| /* |
| * Copyright (C) 2007 Oracle. All rights reserved. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public |
| * License v2 as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public |
| * License along with this program; if not, write to the |
| * Free Software Foundation, Inc., 59 Temple Place - Suite 330, |
| * Boston, MA 021110-1307, USA. |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/bio.h> |
| #include <linux/buffer_head.h> |
| #include <linux/file.h> |
| #include <linux/fs.h> |
| #include <linux/pagemap.h> |
| #include <linux/highmem.h> |
| #include <linux/time.h> |
| #include <linux/init.h> |
| #include <linux/string.h> |
| #include <linux/backing-dev.h> |
| #include <linux/mpage.h> |
| #include <linux/swap.h> |
| #include <linux/writeback.h> |
| #include <linux/statfs.h> |
| #include <linux/compat.h> |
| #include <linux/bit_spinlock.h> |
| #include <linux/xattr.h> |
| #include <linux/posix_acl.h> |
| #include <linux/falloc.h> |
| #include <linux/slab.h> |
| #include <linux/ratelimit.h> |
| #include <linux/mount.h> |
| #include <linux/btrfs.h> |
| #include <linux/blkdev.h> |
| #include <linux/posix_acl_xattr.h> |
| #include <linux/uio.h> |
| #include "ctree.h" |
| #include "disk-io.h" |
| #include "transaction.h" |
| #include "btrfs_inode.h" |
| #include "print-tree.h" |
| #include "ordered-data.h" |
| #include "xattr.h" |
| #include "tree-log.h" |
| #include "volumes.h" |
| #include "compression.h" |
| #include "locking.h" |
| #include "free-space-cache.h" |
| #include "inode-map.h" |
| #include "backref.h" |
| #include "hash.h" |
| #include "props.h" |
| #include "qgroup.h" |
| |
| struct btrfs_iget_args { |
| struct btrfs_key *location; |
| struct btrfs_root *root; |
| }; |
| |
| struct btrfs_dio_data { |
| u64 outstanding_extents; |
| u64 reserve; |
| u64 unsubmitted_oe_range_start; |
| u64 unsubmitted_oe_range_end; |
| }; |
| |
| static const struct inode_operations btrfs_dir_inode_operations; |
| static const struct inode_operations btrfs_symlink_inode_operations; |
| static const struct inode_operations btrfs_dir_ro_inode_operations; |
| static const struct inode_operations btrfs_special_inode_operations; |
| static const struct inode_operations btrfs_file_inode_operations; |
| static const struct address_space_operations btrfs_aops; |
| static const struct address_space_operations btrfs_symlink_aops; |
| static const struct file_operations btrfs_dir_file_operations; |
| static const struct extent_io_ops btrfs_extent_io_ops; |
| |
| static struct kmem_cache *btrfs_inode_cachep; |
| struct kmem_cache *btrfs_trans_handle_cachep; |
| struct kmem_cache *btrfs_transaction_cachep; |
| struct kmem_cache *btrfs_path_cachep; |
| struct kmem_cache *btrfs_free_space_cachep; |
| |
| #define S_SHIFT 12 |
| static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = { |
| [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE, |
| [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR, |
| [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV, |
| [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV, |
| [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO, |
| [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK, |
| [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK, |
| }; |
| |
| static int btrfs_setsize(struct inode *inode, struct iattr *attr); |
| static int btrfs_truncate(struct inode *inode); |
| static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent); |
| static noinline int cow_file_range(struct inode *inode, |
| struct page *locked_page, |
| u64 start, u64 end, int *page_started, |
| unsigned long *nr_written, int unlock); |
| static struct extent_map *create_pinned_em(struct inode *inode, u64 start, |
| u64 len, u64 orig_start, |
| u64 block_start, u64 block_len, |
| u64 orig_block_len, u64 ram_bytes, |
| int type); |
| |
| static int btrfs_dirty_inode(struct inode *inode); |
| |
| #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS |
| void btrfs_test_inode_set_ops(struct inode *inode) |
| { |
| BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; |
| } |
| #endif |
| |
| static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, |
| struct inode *inode, struct inode *dir, |
| const struct qstr *qstr) |
| { |
| int err; |
| |
| err = btrfs_init_acl(trans, inode, dir); |
| if (!err) |
| err = btrfs_xattr_security_init(trans, inode, dir, qstr); |
| return err; |
| } |
| |
| /* |
| * this does all the hard work for inserting an inline extent into |
| * the btree. The caller should have done a btrfs_drop_extents so that |
| * no overlapping inline items exist in the btree |
| */ |
| static int insert_inline_extent(struct btrfs_trans_handle *trans, |
| struct btrfs_path *path, int extent_inserted, |
| struct btrfs_root *root, struct inode *inode, |
| u64 start, size_t size, size_t compressed_size, |
| int compress_type, |
| struct page **compressed_pages) |
| { |
| struct extent_buffer *leaf; |
| struct page *page = NULL; |
| char *kaddr; |
| unsigned long ptr; |
| struct btrfs_file_extent_item *ei; |
| int err = 0; |
| int ret; |
| size_t cur_size = size; |
| unsigned long offset; |
| |
| if (compressed_size && compressed_pages) |
| cur_size = compressed_size; |
| |
| inode_add_bytes(inode, size); |
| |
| if (!extent_inserted) { |
| struct btrfs_key key; |
| size_t datasize; |
| |
| key.objectid = btrfs_ino(inode); |
| key.offset = start; |
| key.type = BTRFS_EXTENT_DATA_KEY; |
| |
| datasize = btrfs_file_extent_calc_inline_size(cur_size); |
| path->leave_spinning = 1; |
| ret = btrfs_insert_empty_item(trans, root, path, &key, |
| datasize); |
| if (ret) { |
| err = ret; |
| goto fail; |
| } |
| } |
| leaf = path->nodes[0]; |
| ei = btrfs_item_ptr(leaf, path->slots[0], |
| struct btrfs_file_extent_item); |
| btrfs_set_file_extent_generation(leaf, ei, trans->transid); |
| btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); |
| btrfs_set_file_extent_encryption(leaf, ei, 0); |
| btrfs_set_file_extent_other_encoding(leaf, ei, 0); |
| btrfs_set_file_extent_ram_bytes(leaf, ei, size); |
| ptr = btrfs_file_extent_inline_start(ei); |
| |
| if (compress_type != BTRFS_COMPRESS_NONE) { |
| struct page *cpage; |
| int i = 0; |
| while (compressed_size > 0) { |
| cpage = compressed_pages[i]; |
| cur_size = min_t(unsigned long, compressed_size, |
| PAGE_SIZE); |
| |
| kaddr = kmap_atomic(cpage); |
| write_extent_buffer(leaf, kaddr, ptr, cur_size); |
| kunmap_atomic(kaddr); |
| |
| i++; |
| ptr += cur_size; |
| compressed_size -= cur_size; |
| } |
| btrfs_set_file_extent_compression(leaf, ei, |
| compress_type); |
| } else { |
| page = find_get_page(inode->i_mapping, |
| start >> PAGE_SHIFT); |
| btrfs_set_file_extent_compression(leaf, ei, 0); |
| kaddr = kmap_atomic(page); |
| offset = start & (PAGE_SIZE - 1); |
| write_extent_buffer(leaf, kaddr + offset, ptr, size); |
| kunmap_atomic(kaddr); |
| put_page(page); |
| } |
| btrfs_mark_buffer_dirty(leaf); |
| btrfs_release_path(path); |
| |
| /* |
| * we're an inline extent, so nobody can |
| * extend the file past i_size without locking |
| * a page we already have locked. |
| * |
| * We must do any isize and inode updates |
| * before we unlock the pages. Otherwise we |
| * could end up racing with unlink. |
| */ |
| BTRFS_I(inode)->disk_i_size = inode->i_size; |
| ret = btrfs_update_inode(trans, root, inode); |
| |
| return ret; |
| fail: |
| return err; |
| } |
| |
| |
| /* |
| * conditionally insert an inline extent into the file. This |
| * does the checks required to make sure the data is small enough |
| * to fit as an inline extent. |
| */ |
| static noinline int cow_file_range_inline(struct btrfs_root *root, |
| struct inode *inode, u64 start, |
| u64 end, size_t compressed_size, |
| int compress_type, |
| struct page **compressed_pages) |
| { |
| struct btrfs_trans_handle *trans; |
| u64 isize = i_size_read(inode); |
| u64 actual_end = min(end + 1, isize); |
| u64 inline_len = actual_end - start; |
| u64 aligned_end = ALIGN(end, root->sectorsize); |
| u64 data_len = inline_len; |
| int ret; |
| struct btrfs_path *path; |
| int extent_inserted = 0; |
| u32 extent_item_size; |
| |
| if (compressed_size) |
| data_len = compressed_size; |
| |
| if (start > 0 || |
| actual_end > root->sectorsize || |
| data_len > BTRFS_MAX_INLINE_DATA_SIZE(root) || |
| (!compressed_size && |
| (actual_end & (root->sectorsize - 1)) == 0) || |
| end + 1 < isize || |
| data_len > root->fs_info->max_inline) { |
| return 1; |
| } |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| trans = btrfs_join_transaction(root); |
| if (IS_ERR(trans)) { |
| btrfs_free_path(path); |
| return PTR_ERR(trans); |
| } |
| trans->block_rsv = &root->fs_info->delalloc_block_rsv; |
| |
| if (compressed_size && compressed_pages) |
| extent_item_size = btrfs_file_extent_calc_inline_size( |
| compressed_size); |
| else |
| extent_item_size = btrfs_file_extent_calc_inline_size( |
| inline_len); |
| |
| ret = __btrfs_drop_extents(trans, root, inode, path, |
| start, aligned_end, NULL, |
| 1, 1, extent_item_size, &extent_inserted); |
| if (ret) { |
| btrfs_abort_transaction(trans, root, ret); |
| goto out; |
| } |
| |
| if (isize > actual_end) |
| inline_len = min_t(u64, isize, actual_end); |
| ret = insert_inline_extent(trans, path, extent_inserted, |
| root, inode, start, |
| inline_len, compressed_size, |
| compress_type, compressed_pages); |
| if (ret && ret != -ENOSPC) { |
| btrfs_abort_transaction(trans, root, ret); |
| goto out; |
| } else if (ret == -ENOSPC) { |
| ret = 1; |
| goto out; |
| } |
| |
| set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); |
| btrfs_delalloc_release_metadata(inode, end + 1 - start); |
| btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0); |
| out: |
| /* |
| * Don't forget to free the reserved space, as for inlined extent |
| * it won't count as data extent, free them directly here. |
| * And at reserve time, it's always aligned to page size, so |
| * just free one page here. |
| */ |
| btrfs_qgroup_free_data(inode, 0, PAGE_SIZE); |
| btrfs_free_path(path); |
| btrfs_end_transaction(trans, root); |
| return ret; |
| } |
| |
| struct async_extent { |
| u64 start; |
| u64 ram_size; |
| u64 compressed_size; |
| struct page **pages; |
| unsigned long nr_pages; |
| int compress_type; |
| struct list_head list; |
| }; |
| |
| struct async_cow { |
| struct inode *inode; |
| struct btrfs_root *root; |
| struct page *locked_page; |
| u64 start; |
| u64 end; |
| struct list_head extents; |
| struct btrfs_work work; |
| }; |
| |
| static noinline int add_async_extent(struct async_cow *cow, |
| u64 start, u64 ram_size, |
| u64 compressed_size, |
| struct page **pages, |
| unsigned long nr_pages, |
| int compress_type) |
| { |
| struct async_extent *async_extent; |
| |
| async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); |
| BUG_ON(!async_extent); /* -ENOMEM */ |
| async_extent->start = start; |
| async_extent->ram_size = ram_size; |
| async_extent->compressed_size = compressed_size; |
| async_extent->pages = pages; |
| async_extent->nr_pages = nr_pages; |
| async_extent->compress_type = compress_type; |
| list_add_tail(&async_extent->list, &cow->extents); |
| return 0; |
| } |
| |
| static inline int inode_need_compress(struct inode *inode) |
| { |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| |
| /* force compress */ |
| if (btrfs_test_opt(root, FORCE_COMPRESS)) |
| return 1; |
| /* bad compression ratios */ |
| if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) |
| return 0; |
| if (btrfs_test_opt(root, COMPRESS) || |
| BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS || |
| BTRFS_I(inode)->force_compress) |
| return 1; |
| return 0; |
| } |
| |
| /* |
| * we create compressed extents in two phases. The first |
| * phase compresses a range of pages that have already been |
| * locked (both pages and state bits are locked). |
| * |
| * This is done inside an ordered work queue, and the compression |
| * is spread across many cpus. The actual IO submission is step |
| * two, and the ordered work queue takes care of making sure that |
| * happens in the same order things were put onto the queue by |
| * writepages and friends. |
| * |
| * If this code finds it can't get good compression, it puts an |
| * entry onto the work queue to write the uncompressed bytes. This |
| * makes sure that both compressed inodes and uncompressed inodes |
| * are written in the same order that the flusher thread sent them |
| * down. |
| */ |
| static noinline void compress_file_range(struct inode *inode, |
| struct page *locked_page, |
| u64 start, u64 end, |
| struct async_cow *async_cow, |
| int *num_added) |
| { |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| u64 num_bytes; |
| u64 blocksize = root->sectorsize; |
| u64 actual_end; |
| u64 isize = i_size_read(inode); |
| int ret = 0; |
| struct page **pages = NULL; |
| unsigned long nr_pages; |
| unsigned long nr_pages_ret = 0; |
| unsigned long total_compressed = 0; |
| unsigned long total_in = 0; |
| unsigned long max_compressed = SZ_128K; |
| unsigned long max_uncompressed = SZ_128K; |
| int i; |
| int will_compress; |
| int compress_type = root->fs_info->compress_type; |
| int redirty = 0; |
| |
| /* if this is a small write inside eof, kick off a defrag */ |
| if ((end - start + 1) < SZ_16K && |
| (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) |
| btrfs_add_inode_defrag(NULL, inode); |
| |
| actual_end = min_t(u64, isize, end + 1); |
| again: |
| will_compress = 0; |
| nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1; |
| nr_pages = min_t(unsigned long, nr_pages, SZ_128K / PAGE_SIZE); |
| |
| /* |
| * we don't want to send crud past the end of i_size through |
| * compression, that's just a waste of CPU time. So, if the |
| * end of the file is before the start of our current |
| * requested range of bytes, we bail out to the uncompressed |
| * cleanup code that can deal with all of this. |
| * |
| * It isn't really the fastest way to fix things, but this is a |
| * very uncommon corner. |
| */ |
| if (actual_end <= start) |
| goto cleanup_and_bail_uncompressed; |
| |
| total_compressed = actual_end - start; |
| |
| /* |
| * skip compression for a small file range(<=blocksize) that |
| * isn't an inline extent, since it dosen't save disk space at all. |
| */ |
| if (total_compressed <= blocksize && |
| (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) |
| goto cleanup_and_bail_uncompressed; |
| |
| /* we want to make sure that amount of ram required to uncompress |
| * an extent is reasonable, so we limit the total size in ram |
| * of a compressed extent to 128k. This is a crucial number |
| * because it also controls how easily we can spread reads across |
| * cpus for decompression. |
| * |
| * We also want to make sure the amount of IO required to do |
| * a random read is reasonably small, so we limit the size of |
| * a compressed extent to 128k. |
| */ |
| total_compressed = min(total_compressed, max_uncompressed); |
| num_bytes = ALIGN(end - start + 1, blocksize); |
| num_bytes = max(blocksize, num_bytes); |
| total_in = 0; |
| ret = 0; |
| |
| /* |
| * we do compression for mount -o compress and when the |
| * inode has not been flagged as nocompress. This flag can |
| * change at any time if we discover bad compression ratios. |
| */ |
| if (inode_need_compress(inode)) { |
| WARN_ON(pages); |
| pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); |
| if (!pages) { |
| /* just bail out to the uncompressed code */ |
| goto cont; |
| } |
| |
| if (BTRFS_I(inode)->force_compress) |
| compress_type = BTRFS_I(inode)->force_compress; |
| |
| /* |
| * we need to call clear_page_dirty_for_io on each |
| * page in the range. Otherwise applications with the file |
| * mmap'd can wander in and change the page contents while |
| * we are compressing them. |
| * |
| * If the compression fails for any reason, we set the pages |
| * dirty again later on. |
| */ |
| extent_range_clear_dirty_for_io(inode, start, end); |
| redirty = 1; |
| ret = btrfs_compress_pages(compress_type, |
| inode->i_mapping, start, |
| total_compressed, pages, |
| nr_pages, &nr_pages_ret, |
| &total_in, |
| &total_compressed, |
| max_compressed); |
| |
| if (!ret) { |
| unsigned long offset = total_compressed & |
| (PAGE_SIZE - 1); |
| struct page *page = pages[nr_pages_ret - 1]; |
| char *kaddr; |
| |
| /* zero the tail end of the last page, we might be |
| * sending it down to disk |
| */ |
| if (offset) { |
| kaddr = kmap_atomic(page); |
| memset(kaddr + offset, 0, |
| PAGE_SIZE - offset); |
| kunmap_atomic(kaddr); |
| } |
| will_compress = 1; |
| } |
| } |
| cont: |
| if (start == 0) { |
| /* lets try to make an inline extent */ |
| if (ret || total_in < (actual_end - start)) { |
| /* we didn't compress the entire range, try |
| * to make an uncompressed inline extent. |
| */ |
| ret = cow_file_range_inline(root, inode, start, end, |
| 0, 0, NULL); |
| } else { |
| /* try making a compressed inline extent */ |
| ret = cow_file_range_inline(root, inode, start, end, |
| total_compressed, |
| compress_type, pages); |
| } |
| if (ret <= 0) { |
| unsigned long clear_flags = EXTENT_DELALLOC | |
| EXTENT_DEFRAG; |
| unsigned long page_error_op; |
| |
| clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0; |
| page_error_op = ret < 0 ? PAGE_SET_ERROR : 0; |
| |
| /* |
| * inline extent creation worked or returned error, |
| * we don't need to create any more async work items. |
| * Unlock and free up our temp pages. |
| */ |
| extent_clear_unlock_delalloc(inode, start, end, NULL, |
| clear_flags, PAGE_UNLOCK | |
| PAGE_CLEAR_DIRTY | |
| PAGE_SET_WRITEBACK | |
| page_error_op | |
| PAGE_END_WRITEBACK); |
| goto free_pages_out; |
| } |
| } |
| |
| if (will_compress) { |
| /* |
| * we aren't doing an inline extent round the compressed size |
| * up to a block size boundary so the allocator does sane |
| * things |
| */ |
| total_compressed = ALIGN(total_compressed, blocksize); |
| |
| /* |
| * one last check to make sure the compression is really a |
| * win, compare the page count read with the blocks on disk |
| */ |
| total_in = ALIGN(total_in, PAGE_SIZE); |
| if (total_compressed >= total_in) { |
| will_compress = 0; |
| } else { |
| num_bytes = total_in; |
| } |
| } |
| if (!will_compress && pages) { |
| /* |
| * the compression code ran but failed to make things smaller, |
| * free any pages it allocated and our page pointer array |
| */ |
| for (i = 0; i < nr_pages_ret; i++) { |
| WARN_ON(pages[i]->mapping); |
| put_page(pages[i]); |
| } |
| kfree(pages); |
| pages = NULL; |
| total_compressed = 0; |
| nr_pages_ret = 0; |
| |
| /* flag the file so we don't compress in the future */ |
| if (!btrfs_test_opt(root, FORCE_COMPRESS) && |
| !(BTRFS_I(inode)->force_compress)) { |
| BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; |
| } |
| } |
| if (will_compress) { |
| *num_added += 1; |
| |
| /* the async work queues will take care of doing actual |
| * allocation on disk for these compressed pages, |
| * and will submit them to the elevator. |
| */ |
| add_async_extent(async_cow, start, num_bytes, |
| total_compressed, pages, nr_pages_ret, |
| compress_type); |
| |
| if (start + num_bytes < end) { |
| start += num_bytes; |
| pages = NULL; |
| cond_resched(); |
| goto again; |
| } |
| } else { |
| cleanup_and_bail_uncompressed: |
| /* |
| * No compression, but we still need to write the pages in |
| * the file we've been given so far. redirty the locked |
| * page if it corresponds to our extent and set things up |
| * for the async work queue to run cow_file_range to do |
| * the normal delalloc dance |
| */ |
| if (page_offset(locked_page) >= start && |
| page_offset(locked_page) <= end) { |
| __set_page_dirty_nobuffers(locked_page); |
| /* unlocked later on in the async handlers */ |
| } |
| if (redirty) |
| extent_range_redirty_for_io(inode, start, end); |
| add_async_extent(async_cow, start, end - start + 1, |
| 0, NULL, 0, BTRFS_COMPRESS_NONE); |
| *num_added += 1; |
| } |
| |
| return; |
| |
| free_pages_out: |
| for (i = 0; i < nr_pages_ret; i++) { |
| WARN_ON(pages[i]->mapping); |
| put_page(pages[i]); |
| } |
| kfree(pages); |
| } |
| |
| static void free_async_extent_pages(struct async_extent *async_extent) |
| { |
| int i; |
| |
| if (!async_extent->pages) |
| return; |
| |
| for (i = 0; i < async_extent->nr_pages; i++) { |
| WARN_ON(async_extent->pages[i]->mapping); |
| put_page(async_extent->pages[i]); |
| } |
| kfree(async_extent->pages); |
| async_extent->nr_pages = 0; |
| async_extent->pages = NULL; |
| } |
| |
| /* |
| * phase two of compressed writeback. This is the ordered portion |
| * of the code, which only gets called in the order the work was |
| * queued. We walk all the async extents created by compress_file_range |
| * and send them down to the disk. |
| */ |
| static noinline void submit_compressed_extents(struct inode *inode, |
| struct async_cow *async_cow) |
| { |
| struct async_extent *async_extent; |
| u64 alloc_hint = 0; |
| struct btrfs_key ins; |
| struct extent_map *em; |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; |
| struct extent_io_tree *io_tree; |
| int ret = 0; |
| |
| again: |
| while (!list_empty(&async_cow->extents)) { |
| async_extent = list_entry(async_cow->extents.next, |
| struct async_extent, list); |
| list_del(&async_extent->list); |
| |
| io_tree = &BTRFS_I(inode)->io_tree; |
| |
| retry: |
| /* did the compression code fall back to uncompressed IO? */ |
| if (!async_extent->pages) { |
| int page_started = 0; |
| unsigned long nr_written = 0; |
| |
| lock_extent(io_tree, async_extent->start, |
| async_extent->start + |
| async_extent->ram_size - 1); |
| |
| /* allocate blocks */ |
| ret = cow_file_range(inode, async_cow->locked_page, |
| async_extent->start, |
| async_extent->start + |
| async_extent->ram_size - 1, |
| &page_started, &nr_written, 0); |
| |
| /* JDM XXX */ |
| |
| /* |
| * if page_started, cow_file_range inserted an |
| * inline extent and took care of all the unlocking |
| * and IO for us. Otherwise, we need to submit |
| * all those pages down to the drive. |
| */ |
| if (!page_started && !ret) |
| extent_write_locked_range(io_tree, |
| inode, async_extent->start, |
| async_extent->start + |
| async_extent->ram_size - 1, |
