrupt(struct perf_event *event); |
| #else /* !CONFIG_PERF_EVENTS: */ |
| static inline void * |
| perf_aux_output_begin(struct perf_output_handle *handle, |
| struct perf_event *event) { return NULL; } |
| static inline void |
| perf_aux_output_end(struct perf_output_handle *handle, unsigned long size) |
| { } |
| static inline int |
| perf_aux_output_skip(struct perf_output_handle *handle, |
| unsigned long size) { return -EINVAL; } |
| static inline void * |
| perf_get_aux(struct perf_output_handle *handle) { return NULL; } |
| static inline void |
| perf_event_task_migrate(struct task_struct *task) { } |
| static inline void |
| perf_event_task_sched_in(struct task_struct *prev, |
| struct task_struct *task) { } |
| static inline void |
| perf_event_task_sched_out(struct task_struct *prev, |
| struct task_struct *next) { } |
| static inline int perf_event_init_task(struct task_struct *child) { return 0; } |
| static inline void perf_event_exit_task(struct task_struct *child) { } |
| static inline void perf_event_free_task(struct task_struct *task) { } |
| static inline void perf_event_delayed_put(struct task_struct *task) { } |
| static inline struct file *perf_event_get(unsigned int fd) { return ERR_PTR(-EINVAL); } |
| static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event) |
| { |
| return ERR_PTR(-EINVAL); |
| } |
| static inline int perf_event_read_local(struct perf_event *event, u64 *value, |
| u64 *enabled, u64 *running) |
| { |
| return -EINVAL; |
| } |
| static inline void perf_event_print_debug(void) { } |
| static inline int perf_event_task_disable(void) { return -EINVAL; } |
| static inline int perf_event_task_enable(void) { return -EINVAL; } |
| static inline int perf_event_refresh(struct perf_event *event, int refresh) |
| { |
| return -EINVAL; |
| } |
| |
| static inline void |
| perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { } |
| static inline void |
| perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) { } |
| static inline void |
| perf_bp_event(struct perf_event *event, void *data) { } |
| |
| static inline int perf_register_guest_info_callbacks |
| (struct perf_guest_info_callbacks *callbacks) { return 0; } |
| static inline int perf_unregister_guest_info_callbacks |
| (struct perf_guest_info_callbacks *callbacks) { return 0; } |
| |
| static inline void perf_event_mmap(struct vm_area_struct *vma) { } |
| static inline void perf_event_exec(void) { } |
| static inline void perf_event_comm(struct task_struct *tsk, bool exec) { } |
| static inline void perf_event_namespaces(struct task_struct *tsk) { } |
| static inline void perf_event_fork(struct task_struct *tsk) { } |
| static inline void perf_event_init(void) { } |
| static inline int perf_swevent_get_recursion_context(void) { return -1; } |
| static inline void perf_swevent_put_recursion_context(int rctx) { } |
| static inline u64 perf_swevent_set_period(struct perf_event *event) { return 0; } |
| static inline void perf_event_enable(struct perf_event *event) { } |
| static inline void perf_event_disable(struct perf_event *event) { } |
| static inline int __perf_event_disable(void *info) { return -1; } |
| static inline void perf_event_task_tick(void) { } |
| static inline int perf_event_release_kernel(struct perf_event *event) { return 0; } |
| #endif |
| |
| #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL) |
| extern void perf_restore_debug_store(void); |
| #else |
| static inline void perf_restore_debug_store(void) { } |
| #endif |
| |
| static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag) |
| { |
| return frag->pad < sizeof(u64); |
| } |
| |
| #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x)) |
| |
| struct perf_pmu_events_attr { |
| struct device_attribute attr; |
| u64 id; |
| const char *event_str; |
| }; |
| |
| struct perf_pmu_events_ht_attr { |
| struct device_attribute attr; |
| u64 id; |
| const char *event_str_ht; |
| const char *event_str_noht; |
| }; |
| |
| ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, |
| char *page); |
| |
| #define PMU_EVENT_ATTR(_name, _var, _id, _show) \ |
| static struct perf_pmu_events_attr _var = { \ |
| .attr = __ATTR(_name, 0444, _show, NULL), \ |
| .id = _id, \ |
| }; |
| |
| #define PMU_EVENT_ATTR_STRING(_name, _var, _str) \ |
| static struct perf_pmu_events_attr _var = { \ |
| .attr = __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \ |
| .id = 0, \ |
| .event_str = _str, \ |
| }; |
| |
| #define PMU_FORMAT_ATTR(_name, _format) \ |
| static ssize_t \ |
| _name##_show(struct device *dev, \ |
| struct device_attribute *attr, \ |
| char *page) \ |
| { \ |
| BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \ |
| return sprintf(page, _format "\n"); \ |
| } \ |
| \ |
| static struct device_attribute format_attr_##_name = __ATTR_RO(_name) |
| |
| /* Performance counter hotplug functions */ |
| #ifdef CONFIG_PERF_EVENTS |
| int perf_event_init_cpu(unsigned int cpu); |
| int perf_event_exit_cpu(unsigned int cpu); |
| #else |
| #define perf_event_init_cpu NULL |
| #define perf_event_exit_cpu NULL |
| #endif |
| |
| #endif /* _LINUX_PERF_EVENT_H */ |