| btrfs_get_extent, |
| WB_SYNC_ALL); |
| else if (ret) |
| unlock_page(async_cow->locked_page); |
| kfree(async_extent); |
| cond_resched(); |
| continue; |
| } |
| |
| lock_extent(io_tree, async_extent->start, |
| async_extent->start + async_extent->ram_size - 1); |
| |
| ret = btrfs_reserve_extent(root, |
| async_extent->compressed_size, |
| async_extent->compressed_size, |
| 0, alloc_hint, &ins, 1, 1); |
| if (ret) { |
| free_async_extent_pages(async_extent); |
| |
| if (ret == -ENOSPC) { |
| unlock_extent(io_tree, async_extent->start, |
| async_extent->start + |
| async_extent->ram_size - 1); |
| |
| /* |
| * we need to redirty the pages if we decide to |
| * fallback to uncompressed IO, otherwise we |
| * will not submit these pages down to lower |
| * layers. |
| */ |
| extent_range_redirty_for_io(inode, |
| async_extent->start, |
| async_extent->start + |
| async_extent->ram_size - 1); |
| |
| goto retry; |
| } |
| goto out_free; |
| } |
| /* |
| * here we're doing allocation and writeback of the |
| * compressed pages |
| */ |
| btrfs_drop_extent_cache(inode, async_extent->start, |
| async_extent->start + |
| async_extent->ram_size - 1, 0); |
| |
| em = alloc_extent_map(); |
| if (!em) { |
| ret = -ENOMEM; |
| goto out_free_reserve; |
| } |
| em->start = async_extent->start; |
| em->len = async_extent->ram_size; |
| em->orig_start = em->start; |
| em->mod_start = em->start; |
| em->mod_len = em->len; |
| |
| em->block_start = ins.objectid; |
| em->block_len = ins.offset; |
| em->orig_block_len = ins.offset; |
| em->ram_bytes = async_extent->ram_size; |
| em->bdev = root->fs_info->fs_devices->latest_bdev; |
| em->compress_type = async_extent->compress_type; |
| set_bit(EXTENT_FLAG_PINNED, &em->flags); |
| set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); |
| em->generation = -1; |
| |
| while (1) { |
| write_lock(&em_tree->lock); |
| ret = add_extent_mapping(em_tree, em, 1); |
| write_unlock(&em_tree->lock); |
| if (ret != -EEXIST) { |
| free_extent_map(em); |
| break; |
| } |
| btrfs_drop_extent_cache(inode, async_extent->start, |
| async_extent->start + |
| async_extent->ram_size - 1, 0); |
| } |
| |
| if (ret) |
| goto out_free_reserve; |
| |
| ret = btrfs_add_ordered_extent_compress(inode, |
| async_extent->start, |
| ins.objectid, |
| async_extent->ram_size, |
| ins.offset, |
| BTRFS_ORDERED_COMPRESSED, |
| async_extent->compress_type); |
| if (ret) { |
| btrfs_drop_extent_cache(inode, async_extent->start, |
| async_extent->start + |
| async_extent->ram_size - 1, 0); |
| goto out_free_reserve; |
| } |
| btrfs_dec_block_group_reservations(root->fs_info, ins.objectid); |
| |
| /* |
| * clear dirty, set writeback and unlock the pages. |
| */ |
| extent_clear_unlock_delalloc(inode, async_extent->start, |
| async_extent->start + |
| async_extent->ram_size - 1, |
| NULL, EXTENT_LOCKED | EXTENT_DELALLOC, |
| PAGE_UNLOCK | PAGE_CLEAR_DIRTY | |
| PAGE_SET_WRITEBACK); |
| ret = btrfs_submit_compressed_write(inode, |
| async_extent->start, |
| async_extent->ram_size, |
| ins.objectid, |
| ins.offset, async_extent->pages, |
| async_extent->nr_pages); |
| if (ret) { |
| struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; |
| struct page *p = async_extent->pages[0]; |
| const u64 start = async_extent->start; |
| const u64 end = start + async_extent->ram_size - 1; |
| |
| p->mapping = inode->i_mapping; |
| tree->ops->writepage_end_io_hook(p, start, end, |
| NULL, 0); |
| p->mapping = NULL; |
| extent_clear_unlock_delalloc(inode, start, end, NULL, 0, |
| PAGE_END_WRITEBACK | |
| PAGE_SET_ERROR); |
| free_async_extent_pages(async_extent); |
| } |
| alloc_hint = ins.objectid + ins.offset; |
| kfree(async_extent); |
| cond_resched(); |
| } |
| return; |
| out_free_reserve: |
| btrfs_dec_block_group_reservations(root->fs_info, ins.objectid); |
| btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1); |
| out_free: |
| extent_clear_unlock_delalloc(inode, async_extent->start, |
| async_extent->start + |
| async_extent->ram_size - 1, |
| NULL, EXTENT_LOCKED | EXTENT_DELALLOC | |
| EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, |
| PAGE_UNLOCK | PAGE_CLEAR_DIRTY | |
| PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK | |
| PAGE_SET_ERROR); |
| free_async_extent_pages(async_extent); |
| kfree(async_extent); |
| goto again; |
| } |
| |
| static u64 get_extent_allocation_hint(struct inode *inode, u64 start, |
| u64 num_bytes) |
| { |
| struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; |
| struct extent_map *em; |
| u64 alloc_hint = 0; |
| |
| read_lock(&em_tree->lock); |
| em = search_extent_mapping(em_tree, start, num_bytes); |
| if (em) { |
| /* |
| * if block start isn't an actual block number then find the |
| * first block in this inode and use that as a hint. If that |
| * block is also bogus then just don't worry about it. |
| */ |
| if (em->block_start >= EXTENT_MAP_LAST_BYTE) { |
| free_extent_map(em); |
| em = search_extent_mapping(em_tree, 0, 0); |
| if (em && em->block_start < EXTENT_MAP_LAST_BYTE) |
| alloc_hint = em->block_start; |
| if (em) |
| free_extent_map(em); |
| } else { |
| alloc_hint = em->block_start; |
| free_extent_map(em); |
| } |
| } |
| read_unlock(&em_tree->lock); |
| |
| return alloc_hint; |
| } |
| |
| /* |
| * when extent_io.c finds a delayed allocation range in the file, |
| * the call backs end up in this code. The basic idea is to |
| * allocate extents on disk for the range, and create ordered data structs |
| * in ram to track those extents. |
| * |
| * locked_page is the page that writepage had locked already. We use |
| * it to make sure we don't do extra locks or unlocks. |
| * |
| * *page_started is set to one if we unlock locked_page and do everything |
| * required to start IO on it. It may be clean and already done with |
| * IO when we return. |
| */ |
| static noinline int cow_file_range(struct inode *inode, |
| struct page *locked_page, |
| u64 start, u64 end, int *page_started, |
| unsigned long *nr_written, |
| int unlock) |
| { |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| u64 alloc_hint = 0; |
| u64 num_bytes; |
| unsigned long ram_size; |
| u64 disk_num_bytes; |
| u64 cur_alloc_size; |
| u64 blocksize = root->sectorsize; |
| struct btrfs_key ins; |
| struct extent_map *em; |
| struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; |
| int ret = 0; |
| |
| if (btrfs_is_free_space_inode(inode)) { |
| WARN_ON_ONCE(1); |
| ret = -EINVAL; |
| goto out_unlock; |
| } |
| |
| num_bytes = ALIGN(end - start + 1, blocksize); |
| num_bytes = max(blocksize, num_bytes); |
| disk_num_bytes = num_bytes; |
| |
| /* if this is a small write inside eof, kick off defrag */ |
| if (num_bytes < SZ_64K && |
| (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) |
| btrfs_add_inode_defrag(NULL, inode); |
| |
| if (start == 0) { |
| /* lets try to make an inline extent */ |
| ret = cow_file_range_inline(root, inode, start, end, 0, 0, |
| NULL); |
| if (ret == 0) { |
| extent_clear_unlock_delalloc(inode, start, end, NULL, |
| EXTENT_LOCKED | EXTENT_DELALLOC | |
| EXTENT_DEFRAG, PAGE_UNLOCK | |
| PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK | |
| PAGE_END_WRITEBACK); |
| |
| *nr_written = *nr_written + |
| (end - start + PAGE_SIZE) / PAGE_SIZE; |
| *page_started = 1; |
| goto out; |
| } else if (ret < 0) { |
| goto out_unlock; |
| } |
| } |
| |
| BUG_ON(disk_num_bytes > |
| btrfs_super_total_bytes(root->fs_info->super_copy)); |
| |
| alloc_hint = get_extent_allocation_hint(inode, start, num_bytes); |
| btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0); |
| |
| while (disk_num_bytes > 0) { |
| unsigned long op; |
| |
| cur_alloc_size = disk_num_bytes; |
| ret = btrfs_reserve_extent(root, cur_alloc_size, |
| root->sectorsize, 0, alloc_hint, |
| &ins, 1, 1); |
| if (ret < 0) |
| goto out_unlock; |
| |
| em = alloc_extent_map(); |
| if (!em) { |
| ret = -ENOMEM; |
| goto out_reserve; |
| } |
| em->start = start; |
| em->orig_start = em->start; |
| ram_size = ins.offset; |
| em->len = ins.offset; |
| em->mod_start = em->start; |
| em->mod_len = em->len; |
| |
| em->block_start = ins.objectid; |
| em->block_len = ins.offset; |
| em->orig_block_len = ins.offset; |
| em->ram_bytes = ram_size; |
| em->bdev = root->fs_info->fs_devices->latest_bdev; |
| set_bit(EXTENT_FLAG_PINNED, &em->flags); |
| em->generation = -1; |
| |
| while (1) { |
| write_lock(&em_tree->lock); |
| ret = add_extent_mapping(em_tree, em, 1); |
| write_unlock(&em_tree->lock); |
| if (ret != -EEXIST) { |
| free_extent_map(em); |
| break; |
| } |
| btrfs_drop_extent_cache(inode, start, |
| start + ram_size - 1, 0); |
| } |
| if (ret) |
| goto out_reserve; |
| |
| cur_alloc_size = ins.offset; |
| ret = btrfs_add_ordered_extent(inode, start, ins.objectid, |
| ram_size, cur_alloc_size, 0); |
| if (ret) |
| goto out_drop_extent_cache; |
| |
| if (root->root_key.objectid == |
| BTRFS_DATA_RELOC_TREE_OBJECTID) { |
| ret = btrfs_reloc_clone_csums(inode, start, |
| cur_alloc_size); |
| if (ret) |
| goto out_drop_extent_cache; |
| } |
| |
| btrfs_dec_block_group_reservations(root->fs_info, ins.objectid); |
| |
| if (disk_num_bytes < cur_alloc_size) |
| break; |
| |
| /* we're not doing compressed IO, don't unlock the first |
| * page (which the caller expects to stay locked), don't |
| * clear any dirty bits and don't set any writeback bits |
| * |
| * Do set the Private2 bit so we know this page was properly |
| * setup for writepage |
| */ |
| op = unlock ? PAGE_UNLOCK : 0; |
| op |= PAGE_SET_PRIVATE2; |
| |
| extent_clear_unlock_delalloc(inode, start, |
| start + ram_size - 1, locked_page, |
| EXTENT_LOCKED | EXTENT_DELALLOC, |
| op); |
| disk_num_bytes -= cur_alloc_size; |
| num_bytes -= cur_alloc_size; |
| alloc_hint = ins.objectid + ins.offset; |
| start += cur_alloc_size; |
| } |
| out: |
| return ret; |
| |
| out_drop_extent_cache: |
| btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0); |
| out_reserve: |
| btrfs_dec_block_group_reservations(root->fs_info, ins.objectid); |
| btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1); |
| out_unlock: |
| extent_clear_unlock_delalloc(inode, start, end, locked_page, |
| EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | |
| EXTENT_DELALLOC | EXTENT_DEFRAG, |
| PAGE_UNLOCK | PAGE_CLEAR_DIRTY | |
| PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK); |
| goto out; |
| } |
| |
| /* |
| * work queue call back to started compression on a file and pages |
| */ |
| static noinline void async_cow_start(struct btrfs_work *work) |
| { |
| struct async_cow *async_cow; |
| int num_added = 0; |
| async_cow = container_of(work, struct async_cow, work); |
| |
| compress_file_range(async_cow->inode, async_cow->locked_page, |
| async_cow->start, async_cow->end, async_cow, |
| &num_added); |
| if (num_added == 0) { |
| btrfs_add_delayed_iput(async_cow->inode); |
| async_cow->inode = NULL; |
| } |
| } |
| |
| /* |
| * work queue call back to submit previously compressed pages |
| */ |
| static noinline void async_cow_submit(struct btrfs_work *work) |
| { |
| struct async_cow *async_cow; |
| struct btrfs_root *root; |
| unsigned long nr_pages; |
| |
| async_cow = container_of(work, struct async_cow, work); |
| |
| root = async_cow->root; |
| nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >> |
| PAGE_SHIFT; |
| |
| /* |
| * atomic_sub_return implies a barrier for waitqueue_active |
| */ |
| if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) < |
| 5 * SZ_1M && |
| waitqueue_active(&root->fs_info->async_submit_wait)) |
| wake_up(&root->fs_info->async_submit_wait); |
| |
| if (async_cow->inode) |
| submit_compressed_extents(async_cow->inode, async_cow); |
| } |
| |
| static noinline void async_cow_free(struct btrfs_work *work) |
| { |
| struct async_cow *async_cow; |
| async_cow = container_of(work, struct async_cow, work); |
| if (async_cow->inode) |
| btrfs_add_delayed_iput(async_cow->inode); |
| kfree(async_cow); |
| } |
| |
| static int cow_file_range_async(struct inode *inode, struct page *locked_page, |
| u64 start, u64 end, int *page_started, |
| unsigned long *nr_written) |
| { |
| struct async_cow *async_cow; |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| unsigned long nr_pages; |
| u64 cur_end; |
| int limit = 10 * SZ_1M; |
| |
| clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED, |
| 1, 0, NULL, GFP_NOFS); |
| while (start < end) { |
| async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS); |
| BUG_ON(!async_cow); /* -ENOMEM */ |
| async_cow->inode = igrab(inode); |
| async_cow->root = root; |
| async_cow->locked_page = locked_page; |
| async_cow->start = start; |
| |
| if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS && |
| !btrfs_test_opt(root, FORCE_COMPRESS)) |
| cur_end = end; |
| else |
| cur_end = min(end, start + SZ_512K - 1); |
| |
| async_cow->end = cur_end; |
| INIT_LIST_HEAD(&async_cow->extents); |
| |
| btrfs_init_work(&async_cow->work, |
| btrfs_delalloc_helper, |
| async_cow_start, async_cow_submit, |
| async_cow_free); |
| |
| nr_pages = (cur_end - start + PAGE_SIZE) >> |
| PAGE_SHIFT; |
| atomic_add(nr_pages, &root->fs_info->async_delalloc_pages); |
| |
| btrfs_queue_work(root->fs_info->delalloc_workers, |
| &async_cow->work); |
| |
| if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) { |
| wait_event(root->fs_info->async_submit_wait, |
| (atomic_read(&root->fs_info->async_delalloc_pages) < |
| limit)); |
| } |
| |
| while (atomic_read(&root->fs_info->async_submit_draining) && |
| atomic_read(&root->fs_info->async_delalloc_pages)) { |
| wait_event(root->fs_info->async_submit_wait, |
| (atomic_read(&root->fs_info->async_delalloc_pages) == |
| 0)); |
| } |
| |
| *nr_written += nr_pages; |
| start = cur_end + 1; |
| } |
| *page_started = 1; |
| return 0; |
| } |
| |
| static noinline int csum_exist_in_range(struct btrfs_root *root, |
| u64 bytenr, u64 num_bytes) |
| { |
| int ret; |
| struct btrfs_ordered_sum *sums; |
| LIST_HEAD(list); |
| |
| ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr, |
| bytenr + num_bytes - 1, &list, 0); |
| if (ret == 0 && list_empty(&list)) |
| return 0; |
| |
| while (!list_empty(&list)) { |
| sums = list_entry(list.next, struct btrfs_ordered_sum, list); |
| list_del(&sums->list); |
| kfree(sums); |
| } |
| return 1; |
| } |
| |
| /* |
| * when nowcow writeback call back. This checks for snapshots or COW copies |
| * of the extents that exist in the file, and COWs the file as required. |
| * |
| * If no cow copies or snapshots exist, we write directly to the existing |
| * blocks on disk |
| */ |
| static noinline int run_delalloc_nocow(struct inode *inode, |
| struct page *locked_page, |
| u64 start, u64 end, int *page_started, int force, |
| unsigned long *nr_written) |
| { |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| struct btrfs_trans_handle *trans; |
| struct extent_buffer *leaf; |
| struct btrfs_path *path; |
| struct btrfs_file_extent_item *fi; |
| struct btrfs_key found_key; |
| u64 cow_start; |
| u64 cur_offset; |
| u64 extent_end; |
| u64 extent_offset; |
| u64 disk_bytenr; |
| u64 num_bytes; |
| u64 disk_num_bytes; |
| u64 ram_bytes; |
| int extent_type; |
| int ret, err; |
| int type; |
| int nocow; |
| int check_prev = 1; |
| bool nolock; |
| u64 ino = btrfs_ino(inode); |
| |
| path = btrfs_alloc_path(); |
| if (!path) { |
| extent_clear_unlock_delalloc(inode, start, end, locked_page, |
| EXTENT_LOCKED | EXTENT_DELALLOC | |
| EXTENT_DO_ACCOUNTING | |
| EXTENT_DEFRAG, PAGE_UNLOCK | |
| PAGE_CLEAR_DIRTY | |
| PAGE_SET_WRITEBACK | |
| PAGE_END_WRITEBACK); |
| return -ENOMEM; |
| } |
| |
| nolock = btrfs_is_free_space_inode(inode); |
| |
| if (nolock) |
| trans = btrfs_join_transaction_nolock(root); |
| else |
| trans = btrfs_join_transaction(root); |
| |
| if (IS_ERR(trans)) { |
| extent_clear_unlock_delalloc(inode, start, end, locked_page, |
| EXTENT_LOCKED | EXTENT_DELALLOC | |
| EXTENT_DO_ACCOUNTING | |
| EXTENT_DEFRAG, PAGE_UNLOCK | |
| PAGE_CLEAR_DIRTY | |
| PAGE_SET_WRITEBACK | |
| PAGE_END_WRITEBACK); |
| btrfs_free_path(path); |
| return PTR_ERR(trans); |
| } |
| |
| trans->block_rsv = &root->fs_info->delalloc_block_rsv; |
| |
| cow_start = (u64)-1; |
| cur_offset = start; |
| while (1) { |
| ret = btrfs_lookup_file_extent(trans, root, path, ino, |
| cur_offset, 0); |
| if (ret < 0) |
| goto error; |
| if (ret > 0 && path->slots[0] > 0 && check_prev) { |
| leaf = path->nodes[0]; |
| btrfs_item_key_to_cpu(leaf, &found_key, |
| path->slots[0] - 1); |
| if (found_key.objectid == ino && |
| found_key.type == BTRFS_EXTENT_DATA_KEY) |
| path->slots[0]--; |
| } |
| check_prev = 0; |
| next_slot: |
| leaf = path->nodes[0]; |
| if (path->slots[0] >= btrfs_header_nritems(leaf)) { |
| ret = btrfs_next_leaf(root, path); |
| if (ret < 0) |
| goto error; |
| if (ret > 0) |
| break; |
| leaf = path->nodes[0]; |
| } |
| |
| nocow = 0; |
| disk_bytenr = 0; |
| num_bytes = 0; |
| btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); |
| |
| if (found_key.objectid > ino) |
| break; |
| if (WARN_ON_ONCE(found_key.objectid < ino) || |
| found_key.type < BTRFS_EXTENT_DATA_KEY) { |
| path->slots[0]++; |
| goto next_slot; |
| } |
| if (found_key.type > BTRFS_EXTENT_DATA_KEY || |
| found_key.offset > end) |
| break; |
| |
| if (found_key.offset > cur_offset) { |
| extent_end = found_key.offset; |
| extent_type = 0; |
| goto out_check; |
| } |
| |
| fi = btrfs_item_ptr(leaf, path->slots[0], |
| struct btrfs_file_extent_item); |
| extent_type = btrfs_file_extent_type(leaf, fi); |
| |
| ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); |
| if (extent_type == BTRFS_FILE_EXTENT_REG || |
| extent_type == BTRFS_FILE_EXTENT_PREALLOC) { |
| disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); |
| extent_offset = btrfs_file_extent_offset(leaf, fi); |
| extent_end = found_key.offset + |
| btrfs_file_extent_num_bytes(leaf, fi); |
| disk_num_bytes = |
| btrfs_file_extent_disk_num_bytes(leaf, fi); |
| if (extent_end <= start) { |
| path->slots[0]++; |
| goto next_slot; |
| } |
| if (disk_bytenr == 0) |
| goto out_check; |
| if (btrfs_file_extent_compression(leaf, fi) || |
| btrfs_file_extent_encryption(leaf, fi) || |
| btrfs_file_extent_other_encoding(leaf, fi)) |
| goto out_check; |
| if (extent_type == BTRFS_FILE_EXTENT_REG && !force) |
| goto out_check; |
| if (btrfs_extent_readonly(root, disk_bytenr)) |
| goto out_check; |
| if (btrfs_cross_ref_exist(trans, root, ino, |
| found_key.offset - |
| extent_offset, disk_bytenr)) |
| goto out_check; |
| disk_bytenr += extent_offset; |
| disk_bytenr += cur_offset - found_key.offset; |
| num_bytes = min(end + 1, extent_end) - cur_offset; |
| /* |
| * if there are pending snapshots for this root, |
| * we fall into common COW way. |
| */ |
| if (!nolock) { |
| err = btrfs_start_write_no_snapshoting(root); |
| if (!err) |
| goto out_check; |
| } |
| /* |
| * force cow if csum exists in the range. |
| * this ensure that csum for a given extent are |
| * either valid or do not exist. |
| */ |
| if (csum_exist_in_range(root, disk_bytenr, num_bytes)) |
| goto out_check; |
| if (!btrfs_inc_nocow_writers(root->fs_info, |
| disk_bytenr)) |
| goto out_check; |
| nocow = 1; |
| } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { |
| extent_end = found_key.offset + |
| btrfs_file_extent_inline_len(leaf, |
| path->slots[0], fi); |
| extent_end = ALIGN(extent_end, root->sectorsize); |
| } else { |
| BUG_ON(1); |
| } |
| out_check: |
| if (extent_end <= start) { |
| path->slots[0]++; |
| if (!nolock && nocow) |
| btrfs_end_write_no_snapshoting(root); |
| if (nocow) |
| btrfs_dec_nocow_writers(root->fs_info, |
| disk_bytenr); |
| goto next_slot; |
| } |
| if (!nocow) { |
| if (cow_start == (u64)-1) |
| cow_start = cur_offset; |
| cur_offset = extent_end; |
| if (cur_offset > end) |
| break; |
| path->slots[0]++; |
| goto next_slot; |
| } |
| |
| btrfs_release_path(path); |
| if (cow_start != (u64)-1) { |
| ret = cow_file_range(inode, locked_page, |
| cow_start, found_key.offset - 1, |
| page_started, nr_written, 1); |
| if (ret) { |
| if (!nolock && nocow) |
| btrfs_end_write_no_snapshoting(root); |
| if (nocow) |
| btrfs_dec_nocow_writers(root->fs_info, |
| disk_bytenr); |
| goto error; |
| } |
| cow_start = (u64)-1; |
| } |
| |
| if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { |
| struct extent_map *em; |
| struct extent_map_tree *em_tree; |
| em_tree = &BTRFS_I(inode)->extent_tree; |
| em = alloc_extent_map(); |
| BUG_ON(!em); /* -ENOMEM */ |
| em->start = cur_offset; |
| em->orig_start = found_key.offset - extent_offset; |
| em->len = num_bytes; |
| em->block_len = num_bytes; |
| em->block_start = disk_bytenr; |
| em->orig_block_len = disk_num_bytes; |
| em->ram_bytes = ram_bytes; |
| em->bdev = root->fs_info->fs_devices->latest_bdev; |
| em->mod_start = em->start; |
| em->mod_len = em->len; |
| set_bit(EXTENT_FLAG_PINNED, &em->flags); |
| set_bit(EXTENT_FLAG_FILLING, &em->flags); |
| em->generation = -1; |
| while (1) { |
| write_lock(&em_tree->lock); |
| ret = add_extent_mapping(em_tree, em, 1); |
| write_unlock(&em_tree->lock); |
| if (ret != -EEXIST) { |
| free_extent_map(em); |
| break; |
| } |
| btrfs_drop_extent_cache(inode, em->start, |
| em->start + em->len - 1, 0); |
| } |
| type = BTRFS_ORDERED_PREALLOC; |
| } else { |
| type = BTRFS_ORDERED_NOCOW; |
| } |
| |
| ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr, |
| num_bytes, num_bytes, type); |
| if (nocow) |
| btrfs_dec_nocow_writers(root->fs_info, disk_bytenr); |
| BUG_ON(ret); /* -ENOMEM */ |
| |
| if (root->root_key.objectid == |
| BTRFS_DATA_RELOC_TREE_OBJECTID) { |
| ret = btrfs_reloc_clone_csums(inode, cur_offset, |
| num_bytes); |
| if (ret) { |
| if (!nolock && nocow) |
| btrfs_end_write_no_snapshoting(root); |
| goto error; |
| } |
| } |
| |
| extent_clear_unlock_delalloc(inode, cur_offset, |
| cur_offset + num_bytes - 1, |
| locked_page, EXTENT_LOCKED | |
| EXTENT_DELALLOC, PAGE_UNLOCK | |
| PAGE_SET_PRIVATE2); |
| if (!nolock && nocow) |
| btrfs_end_write_no_snapshoting(root); |
| cur_offset = extent_end; |
| if (cur_offset > end) |
| break; |
| } |
| btrfs_release_path(path); |
| |
| if (cur_offset <= end && cow_start == (u64)-1) { |
| cow_start = cur_offset; |
| cur_offset = end; |
| } |
| |
| if (cow_start != (u64)-1) { |
| ret = cow_file_range(inode, locked_page, cow_start, end, |
| page_started, nr_written, 1); |
| if (ret) |
| goto error; |
| } |
| |
| error: |
| err = btrfs_end_transaction(trans, root); |
| if (!ret) |
| ret = err; |
| |
| if (ret && cur_offset < end) |
| extent_clear_unlock_delalloc(inode, cur_offset, end, |
| locked_page, EXTENT_LOCKED | |
| EXTENT_DELALLOC | EXTENT_DEFRAG | |
| EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | |
| PAGE_CLEAR_DIRTY | |
| PAGE_SET_WRITEBACK | |
| PAGE_END_WRITEBACK); |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| static inline int need_force_cow(struct inode *inode, u64 start, u64 end) |
| { |
| |
| if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && |
| !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)) |
| return 0; |
| |
| /* |
| * @defrag_bytes is a hint value, no spinlock held here, |
| * if is not zero, it means the file is defragging. |
| * Force cow if given extent needs to be defragged. |
| */ |
| if (BTRFS_I(inode)->defrag_bytes && |
| test_range_bit(&BTRFS_I(inode)->io_tree, start, end, |
| EXTENT_DEFRAG, 0, NULL)) |
| return 1; |
| |
| return 0; |
| } |
| |
| /* |
| * extent_io.c call back to do delayed allocation processing |
| */ |
| static int run_delalloc_range(struct inode *inode, struct page *locked_page, |
| u64 start, u64 end, int *page_started, |
| unsigned long *nr_written) |
| { |
| int ret; |
| int force_cow = need_force_cow(inode, start, end); |
| |
| if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) { |
| ret = run_delalloc_nocow(inode, locked_page, start, end, |
| page_started, 1, nr_written); |
| } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) { |
| ret = run_delalloc_nocow(inode, locked_page, start, end, |
| page_started, 0, nr_written); |
| } else if (!inode_need_compress(inode)) { |
| ret = cow_file_range(inode, locked_page, start, end, |
| page_started, nr_written, 1); |
| } else { |
| set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, |
| &BTRFS_I(inode)->runtime_flags); |
| ret = cow_file_range_async(inode, locked_page, start, end, |
| page_started, nr_written); |
| } |
| return ret; |
| } |
| |
| static void btrfs_split_extent_hook(struct inode *inode, |
| struct extent_state *orig, u64 split) |
| { |
| u64 size; |
| |
| /* not delalloc, ignore it */ |
| if (!(orig->state & EXTENT_DELALLOC)) |
| return; |
| |
| size = orig->end - orig->start + 1; |
| if (size > BTRFS_MAX_EXTENT_SIZE) { |
| u64 num_extents; |
| u64 new_size; |
| |
| /* |
| * See the explanation in btrfs_merge_extent_hook, the same |
| * applies here, just in reverse. |
| */ |
| new_size = orig->end - split + 1; |
| num_extents = div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1, |
| BTRFS_MAX_EXTENT_SIZE); |
| new_size = split - orig->start; |
| num_extents += div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1, |
| BTRFS_MAX_EXTENT_SIZE); |
| if (div64_u64(size + BTRFS_MAX_EXTENT_SIZE - 1, |
| BTRFS_MAX_EXTENT_SIZE) >= num_extents) |
| return; |
| } |
| |
| spin_lock(&BTRFS_I(inode)->lock); |
| BTRFS_I(inode)->outstanding_extents++; |
| spin_unlock(&BTRFS_I(inode)->lock); |
| } |
| |
| /* |
| * extent_io.c merge_extent_hook, used to track merged delayed allocation |
| * extents so we can keep track of new extents that are just merged onto old |
| * extents, such as when we are doing sequential writes, so we can properly |
| * account for the metadata space we'll need. |
| */ |
| static void btrfs_merge_extent_hook(struct inode *inode, |
| struct extent_state *new, |
| struct extent_state *other) |
| { |
| u64 new_size, old_size; |
| u64 num_extents; |
| |
| /* not delalloc, ignore it */ |
| if (!(other->state & EXTENT_DELALLOC)) |
| return; |
| |
| if (new->start > other->start) |
| new_size = new->end - other->start + 1; |
| else |
| new_size = other->end - new->start + 1; |
| |
| /* we're not bigger than the max, unreserve the space and go */ |
| if (new_size <= BTRFS_MAX_EXTENT_SIZE) { |
| spin_lock(&BTRFS_I(inode)->lock); |
| BTRFS_I(inode)->outstanding_extents--; |
| spin_unlock(&BTRFS_I(inode)->lock); |
| return; |
| } |
| |
| /* |
| * We have to add up either side to figure out how many extents were |
| * accounted for before we merged into one big extent. If the number of |
| * extents we accounted for is <= the amount we need for the new range |
| * then we can return, otherwise drop. Think of it like this |
| * |
| * [ 4k][MAX_SIZE] |
| * |
| * So we've grown the extent by a MAX_SIZE extent, this would mean we |
| * need 2 outstanding extents, on one side we have 1 and the other side |
| * we have 1 so they are == and we can return. But in this case |
| * |
| * [MAX_SIZE+4k][MAX_SIZE+4k] |
| * |
| * Each range on their own accounts for 2 extents, but merged together |
| * they are only 3 extents worth of accounting, so we need to drop in |
| * this case. |
| */ |
| old_size = other->end - other->start + 1; |
| num_extents = div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1, |
| BTRFS_MAX_EXTENT_SIZE); |
| old_size = new->end - new->start + 1; |
| num_extents += div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1, |
| BTRFS_MAX_EXTENT_SIZE); |
| |
| if (div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1, |
| BTRFS_MAX_EXTENT_SIZE) >= num_extents) |
| return; |
| |
| spin_lock(&BTRFS_I(inode)->lock); |
| BTRFS_I(inode)->outstanding_extents--; |
| spin_unlock(&BTRFS_I(inode)->lock); |
| } |
| |
| static void btrfs_add_delalloc_inodes(struct btrfs_root *root, |
| struct inode *inode) |
| { |
| spin_lock(&root->delalloc_lock); |
| if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) { |
| list_add_tail(&BTRFS_I(inode)->delalloc_inodes, |
| &root->delalloc_inodes); |
| set_bit(BTRFS_INODE_IN_DELALLOC_LIST, |
| &BTRFS_I(inode)->runtime_flags); |
| root->nr_delalloc_inodes++; |
| if (root->nr_delalloc_inodes == 1) { |
| spin_lock(&root->fs_info->delalloc_root_lock); |
| BUG_ON(!list_empty(&root->delalloc_root)); |
| list_add_tail(&root->delalloc_root, |
| &root->fs_info->delalloc_roots); |
| spin_unlock(&root->fs_info->delalloc_root_lock); |
| } |
| } |
| spin_unlock(&root->delalloc_lock); |
| } |
| |
| static void btrfs_del_delalloc_inode(struct btrfs_root *root, |
| struct inode *inode) |
| { |
| spin_lock(&root->delalloc_lock); |
| if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) { |
| list_del_init(&BTRFS_I(inode)->delalloc_inodes); |
| clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, |
| &BTRFS_I(inode)->runtime_flags); |
| root->nr_delalloc_inodes--; |
| if (!root->nr_delalloc_inodes) { |
| spin_lock(&root->fs_info->delalloc_root_lock); |
| BUG_ON(list_empty(&root->delalloc_root)); |
| list_del_init(&root->delalloc_root); |
| spin_unlock(&root->fs_info->delalloc_root_lock); |
| } |
| } |
| spin_unlock(&root->delalloc_lock); |
| } |
| |
| /* |
| * extent_io.c set_bit_hook, used to track delayed allocation |
| * bytes in this file, and to maintain the list of inodes that |
| * have pending delalloc work to be done. |
| */ |
| static void btrfs_set_bit_hook(struct inode *inode, |
| struct extent_state *state, unsigned *bits) |
| { |
| |
| if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC)) |
| WARN_ON(1); |
| /* |
| * set_bit and clear bit hooks normally require _irqsave/restore |
| * but in this case, we are only testing for the DELALLOC |
| * bit, which is only set or cleared with irqs on |
| */ |
| if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| u64 len = state->end + 1 - state->start; |
| bool do_list = !btrfs_is_free_space_inode(inode); |
| |
| if (*bits & EXTENT_FIRST_DELALLOC) { |
| *bits &= ~EXTENT_FIRST_DELALLOC; |
| } else { |
| spin_lock(&BTRFS_I(inode)->lock); |
| BTRFS_I(inode)->outstanding_extents++; |
| spin_unlock(&BTRFS_I(inode)->lock); |
| } |
| |
| /* For sanity tests */ |
| if (btrfs_test_is_dummy_root(root)) |
| return; |
| |
| __percpu_counter_add(&root->fs_info->delalloc_bytes, len, |
| root->fs_info->delalloc_batch); |
| spin_lock(&BTRFS_I(inode)->lock); |
| BTRFS_I(inode)->delalloc_bytes += len; |
| if (*bits & EXTENT_DEFRAG) |
| BTRFS_I(inode)->defrag_bytes += len; |
| if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST, |
| &BTRFS_I(inode)->runtime_flags)) |
| btrfs_add_delalloc_inodes(root, inode); |
| spin_unlock(&BTRFS_I(inode)->lock); |
| } |
| } |
| |
| /* |
| * extent_io.c clear_bit_hook, see set_bit_hook for why |
| */ |
| static void btrfs_clear_bit_hook(struct inode *inode, |
| struct extent_state *state, |
| unsigned *bits) |
| { |
| u64 len = state->end + 1 - state->start; |
| u64 num_extents = div64_u64(len + BTRFS_MAX_EXTENT_SIZE -1, |
| BTRFS_MAX_EXTENT_SIZE); |
| |
| spin_lock(&BTRFS_I(inode)->lock); |
| if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) |
| BTRFS_I(inode)->defrag_bytes -= len; |
| spin_unlock(&BTRFS_I(inode)->lock); |
| |
| /* |
| * set_bit and clear bit hooks normally require _irqsave/restore |
| * but in this case, we are only testing for the DELALLOC |
| * bit, which is only set or cleared with irqs on |
| */ |
| if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| bool do_list = !btrfs_is_free_space_inode(inode); |
| |
| if (*bits & EXTENT_FIRST_DELALLOC) { |
| *bits &= ~EXTENT_FIRST_DELALLOC; |
| } else if (!(*bits & EXTENT_DO_ACCOUNTING)) { |
| spin_lock(&BTRFS_I(inode)->lock); |
| BTRFS_I(inode)->outstanding_extents -= num_extents; |
| spin_unlock(&BTRFS_I(inode)->lock); |
| } |
| |
| /* |
| * We don't reserve metadata space for space cache inodes so we |
| * don't need to call dellalloc_release_metadata if there is an |
| * error. |
| */ |
| if (*bits & EXTENT_DO_ACCOUNTING && |
| root != root->fs_info->tree_root) |
| btrfs_delalloc_release_metadata(inode, len); |
| |
| /* For sanity tests. */ |
| if (btrfs_test_is_dummy_root(root)) |
| return; |
| |
| if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID |
| && do_list && !(state->state & EXTENT_NORESERVE)) |
| btrfs_free_reserved_data_space_noquota(inode, |
| state->start, len); |
| |
| __percpu_counter_add(&root->fs_info->delalloc_bytes, -len, |
| root->fs_info->delalloc_batch); |
| spin_lock(&BTRFS_I(inode)->lock); |
| BTRFS_I(inode)->delalloc_bytes -= len; |
| if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 && |
| test_bit(BTRFS_INODE_IN_DELALLOC_LIST, |
| &BTRFS_I(inode)->runtime_flags)) |
| btrfs_del_delalloc_inode(root, inode); |
| spin_unlock(&BTRFS_I(inode)->lock); |
| } |
| } |
| |
| /* |
| * extent_io.c merge_bio_hook, this must check the chunk tree to make sure |
| * we don't create bios that span stripes or chunks |
| */ |
| int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset, |
| size_t size, struct bio *bio, |
| unsigned long bio_flags) |
| { |
| struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; |
| u64 logical = (u64)bio->bi_iter.bi_sector << 9; |
| u64 length = 0; |
| u64 map_length; |
| int ret; |
| |
| if (bio_flags & EXTENT_BIO_COMPRESSED) |
| return 0; |
| |
| length = bio->bi_iter.bi_size; |
| map_length = length; |
| ret = btrfs_map_block(root->fs_info, rw, logical, |
| &map_length, NULL, 0); |
| /* Will always return 0 with map_multi == NULL */ |
| BUG_ON(ret < 0); |
| if (map_length < length + size) |
| return 1; |
| return 0; |
| } |
| |
| /* |
| * in order to insert checksums into the metadata in large chunks, |
| * we wait until bio submission time. All the pages in the bio are |
| * checksummed and sums are attached onto the ordered extent record. |
| * |
| * At IO completion time the cums attached on the ordered extent record |
| * are inserted into the btree |
| */ |
| static int __btrfs_submit_bio_start(struct inode *inode, int rw, |
| struct bio *bio, int mirror_num, |
| unsigned long bio_flags, |
| u64 bio_offset) |
| { |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| int ret = 0; |
| |
| ret = btrfs_csum_one_bio(root, inode, bio, 0, 0); |
| BUG_ON(ret); /* -ENOMEM */ |
| return 0; |
| } |
| |
| /* |
| * in order to insert checksums into the metadata in large chunks, |
| * we wait until bio submission time. All the pages in the bio are |
| * checksummed and sums are attached onto the ordered extent record. |
| * |
| * At IO completion time the cums attached on the ordered extent record |
| * are inserted into the btree |
| */ |
| static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio, |
| int mirror_num, unsigned long bio_flags, |
| u64 bio_offset) |
| { |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| int ret; |
| |
| ret = btrfs_map_bio(root, rw, bio, mirror_num, 1); |
| if (ret) { |
| bio->bi_error = ret; |
| bio_endio(bio); |
| } |
| return ret; |
| } |
| |
| /* |
| * extent_io.c submission hook. This does the right thing for csum calculation |
| * on write, or reading the csums from the tree before a read |
| */ |
| static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, |
| int mirror_num, unsigned long bio_flags, |
| u64 bio_offset) |
| { |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA; |
| int ret = 0; |
| int skip_sum; |
| int async = !atomic_read(&BTRFS_I(inode)->sync_writers); |
| |
| skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; |
| |
| if (btrfs_is_free_space_inode(inode)) |
| metadata = BTRFS_WQ_ENDIO_FREE_SPACE; |
| |
| if (!(rw & REQ_WRITE)) { |
| ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata); |
| if (ret) |
| goto out; |
| |
| if (bio_flags & EXTENT_BIO_COMPRESSED) { |
| ret = btrfs_submit_compressed_read(inode, bio, |
| mirror_num, |
| bio_flags); |
| goto out; |
| } else if (!skip_sum) { |
| ret = btrfs_lookup_bio_sums(root, inode, bio, NULL); |
| if (ret) |
| goto out; |
| } |
| goto mapit; |
| } else if (async && !skip_sum) { |
| /* csum items have already been cloned */ |
| if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) |
| goto mapit; |
| /* we're doing a write, do the async checksumming */ |
| ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, |
| inode, rw, bio, mirror_num, |
| bio_flags, bio_offset, |
| __btrfs_submit_bio_start, |
| __btrfs_submit_bio_done); |
| goto out; |
| } else if (!skip_sum) { |
| ret = btrfs_csum_one_bio(root, inode, bio, 0, 0); |
| if (ret) |
| goto out; |
| } |
| |
| mapit: |
| ret = btrfs_map_bio(root, rw, bio, mirror_num, 0); |
| |
| out: |
| if (ret < 0) { |
| bio->bi_error = ret; |
| bio_endio(bio); |
| } |
| return ret; |
| } |
| |
| /* |
| * given a list of ordered sums record them in the inode. This happens |
| * at IO completion time based on sums calculated at bio submission time. |
| */ |
| static noinline int add_pending_csums(struct btrfs_trans_handle *trans, |
| struct inode *inode, u64 file_offset, |
| struct list_head *list) |
| { |
| struct btrfs_ordered_sum *sum; |
| |
| list_for_each_entry(sum, list, list) { |
| trans->adding_csums = 1; |
| btrfs_csum_file_blocks(trans, |
| BTRFS_I(inode)->root->fs_info->csum_root, sum); |
| trans->adding_csums = 0; |
| } |
| return 0; |
| } |
| |
| int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end, |
| struct extent_state **cached_state) |
| { |
| WARN_ON((end & (PAGE_SIZE - 1)) == 0); |
| return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end, |
| cached_state, GFP_NOFS); |
| } |
| |
| /* see btrfs_writepage_start_hook for details on why this is required */ |
| struct btrfs_writepage_fixup { |
| struct page *page; |
| struct btrfs_work work; |
| }; |
| |
| static void btrfs_writepage_fixup_worker(struct btrfs_work *work) |
| { |
| struct btrfs_writepage_fixup *fixup; |
| struct btrfs_ordered_extent *ordered; |
| struct extent_state *cached_state = NULL; |
| struct page *page; |
| struct inode *inode; |
| u64 page_start; |
| u64 page_end; |
| int ret; |
| |
| fixup = container_of(work, struct btrfs_writepage_fixup, work); |
| page = fixup->page; |
| again: |
| lock_page(page); |
| if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { |
| ClearPageChecked(page); |
| goto out_page; |
| } |
| |
| inode = page->mapping->host; |
| page_start = page_offset(page); |
| page_end = page_offset(page) + PAGE_SIZE - 1; |
| |
| lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, |
| &cached_state); |
| |
| /* already ordered? We're done */ |
| if (PagePrivate2(page)) |
| goto out; |
| |
| ordered = btrfs_lookup_ordered_range(inode, page_start, |
| PAGE_SIZE); |
| if (ordered) { |
| unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, |
| page_end, &cached_state, GFP_NOFS); |
| unlock_page(page); |
| btrfs_start_ordered_extent(inode, ordered, 1); |
| btrfs_put_ordered_extent(ordered); |
| goto again; |
| } |
| |
| ret = btrfs_delalloc_reserve_space(inode, page_start, |
| PAGE_SIZE); |
| if (ret) { |
| mapping_set_error(page->mapping, ret); |
| end_extent_writepage(page, ret, page_start, page_end); |
| ClearPageChecked(page); |
| goto out; |
| } |
| |
| btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state); |
| ClearPageChecked(page); |
| set_page_dirty(page); |
| out: |
| unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end, |
| &cached_state, GFP_NOFS); |
| out_page: |
| unlock_page(page); |
| put_page(page); |
| kfree(fixup); |
| } |
| |
| /* |
| * There are a few paths in the higher layers of the kernel that directly |
| * set the page dirty bit without asking the filesystem if it is a |
| * good idea. This causes problems because we want to make sure COW |
| * properly happens and the data=ordered rules are followed. |
| * |
| * In our case any range that doesn't have the ORDERED bit set |
| * hasn't been properly setup for IO. We kick off an async process |
| * to fix it up. The async helper will wait for ordered extents, set |
| * the delalloc bit and make it safe to write the page. |
| */ |
| static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end) |
| { |
| struct inode *inode = page->mapping->host; |
| struct btrfs_writepage_fixup *fixup; |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| |
| /* this page is properly in the ordered list */ |
| if (TestClearPagePrivate2(page)) |
| return 0; |
| |
| if (PageChecked(page)) |
| return -EAGAIN; |
| |
| fixup = kzalloc(sizeof(*fixup), GFP_NOFS); |
| if (!fixup) |
| return -EAGAIN; |
| |
| SetPageChecked(page); |
| get_page(page); |
| btrfs_init_work(&fixup->work, btrfs_fixup_helper, |
| btrfs_writepage_fixup_worker, NULL, NULL); |
| fixup->page = page; |
| btrfs_queue_work(root->fs_info->fixup_workers, &fixup->work); |
| return -EBUSY; |
| } |
| |
| static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, |
| struct inode *inode, u64 file_pos, |
| u64 disk_bytenr, u64 disk_num_bytes, |
| u64 num_bytes, u64 ram_bytes, |
| u8 compression, u8 encryption, |
| u16 other_encoding, int extent_type) |
| { |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| struct btrfs_file_extent_item *fi; |
| struct btrfs_path *path; |
| struct extent_buffer *leaf; |
| struct btrfs_key ins; |
| int extent_inserted = 0; |
| int ret; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| /* |
| * we may be replacing one extent in the tree with another. |
| * The new extent is pinned in the extent map, and we don't want |
| * to drop it from the cache until it is completely in the btree. |
| * |
| * So, tell btrfs_drop_extents to leave this extent in the cache. |
| * the caller is expected to unpin it and allow it to be merged |
| * with the others. |
| */ |
| ret = __btrfs_drop_extents(trans, root, inode, path, file_pos, |
| file_pos + num_bytes, NULL, 0, |
| 1, sizeof(*fi), &extent_inserted); |
| if (ret) |
| goto out; |
| |
| if (!extent_inserted) { |
| ins.objectid = btrfs_ino(inode); |
| ins.offset = file_pos; |
| ins.type = BTRFS_EXTENT_DATA_KEY; |
| |
| path->leave_spinning = 1; |
| ret = btrfs_insert_empty_item(trans, root, path, &ins, |
| sizeof(*fi)); |
| if (ret) |
| goto out; |
| } |
| leaf = path->nodes[0]; |
| fi = btrfs_item_ptr(leaf, path->slots[0], |
| struct btrfs_file_extent_item); |
| btrfs_set_file_extent_generation(leaf, fi, trans->transid); |
| btrfs_set_file_extent_type(leaf, fi, extent_type); |
| btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr); |
| btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes); |
| btrfs_set_file_extent_offset(leaf, fi, 0); |
| btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); |
| btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes); |
| btrfs_set_file_extent_compression(leaf, fi, compression); |
| btrfs_set_file_extent_encryption(leaf, fi, encryption); |
| btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding); |
| |
| btrfs_mark_buffer_dirty(leaf); |
| btrfs_release_path(path); |
| |
| inode_add_bytes(inode, num_bytes); |
| |
| ins.objectid = disk_bytenr; |
| ins.offset = disk_num_bytes; |
| ins.type = BTRFS_EXTENT_ITEM_KEY; |
| ret = btrfs_alloc_reserved_file_extent(trans, root, |
| root->root_key.objectid, |
| btrfs_ino(inode), file_pos, |
| ram_bytes, &ins); |
| /* |
| * Release the reserved range from inode dirty range map, as it is |
| * already moved into delayed_ref_head |
| */ |
| btrfs_qgroup_release_data(inode, file_pos, ram_bytes); |
| out: |
| btrfs_free_path(path); |
| |
| return ret; |
| } |
| |
| /* snapshot-aware defrag */ |
| struct sa_defrag_extent_backref { |
| struct rb_node node; |
| struct old_sa_defrag_extent *old; |
| u64 root_id; |
| u64 inum; |
| u64 file_pos; |
| u64 extent_offset; |
| u64 num_bytes; |
| u64 generation; |
| }; |
| |
| struct old_sa_defrag_extent { |
| struct list_head list; |
| struct new_sa_defrag_extent *new; |
| |
| u64 extent_offset; |
| u64 bytenr; |
| u64 offset; |
| u64 len; |
| int count; |
| }; |
| |
| struct new_sa_defrag_extent { |
| struct rb_root root; |
| struct list_head head; |
| struct btrfs_path *path; |
| struct inode *inode; |
| u64 file_pos; |
| u64 len; |
| u64 bytenr; |
| u64 disk_len; |
| u8 compress_type; |
| }; |
| |
| static int backref_comp(struct sa_defrag_extent_backref *b1, |
| struct sa_defrag_extent_backref *b2) |
| { |
| if (b1->root_id < b2->root_id) |
| return -1; |
| else if (b1->root_id > b2->root_id) |
| return 1; |
| |
| if (b1->inum < b2->inum) |
| return -1; |
| else if (b1->inum > b2->inum) |
| return 1; |
| |
| if (b1->file_pos < b2->file_pos) |
| return -1; |
| else if (b1->file_pos > b2->file_pos) |
| return 1; |
| |
| /* |
| * [------------------------------] ===> (a range of space) |
| * |<--->| |<---->| =============> (fs/file tree A) |
| * |<---------------------------->| ===> (fs/file tree B) |
| * |
| * A range of space can refer to two file extents in one tree while |
| * refer to only one file extent in another tree. |
| * |
| * So we may process a disk offset more than one time(two extents in A) |
| * and locate at the same extent(one extent in B), then insert two same |
| * backrefs(both refer to the extent in B). |
| */ |
| return 0; |
| } |
| |
| static void backref_insert(struct rb_root *root, |
| struct sa_defrag_extent_backref *backref) |
| { |
| struct rb_node **p = &root->rb_node; |
| struct rb_node *parent = NULL; |
| struct sa_defrag_extent_backref *entry; |
| int ret; |
| |
| while (*p) { |
| parent = *p; |
| entry = rb_entry(parent, struct sa_defrag_extent_backref, node); |
| |
| ret = backref_comp(backref, entry); |
| if (ret < 0) |
| p = &(*p)->rb_left; |
| else |
| p = &(*p)->rb_right; |
| } |
| |
| rb_link_node(&backref->node, parent, p); |
| rb_insert_color(&backref->node, root); |
| } |
| |
| /* |
| * Note the backref might has changed, and in this case we just return 0. |
| */ |
| static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id, |
| void *ctx) |
| { |
| struct btrfs_file_extent_item *extent; |
| struct btrfs_fs_info *fs_info; |
| struct old_sa_defrag_extent *old = ctx; |
| struct new_sa_defrag_extent *new = old->new; |
| struct btrfs_path *path = new->path; |
| struct btrfs_key key; |
| struct btrfs_root *root; |
| struct sa_defrag_extent_backref *backref; |
| struct extent_buffer *leaf; |
| struct inode *inode = new->inode; |
| int slot; |
| int ret; |
| u64 extent_offset; |
| u64 num_bytes; |
| |
| if (BTRFS_I(inode)->root->root_key.objectid == root_id && |
| inum == btrfs_ino(inode)) |
| return 0; |
| |
| key.objectid = root_id; |
| key.type = BTRFS_ROOT_ITEM_KEY; |
| key.offset = (u64)-1; |
| |
| fs_info = BTRFS_I(inode)->root->fs_info; |
| root = btrfs_read_fs_root_no_name(fs_info, &key); |
| if (IS_ERR(root)) { |
| if (PTR_ERR(root) == -ENOENT) |
| return 0; |
| WARN_ON(1); |
| pr_debug("inum=%llu, offset=%llu, root_id=%llu\n", |
| inum, offset, root_id); |
| return PTR_ERR(root); |
| } |
| |
| key.objectid = inum; |
| key.type = BTRFS_EXTENT_DATA_KEY; |
| if (offset > (u64)-1 << 32) |
| key.offset = 0; |
| else |
| key.offset = offset; |
| |
| ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); |
| if (WARN_ON(ret < 0)) |
| return ret; |
| ret = 0; |
| |
| while (1) { |
| cond_resched(); |
| |
| leaf = path->nodes[0]; |
| slot = path->slots[0]; |
| |
| if (slot >= btrfs_header_nritems(leaf)) { |
| ret = btrfs_next_leaf(root, path); |
| if (ret < 0) { |
| goto out; |
| } else if (ret > 0) { |
| ret = 0; |
| goto out; |
| } |
| continue; |
| } |
| |
| path->slots[0]++; |
| |
| btrfs_item_key_to_cpu(leaf, &key, slot); |
| |
| if (key.objectid > inum) |
| goto out; |
| |
| if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY) |
| continue; |
| |
| extent = btrfs_item_ptr(leaf, slot, |
| struct btrfs_file_extent_item); |
| |
| if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr) |
| continue; |
| |
| /* |
| * 'offset' refers to the exact key.offset, |
| * NOT the 'offset' field in btrfs_extent_data_ref, ie. |
| * (key.offset - extent_offset). |
| */ |
| if (key.offset != offset) |
| continue; |
| |
| extent_offset = btrfs_file_extent_offset(leaf, extent); |
| num_bytes = btrfs_file_extent_num_bytes(leaf, extent); |
| |
| if (extent_offset >= old->extent_offset + old->offset + |
| old->len || extent_offset + num_bytes <= |
| old->extent_offset + old->offset) |
| continue; |
| break; |
| } |
| |
| backref = kmalloc(sizeof(*backref), GFP_NOFS); |
| if (!backref) { |
| ret = -ENOENT; |
| goto out; |
| } |
| |
| backref->root_id = root_id; |
| backref->inum = inum; |
| backref->file_pos = offset; |
| backref->num_bytes = num_bytes; |
| backref->extent_offset = extent_offset; |
| backref->generation = btrfs_file_extent_generation(leaf, extent); |
| backref->old = old; |
| backref_insert(&new->root, backref); |
| old->count++; |
| out: |
| btrfs_release_path(path); |
| WARN_ON(ret); |
| return ret; |
| } |
| |
| static noinline bool record_extent_backrefs(struct btrfs_path *path, |
| struct new_sa_defrag_extent *new) |
| { |
| struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info; |
| struct old_sa_defrag_extent *old, *tmp; |
| int ret; |
| |
| new->path = path; |
| |
| list_for_each_entry_safe(old, tmp, &new->head, list) { |
| ret = iterate_inodes_from_logical(old->bytenr + |
| old->extent_offset, fs_info, |
| path, record_one_backref, |
| old); |
| if (ret < 0 && ret != -ENOENT) |
| return false; |
| |
| /* no backref to be processed for this extent */ |
| if (!old->count) { |
| list_del(&old->list); |
| kfree(old); |
| } |
| } |
| |
| if (list_empty(&new->head)) |
| return false; |
| |
| return true; |
| } |
| |
| static int relink_is_mergable(struct extent_buffer *leaf, |
| struct btrfs_file_extent_item *fi, |
| struct new_sa_defrag_extent *new) |
| { |
| if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr) |
| return 0; |
| |
| if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) |
| return 0; |
| |
| if (btrfs_file_extent_compression(leaf, fi) != new->compress_type) |
| return 0; |
| |
| if (btrfs_file_extent_encryption(leaf, fi) || |
| btrfs_file_extent_other_encoding(leaf, fi)) |
| return 0; |
| |
| return 1; |
| } |
| |
| /* |
| * Note the backref might has changed, and in this case we just return 0. |
| */ |
| static noinline int relink_extent_backref(struct btrfs_path *path, |
| struct sa_defrag_extent_backref *prev, |
| struct sa_defrag_extent_backref *backref) |
| { |
| struct btrfs_file_extent_item *extent; |
| struct btrfs_file_extent_item *item; |
| struct btrfs_ordered_extent *ordered; |
| struct btrfs_trans_handle *trans; |
| struct btrfs_fs_info *fs_info; |
| struct btrfs_root *root; |
| struct btrfs_key key; |
| struct extent_buffer *leaf; |
| struct old_sa_defrag_extent *old = backref->old; |
| struct new_sa_defrag_extent *new = old->new; |
| struct inode *src_inode = new->inode; |
| struct inode *inode; |
| struct extent_state *cached = NULL; |
| int ret = 0; |
| u64 start; |
| u64 len; |
| u64 lock_start; |
| u64 lock_end; |
| bool merge = false; |
| int index; |
| |
| if (prev && prev->root_id == backref->root_id && |
| prev->inum == backref->inum && |
| prev->file_pos + prev->num_bytes == backref->file_pos) |
| merge = true; |
| |
| /* step 1: get root */ |
| key.objectid = backref->root_id; |
| key.type = BTRFS_ROOT_ITEM_KEY; |
| key.offset = (u64)-1; |
| |
| fs_info = BTRFS_I(src_inode)->root->fs_info; |
| index = srcu_read_lock(&fs_info->subvol_srcu); |
| |
| root = btrfs_read_fs_root_no_name(fs_info, &key); |
| if (IS_ERR(root)) { |
| srcu_read_unlock(&fs_info->subvol_srcu, index); |
| if (PTR_ERR(root) == -ENOENT) |
| return 0; |
| return PTR_ERR(root); |
| } |
| |
| if (btrfs_root_readonly(root)) { |
| srcu_read_unlock(&fs_info->subvol_srcu, index); |
| return 0; |
| } |
| |
| /* step 2: get inode */ |
| key.objectid = backref->inum; |
| key.type = BTRFS_INODE_ITEM_KEY; |
| key.offset = 0; |
| |
| inode = btrfs_iget(fs_info->sb, &key, root, NULL); |
| if (IS_ERR(inode)) { |
| srcu_read_unlock(&fs_info->subvol_srcu, index); |
| return 0; |
| } |
| |
| srcu_read_unlock(&fs_info->subvol_srcu, index); |
| |
| /* step 3: relink backref */ |
| lock_start = backref->file_pos; |
| lock_end = backref->file_pos + backref->num_bytes - 1; |
| lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end, |
| &cached); |
| |
| ordered = btrfs_lookup_first_ordered_extent(inode, lock_end); |
| if (ordered) { |
| btrfs_put_ordered_extent(ordered); |
| goto out_unlock; |
| } |
| |
| trans = btrfs_join_transaction(root); |
| if (IS_ERR(trans)) { |
| ret = PTR_ERR(trans); |
| goto out_unlock; |
| } |
| |
| key.objectid = backref->inum; |
| key.type = BTRFS_EXTENT_DATA_KEY; |
| key.offset = backref->file_pos; |
| |
| ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); |
| if (ret < 0) { |
| goto out_free_path; |
| } else if (ret > 0) { |
| ret = 0; |
| goto out_free_path; |
| } |
| |
| extent = btrfs_item_ptr(path->nodes[0], path->slots[0], |
| struct btrfs_file_extent_item); |
| |
| if (btrfs_file_extent_generation(path->nodes[0], extent) != |
| backref->generation) |
| goto out_free_path; |
| |
| btrfs_release_path(path); |
| |
| start = backref->file_pos; |
| if (backref->extent_offset < old->extent_offset + old->offset) |
| start += old->extent_offset + old->offset - |
| backref->extent_offset; |
| |
| len = min(backref->extent_offset + backref->num_bytes, |
| old->extent_offset + old->offset + old->len); |
| len -= max(backref->extent_offset, old->extent_offset + old->offset); |
| |
| ret = btrfs_drop_extents(trans, root, inode, start, |
| start + len, 1); |
| if (ret) |
| goto out_free_path; |
| again: |
| key.objectid = btrfs_ino(inode); |
| key.type = BTRFS_EXTENT_DATA_KEY; |
| key.offset = start; |
| |
| path->leave_spinning = 1; |
| if (merge) { |
| struct btrfs_file_extent_item *fi; |
| u64 extent_len; |
| struct btrfs_key found_key; |
| |
| ret = btrfs_search_slot(trans, root, &key, path, 0, 1); |
| if (ret < 0) |
| goto out_free_path; |
| |
| path->slots[0]--; |
| leaf = path->nodes[0]; |
| btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); |
| |
| fi = btrfs_item_ptr(leaf, path->slots[0], |
| struct btrfs_file_extent_item); |
| extent_len = btrfs_file_extent_num_bytes(leaf, fi); |
| |
| if (extent_len + found_key.offset == start && |
| relink_is_mergable(leaf, fi, new)) { |
| btrfs_set_file_extent_num_bytes(leaf, fi, |
| extent_len + len); |
| btrfs_mark_buffer_dirty(leaf); |
| inode_add_bytes(inode, len); |
| |
| ret = 1; |
| goto out_free_path; |
| } else { |
| merge = false; |
| btrfs_release_path(path); |
| goto again; |
| } |
| } |
| |
| ret = btrfs_insert_empty_item(trans, root, path, &key, |
| sizeof(*extent)); |
| if (ret) { |
| btrfs_abort_transaction(trans, root, ret); |
| goto out_free_path; |
| } |
| |
| leaf = path->nodes[0]; |
| item = btrfs_item_ptr(leaf, path->slots[0], |
| struct btrfs_file_extent_item); |
| btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr); |
| btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len); |
| btrfs_set_file_extent_offset(leaf, item, start - new->file_pos); |
| btrfs_set_file_extent_num_bytes(leaf, item, len); |
| btrfs_set_file_extent_ram_bytes(leaf, item, new->len); |
| btrfs_set_file_extent_generation(leaf, item, trans->transid); |
| btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG); |
| btrfs_set_file_extent_compression(leaf, item, new->compress_type); |
| btrfs_set_file_extent_encryption(leaf, item, 0); |
| btrfs_set_file_extent_other_encoding(leaf, item, 0); |
| |
| btrfs_mark_buffer_dirty(leaf); |
| inode_add_bytes(inode, len); |
| btrfs_release_path(path); |
| |
| ret = btrfs_inc_extent_ref(trans, root, new->bytenr, |
| new->disk_len, 0, |
| backref->root_id, backref->inum, |
| new->file_pos); /* start - extent_offset */ |
| if (ret) { |
| btrfs_abort_transaction(trans, root, ret); |
| goto out_free_path; |
| } |
| |
| ret = 1; |
| out_free_path: |
| btrfs_release_path(path); |
| path->leave_spinning = 0; |
| btrfs_end_transaction(trans, root); |
| out_unlock: |
| unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end, |
| &cached, GFP_NOFS); |
| iput(inode); |
| return ret; |
| } |
| |
| static void free_sa_defrag_extent(struct new_sa_defrag_extent *new) |
| { |
| struct old_sa_defrag_extent *old, *tmp; |
| |
| if (!new) |
| return; |
| |
| list_for_each_entry_safe(old, tmp, &new->head, list) { |
| kfree(old); |
| } |
| kfree(new); |
| } |
| |
| static void relink_file_extents(struct new_sa_defrag_extent *new) |
| { |
| struct btrfs_path *path; |
| struct sa_defrag_extent_backref *backref; |
| struct sa_defrag_extent_backref *prev = NULL; |
| struct inode *inode; |
| struct btrfs_root *root; |
| struct rb_node *node; |
| int ret; |
| |
| inode = new->inode; |
| root = BTRFS_I(inode)->root; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return; |
| |
| if (!record_extent_backrefs(path, new)) { |
| btrfs_free_path(path); |
| goto out; |
| } |
| btrfs_release_path(path); |
| |
| while (1) { |
| node = rb_first(&new->root); |
| if (!node) |
| break; |
| rb_erase(node, &new->root); |
| |
| backref = rb_entry(node, struct sa_defrag_extent_backref, node); |
| |
| ret = relink_extent_backref(path, prev, backref); |
| WARN_ON(ret < 0); |
| |
| kfree(prev); |
| |
| if (ret == 1) |
| prev = backref; |
| else |
| prev = NULL; |
| cond_resched(); |
| } |
| kfree(prev); |
| |
| btrfs_free_path(path); |
| out: |
| free_sa_defrag_extent(new); |
| |
| atomic_dec(&root->fs_info->defrag_running); |
| wake_up(&root->fs_info->transaction_wait); |
| } |
| |
| static struct new_sa_defrag_extent * |
| record_old_file_extents(struct inode *inode, |
| struct btrfs_ordered_extent *ordered) |
| { |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| struct btrfs_path *path; |
| struct btrfs_key key; |
| struct old_sa_defrag_extent *old; |
| struct new_sa_defrag_extent *new; |
| int ret; |
| |
| new = kmalloc(sizeof(*new), GFP_NOFS); |
| if (!new) |
| return NULL; |
| |
| new->inode = inode; |
| new->file_pos = ordered->file_offset; |
| new->len = ordered->len; |
| new->bytenr = ordered->start; |
| new->disk_len = ordered->disk_len; |
| new->compress_type = ordered->compress_type; |
| new->root = RB_ROOT; |
| INIT_LIST_HEAD(&new->head); |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| goto out_kfree; |
| |
| key.objectid = btrfs_ino(inode); |
| key.type = BTRFS_EXTENT_DATA_KEY; |
| key.offset = new->file_pos; |
| |
| ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); |
| if (ret < 0) |
| goto out_free_path; |
| if (ret > 0 && path->slots[0] > 0) |
| path->slots[0]--; |
| |
| /* find out all the old extents for the file range */ |
| while (1) { |
| struct btrfs_file_extent_item *extent; |
| struct extent_buffer *l; |
| int slot; |
| u64 num_bytes; |
| u64 offset; |
| u64 end; |
| u64 disk_bytenr; |
| u64 extent_offset; |
| |
| l = path->nodes[0]; |
| slot = path->slots[0]; |
| |
| if (slot >= btrfs_header_nritems(l)) { |
| ret = btrfs_next_leaf(root, path); |
| if (ret < 0) |
| goto out_free_path; |
| else if (ret > 0) |
| break; |
| continue; |
| } |
| |
| btrfs_item_key_to_cpu(l, &key, slot); |
| |
| if (key.objectid != btrfs_ino(inode)) |
| break; |
| if (key.type != BTRFS_EXTENT_DATA_KEY) |
| break; |
| if (key.offset >= new->file_pos + new->len) |
| break; |
| |
| extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item); |
| |
| num_bytes = btrfs_file_extent_num_bytes(l, extent); |
| if (key.offset + num_bytes < new->file_pos) |
| goto next; |
| |
| disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent); |
| if (!disk_bytenr) |
| goto next; |
| |
| extent_offset = btrfs_file_extent_offset(l, extent); |
| |
| old = kmalloc(sizeof(*old), GFP_NOFS); |
| if (!old) |
| goto out_free_path; |
| |
| offset = max(new->file_pos, key.offset); |
| end = min(new->file_pos + new->len, key.offset + num_bytes); |
| |
| old->bytenr = disk_bytenr; |
| old->extent_offset = extent_offset; |
| old->offset = offset - key.offset; |
| old->len = end - offset; |
| old->new = new; |
| old->count = 0; |
| list_add_tail(&old->list, &new->head); |
| next: |
| path->slots[0]++; |
| cond_resched(); |
| } |
| |
| btrfs_free_path(path); |
| atomic_inc(&root->fs_info->defrag_running); |
| |
| return new; |
| |
| out_free_path: |
| btrfs_free_path(path); |
| out_kfree: |
| free_sa_defrag_extent(new); |
| return NULL; |
| } |
| |
| static void btrfs_release_delalloc_bytes(struct btrfs_root *root, |
| u64 start, u64 len) |
| { |
| struct btrfs_block_group_cache *cache; |
| |
| cache = btrfs_lookup_block_group(root->fs_info, start); |
| ASSERT(cache); |
| |
| spin_lock(&cache->lock); |
| cache->delalloc_bytes -= len; |
| spin_unlock(&cache->lock); |
| |
| btrfs_put_block_group(cache); |
| } |
| |
| /* as ordered data IO finishes, this gets called so we can finish |
| * an ordered extent if the range of bytes in the file it covers are |
| * fully written. |
| */ |
| static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent) |
| { |
| struct inode *inode = ordered_extent->inode; |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| struct btrfs_trans_handle *trans = NULL; |
| struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; |
| struct extent_state *cached_state = NULL; |
| struct new_sa_defrag_extent *new = NULL; |
| int compress_type = 0; |
| int ret = 0; |
| u64 logical_len = ordered_extent->len; |
| bool nolock; |
| bool truncated = false; |
| |
| nolock = btrfs_is_free_space_inode(inode); |
| |
| if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { |
| ret = -EIO; |
| goto out; |
| } |
| |
| btrfs_free_io_failure_record(inode, ordered_extent->file_offset, |
| ordered_extent->file_offset + |
| ordered_extent->len - 1); |
| |
| if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) { |
| truncated = true; |
| logical_len = ordered_extent->truncated_len; |
| /* Truncated the entire extent, don't bother adding */ |
| if (!logical_len) |
| goto out; |
| } |
| |
| if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { |
| BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */ |
| |
| /* |
| * For mwrite(mmap + memset to write) case, we still reserve |
| * space for NOCOW range. |
| * As NOCOW won't cause a new delayed ref, just free the space |
| */ |
| btrfs_qgroup_free_data(inode, ordered_extent->file_offset, |
| ordered_extent->len); |
| btrfs_ordered_update_i_size(inode, 0, ordered_extent); |
| if (nolock) |
| trans = btrfs_join_transaction_nolock(root); |
| else |
| trans = btrfs_join_transaction(root); |
| if (IS_ERR(trans)) { |
| ret = PTR_ERR(trans); |
| trans = NULL; |
| goto out; |
| } |
| trans->block_rsv = &root->fs_info->delalloc_block_rsv; |
| ret = btrfs_update_inode_fallback(trans, root, inode); |
| if (ret) /* -ENOMEM or corruption */ |
| btrfs_abort_transaction(trans, root, ret); |
| goto out; |
| } |
| |
| lock_extent_bits(io_tree, ordered_extent->file_offset, |
| ordered_extent->file_offset + ordered_extent->len - 1, |
| &cached_state); |
| |
| ret = test_range_bit(io_tree, ordered_extent->file_offset, |
| ordered_extent->file_offset + ordered_extent->len - 1, |
| EXTENT_DEFRAG, 1, cached_state); |
| if (ret) { |
| u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item); |
| if (0 && last_snapshot >= BTRFS_I(inode)->generation) |
| /* the inode is shared */ |
| new = record_old_file_extents(inode, ordered_extent); |
| |
| clear_extent_bit(io_tree, ordered_extent->file_offset, |
| ordered_extent->file_offset + ordered_extent->len - 1, |
| EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS); |
| } |
| |
| if (nolock) |
| trans = btrfs_join_transaction_nolock(root); |
| else |
| trans = btrfs_join_transaction(root); |
| if (IS_ERR(trans)) { |
| ret = PTR_ERR(trans); |
| trans = NULL; |
| goto out_unlock; |
| } |
| |
| trans->block_rsv = &root->fs_info->delalloc_block_rsv; |
| |
| if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) |
| compress_type = ordered_extent->compress_type; |
| if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { |
| BUG_ON(compress_type); |
| ret = btrfs_mark_extent_written(trans, inode, |
| ordered_extent->file_offset, |
| ordered_extent->file_offset + |
| logical_len); |
| } else { |
| BUG_ON(root == root->fs_info->tree_root); |
| ret = insert_reserved_file_extent(trans, inode, |
| ordered_extent->file_offset, |
| ordered_extent->start, |
| ordered_extent->disk_len, |
| logical_len, logical_len, |
| compress_type, 0, 0, |
| BTRFS_FILE_EXTENT_REG); |
| if (!ret) |
| btrfs_release_delalloc_bytes(root, |
| ordered_extent->start, |
| ordered_extent->disk_len); |
| } |
| unpin_extent_cache(&BTRFS_I(inode)->extent_tree, |
| ordered_extent->file_offset, ordered_extent->len, |
| trans->transid); |
| if (ret < 0) { |
| btrfs_abort_transaction(trans, root, ret); |
| goto out_unlock; |
| } |
| |
| add_pending_csums(trans, inode, ordered_extent->file_offset, |
| &ordered_extent->list); |
| |
| btrfs_ordered_update_i_size(inode, 0, ordered_extent); |
| ret = btrfs_update_inode_fallback(trans, root, inode); |
| if (ret) { /* -ENOMEM or corruption */ |
| btrfs_abort_transaction(trans, root, ret); |
| goto out_unlock; |
| } |
| ret = 0; |
| out_unlock: |
| unlock_extent_cached(io_tree, ordered_extent->file_offset, |
| ordered_extent->file_offset + |
| ordered_extent->len - 1, &cached_state, GFP_NOFS); |
| out: |
| if (root != root->fs_info->tree_root) |
| btrfs_delalloc_release_metadata(inode, ordered_extent->len); |
| if (trans) |
| btrfs_end_transaction(trans, root); |
| |
| if (ret || truncated) { |
| u64 start, end; |
| |
| if (truncated) |
| start = ordered_extent->file_offset + logical_len; |
| else |
| start = ordered_extent->file_offset; |
| end = ordered_extent->file_offset + ordered_extent->len - 1; |
| clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS); |
| |
| /* Drop the cache for the part of the extent we didn't write. */ |
| btrfs_drop_extent_cache(inode, start, end, 0); |
| |
| /* |
| * If the ordered extent had an IOERR or something else went |
| * wrong we need to return the space for this ordered extent |
| * back to the allocator. We only free the extent in the |
| * truncated case if we didn't write out the extent at all. |
| */ |
| if ((ret || !logical_len) && |
| !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && |
| !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) |
| btrfs_free_reserved_extent(root, ordered_extent->start, |
| ordered_extent->disk_len, 1); |
| } |
| |
| |
| /* |
| * This needs to be done to make sure anybody waiting knows we are done |
| * updating everything for this ordered extent. |
| */ |
| btrfs_remove_ordered_extent(inode, ordered_extent); |
| |
| /* for snapshot-aware defrag */ |
| if (new) { |
| if (ret) { |
| free_sa_defrag_extent(new); |
| atomic_dec(&root->fs_info->defrag_running); |
| } else { |
| relink_file_extents(new); |
| } |
| } |
| |
| /* once for us */ |
| btrfs_put_ordered_extent(ordered_extent); |
| /* once for the tree */ |
| btrfs_put_ordered_extent(ordered_extent); |
| |
| return ret; |
| } |
| |
| static void finish_ordered_fn(struct btrfs_work *work) |
| { |
| struct btrfs_ordered_extent *ordered_extent; |
| ordered_extent = container_of(work, struct btrfs_ordered_extent, work); |
| btrfs_finish_ordered_io(ordered_extent); |
| } |
| |
| static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end, |
| struct extent_state *state, int uptodate) |
| { |
| struct inode *inode = page->mapping->host; |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| struct btrfs_ordered_extent *ordered_extent = NULL; |
| struct btrfs_workqueue *wq; |
| btrfs_work_func_t func; |
| |
| trace_btrfs_writepage_end_io_hook(page, start, end, uptodate); |
| |
| ClearPagePrivate2(page); |
| if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start, |
| end - start + 1, uptodate)) |
| return 0; |
| |
| if (btrfs_is_free_space_inode(inode)) { |
| wq = root->fs_info->endio_freespace_worker; |
| func = btrfs_freespace_write_helper; |
| } else { |
| wq = root->fs_info->endio_write_workers; |
| func = btrfs_endio_write_helper; |
| } |
| |
| btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL, |
| NULL); |
| btrfs_queue_work(wq, &ordered_extent->work); |
| |
| return 0; |
| } |
| |
| static int __readpage_endio_check(struct inode *inode, |
| struct btrfs_io_bio *io_bio, |
| int icsum, struct page *page, |
| int pgoff, u64 start, size_t len) |
| { |
| char *kaddr; |
| u32 csum_expected; |
| u32 csum = ~(u32)0; |
| |
| csum_expected = *(((u32 *)io_bio->csum) + icsum); |
| |
| kaddr = kmap_atomic(page); |
| csum = btrfs_csum_data(kaddr + pgoff, csum, len); |
| btrfs_csum_final(csum, (char *)&csum); |
| if (csum != csum_expected) |
| goto zeroit; |
| |
| kunmap_atomic(kaddr); |
| return 0; |
| zeroit: |
| btrfs_warn_rl(BTRFS_I(inode)->root->fs_info, |
| "csum failed ino %llu off %llu csum %u expected csum %u", |
| btrfs_ino(inode), start, csum, csum_expected); |
| memset(kaddr + pgoff, 1, len); |
| flush_dcache_page(page); |
| kunmap_atomic(kaddr); |
| if (csum_expected == 0) |
| return 0; |
| return -EIO; |
| } |
| |
| /* |
| * when reads are done, we need to check csums to verify the data is correct |
| * if there's a match, we allow the bio to finish. If not, the code in |
| * extent_io.c will try to find good copies for us. |
| */ |
| static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio, |
| u64 phy_offset, struct page *page, |
| u64 start, u64 end, int mirror) |
| { |
| size_t offset = start - page_offset(page); |
| struct inode *inode = page->mapping->host; |
| struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| |
| if (PageChecked(page)) { |
| ClearPageChecked(page); |
| return 0; |
| } |
| |
| if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) |
| return 0; |
| |
| if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID && |
| test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) { |
| clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM, |
| GFP_NOFS); |
| return 0; |
| } |
| |
| phy_offset >>= inode->i_sb->s_blocksize_bits; |
| return __readpage_endio_check(inode, io_bio, phy_offset, page, offset, |
| start, (size_t)(end - start + 1)); |
| } |
| |
| void btrfs_add_delayed_iput(struct inode *inode) |
| { |
| struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; |
| struct btrfs_inode *binode = BTRFS_I(inode); |
| |
| if (atomic_add_unless(&inode->i_count, -1, 1)) |
| return; |
| |
| spin_lock(&fs_info->delayed_iput_lock); |
| if (binode->delayed_iput_count == 0) { |
| ASSERT(list_empty(&binode->delayed_iput)); |
| list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs); |
| } else { |
| binode->delayed_iput_count++; |
| } |
| spin_unlock(&fs_info->delayed_iput_lock); |
| } |
| |
| void btrfs_run_delayed_iputs(struct btrfs_root *root) |
| { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| |
| spin_lock(&fs_info->delayed_iput_lock); |
| while (!list_empty(&fs_info->delayed_iputs)) { |
| struct btrfs_inode *inode; |
| |
| inode = list_first_entry(&fs_info->delayed_iputs, |
| struct btrfs_inode, delayed_iput); |
| if (inode->delayed_iput_count) { |
| inode->delayed_iput_count--; |
| list_move_tail(&inode->delayed_iput, |
| &fs_info->delayed_iputs); |
| } else { |
| list_del_init(&inode->delayed_iput); |
| } |
| spin_unlock(&fs_info->delayed_iput_lock); |
| iput(&inode->vfs_inode); |
| spin_lock(&fs_info->delayed_iput_lock); |
| } |
| spin_unlock(&fs_info->delayed_iput_lock); |
| } |
| |
| /* |
| * This is called in transaction commit time. If there are no orphan |
| * files in the subvolume, it removes orphan item and frees block_rsv |
| * structure. |
| */ |
| void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root) |
| { |
| struct btrfs_block_rsv *block_rsv; |
| int ret; |
| |
| if (atomic_read(&root->orphan_inodes) || |
| root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) |
| return; |
| |
| spin_lock(&root->orphan_lock); |
| if (atomic_read(&root->orphan_inodes)) { |
| spin_unlock(&root->orphan_lock); |
| return; |
| } |
| |
| if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) { |
| spin_unlock(&root->orphan_lock); |
| return; |
| } |
| |
| block_rsv = root->orphan_block_rsv; |
| root->orphan_block_rsv = NULL; |
| spin_unlock(&root->orphan_lock); |
| |
| if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) && |
| btrfs_root_refs(&root->root_item) > 0) { |
| ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root, |
| root->root_key.objectid); |
| if (ret) |
| btrfs_abort_transaction(trans, root, ret); |
| else |
| clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, |
| &root->state); |
| } |
| |
| if (block_rsv) { |
| WARN_ON(block_rsv->size > 0); |
| btrfs_free_block_rsv(root, block_rsv); |
| } |
| } |
| |
| /* |
| * This creates an orphan entry for the given inode in case something goes |
| * wrong in the middle of an unlink/truncate. |
| * |
| * NOTE: caller of this function should reserve 5 units of metadata for |
| * this function. |
| */ |
| int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode) |
| { |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| struct btrfs_block_rsv *block_rsv = NULL; |
| int reserve = 0; |
| int insert = 0; |
| int ret; |
| |
| if (!root->orphan_block_rsv) { |
| block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); |
| if (!block_rsv) |
| return -ENOMEM; |
| } |
| |
| spin_lock(&root->orphan_lock); |
| if (!root->orphan_block_rsv) { |
| root->orphan_block_rsv = block_rsv; |
| } else if (block_rsv) { |
| btrfs_free_block_rsv(root, block_rsv); |
| block_rsv = NULL; |
| } |
| |
| if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, |
| &BTRFS_I(inode)->runtime_flags)) { |
| #if 0 |
| /* |
| * For proper ENOSPC handling, we should do orphan |
| * cleanup when mounting. But this introduces backward |
| * compatibility issue. |
| */ |
| if (!xchg(&root->orphan_item_inserted, 1)) |
| insert = 2; |
| else |
| insert = 1; |
| #endif |
| insert = 1; |
| atomic_inc(&root->orphan_inodes); |
| } |
| |
| if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED, |
| &BTRFS_I(inode)->runtime_flags)) |
| reserve = 1; |
| spin_unlock(&root->orphan_lock); |
| |
| /* grab metadata reservation from transaction handle */ |
| if (reserve) { |
| ret = btrfs_orphan_reserve_metadata(trans, inode); |
| BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */ |
| } |
| |
| /* insert an orphan item to track this unlinked/truncated file */ |
| if (insert >= 1) { |
| ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode)); |
| if (ret) { |
| atomic_dec(&root->orphan_inodes); |
| if (reserve) { |
| clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED, |
| &BTRFS_I(inode)->runtime_flags); |
| btrfs_orphan_release_metadata(inode); |
| } |
| if (ret != -EEXIST) { |
| clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, |
| &BTRFS_I(inode)->runtime_flags); |
| btrfs_abort_transaction(trans, root, ret); |
| return ret; |
| } |
| } |
| ret = 0; |
| } |
| |
| /* insert an orphan item to track subvolume contains orphan files */ |
| if (insert >= 2) { |
| ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root, |
| root->root_key.objectid); |
| if (ret && ret != -EEXIST) { |
| btrfs_abort_transaction(trans, root, ret); |
| return ret; |
| } |
| } |
| return 0; |
| } |
| |
| /* |
| * We have done the truncate/delete so we can go ahead and remove the orphan |
| * item for this particular inode. |
| */ |
| static int btrfs_orphan_del(struct btrfs_trans_handle *trans, |
| struct inode *inode) |
| { |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| int delete_item = 0; |
| int release_rsv = 0; |
| int ret = 0; |
| |
| spin_lock(&root->orphan_lock); |
| if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, |
| &BTRFS_I(inode)->runtime_flags)) |
| delete_item = 1; |
| |
| if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED, |
| &BTRFS_I(inode)->runtime_flags)) |
| release_rsv = 1; |
| spin_unlock(&root->orphan_lock); |
| |
| if (delete_item) { |
| atomic_dec(&root->orphan_inodes); |
| if (trans) |
| ret = btrfs_del_orphan_item(trans, root, |
| btrfs_ino(inode)); |
| } |
| |
| if (release_rsv) |
| btrfs_orphan_release_metadata(inode); |
| |
| return ret; |
| } |
| |
| /* |
| * this cleans up any orphans that may be left on the list from the last use |
| * of this root. |
| */ |
| int btrfs_orphan_cleanup(struct btrfs_root *root) |
| { |
| struct btrfs_path *path; |
| struct extent_buffer *leaf; |
| struct btrfs_key key, found_key; |
| struct btrfs_trans_handle *trans; |
| struct inode *inode; |
| u64 last_objectid = 0; |
| int ret = 0, nr_unlink = 0, nr_truncate = 0; |
| |
| if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED)) |
| return 0; |
| |
| path = btrfs_alloc_path(); |
| if (!path) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| path->reada = READA_BACK; |
| |
| key.objectid = BTRFS_ORPHAN_OBJECTID; |
| key.type = BTRFS_ORPHAN_ITEM_KEY; |
| key.offset = (u64)-1; |
| |
| while (1) { |
| ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); |
| if (ret < 0) |
| goto out; |
| |
| /* |
| * if ret == 0 means we found what we were searching for, which |
| * is weird, but possible, so only screw with path if we didn't |
| * find the key and see if we have stuff that matches |
| */ |
| if (ret > 0) { |
| ret = 0; |
| if (path->slots[0] == 0) |
| break; |
| path->slots[0]--; |
| } |
| |
| /* pull out the item */ |
| leaf = path->nodes[0]; |
| btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); |
| |
| /* make sure the item matches what we want */ |
| if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) |
| break; |
| if (found_key.type != BTRFS_ORPHAN_ITEM_KEY) |
| break; |
| |
| /* release the path since we're done with it */ |
| btrfs_release_path(path); |
| |
| /* |
| * this is where we are basically btrfs_lookup, without the |
| * crossing root thing. we store the inode number in the |
| * offset of the orphan item. |
| */ |
| |
| if (found_key.offset == last_objectid) { |
| btrfs_err(root->fs_info, |
| "Error removing orphan entry, stopping orphan cleanup"); |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| last_objectid = found_key.offset; |
| |
| found_key.objectid = found_key.offset; |
| found_key.type = BTRFS_INODE_ITEM_KEY; |
| found_key.offset = 0; |
| inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL); |
| ret = PTR_ERR_OR_ZERO(inode); |
| if (ret && ret != -ESTALE) |
| goto out; |
| |
| if (ret == -ESTALE && root == root->fs_info->tree_root) { |
| struct btrfs_root *dead_root; |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| int is_dead_root = 0; |
| |
| /* |
| * this is an orphan in the tree root. Currently these |
| * could come from 2 sources: |
| * a) a snapshot deletion in progress |
| * b) a free space cache inode |
| * We need to distinguish those two, as the snapshot |
| * orphan must not get deleted. |
| * find_dead_roots already ran before us, so if this |
| * is a snapshot deletion, we should find the root |
| * in the dead_roots list |
| */ |
| spin_lock(&fs_info->trans_lock); |
| list_for_each_entry(dead_root, &fs_info->dead_roots, |
| root_list) { |
| if (dead_root->root_key.objectid == |
| found_key.objectid) { |
| is_dead_root = 1; |
| break; |
| } |
| } |
| spin_unlock(&fs_info->trans_lock); |
| if (is_dead_root) { |
| /* prevent this orphan from being found again */ |
| key.offset = found_key.objectid - 1; |
| continue; |
| } |
| } |
| /* |
| * Inode is already gone but the orphan item is still there, |
| * kill the orphan item. |
| */ |
| if (ret == -ESTALE) { |
| trans = btrfs_start_transaction(root, 1); |
| if (IS_ERR(trans)) { |
| ret = PTR_ERR(trans); |
| goto out; |
| } |
| btrfs_debug(root->fs_info, "auto deleting %Lu", |
| found_key.objectid); |
| ret = btrfs_del_orphan_item(trans, root, |
| found_key.objectid); |
| btrfs_end_transaction(trans, root); |
| if (ret) |
| goto out; |
| continue; |
| } |
| |
| /* |
| * add this inode to the orphan list so btrfs_orphan_del does |
| * the proper thing when we hit it |
| */ |
| set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, |
| &BTRFS_I(inode)->runtime_flags); |
| atomic_inc(&root->orphan_inodes); |
| |
| /* if we have links, this was a truncate, lets do that */ |
| if (inode->i_nlink) { |
| if (WARN_ON(!S_ISREG(inode->i_mode))) { |
| iput(inode); |
| continue; |
| } |
| nr_truncate++; |
| |
| /* 1 for the orphan item deletion. */ |
| trans = btrfs_start_transaction(root, 1); |
| if (IS_ERR(trans)) { |
| iput(inode); |
| ret = PTR_ERR(trans); |
| goto out; |
| } |
| ret = btrfs_orphan_add(trans, inode); |
| btrfs_end_transaction(trans, root); |
| if (ret) { |
| iput(inode); |
| goto out; |
| } |
| |
| ret = btrfs_truncate(inode); |
| if (ret) |
| btrfs_orphan_del(NULL, inode); |
| } else { |
| nr_unlink++; |
| } |
| |
| /* this will do delete_inode and everything for us */ |
| iput(inode); |
| if (ret) |
| goto out; |
| } |
| /* release the path since we're done with it */ |
| btrfs_release_path(path); |
| |
| root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE; |
| |
| if (root->orphan_block_rsv) |
| btrfs_block_rsv_release(root, root->orphan_block_rsv, |
| (u64)-1); |
| |
| if (root->orphan_block_rsv || |
| test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) { |
| trans = btrfs_join_transaction(root); |
| if (!IS_ERR(trans)) |
| btrfs_end_transaction(trans, root); |
| } |
| |
| if (nr_unlink) |
| btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink); |
| if (nr_truncate) |
| btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate); |
| |
| out: |
| if (ret) |
| btrfs_err(root->fs_info, |
| "could not do orphan cleanup %d", ret); |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| /* |
| * very simple check to peek ahead in the leaf looking for xattrs. If we |
| * don't find any xattrs, we know there can't be any acls. |
| * |
| * slot is the slot the inode is in, objectid is the objectid of the inode |
| */ |
| static noinline int acls_after_inode_item(struct extent_buffer *leaf, |
| int slot, u64 objectid, |
| int *first_xattr_slot) |
| { |
| u32 nritems = btrfs_header_nritems(leaf); |
| struct btrfs_key found_key; |
| static u64 xattr_access = 0; |
| static u64 xattr_default = 0; |
| int scanned = 0; |
| |
| if (!xattr_access) { |
| xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS, |
| strlen(XATTR_NAME_POSIX_ACL_ACCESS)); |
| xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT, |
| strlen(XATTR_NAME_POSIX_ACL_DEFAULT)); |
| } |
| |
| slot++; |
| *first_xattr_slot = -1; |
| while (slot < nritems) { |
| btrfs_item_key_to_cpu(leaf, &found_key, slot); |
| |
| /* we found a different objectid, there must not be acls */ |
| if (found_key.objectid != objectid) |
| return 0; |
| |
| /* we found an xattr, assume we've got an acl */ |
| if (found_key.type == BTRFS_XATTR_ITEM_KEY) { |
| if (*first_xattr_slot == -1) |
| *first_xattr_slot = slot; |
| if (found_key.offset == xattr_access || |
| found_key.offset == xattr_default) |
| return 1; |
| } |
| |
| /* |
| * we found a key greater than an xattr key, there can't |
| * be any acls later on |
| */ |
| if (found_key.type > BTRFS_XATTR_ITEM_KEY) |
| return 0; |
| |
| slot++; |
| scanned++; |
| |
| /* |
| * it goes inode, inode backrefs, xattrs, extents, |
| * so if there are a ton of hard links to an inode there can |
| * be a lot of backrefs. Don't waste time searching too hard, |
| * this is just an optimization |
| */ |
| if (scanned >= 8) |
| break; |
| } |
| /* we hit the end of the leaf before we found an xattr or |
| * something larger than an xattr. We have to assume the inode |
| * has acls |
| */ |
| if (*first_xattr_slot == -1) |
| *first_xattr_slot = slot; |
| return 1; |
| } |
| |
| /* |
| * read an inode from the btree into the in-memory inode |
| */ |
| static void btrfs_read_locked_inode(struct inode *inode) |
| { |
| struct btrfs_path *path; |
| struct extent_buffer *leaf; |
| struct btrfs_inode_item *inode_item; |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| struct btrfs_key location; |
| unsigned long ptr; |
| int maybe_acls; |
| u32 rdev; |
| int ret; |
| bool filled = false; |
| int first_xattr_slot; |
| |
| ret = btrfs_fill_inode(inode, &rdev); |
| if (!ret) |
| filled = true; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| goto make_bad; |
| |
| memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); |
| |
| ret = btrfs_lookup_inode(NULL, root, path, &location, 0); |
| if (ret) |
| goto make_bad; |
| |
| leaf = path->nodes[0]; |
| |
| if (filled) |
| goto cache_index; |
| |
| inode_item = btrfs_item_ptr(leaf, path->slots[0], |
| struct btrfs_inode_item); |
| inode->i_mode = btrfs_inode_mode(leaf, inode_item); |
| set_nlink(inode, btrfs_inode_nlink(leaf, inode_item)); |
| i_uid_write(inode, btrfs_inode_uid(leaf, inode_item)); |
| i_gid_write(inode, btrfs_inode_gid(leaf, inode_item)); |
| btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item)); |
| |
| inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime); |
| inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime); |
| |
| inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime); |
| inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime); |
| |
| inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime); |
| inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime); |
| |
| BTRFS_I(inode)->i_otime.tv_sec = |
| btrfs_timespec_sec(leaf, &inode_item->otime); |
| BTRFS_I(inode)->i_otime.tv_nsec = |
| btrfs_timespec_nsec(leaf, &inode_item->otime); |
| |
| inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); |
| BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); |
| BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item); |
| |
| inode->i_version = btrfs_inode_sequence(leaf, inode_item); |
| inode->i_generation = BTRFS_I(inode)->generation; |
| inode->i_rdev = 0; |
| rdev = btrfs_inode_rdev(leaf, inode_item); |
| |
| BTRFS_I(inode)->index_cnt = (u64)-1; |
| BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item); |
| |
| cache_index: |
| /* |
| * If we were modified in the current generation and evicted from memory |
| * and then re-read we need to do a full sync since we don't have any |
| * idea about which extents were modified before we were evicted from |
| * cache. |
| * |
| * This is required for both inode re-read from disk and delayed inode |
| * in delayed_nodes_tree. |
| */ |
| if (BTRFS_I(inode)->last_trans == root->fs_info->generation) |
| set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, |
| &BTRFS_I(inode)->runtime_flags); |
| |
| /* |
| * We don't persist the id of the transaction where an unlink operation |
| * against the inode was last made. So here we assume the inode might |
| * have been evicted, and therefore the exact value of last_unlink_trans |
| * lost, and set it to last_trans to avoid metadata inconsistencies |
| * between the inode and its parent if the inode is fsync'ed and the log |
| * replayed. For example, in the scenario: |
| * |
| * touch mydir/foo |
| * ln mydir/foo mydir/bar |
| * sync |
| * unlink mydir/bar |
| * echo 2 > /proc/sys/vm/drop_caches # evicts inode |
| * xfs_io -c fsync mydir/foo |
| * <power failure> |
| * mount fs, triggers fsync log replay |
| * |
| * We must make sure that when we fsync our inode foo we also log its |
| * parent inode, otherwise after log replay the parent still has the |
| * dentry with the "bar" name but our inode foo has a link count of 1 |
| * and doesn't have an inode ref with the name "bar" anymore. |
| * |
| * Setting last_unlink_trans to last_trans is a pessimistic approach, |
| * but it guarantees correctness at the expense of ocassional full |
| * transaction commits on fsync if our inode is a directory, or if our |
| * inode is not a directory, logging its parent unnecessarily. |
| */ |
| BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans; |
| |
| path->slots[0]++; |
| if (inode->i_nlink != 1 || |
| path->slots[0] >= btrfs_header_nritems(leaf)) |
| goto cache_acl; |
| |
| btrfs_item_key_to_cpu(leaf, &location, path->slots[0]); |
| if (location.objectid != btrfs_ino(inode)) |
| goto cache_acl; |
| |
| ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); |
| if (location.type == BTRFS_INODE_REF_KEY) { |
| struct btrfs_inode_ref *ref; |
| |
| ref = (struct btrfs_inode_ref *)ptr; |
| BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref); |
| } else if (location.type == BTRFS_INODE_EXTREF_KEY) { |
| struct btrfs_inode_extref *extref; |
| |
| extref = (struct btrfs_inode_extref *)ptr; |
| BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf, |
| extref); |
| } |
| cache_acl: |
| /* |
| * try to precache a NULL acl entry for files that don't have |
| * any xattrs or acls |
| */ |
| maybe_acls = acls_after_inode_item(leaf, path->slots[0], |
| btrfs_ino(inode), &first_xattr_slot); |
| if (first_xattr_slot != -1) { |
| path->slots[0] = first_xattr_slot; |
| ret = btrfs_load_inode_props(inode, path); |
| if (ret) |
| btrfs_err(root->fs_info, |
| "error loading props for ino %llu (root %llu): %d", |
| btrfs_ino(inode), |
| root->root_key.objectid, ret); |
| } |
| btrfs_free_path(path); |
| |
| if (!maybe_acls) |
| cache_no_acl(inode); |
| |
| switch (inode->i_mode & S_IFMT) { |
| case S_IFREG: |
| inode->i_mapping->a_ops = &btrfs_aops; |
| BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; |
| inode->i_fop = &btrfs_file_operations; |
| inode->i_op = &btrfs_file_inode_operations; |
| break; |
| case S_IFDIR: |
| inode->i_fop = &btrfs_dir_file_operations; |
| if (root == root->fs_info->tree_root) |
| inode->i_op = &btrfs_dir_ro_inode_operations; |
| else |
| inode->i_op = &btrfs_dir_inode_operations; |
| break; |
| case S_IFLNK: |
| inode->i_op = &btrfs_symlink_inode_operations; |
| inode_nohighmem(inode); |
| inode->i_mapping->a_ops = &btrfs_symlink_aops; |
| break; |
| default: |
| inode->i_op = &btrfs_special_inode_operations; |
| init_special_inode(inode, inode->i_mode, rdev); |
| break; |
| } |
| |
| btrfs_update_iflags(inode); |
| return; |
| |
| make_bad: |
| btrfs_free_path(path); |
| make_bad_inode(inode); |
| } |
| |
| /* |
| * given a leaf and an inode, copy the inode fields into the leaf |
| */ |
| static void fill_inode_item(struct btrfs_trans_handle *trans, |
| struct extent_buffer *leaf, |
| struct btrfs_inode_item *item, |
| struct inode *inode) |
| { |
| struct btrfs_map_token token; |
| |
| btrfs_init_map_token(&token); |
| |
| btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token); |
| btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token); |
| btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size, |
| &token); |
| btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token); |
| btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token); |
| |
| btrfs_set_token_timespec_sec(leaf, &item->atime, |
| inode->i_atime.tv_sec, &token); |
| btrfs_set_token_timespec_nsec(leaf, &item->atime, |
| inode->i_atime.tv_nsec, &token); |
| |
| btrfs_set_token_timespec_sec(leaf, &item->mtime, |
| inode->i_mtime.tv_sec, &token); |
| btrfs_set_token_timespec_nsec(leaf, &item->mtime, |
| inode->i_mtime.tv_nsec, &token); |
| |
| btrfs_set_token_timespec_sec(leaf, &item->ctime, |
| inode->i_ctime.tv_sec, &token); |
| btrfs_set_token_timespec_nsec(leaf, &item->ctime, |
| inode->i_ctime.tv_nsec, &token); |
| |
| btrfs_set_token_timespec_sec(leaf, &item->otime, |
| BTRFS_I(inode)->i_otime.tv_sec, &token); |
| btrfs_set_token_timespec_nsec(leaf, &item->otime, |
| BTRFS_I(inode)->i_otime.tv_nsec, &token); |
| |
| btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode), |
| &token); |
| btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation, |
| &token); |
| btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token); |
| btrfs_set_token_inode_transid(leaf, item, trans->transid, &token); |
| btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token); |
| btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token); |
| btrfs_set_token_inode_block_group(leaf, item, 0, &token); |
| } |
| |
| /* |
| * copy everything in the in-memory inode into the btree. |
| */ |
| static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, struct inode *inode) |
| { |
| struct btrfs_inode_item *inode_item; |
| struct btrfs_path *path; |
| struct extent_buffer *leaf; |
| int ret; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| path->leave_spinning = 1; |
| ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location, |
| 1); |
| if (ret) { |
| if (ret > 0) |
| ret = -ENOENT; |
| goto failed; |
| } |
| |
| leaf = path->nodes[0]; |
| inode_item = btrfs_item_ptr(leaf, path->slots[0], |
| struct btrfs_inode_item); |
| |
| fill_inode_item(trans, leaf, inode_item, inode); |
| btrfs_mark_buffer_dirty(leaf); |
| btrfs_set_inode_last_trans(trans, inode); |
| ret = 0; |
| failed: |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| /* |
| * copy everything in the in-memory inode into the btree. |
| */ |
| noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, struct inode *inode) |
| { |
| int ret; |
| |
| /* |
| * If the inode is a free space inode, we can deadlock during commit |
| * if we put it into the delayed code. |
| * |
| * The data relocation inode should also be directly updated |
| * without delay |
| */ |
| if (!btrfs_is_free_space_inode(inode) |
| && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID |
| && !root->fs_info->log_root_recovering) { |
| btrfs_update_root_times(trans, root); |
| |
| ret = btrfs_delayed_update_inode(trans, root, inode); |
| if (!ret) |
| btrfs_set_inode_last_trans(trans, inode); |
| return ret; |
| } |
| |
| return btrfs_update_inode_item(trans, root, inode); |
| } |
| |
| noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct inode *inode) |
| { |
| int ret; |
| |
| ret = btrfs_update_inode(trans, root, inode); |
| if (ret == -ENOSPC) |
| return btrfs_update_inode_item(trans, root, inode); |
| return ret; |
| } |
| |
| /* |
| * unlink helper that gets used here in inode.c and in the tree logging |
| * recovery code. It remove a link in a directory with a given name, and |
| * also drops the back refs in the inode to the directory |
| */ |
| static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct inode *dir, struct inode *inode, |
| const char *name, int name_len) |
| { |
| struct btrfs_path *path; |
| int ret = 0; |
| struct extent_buffer *leaf; |
| struct btrfs_dir_item *di; |
| struct btrfs_key key; |
| u64 index; |
| u64 ino = btrfs_ino(inode); |
| u64 dir_ino = btrfs_ino(dir); |
| |
| path = btrfs_alloc_path(); |
| if (!path) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| path->leave_spinning = 1; |
| di = btrfs_lookup_dir_item(trans, root, path, dir_ino, |
| name, name_len, -1); |
| if (IS_ERR(di)) { |
| ret = PTR_ERR(di); |
| goto err; |
| } |
| if (!di) { |
| ret = -ENOENT; |
| goto err; |
| } |
| leaf = path->nodes[0]; |
| btrfs_dir_item_key_to_cpu(leaf, di, &key); |
| ret = btrfs_delete_one_dir_name(trans, root, path, di); |
| if (ret) |
| goto err; |
| btrfs_release_path(path); |
| |
| /* |
| * If we don't have dir index, we have to get it by looking up |
| * the inode ref, since we get the inode ref, remove it directly, |
| * it is unnecessary to do delayed deletion. |
| * |
| * But if we have dir index, needn't search inode ref to get it. |
| * Since the inode ref is close to the inode item, it is better |
| * that we delay to delete it, and just do this deletion when |
| * we update the inode item. |
| */ |
| if (BTRFS_I(inode)->dir_index) { |
| ret = btrfs_delayed_delete_inode_ref(inode); |
| if (!ret) { |
| index = BTRFS_I(inode)->dir_index; |
| goto skip_backref; |
| } |
| } |
| |
| ret = btrfs_del_inode_ref(trans, root, name, name_len, ino, |
| dir_ino, &index); |
| if (ret) { |
| btrfs_info(root->fs_info, |
| "failed to delete reference to %.*s, inode %llu parent %llu", |
| name_len, name, ino, dir_ino); |
| btrfs_abort_transaction(trans, root, ret); |
| goto err; |
| } |
| skip_backref: |
| ret = btrfs_delete_delayed_dir_index(trans, root, dir, index); |
| if (ret) { |
| btrfs_abort_transaction(trans, root, ret); |
| goto err; |
| } |
| |
| ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, |
| inode, dir_ino); |
| if (ret != 0 && ret != -ENOENT) { |
| btrfs_abort_transaction(trans, root, ret); |
| goto err; |
| } |
| |
| ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, |
| dir, index); |
| if (ret == -ENOENT) |
| ret = 0; |
| else if (ret) |
| btrfs_abort_transaction(trans, root, ret); |
| err: |
| btrfs_free_path(path); |
| if (ret) |
| goto out; |
| |
| btrfs_i_size_write(dir, dir->i_size - name_len * 2); |
| inode_inc_iversion(inode); |
| inode_inc_iversion(dir); |
| inode->i_ctime = dir->i_mtime = |
| dir->i_ctime = current_fs_time(inode->i_sb); |
| ret = btrfs_update_inode(trans, root, dir); |
| out: |
| return ret; |
| } |
| |
| int btrfs_unlink_inode(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct inode *dir, struct inode *inode, |
| const char *name, int name_len) |
| { |
| int ret; |
| ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len); |
| if (!ret) { |
| drop_nlink(inode); |
| ret = btrfs_update_inode(trans, root, inode); |
| } |
| return ret; |
| } |
| |
| /* |
| * helper to start transaction for unlink and rmdir. |
| * |
| * unlink and rmdir are special in btrfs, they do not always free space, so |
| * if we cannot make our reservations the normal way try and see if there is |
| * plenty of slack room in the global reserve to migrate, otherwise we cannot |
| * allow the unlink to occur. |
| */ |
| static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir) |
| { |
| struct btrfs_root *root = BTRFS_I(dir)->root; |
| |
| /* |
| * 1 for the possible orphan item |
| * 1 for the dir item |
| * 1 for the dir index |
| * 1 for the inode ref |
| * 1 for the inode |
| */ |
| return btrfs_start_transaction_fallback_global_rsv(root, 5, 5); |
| } |
| |
| static int btrfs_unlink(struct inode *dir, struct dentry *dentry) |
| { |
| struct btrfs_root *root = BTRFS_I(dir)->root; |
| struct btrfs_trans_handle *trans; |
| struct inode *inode = d_inode(dentry); |
| int ret; |
| |
| trans = __unlink_start_trans(dir); |
| if (IS_ERR(trans)) |
| return PTR_ERR(trans); |
| |
| btrfs_record_unlink_dir(trans, dir, d_inode(dentry), 0); |
| |
| ret = btrfs_unlink_inode(trans, root, dir, d_inode(dentry), |
| dentry->d_name.name, dentry->d_name.len); |
| if (ret) |
| goto out; |
| |
| if (inode->i_nlink == 0) { |
| ret = btrfs_orphan_add(trans, inode); |
| if (ret) |
| goto out; |
| } |
| |
| out: |
| btrfs_end_transaction(trans, root); |
| btrfs_btree_balance_dirty(root); |
| return ret; |
| } |
| |
| int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct inode *dir, u64 objectid, |
| const char *name, int name_len) |
| { |
| struct btrfs_path *path; |
| struct extent_buffer *leaf; |
| struct btrfs_dir_item *di; |
| struct btrfs_key key; |
| u64 index; |
| int ret; |
| u64 dir_ino = btrfs_ino(dir); |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| di = btrfs_lookup_dir_item(trans, root, path, dir_ino, |
| name, name_len, -1); |
| if (IS_ERR_OR_NULL(di)) { |
| if (!di) |
| ret = -ENOENT; |
| else |
| ret = PTR_ERR(di); |
| goto out; |
| } |
| |
| leaf = path->nodes[0]; |
| btrfs_dir_item_key_to_cpu(leaf, di, &key); |
| WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); |
| ret = btrfs_delete_one_dir_name(trans, root, path, di); |
| if (ret) { |
| btrfs_abort_transaction(trans, root, ret); |
| goto out; |
| } |
| btrfs_release_path(path); |
| |
| ret = btrfs_del_root_ref(trans, root->fs_info->tree_root, |
| objectid, root->root_key.objectid, |
| dir_ino, &index, name, name_len); |
| if (ret < 0) { |
| if (ret != -ENOENT) { |
| btrfs_abort_transaction(trans, root, ret); |
| goto out; |
| } |
| di = btrfs_search_dir_index_item(root, path, dir_ino, |
| name, name_len); |
| if (IS_ERR_OR_NULL(di)) { |
| if (!di) |
| ret = -ENOENT; |
| else |
| ret = PTR_ERR(di); |
| btrfs_abort_transaction(trans, root, ret); |
| goto out; |
| } |
| |
| leaf = path->nodes[0]; |
| btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); |
| btrfs_release_path(path); |
| index = key.offset; |
| } |
| btrfs_release_path(path); |
| |
| ret = btrfs_delete_delayed_dir_index(trans, root, dir, index); |
| if (ret) { |
| btrfs_abort_transaction(trans, root, ret); |
| goto out; |
| } |
| |
| btrfs_i_size_write(dir, dir->i_size - name_len * 2); |
| inode_inc_iversion(dir); |
| dir->i_mtime = dir->i_ctime = current_fs_time(dir->i_sb); |
| ret = btrfs_update_inode_fallback(trans, root, dir); |
| if (ret) |
| btrfs_abort_transaction(trans, root, ret); |
| out: |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) |
| { |
| struct inode *inode = d_inode(dentry); |
| int err = 0; |
| struct btrfs_root *root = BTRFS_I(dir)->root; |
| struct btrfs_trans_handle *trans; |
| |
| if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) |
| return -ENOTEMPTY; |
| if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) |
| return -EPERM; |
| |
| trans = __unlink_start_trans(dir); |
| if (IS_ERR(trans)) |
| return PTR_ERR(trans); |
| |
| if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { |
| err = btrfs_unlink_subvol(trans, root, dir, |
| BTRFS_I(inode)->location.objectid, |
| dentry->d_name.name, |
| dentry->d_name.len); |
| goto out; |
| } |
| |
| err = btrfs_orphan_add(trans, inode); |
| if (err) |
| goto out; |
| |
| /* now the directory is empty */ |
| err = btrfs_unlink_inode(trans, root, dir, d_inode(dentry), |
| dentry->d_name.name, dentry->d_name.len); |
| if (!err) |
| btrfs_i_size_write(inode, 0); |
| out: |
| btrfs_end_transaction(trans, root); |
| btrfs_btree_balance_dirty(root); |
| |
| return err; |
| } |
| |
| static int truncate_space_check(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| u64 bytes_deleted) |
| { |
| int ret; |
| |
| /* |
| * This is only used to apply pressure to the enospc system, we don't |
| * intend to use this reservation at all. |
| */ |
| bytes_deleted = btrfs_csum_bytes_to_leaves(root, bytes_deleted); |
| bytes_deleted *= root->nodesize; |
| ret = btrfs_block_rsv_add(root, &root->fs_info->trans_block_rsv, |
| bytes_deleted, BTRFS_RESERVE_NO_FLUSH); |
| if (!ret) { |
| trace_btrfs_space_reservation(root->fs_info, "transaction", |
| trans->transid, |
| bytes_deleted, 1); |
| trans->bytes_reserved += bytes_deleted; |
| } |
| return ret; |
| |
| } |
| |
| static int truncate_inline_extent(struct inode *inode, |
| struct btrfs_path *path, |
| struct btrfs_key *found_key, |
| const u64 item_end, |
| const u64 new_size) |
| { |
| struct extent_buffer *leaf = path->nodes[0]; |
| int slot = path->slots[0]; |
| struct btrfs_file_extent_item *fi; |
| u32 size = (u32)(new_size - found_key->offset); |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| |
| fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); |
| |
| if (btrfs_file_extent_compression(leaf, fi) != BTRFS_COMPRESS_NONE) { |
| loff_t offset = new_size; |
| loff_t page_end = ALIGN(offset, PAGE_SIZE); |
| |
| /* |
| * Zero out the remaining of the last page of our inline extent, |
| * instead of directly truncating our inline extent here - that |
| * would be much more complex (decompressing all the data, then |
| * compressing the truncated data, which might be bigger than |
| * the size of the inline extent, resize the extent, etc). |
| * We release the path because to get the page we might need to |
| * read the extent item from disk (data not in the page cache). |
| */ |
| btrfs_release_path(path); |
| return btrfs_truncate_block(inode, offset, page_end - offset, |
| 0); |
| } |
| |
| btrfs_set_file_extent_ram_bytes(leaf, fi, size); |
| size = btrfs_file_extent_calc_inline_size(size); |
| btrfs_truncate_item(root, path, size, 1); |
| |
| if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) |
| inode_sub_bytes(inode, item_end + 1 - new_size); |
| |
| return 0; |
| } |
| |
| /* |
| * this can truncate away extent items, csum items and directory items. |
| * It starts at a high offset and removes keys until it can't find |
| * any higher than new_size |
| * |
| * csum items that cross the new i_size are truncated to the new size |
| * as well. |
| * |
| * min_type is the minimum key type to truncate down to. If set to 0, this |
| * will kill all the items on this inode, including the INODE_ITEM_KEY. |
| */ |
| int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct inode *inode, |
| u64 new_size, u32 min_type) |
| { |
| struct btrfs_path *path; |
| struct extent_buffer *leaf; |
| struct btrfs_file_extent_item *fi; |
| struct btrfs_key key; |
| struct btrfs_key found_key; |
| u64 extent_start = 0; |
| u64 extent_num_bytes = 0; |
| u64 extent_offset = 0; |
| u64 item_end = 0; |
| u64 last_size = new_size; |
| u32 found_type = (u8)-1; |
| int found_extent; |
| int del_item; |
| int pending_del_nr = 0; |
| int pending_del_slot = 0; |
| int extent_type = -1; |
| int ret; |
| int err = 0; |
| u64 ino = btrfs_ino(inode); |
| u64 bytes_deleted = 0; |
| bool be_nice = 0; |
| bool should_throttle = 0; |
| bool should_end = 0; |
| |
| BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY); |
| |
| /* |
| * for non-free space inodes and ref cows, we want to back off from |
| * time to time |
| */ |
| if (!btrfs_is_free_space_inode(inode) && |
| test_bit(BTRFS_ROOT_REF_COWS, &root->state)) |
| be_nice = 1; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| path->reada = READA_BACK; |
| |
| /* |
| * We want to drop from the next block forward in case this new size is |
| * not block aligned since we will be keeping the last block of the |
| * extent just the way it is. |
| */ |
| if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || |
| root == root->fs_info->tree_root) |
| btrfs_drop_extent_cache(inode, ALIGN(new_size, |
| root->sectorsize), (u64)-1, 0); |
| |
| /* |
| * This function is also used to drop the items in the log tree before |
| * we relog the inode, so if root != BTRFS_I(inode)->root, it means |
| * it is used to drop the loged items. So we shouldn't kill the delayed |
| * items. |
| */ |
| if (min_type == 0 && root == BTRFS_I(inode)->root) |
| btrfs_kill_delayed_inode_items(inode); |
| |
| key.objectid = ino; |
| key.offset = (u64)-1; |
| key.type = (u8)-1; |
| |
| search_again: |
| /* |
| * with a 16K leaf size and 128MB extents, you can actually queue |
| * up a huge file in a single leaf. Most of the time that |
| * bytes_deleted is > 0, it will be huge by the time we get here |
| */ |
| if (be_nice && bytes_deleted > SZ_32M) { |
| if (btrfs_should_end_transaction(trans, root)) { |
| err = -EAGAIN; |
| goto error; |
| } |
| } |
| |
| |
| path->leave_spinning = 1; |
| ret = btrfs_search_slot(trans, root, &key, path, -1, 1); |
| if (ret < 0) { |
| err = ret; |
| goto out; |
| } |
| |
| if (ret > 0) { |
| /* there are no items in the tree for us to truncate, we're |
| * done |
| */ |
| if (path->slots[0] == 0) |
| goto out; |
| path->slots[0]--; |
| } |
| |
| while (1) { |
| fi = NULL; |
| leaf = path->nodes[0]; |
| btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); |
| found_type = found_key.type; |
| |
| if (found_key.objectid != ino) |
| break; |
| |
| if (found_type < min_type) |
| break; |
| |
| item_end = found_key.offset; |
| if (found_type == BTRFS_EXTENT_DATA_KEY) { |
| fi = btrfs_item_ptr(leaf, path->slots[0], |
| struct btrfs_file_extent_item); |
| extent_type = btrfs_file_extent_type(leaf, fi); |
| if (extent_type != BTRFS_FILE_EXTENT_INLINE) { |
| item_end += |
| btrfs_file_extent_num_bytes(leaf, fi); |
| } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { |
| item_end += btrfs_file_extent_inline_len(leaf, |
| path->slots[0], fi); |
| } |
| item_end--; |
| } |
| if (found_type > min_type) { |
| del_item = 1; |
| } else { |
| if (item_end < new_size) |
| break; |
| if (found_key.offset >= new_size) |
| del_item = 1; |
| else |
| del_item = 0; |
| } |
| found_extent = 0; |
| /* FIXME, shrink the extent if the ref count is only 1 */ |
| if (found_type != BTRFS_EXTENT_DATA_KEY) |
| goto delete; |
| |
| if (del_item) |
| last_size = found_key.offset; |
| else |
| last_size = new_size; |
| |
| if (extent_type != BTRFS_FILE_EXTENT_INLINE) { |
| u64 num_dec; |
| extent_start = btrfs_file_extent_disk_bytenr(leaf, fi); |
| if (!del_item) { |
| u64 orig_num_bytes = |
| btrfs_file_extent_num_bytes(leaf, fi); |
| extent_num_bytes = ALIGN(new_size - |
| found_key.offset, |
| root->sectorsize); |
| btrfs_set_file_extent_num_bytes(leaf, fi, |
| extent_num_bytes); |
| num_dec = (orig_num_bytes - |
| extent_num_bytes); |
| if (test_bit(BTRFS_ROOT_REF_COWS, |
| &root->state) && |
| extent_start != 0) |
| inode_sub_bytes(inode, num_dec); |
| btrfs_mark_buffer_dirty(leaf); |
| } else { |
| extent_num_bytes = |
| btrfs_file_extent_disk_num_bytes(leaf, |
| fi); |
| extent_offset = found_key.offset - |
| btrfs_file_extent_offset(leaf, fi); |
| |
| /* FIXME blocksize != 4096 */ |
| num_dec = btrfs_file_extent_num_bytes(leaf, fi); |
| if (extent_start != 0) { |
| found_extent = 1; |
| if (test_bit(BTRFS_ROOT_REF_COWS, |
| &root->state)) |
| inode_sub_bytes(inode, num_dec); |
| } |
| } |
| } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { |
| /* |
| * we can't truncate inline items that have had |
| * special encodings |
| */ |
| if (!del_item && |
| btrfs_file_extent_encryption(leaf, fi) == 0 && |
| btrfs_file_extent_other_encoding(leaf, fi) == 0) { |
| |
| /* |
| * Need to release path in order to truncate a |
| * compressed extent. So delete any accumulated |
| * extent items so far. |
| */ |
| if (btrfs_file_extent_compression(leaf, fi) != |
| BTRFS_COMPRESS_NONE && pending_del_nr) { |
| err = btrfs_del_items(trans, root, path, |
| pending_del_slot, |
| pending_del_nr); |
| if (err) { |
| btrfs_abort_transaction(trans, |
| root, |
| err); |
| goto error; |
| } |
| pending_del_nr = 0; |
| } |
| |
| err = truncate_inline_extent(inode, path, |
| &found_key, |
| item_end, |
| new_size); |
| if (err) { |
| btrfs_abort_transaction(trans, |
| root, err); |
| goto error; |
| } |
| } else if (test_bit(BTRFS_ROOT_REF_COWS, |
| &root->state)) { |
| inode_sub_bytes(inode, item_end + 1 - new_size); |
| } |
| } |
| delete: |
| if (del_item) { |
| if (!pending_del_nr) { |
| /* no pending yet, add ourselves */ |
| pending_del_slot = path->slots[0]; |
| pending_del_nr = 1; |
| } else if (pending_del_nr && |
| path->slots[0] + 1 == pending_del_slot) { |
| /* hop on the pending chunk */ |
| pending_del_nr++; |
| pending_del_slot = path->slots[0]; |
| } else { |
| BUG(); |
| } |
| } else { |
| break; |
| } |
| should_throttle = 0; |
| |
| if (found_extent && |
| (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || |
| root == root->fs_info->tree_root)) { |
| btrfs_set_path_blocking(path); |
| bytes_deleted += extent_num_bytes; |
| ret = btrfs_free_extent(trans, root, extent_start, |
| extent_num_bytes, 0, |
| btrfs_header_owner(leaf), |
| ino, extent_offset); |
| BUG_ON(ret); |
| if (btrfs_should_throttle_delayed_refs(trans, root)) |
| btrfs_async_run_delayed_refs(root, |
| trans->delayed_ref_updates * 2, 0); |
| if (be_nice) { |
| if (truncate_space_check(trans, root, |
| extent_num_bytes)) { |
| should_end = 1; |
| } |
| if (btrfs_should_throttle_delayed_refs(trans, |
| root)) { |
| should_throttle = 1; |
| } |
| } |
| } |
| |
| if (found_type == BTRFS_INODE_ITEM_KEY) |
| break; |
| |
| if (path->slots[0] == 0 || |
| path->slots[0] != pending_del_slot || |
| should_throttle || should_end) { |
| if (pending_del_nr) { |
| ret = btrfs_del_items(trans, root, path, |
| pending_del_slot, |
| pending_del_nr); |
| if (ret) { |
| btrfs_abort_transaction(trans, |
| root, ret); |
| goto error; |
| } |
| pending_del_nr = 0; |
| } |
| btrfs_release_path(path); |
| if (should_throttle) { |
| unsigned long updates = trans->delayed_ref_updates; |
| if (updates) { |
| trans->delayed_ref_updates = 0; |
| ret = btrfs_run_delayed_refs(trans, root, updates * 2); |
| if (ret && !err) |
| err = ret; |
| } |
| } |
| /* |
| * if we failed to refill our space rsv, bail out |
| * and let the transaction restart |
| */ |
| if (should_end) { |
| err = -EAGAIN; |
| goto error; |
| } |
| goto search_again; |
| } else { |
| path->slots[0]--; |
| } |
| } |
| out: |
| if (pending_del_nr) { |
| ret = btrfs_del_items(trans, root, path, pending_del_slot, |
| pending_del_nr); |
| if (ret) |
| btrfs_abort_transaction(trans, root, ret); |
| } |
| error: |
| if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) |
| btrfs_ordered_update_i_size(inode, last_size, NULL); |
| |
| btrfs_free_path(path); |
| |
| if (be_nice && bytes_deleted > SZ_32M) { |
| unsigned long updates = trans->delayed_ref_updates; |
| if (updates) { |
| trans->delayed_ref_updates = 0; |
| ret = btrfs_run_delayed_refs(trans, root, updates * 2); |
| if (ret && !err) |
| err = ret; |
| } |
| } |
| return err; |
| } |
| |
| /* |
| * btrfs_truncate_block - read, zero a chunk and write a block |
| * @inode - inode that we're zeroing |
| * @from - the offset to start zeroing |
| * @len - the length to zero, 0 to zero the entire range respective to the |
| * offset |
| * @front - zero up to the offset instead of from the offset on |
| * |
| * This will find the block for the "from" offset and cow the block and zero the |
| * part we want to zero. This is used with truncate and hole punching. |
| */ |
| int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len, |
| int front) |
| { |
| struct address_space *mapping = inode->i_mapping; |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; |
| struct btrfs_ordered_extent *ordered; |
| struct extent_state *cached_state = NULL; |
| char *kaddr; |
| u32 blocksize = root->sectorsize; |
| pgoff_t index = from >> PAGE_SHIFT; |
| unsigned offset = from & (blocksize - 1); |
| struct page *page; |
| gfp_t mask = btrfs_alloc_write_mask(mapping); |
| int ret = 0; |
| u64 block_start; |
| u64 block_end; |
| |
| if ((offset & (blocksize - 1)) == 0 && |
| (!len || ((len & (blocksize - 1)) == 0))) |
| goto out; |
| |
| ret = btrfs_delalloc_reserve_space(inode, |
| round_down(from, blocksize), blocksize); |
| if (ret) |
| goto out; |
| |
| again: |
| page = find_or_create_page(mapping, index, mask); |
| if (!page) { |
| btrfs_delalloc_release_space(inode, |
| round_down(from, blocksize), |
| blocksize); |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| block_start = round_down(from, blocksize); |
| block_end = block_start + blocksize - 1; |
| |
| if (!PageUptodate(page)) { |
| ret = btrfs_readpage(NULL, page); |
| lock_page(page); |
| if (page->mapping != mapping) { |
| unlock_page(page); |
| put_page(page); |
| goto again; |
| } |
| if (!PageUptodate(page)) { |
| ret = -EIO; |
| goto out_unlock; |
| } |
| } |
| wait_on_page_writeback(page); |
| |
| lock_extent_bits(io_tree, block_start, block_end, &cached_state); |
| set_page_extent_mapped(page); |
| |
| ordered = btrfs_lookup_ordered_extent(inode, block_start); |
| if (ordered) { |
| unlock_extent_cached(io_tree, block_start, block_end, |
| &cached_state, GFP_NOFS); |
| unlock_page(page); |
| put_page(page); |
| btrfs_start_ordered_extent(inode, ordered, 1); |
| btrfs_put_ordered_extent(ordered); |
| goto again; |
| } |
| |
| clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end, |
| EXTENT_DIRTY | EXTENT_DELALLOC | |
| EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, |
| 0, 0, &cached_state, GFP_NOFS); |
| |
| ret = btrfs_set_extent_delalloc(inode, block_start, block_end, |
| &cached_state); |
| if (ret) { |
| unlock_extent_cached(io_tree, block_start, block_end, |
| &cached_state, GFP_NOFS); |
| goto out_unlock; |
| } |
| |
| if (offset != blocksize) { |
| if (!len) |
| len = blocksize - offset; |
| kaddr = kmap(page); |
| if (front) |
| memset(kaddr + (block_start - page_offset(page)), |
| 0, offset); |
| else |
| memset(kaddr + (block_start - page_offset(page)) + offset, |
| 0, len); |
| flush_dcache_page(page); |
| kunmap(page); |
| } |
| ClearPageChecked(page); |
| set_page_dirty(page); |
| unlock_extent_cached(io_tree, block_start, block_end, &cached_state, |
| GFP_NOFS); |
| |
| out_unlock: |
| if (ret) |
| btrfs_delalloc_release_space(inode, block_start, |
| blocksize); |
| unlock_page(page); |
| put_page(page); |
| out: |
| return ret; |
| } |
| |
| static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode, |
| u64 offset, u64 len) |
| { |
| struct btrfs_trans_handle *trans; |
| int ret; |
| |
| /* |
| * Still need to make sure the inode looks like it's been updated so |
| * that any holes get logged if we fsync. |
| */ |
| if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) { |
| BTRFS_I(inode)->last_trans = root->fs_info->generation; |
| BTRFS_I(inode)->last_sub_trans = root->log_transid; |
| BTRFS_I(inode)->last_log_commit = root->last_log_commit; |
| return 0; |
| } |
| |
| /* |
| * 1 - for the one we're dropping |
| * 1 - for the one we're adding |
| * 1 - for updating the inode. |
| */ |
| trans = btrfs_start_transaction(root, 3); |
| if (IS_ERR(trans)) |
| return PTR_ERR(trans); |
| |
| ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1); |
| if (ret) { |
| btrfs_abort_transaction(trans, root, ret); |
| btrfs_end_transaction(trans, root); |
| return ret; |
| } |
| |
| ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset, |
| 0, 0, len, 0, len, 0, 0, 0); |
| if (ret) |
| btrfs_abort_transaction(trans, root, ret); |
| else |
| btrfs_update_inode(trans, root, inode); |
| btrfs_end_transaction(trans, root); |
| return ret; |
| } |
| |
| /* |
| * This function puts in dummy file extents for the area we're creating a hole |
| * for. So if we are truncating this file to a larger size we need to insert |
| * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for |
| * the range between oldsize and size |
| */ |
| int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size) |
| { |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; |
| struct extent_map *em = NULL; |
| struct extent_state *cached_state = NULL; |
| struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; |
| u64 hole_start = ALIGN(oldsize, root->sectorsize); |
| u64 block_end = ALIGN(size, root->sectorsize); |
| u64 last_byte; |
| u64 cur_offset; |
| u64 hole_size; |
| int err = 0; |
| |
| /* |
| * If our size started in the middle of a block we need to zero out the |
| * rest of the block before we expand the i_size, otherwise we could |
| * expose stale data. |
| */ |
| err = btrfs_truncate_block(inode, oldsize, 0, 0); |
| if (err) |
| return err; |
| |
| if (size <= hole_start) |
| return 0; |
| |
| while (1) { |
| struct btrfs_ordered_extent *ordered; |
| |
| lock_extent_bits(io_tree, hole_start, block_end - 1, |
| &cached_state); |
| ordered = btrfs_lookup_ordered_range(inode, hole_start, |
| block_end - hole_start); |
| if (!ordered) |
| break; |
| unlock_extent_cached(io_tree, hole_start, block_end - 1, |
| &cached_state, GFP_NOFS); |
| btrfs_start_ordered_extent(inode, ordered, 1); |
| btrfs_put_ordered_extent(ordered); |
| } |
| |
| cur_offset = hole_start; |
| while (1) { |
| em = btrfs_get_extent(inode, NULL, 0, cur_offset, |
| block_end - cur_offset, 0); |
| if (IS_ERR(em)) { |
| err = PTR_ERR(em); |
| em = NULL; |
| break; |
| } |
| last_byte = min(extent_map_end(em), block_end); |
| last_byte = ALIGN(last_byte , root->sectorsize); |
| if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { |
| struct extent_map *hole_em; |
| hole_size = last_byte - cur_offset; |
| |
| err = maybe_insert_hole(root, inode, cur_offset, |
| hole_size); |
| if (err) |
| break; |
| btrfs_drop_extent_cache(inode, cur_offset, |
| cur_offset + hole_size - 1, 0); |
| hole_em = alloc_extent_map(); |
| if (!hole_em) { |
| set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, |
| &BTRFS_I(inode)->runtime_flags); |
| goto next; |
| } |
| hole_em->start = cur_offset; |
| hole_em->len = hole_size; |
| hole_em->orig_start = cur_offset; |
| |
| hole_em->block_start = EXTENT_MAP_HOLE; |
| hole_em->block_len = 0; |
| hole_em->orig_block_len = 0; |
| hole_em->ram_bytes = hole_size; |
| hole_em->bdev = root->fs_info->fs_devices->latest_bdev; |
| hole_em->compress_type = BTRFS_COMPRESS_NONE; |
| hole_em->generation = root->fs_info->generation; |
| |
| while (1) { |
| write_lock(&em_tree->lock); |
| err = add_extent_mapping(em_tree, hole_em, 1); |
| write_unlock(&em_tree->lock); |
| if (err != -EEXIST) |
| break; |
| btrfs_drop_extent_cache(inode, cur_offset, |
| cur_offset + |
| hole_size - 1, 0); |
| } |
| free_extent_map(hole_em); |
| } |
| next: |
| free_extent_map(em); |
| em = NULL; |
| cur_offset = last_byte; |
| if (cur_offset >= block_end) |
| break; |
| } |
| free_extent_map(em); |
| unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state, |
| GFP_NOFS); |
| return err; |
| } |
| |
| static int btrfs_setsize(struct inode *inode, struct iattr *attr) |
| { |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| struct btrfs_trans_handle *trans; |
| loff_t oldsize = i_size_read(inode); |
| loff_t newsize = attr->ia_size; |
| int mask = attr->ia_valid; |
| int ret; |
| |
| /* |
| * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a |
| * special case where we need to update the times despite not having |
| * these flags set. For all other operations the VFS set these flags |
| * explicitly if it wants a timestamp update. |
| */ |
| if (newsize != oldsize) { |
| inode_inc_iversion(inode); |
| if (!(mask & (ATTR_CTIME | ATTR_MTIME))) |
| inode->i_ctime = inode->i_mtime = |
| current_fs_time(inode->i_sb); |
| } |
| |
| if (newsize > oldsize) { |
| /* |
| * Don't do an expanding truncate while snapshoting is ongoing. |
| * This is to ensure the snapshot captures a fully consistent |
| * state of this file - if the snapshot captures this expanding |
| * truncation, it must capture all writes that happened before |
| * this truncation. |
| */ |
| btrfs_wait_for_snapshot_creation(root); |
| ret = btrfs_cont_expand(inode, oldsize, newsize); |
| if (ret) { |
| btrfs_end_write_no_snapshoting(root); |
| return ret; |
| } |
| |
| trans = btrfs_start_transaction(root, 1); |
| if (IS_ERR(trans)) { |
| btrfs_end_write_no_snapshoting(root); |
| return PTR_ERR(trans); |
| } |
| |
| i_size_write(inode, newsize); |
| btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL); |
| pagecache_isize_extended(inode, oldsize, newsize); |
| ret = btrfs_update_inode(trans, root, inode); |
| btrfs_end_write_no_snapshoting(root); |
| btrfs_end_transaction(trans, root); |
| } else { |
| |
| /* |
| * We're truncating a file that used to have good data down to |
| * zero. Make sure it gets into the ordered flush list so that |
| * any new writes get down to disk quickly. |
| */ |
| if (newsize == 0) |
| set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, |
| &BTRFS_I(inode)->runtime_flags); |
| |
| /* |
| * 1 for the orphan item we're going to add |
| * 1 for the orphan item deletion. |
| */ |
| trans = btrfs_start_transaction(root, 2); |
| if (IS_ERR(trans)) |
| return PTR_ERR(trans); |
| |
| /* |
| * We need to do this in case we fail at _any_ point during the |
| * actual truncate. Once we do the truncate_setsize we could |
| * invalidate pages which forces any outstanding ordered io to |
| * be instantly completed which will give us extents that need |
| * to be truncated. If we fail to get an orphan inode down we |
| * could have left over extents that were never meant to live, |
| * so we need to garuntee from this point on that everything |
| * will be consistent. |
| */ |
| ret = btrfs_orphan_add(trans, inode); |
| btrfs_end_transaction(trans, root); |
| if (ret) |
| return ret; |
| |
| /* we don't support swapfiles, so vmtruncate shouldn't fail */ |
| truncate_setsize(inode, newsize); |
| |
| /* Disable nonlocked read DIO to avoid the end less truncate */ |
| btrfs_inode_block_unlocked_dio(inode); |
| inode_dio_wait(inode); |
| btrfs_inode_resume_unlocked_dio(inode); |
| |
| ret = btrfs_truncate(inode); |
| if (ret && inode->i_nlink) { |
| int err; |
| |
| /* |
| * failed to truncate, disk_i_size is only adjusted down |
| * as we remove extents, so it should represent the true |
| * size of the inode, so reset the in memory size and |
| * delete our orphan entry. |
| */ |
| trans = btrfs_join_transaction(root); |
| if (IS_ERR(trans)) { |
| btrfs_orphan_del(NULL, inode); |
| return ret; |
| } |
| i_size_write(inode, BTRFS_I(inode)->disk_i_size); |
| err = btrfs_orphan_del(trans, inode); |
| if (err) |
| btrfs_abort_transaction(trans, root, err); |
| btrfs_end_transaction(trans, root); |
| } |
| } |
| |
| return ret; |
| } |
| |
| static int btrfs_setattr(struct dentry *dentry, struct iattr *attr) |
| { |
| struct inode *inode = d_inode(dentry); |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| int err; |
| |
| if (btrfs_root_readonly(root)) |
| return -EROFS; |
| |
| err = inode_change_ok(inode, attr); |
| if (err) |
| return err; |
| |
| if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { |
| err = btrfs_setsize(inode, attr); |
| if (err) |
| return err; |
| } |
| |
| if (attr->ia_valid) { |
| setattr_copy(inode, attr); |
| inode_inc_iversion(inode); |
| err = btrfs_dirty_inode(inode); |
| |
| if (!err && attr->ia_valid & ATTR_MODE) |
| err = posix_acl_chmod(inode, inode->i_mode); |
| } |
| |
| return err; |
| } |
| |
| /* |
| * While truncating the inode pages during eviction, we get the VFS calling |
| * btrfs_invalidatepage() against each page of the inode. This is slow because |
| * the calls to btrfs_invalidatepage() result in a huge amount of calls to |
| * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting |
| * extent_state structures over and over, wasting lots of time. |
| * |
| * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all |
| * those expensive operations on a per page basis and do only the ordered io |
| * finishing, while we release here the extent_map and extent_state structures, |
| * without the excessive merging and splitting. |
| */ |
| static void evict_inode_truncate_pages(struct inode *inode) |
| { |
| struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; |
| struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree; |
| struct rb_node *node; |
| |
| ASSERT(inode->i_state & I_FREEING); |
| truncate_inode_pages_final(&inode->i_data); |
| |
| write_lock(&map_tree->lock); |
| while (!RB_EMPTY_ROOT(&map_tree->map)) { |
| struct extent_map *em; |
| |
| node = rb_first(&map_tree->map); |
| em = rb_entry(node, struct extent_map, rb_node); |
| clear_bit(EXTENT_FLAG_PINNED, &em->flags); |
| clear_bit(EXTENT_FLAG_LOGGING, &em->flags); |
| remove_extent_mapping(map_tree, em); |
| free_extent_map(em); |
| if (need_resched()) { |
| write_unlock(&map_tree->lock); |
| cond_resched(); |
| write_lock(&map_tree->lock); |
| } |
| } |
| write_unlock(&map_tree->lock); |
| |
| /* |
| * Keep looping until we have no more ranges in the io tree. |
| * We can have ongoing bios started by readpages (called from readahead) |
| * that have their endio callback (extent_io.c:end_bio_extent_readpage) |
| * still in progress (unlocked the pages in the bio but did not yet |
| * unlocked the ranges in the io tree). Therefore this means some |
| * ranges can still be locked and eviction started because before |
| * submitting those bios, which are executed by a separate task (work |
| * queue kthread), inode references (inode->i_count) were not taken |
| * (which would be dropped in the end io callback of each bio). |
| * Therefore here we effectively end up waiting for those bios and |
| * anyone else holding locked ranges without having bumped the inode's |
| * reference count - if we don't do it, when they access the inode's |
| * io_tree to unlock a range it may be too late, leading to an |
| * use-after-free issue. |
| */ |
| spin_lock(&io_tree->lock); |
| while (!RB_EMPTY_ROOT(&io_tree->state)) { |
| struct extent_state *state; |
| struct extent_state *cached_state = NULL; |
| u64 start; |
| u64 end; |
| |
| node = rb_first(&io_tree->state); |
| state = rb_entry(node, struct extent_state, rb_node); |
| start = state->start; |
| end = state->end; |
| spin_unlock(&io_tree->lock); |
| |
| lock_extent_bits(io_tree, start, end, &cached_state); |
| |
| /* |
| * If still has DELALLOC flag, the extent didn't reach disk, |
| * and its reserved space won't be freed by delayed_ref. |
| * So we need to free its reserved space here. |
| * (Refer to comment in btrfs_invalidatepage, case 2) |
| * |
| * Note, end is the bytenr of last byte, so we need + 1 here. |
| */ |
| if (state->state & EXTENT_DELALLOC) |
| btrfs_qgroup_free_data(inode, start, end - start + 1); |
| |
| clear_extent_bit(io_tree, start, end, |
| EXTENT_LOCKED | EXTENT_DIRTY | |
| EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | |
| EXTENT_DEFRAG, 1, 1, |
| &cached_state, GFP_NOFS); |
| |
| cond_resched(); |
| spin_lock(&io_tree->lock); |
| } |
| spin_unlock(&io_tree->lock); |
| } |
| |
| void btrfs_evict_inode(struct inode *inode) |
| { |
| struct btrfs_trans_handle *trans; |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| struct btrfs_block_rsv *rsv, *global_rsv; |
| int steal_from_global = 0; |
| u64 min_size = btrfs_calc_trunc_metadata_size(root, 1); |
| int ret; |
| |
| trace_btrfs_inode_evict(inode); |
| |
| evict_inode_truncate_pages(inode); |
| |
| if (inode->i_nlink && |
| ((btrfs_root_refs(&root->root_item) != 0 && |
| root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) || |
| btrfs_is_free_space_inode(inode))) |
| goto no_delete; |
| |
| if (is_bad_inode(inode)) { |
| btrfs_orphan_del(NULL, inode); |
| goto no_delete; |
| } |
| /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */ |
| if (!special_file(inode->i_mode)) |
| btrfs_wait_ordered_range(inode, 0, (u64)-1); |
| |
| btrfs_free_io_failure_record(inode, 0, (u64)-1); |
| |
| if (root->fs_info->log_root_recovering) { |
| BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, |
| &BTRFS_I(inode)->runtime_flags)); |
| goto no_delete; |
| } |
| |
| if (inode->i_nlink > 0) { |
| BUG_ON(btrfs_root_refs(&root->root_item) != 0 && |
| root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID); |
| goto no_delete; |
| } |
| |
| ret = btrfs_commit_inode_delayed_inode(inode); |
| if (ret) { |
| btrfs_orphan_del(NULL, inode); |
| goto no_delete; |
| } |
| |
| rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); |
| if (!rsv) { |
| btrfs_orphan_del(NULL, inode); |
| goto no_delete; |
| } |
| rsv->size = min_size; |
| rsv->failfast = 1; |
| global_rsv = &root->fs_info->global_block_rsv; |
| |
| btrfs_i_size_write(inode, 0); |
| |
| /* |
| * This is a bit simpler than btrfs_truncate since we've already |
| * reserved our space for our orphan item in the unlink, so we just |
| * need to reserve some slack space in case we add bytes and update |
| * inode item when doing the truncate. |
| */ |
| while (1) { |
| ret = btrfs_block_rsv_refill(root, rsv, min_size, |
| BTRFS_RESERVE_FLUSH_LIMIT); |
| |
| /* |
| * Try and steal from the global reserve since we will |
| * likely not use this space anyway, we want to try as |
| * hard as possible to get this to work. |
| */ |
| if (ret) |
| steal_from_global++; |
| else |
| steal_from_global = 0; |
| ret = 0; |
| |
| /* |
| * steal_from_global == 0: we reserved stuff, hooray! |
| * steal_from_global == 1: we didn't reserve stuff, boo! |
| * steal_from_global == 2: we've committed, still not a lot of |
| * room but maybe we'll have room in the global reserve this |
| * time. |
| * steal_from_global == 3: abandon all hope! |
| */ |
| if (steal_from_global > 2) { |
| btrfs_warn(root->fs_info, |
| "Could not get space for a delete, will truncate on mount %d", |
| ret); |
| btrfs_orphan_del(NULL, inode); |
| btrfs_free_block_rsv(root, rsv); |
| goto no_delete; |
| } |
| |
| trans = btrfs_join_transaction(root); |
| if (IS_ERR(trans)) { |
| btrfs_orphan_del(NULL, inode); |
| btrfs_free_block_rsv(root, rsv); |
| goto no_delete; |
| } |
| |
| /* |
| * We can't just steal from the global reserve, we need tomake |
| * sure there is room to do it, if not we need to commit and try |
| * again. |
| */ |
| if (steal_from_global) { |
| if (!btrfs_check_space_for_delayed_refs(trans, root)) |
| ret = btrfs_block_rsv_migrate(global_rsv, rsv, |
| min_size); |
| else |
| ret = -ENOSPC; |
| } |
| |
| /* |
| * Couldn't steal from the global reserve, we have too much |
| * pending stuff built up, commit the transaction and try it |
| * again. |
| */ |
| if (ret) { |
| ret = btrfs_commit_transaction(trans, root); |
| if (ret) { |
| btrfs_orphan_del(NULL, inode); |
| btrfs_free_block_rsv(root, rsv); |
| goto no_delete; |
| } |
| continue; |
| } else { |
| steal_from_global = 0; |
| } |
| |
| trans->block_rsv = rsv; |
| |
| ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0); |
| if (ret != -ENOSPC && ret != -EAGAIN) |
| break; |
| |
| trans->block_rsv = &root->fs_info->trans_block_rsv; |
| btrfs_end_transaction(trans, root); |
| trans = NULL; |
| btrfs_btree_balance_dirty(root); |
| } |
| |
| btrfs_free_block_rsv(root, rsv); |
| |
| /* |
| * Errors here aren't a big deal, it just means we leave orphan items |
| * in the tree. They will be cleaned up on the next mount. |
| */ |
| if (ret == 0) { |
| trans->block_rsv = root->orphan_block_rsv; |
| btrfs_orphan_del(trans, inode); |
| } else { |
| btrfs_orphan_del(NULL, inode); |
| } |
| |
| trans->block_rsv = &root->fs_info->trans_block_rsv; |
| if (!(root == root->fs_info->tree_root || |
| root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)) |
| btrfs_return_ino(root, btrfs_ino(inode)); |
| |
| btrfs_end_transaction(trans, root); |
| btrfs_btree_balance_dirty(root); |
| no_delete: |
| btrfs_remove_delayed_node(inode); |
| clear_inode(inode); |
| } |
| |
| /* |
| * this returns the key found in the dir entry in the location pointer. |
| * If no dir entries were found, location->objectid is 0. |
| */ |
| static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, |
| struct btrfs_key *location) |
| { |
| const char *name = dentry->d_name.name; |
| int namelen = dentry->d_name.len; |
| struct btrfs_dir_item *di; |
| struct btrfs_path *path; |
| struct btrfs_root *root = BTRFS_I(dir)->root; |
| int ret = 0; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name, |
| namelen, 0); |
| if (IS_ERR(di)) |
| ret = PTR_ERR(di); |
| |
| if (IS_ERR_OR_NULL(di)) |
| goto out_err; |
| |
| btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); |
| out: |
| btrfs_free_path(path); |
| return ret; |
| out_err: |
| location->objectid = 0; |
| goto out; |
| } |
| |
| /* |
| * when we hit a tree root in a directory, the btrfs part of the inode |
| * needs to be changed to reflect the root directory of the tree root. This |
| * is kind of like crossing a mount point. |
| */ |
| static int fixup_tree_root_location(struct btrfs_root *root, |
| struct inode *dir, |
| struct dentry *dentry, |
| struct btrfs_key *location, |
| struct btrfs_root **sub_root) |
| { |
| struct btrfs_path *path; |
| struct btrfs_root *new_root; |
| struct btrfs_root_ref *ref; |
| struct extent_buffer *leaf; |
| struct btrfs_key key; |
| int ret; |
| int err = 0; |
| |
| path = btrfs_alloc_path(); |
| if (!path) { |
| err = -ENOMEM; |
| goto out; |
| } |
| |
| err = -ENOENT; |
| key.objectid = BTRFS_I(dir)->root->root_key.objectid; |
| key.type = BTRFS_ROOT_REF_KEY; |
| key.offset = location->objectid; |
| |
| ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key, path, |
| 0, 0); |
| if (ret) { |
| if (ret < 0) |
| err = ret; |
| goto out; |
| } |
| |
| leaf = path->nodes[0]; |
| ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); |
| if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) || |
| btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len) |
| goto out; |
| |
| ret = memcmp_extent_buffer(leaf, dentry->d_name.name, |
| (unsigned long)(ref + 1), |
| dentry->d_name.len); |
| if (ret) |
| goto out; |
| |
| btrfs_release_path(path); |
| |
| new_root = btrfs_read_fs_root_no_name(root->fs_info, location); |
| if (IS_ERR(new_root)) { |
| err = PTR_ERR(new_root); |
| goto out; |
| } |
| |
| *sub_root = new_root; |
| location->objectid = btrfs_root_dirid(&new_root->root_item); |
| location->type = BTRFS_INODE_ITEM_KEY; |
| location->offset = 0; |
| err = 0; |
| out: |
| btrfs_free_path(path); |
| return err; |
| } |
| |
| static void inode_tree_add(struct inode *inode) |
| { |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| struct btrfs_inode *entry; |
| struct rb_node **p; |
| struct rb_node *parent; |
| struct rb_node *new = &BTRFS_I(inode)->rb_node; |
| u64 ino = btrfs_ino(inode); |
| |
| if (inode_unhashed(inode)) |
| return; |
| parent = NULL; |
| spin_lock(&root->inode_lock); |
| p = &root->inode_tree.rb_node; |
| while (*p) { |
| parent = *p; |
| entry = rb_entry(parent, struct btrfs_inode, rb_node); |
| |
| if (ino < btrfs_ino(&entry->vfs_inode)) |
| p = &parent->rb_left; |
| else if (ino > btrfs_ino(&entry->vfs_inode)) |
| p = &parent->rb_right; |
| else { |
| WARN_ON(!(entry->vfs_inode.i_state & |
| (I_WILL_FREE | I_FREEING))); |
| rb_replace_node(parent, new, &root->inode_tree); |
| RB_CLEAR_NODE(parent); |
| spin_unlock(&root->inode_lock); |
| return; |
| } |
| } |
| rb_link_node(new, parent, p); |
| rb_insert_color(new, &root->inode_tree); |
| spin_unlock(&root->inode_lock); |
| } |
| |
| static void inode_tree_del(struct inode *inode) |
| { |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| int empty = 0; |
| |
| spin_lock(&root->inode_lock); |
| if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) { |
| rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree); |
| RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); |
| empty = RB_EMPTY_ROOT(&root->inode_tree); |
| } |
| spin_unlock(&root->inode_lock); |
| |
| if (empty && btrfs_root_refs(&root->root_item) == 0) { |
| synchronize_srcu(&root->fs_info->subvol_srcu); |
| spin_lock(&root->inode_lock); |
| empty = RB_EMPTY_ROOT(&root->inode_tree); |
| spin_unlock(&root->inode_lock); |
| if (empty) |
| btrfs_add_dead_root(root); |
| } |
| } |
| |
| void btrfs_invalidate_inodes(struct btrfs_root *root) |
| { |
| struct rb_node *node; |
| struct rb_node *prev; |
| struct btrfs_inode *entry; |
| struct inode *inode; |
| u64 objectid = 0; |
| |
| if (!test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) |
| WARN_ON(btrfs_root_refs(&root->root_item) != 0); |
| |
| spin_lock(&root->inode_lock); |
| again: |
| node = root->inode_tree.rb_node; |
| prev = NULL; |
| while (node) { |
| prev = node; |
| entry = rb_entry(node, struct btrfs_inode, rb_node); |
| |
| if (objectid < btrfs_ino(&entry->vfs_inode)) |
| node = node->rb_left; |
| else if (objectid > btrfs_ino(&entry->vfs_inode)) |
| node = node->rb_right; |
| else |
| break; |
| } |
| if (!node) { |
| while (prev) { |
| entry = rb_entry(prev, struct btrfs_inode, rb_node); |
| if (objectid <= btrfs_ino(&entry->vfs_inode)) { |
| node = prev; |
| break; |
| } |
| prev = rb_next(prev); |
| } |
| } |
| while (node) { |
| entry = rb_entry(node, struct btrfs_inode, rb_node); |
| objectid = btrfs_ino(&entry->vfs_inode) + 1; |
| inode = igrab(&entry->vfs_inode); |
| if (inode) { |
| spin_unlock(&root->inode_lock); |
| if (atomic_read(&inode->i_count) > 1) |
| d_prune_aliases(inode); |
| /* |
| * btrfs_drop_inode will have it removed from |
| * the inode cache when its usage count |
| * hits zero. |
| */ |
| iput(inode); |
| cond_resched(); |
| spin_lock(&root->inode_lock); |
| goto again; |
| } |
| |
| if (cond_resched_lock(&root->inode_lock)) |
| goto again; |
| |
| node = rb_next(node); |
| } |
| spin_unlock(&root->inode_lock); |
| } |
| |
| static int btrfs_init_locked_inode(struct inode *inode, void *p) |
| { |
| struct btrfs_iget_args *args = p; |
| inode->i_ino = args->location->objectid; |
| memcpy(&BTRFS_I(inode)->location, args->location, |
| sizeof(*args->location)); |
| BTRFS_I(inode)->root = args->root; |
| return 0; |
| } |
| |
| static int btrfs_find_actor(struct inode *inode, void *opaque) |
| { |
| struct btrfs_iget_args *args = opaque; |
| return args->location->objectid == BTRFS_I(inode)->location.objectid && |
| args->root == BTRFS_I(inode)->root; |
| } |
| |
| static struct inode *btrfs_iget_locked(struct super_block *s, |
| struct btrfs_key *location, |
| struct btrfs_root *root) |
| { |
| struct inode *inode; |
| struct btrfs_iget_args args; |
| unsigned long hashval = btrfs_inode_hash(location->objectid, root); |
| |
| args.location = location; |
| args.root = root; |
| |
| inode = iget5_locked(s, hashval, btrfs_find_actor, |
| btrfs_init_locked_inode, |
| (void *)&args); |
| return inode; |
| } |
| |
| /* Get an inode object given its location and corresponding root. |
| * Returns in *is_new if the inode was read from disk |
| */ |
| struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location, |
| struct btrfs_root *root, int *new) |
| { |
| struct inode *inode; |
| |
| inode = btrfs_iget_locked(s, location, root); |
| if (!inode) |
| return ERR_PTR(-ENOMEM); |
| |
| if (inode->i_state & I_NEW) { |
| btrfs_read_locked_inode(inode); |
| if (!is_bad_inode(inode)) { |
| inode_tree_add(inode); |
| unlock_new_inode(inode); |
| if (new) |
| *new = 1; |
| } else { |
| unlock_new_inode(inode); |
| iput(inode); |
| inode = ERR_PTR(-ESTALE); |
| } |
| } |
| |
| return inode; |
| } |
| |
| static struct inode *new_simple_dir(struct super_block *s, |
| struct btrfs_key *key, |
| struct btrfs_root *root) |
| { |
| struct inode *inode = new_inode(s); |
| |
| if (!inode) |
| return ERR_PTR(-ENOMEM); |
| |
| BTRFS_I(inode)->root = root; |
| memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); |
| set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); |
| |
| inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; |
| inode->i_op = &btrfs_dir_ro_inode_operations; |
| inode->i_fop = &simple_dir_operations; |
| inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; |
| inode->i_mtime = current_fs_time(inode->i_sb); |
| inode->i_atime = inode->i_mtime; |
| inode->i_ctime = inode->i_mtime; |
| BTRFS_I(inode)->i_otime = inode->i_mtime; |
| |
| return inode; |
| } |
| |
| struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) |
| { |
| struct inode *inode; |
| struct btrfs_root *root = BTRFS_I(dir)->root; |
| struct btrfs_root *sub_root = root; |
| struct btrfs_key location; |
| int index; |
| int ret = 0; |
| |
| if (dentry->d_name.len > BTRFS_NAME_LEN) |
| return ERR_PTR(-ENAMETOOLONG); |
| |
| ret = btrfs_inode_by_name(dir, dentry, &location); |
| if (ret < 0) |
| return ERR_PTR(ret); |
| |
| if (location.objectid == 0) |
| return ERR_PTR(-ENOENT); |
| |
| if (location.type == BTRFS_INODE_ITEM_KEY) { |
| inode = btrfs_iget(dir->i_sb, &location, root, NULL); |
| return inode; |
| } |
| |
| BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY); |
| |
| index = srcu_read_lock(&root->fs_info->subvol_srcu); |
| ret = fixup_tree_root_location(root, dir, dentry, |
| &location, &sub_root); |
| if (ret < 0) { |
| if (ret != -ENOENT) |
| inode = ERR_PTR(ret); |
| else |
| inode = new_simple_dir(dir->i_sb, &location, sub_root); |
| } else { |
| inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL); |
| } |
| srcu_read_unlock(&root->fs_info->subvol_srcu, index); |
| |
| if (!IS_ERR(inode) && root != sub_root) { |
| down_read(&root->fs_info->cleanup_work_sem); |
| if (!(inode->i_sb->s_flags & MS_RDONLY)) |
| ret = btrfs_orphan_cleanup(sub_root); |
| up_read(&root->fs_info->cleanup_work_sem); |
| if (ret) { |
| iput(inode); |
| inode = ERR_PTR(ret); |
| } |
| } |
| |
| return inode; |
| } |
| |
| static int btrfs_dentry_delete(const struct dentry *dentry) |
| { |
| struct btrfs_root *root; |
| struct inode *inode = d_inode(dentry); |
| |
| if (!inode && !IS_ROOT(dentry)) |
| inode = d_inode(dentry->d_parent); |
| |
| if (inode) { |
| root = BTRFS_I(inode)->root; |
| if (btrfs_root_refs(&root->root_item) == 0) |
| return 1; |
| |
| if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) |
| return 1; |
| } |
| return 0; |
| } |
| |
| static void btrfs_dentry_release(struct dentry *dentry) |
| { |
| kfree(dentry->d_fsdata); |
| } |
| |
| static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, |
| unsigned int flags) |
| { |
| struct inode *inode; |
| |
| inode = btrfs_lookup_dentry(dir, dentry); |
| if (IS_ERR(inode)) { |
| if (PTR_ERR(inode) == -ENOENT) |
| inode = NULL; |
| else |
| return ERR_CAST(inode); |
| } |
| |
| return d_splice_alias(inode, dentry); |
| } |
| |
| unsigned char btrfs_filetype_table[] = { |
| DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK |
| }; |
| |
| static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) |
| { |
| struct inode *inode = file_inode(file); |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| struct btrfs_item *item; |
| struct btrfs_dir_item *di; |
| struct btrfs_key key; |
| struct btrfs_key found_key; |
| struct btrfs_path *path; |
| struct list_head ins_list; |
| struct list_head del_list; |
| int ret; |
| struct extent_buffer *leaf; |
| int slot; |
| unsigned char d_type; |
| int over = 0; |
| u32 di_cur; |
| u32 di_total; |
| u32 di_len; |
| int key_type = BTRFS_DIR_INDEX_KEY; |
| char tmp_name[32]; |
| char *name_ptr; |
| int name_len; |
| int is_curr = 0; /* ctx->pos points to the current index? */ |
| bool emitted; |
| |
| /* FIXME, use a real flag for deciding about the key type */ |
| if (root->fs_info->tree_root == root) |
| key_type = BTRFS_DIR_ITEM_KEY; |
| |
| if (!dir_emit_dots(file, ctx)) |
| return 0; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| path->reada = READA_FORWARD; |
| |
| if (key_type == BTRFS_DIR_INDEX_KEY) { |
| INIT_LIST_HEAD(&ins_list); |
| INIT_LIST_HEAD(&del_list); |
| btrfs_get_delayed_items(inode, &ins_list, &del_list); |
| } |
| |
| key.type = key_type; |
| key.offset = ctx->pos; |
| key.objectid = btrfs_ino(inode); |
| |
| ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); |
| if (ret < 0) |
| goto err; |
| |
| emitted = false; |
| while (1) { |
| leaf = path->nodes[0]; |
| slot = path->slots[0]; |
| if (slot >= btrfs_header_nritems(leaf)) { |
| ret = btrfs_next_leaf(root, path); |
| if (ret < 0) |
| goto err; |
| else if (ret > 0) |
| break; |
| continue; |
| } |
| |
| item = btrfs_item_nr(slot); |
| btrfs_item_key_to_cpu(leaf, &found_key, slot); |
| |
| if (found_key.objectid != key.objectid) |
| break; |
| if (found_key.type != key_type) |
| break; |
| if (found_key.offset < ctx->pos) |
| goto next; |
| if (key_type == BTRFS_DIR_INDEX_KEY && |
| btrfs_should_delete_dir_index(&del_list, |
| found_key.offset)) |
| goto next; |
| |
| ctx->pos = found_key.offset; |
| is_curr = 1; |
| |
| di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); |
| di_cur = 0; |
| di_total = btrfs_item_size(leaf, item); |
| |
| while (di_cur < di_total) { |
| struct btrfs_key location; |
| |
| if (verify_dir_item(root, leaf, di)) |
| break; |
| |
| name_len = btrfs_dir_name_len(leaf, di); |
| if (name_len <= sizeof(tmp_name)) { |
| name_ptr = tmp_name; |
| } else { |
| name_ptr = kmalloc(name_len, GFP_KERNEL); |
| if (!name_ptr) { |
| ret = -ENOMEM; |
| goto err; |
| } |
| } |
| read_extent_buffer(leaf, name_ptr, |
| (unsigned long)(di + 1), name_len); |
| |
| d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)]; |
| btrfs_dir_item_key_to_cpu(leaf, di, &location); |
| |
| |
| /* is this a reference to our own snapshot? If so |
| * skip it. |
| * |
| * In contrast to old kernels, we insert the snapshot's |
| * dir item and dir index after it has been created, so |
| * we won't find a reference to our own snapshot. We |
| * still keep the following code for backward |
| * compatibility. |
| */ |
| if (location.type == BTRFS_ROOT_ITEM_KEY && |
| location.objectid == root->root_key.objectid) { |
| over = 0; |
| goto skip; |
| } |
| over = !dir_emit(ctx, name_ptr, name_len, |
| location.objectid, d_type); |
| |
| skip: |
| if (name_ptr != tmp_name) |
| kfree(name_ptr); |
| |
| if (over) |
| goto nopos; |
| emitted = true; |
| di_len = btrfs_dir_name_len(leaf, di) + |
| btrfs_dir_data_len(leaf, di) + sizeof(*di); |
| di_cur += di_len; |
| di = (struct btrfs_dir_item *)((char *)di + di_len); |
| } |
| next: |
| path->slots[0]++; |
| } |
| |
| if (key_type == BTRFS_DIR_INDEX_KEY) { |
| if (is_curr) |
| ctx->pos++; |
| ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list, &emitted); |
| if (ret) |
| goto nopos; |
| } |
| |
| /* |
| * If we haven't emitted any dir entry, we must not touch ctx->pos as |
| * it was was set to the termination value in previous call. We assume |
| * that "." and ".." were emitted if we reach this point and set the |
| * termination value as well for an empty directory. |
| */ |
| if (ctx->pos > 2 && !emitted) |
| goto nopos; |
| |
| /* Reached end of directory/root. Bump pos past the last item. */ |
| ctx->pos++; |
| |
| /* |
| * Stop new entries from being returned after we return the last |
| * entry. |
| * |
| * New directory entries are assigned a strictly increasing |
| * offset. This means that new entries created during readdir |
| * are *guaranteed* to be seen in the future by that readdir. |
| * This has broken buggy programs which operate on names as |
| * they're returned by readdir. Until we re-use freed offsets |
| * we have this hack to stop new entries from being returned |
| * under the assumption that they'll never reach this huge |
| * offset. |
| * |
| * This is being careful not to overflow 32bit loff_t unless the |
| * last entry requires it because doing so has broken 32bit apps |
| * in the past. |
| */ |
| if (key_type == BTRFS_DIR_INDEX_KEY) { |
| if (ctx->pos >= INT_MAX) |
| ctx->pos = LLONG_MAX; |
| else |
| ctx->pos = INT_MAX; |
| } |
| nopos: |
| ret = 0; |
| err: |
| if (key_type == BTRFS_DIR_INDEX_KEY) |
| btrfs_put_delayed_items(&ins_list, &del_list); |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc) |
| { |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| struct btrfs_trans_handle *trans; |
| int ret = 0; |
| bool nolock = false; |
| |
| if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) |
| return 0; |
| |
| if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode)) |
| nolock = true; |
| |
| if (wbc->sync_mode == WB_SYNC_ALL) { |
| if (nolock) |
| trans = btrfs_join_transaction_nolock(root); |
| else |
| trans = btrfs_join_transaction(root); |
| if (IS_ERR(trans)) |
| return PTR_ERR(trans); |
| ret = btrfs_commit_transaction(trans, root); |
| } |
| return ret; |
| } |
| |
| /* |
| * This is somewhat expensive, updating the tree every time the |
| * inode changes. But, it is most likely to find the inode in cache. |
| * FIXME, needs more benchmarking...there are no reasons other than performance |
| * to keep or drop this code. |
| */ |
| static int btrfs_dirty_inode(struct inode *inode) |
| { |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| struct btrfs_trans_handle *trans; |
| int ret; |
| |
| if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) |
| return 0; |
| |
| trans = btrfs_join_transaction(root); |
| if (IS_ERR(trans)) |
| return PTR_ERR(trans); |
| |
| ret = btrfs_update_inode(trans, root, inode); |
| if (ret && ret == -ENOSPC) { |
| /* whoops, lets try again with the full transaction */ |
| btrfs_end_transaction(trans, root); |
| trans = btrfs_start_transaction(root, 1); |
| if (IS_ERR(trans)) |
| return PTR_ERR(trans); |
| |
| ret = btrfs_update_inode(trans, root, inode); |
| } |
| btrfs_end_transaction(trans, root); |
| if (BTRFS_I(inode)->delayed_node) |
| btrfs_balance_delayed_items(root); |
| |
| return ret; |
| } |
| |
| /* |
| * This is a copy of file_update_time. We need this so we can return error on |
| * ENOSPC for updating the inode in the case of file write and mmap writes. |
| */ |
| static int btrfs_update_time(struct inode *inode, struct timespec *now, |
| int flags) |
| { |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| |
| if (btrfs_root_readonly(root)) |
| return -EROFS; |
| |
| if (flags & S_VERSION) |
| inode_inc_iversion(inode); |
| if (flags & S_CTIME) |
| inode->i_ctime = *now; |
| if (flags & S_MTIME) |
| inode->i_mtime = *now; |
| if (flags & S_ATIME) |
| inode->i_atime = *now; |
| return btrfs_dirty_inode(inode); |
| } |
| |
| /* |
| * find the highest existing sequence number in a directory |
| * and then set the in-memory index_cnt variable to reflect |
| * free sequence numbers |
| */ |
| static int btrfs_set_inode_index_count(struct inode *inode) |
| { |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| struct btrfs_key key, found_key; |
| struct btrfs_path *path; |
| struct extent_buffer *leaf; |
| int ret; |
| |
| key.objectid = btrfs_ino(inode); |
| key.type = BTRFS_DIR_INDEX_KEY; |
| key.offset = (u64)-1; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); |
| if (ret < 0) |
| goto out; |
| /* FIXME: we should be able to handle this */ |
| if (ret == 0) |
| goto out; |
| ret = 0; |
| |
| /* |
| * MAGIC NUMBER EXPLANATION: |
| * since we search a directory based on f_pos we have to start at 2 |
| * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody |
| * else has to start at 2 |
| */ |
| if (path->slots[0] == 0) { |
| BTRFS_I(inode)->index_cnt = 2; |
| goto out; |
| } |
| |
| path->slots[0]--; |
| |
| leaf = path->nodes[0]; |
| btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); |
| |
| if (found_key.objectid != btrfs_ino(inode) || |
| found_key.type != BTRFS_DIR_INDEX_KEY) { |
| BTRFS_I(inode)->index_cnt = 2; |
| goto out; |
| } |
| |
| BTRFS_I(inode)->index_cnt = found_key.offset + 1; |
| out: |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| /* |
| * helper to find a free sequence number in a given directory. This current |
| * code is very simple, later versions will do smarter things in the btree |
| */ |
| int btrfs_set_inode_index(struct inode *dir, u64 *index) |
| { |
| int ret = 0; |
| |
| if (BTRFS_I(dir)->index_cnt == (u64)-1) { |
| ret = btrfs_inode_delayed_dir_index_count(dir); |
| if (ret) { |
| ret = btrfs_set_inode_index_count(dir); |
| if (ret) |
| return ret; |
| } |
| } |
| |
| *index = BTRFS_I(dir)->index_cnt; |
| BTRFS_I(dir)->index_cnt++; |
| |
| return ret; |
| } |
| |
| static int btrfs_insert_inode_locked(struct inode *inode) |
| { |
| struct btrfs_iget_args args; |
| args.location = &BTRFS_I(inode)->location; |
| args.root = BTRFS_I(inode)->root; |
| |
| return insert_inode_locked4(inode, |
| btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root), |
| btrfs_find_actor, &args); |
| } |
| |
| static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct inode *dir, |
| const char *name, int name_len, |
| u64 ref_objectid, u64 objectid, |
| umode_t mode, u64 *index) |
| { |
| struct inode *inode; |
| struct btrfs_inode_item *inode_item; |
| struct btrfs_key *location; |
| struct btrfs_path *path; |
| struct btrfs_inode_ref *ref; |
| struct btrfs_key key[2]; |
| u32 sizes[2]; |
| int nitems = name ? 2 : 1; |
| unsigned long ptr; |
| int ret; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return ERR_PTR(-ENOMEM); |
| |
| inode = new_inode(root->fs_info->sb); |
| if (!inode) { |
| btrfs_free_path(path); |
| return ERR_PTR(-ENOMEM); |
| } |
| |
| /* |
| * O_TMPFILE, set link count to 0, so that after this point, |
| * we fill in an inode item with the correct link count. |
| */ |
| if (!name) |
| set_nlink(inode, 0); |
| |
| /* |
| * we have to initialize this early, so we can reclaim the inode |
| * number if we fail afterwards in this function. |
| */ |
| inode->i_ino = objectid; |
| |
| if (dir && name) { |
| trace_btrfs_inode_request(dir); |
| |
| ret = btrfs_set_inode_index(dir, index); |
| if (ret) { |
| btrfs_free_path(path); |
| iput(inode); |
| return ERR_PTR(ret); |
| } |
| } else if (dir) { |
| *index = 0; |
| } |
| /* |
| * index_cnt is ignored for everything but a dir, |
| * btrfs_get_inode_index_count has an explanation for the magic |
| * number |
| */ |
| BTRFS_I(inode)->index_cnt = 2; |
| BTRFS_I(inode)->dir_index = *index; |
| BTRFS_I(inode)->root = root; |
| BTRFS_I(inode)->generation = trans->transid; |
| inode->i_generation = BTRFS_I(inode)->generation; |
| |
| /* |
| * We could have gotten an inode number from somebody who was fsynced |
| * and then removed in this same transaction, so let's just set full |
| * sync since it will be a full sync anyway and this will blow away the |
| * old info in the log. |
| */ |
| set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); |
| |
| key[0].objectid = objectid; |
| key[0].type = BTRFS_INODE_ITEM_KEY; |
| key[0].offset = 0; |
| |
| sizes[0] = sizeof(struct btrfs_inode_item); |
| |
| if (name) { |
| /* |
| * Start new inodes with an inode_ref. This is slightly more |
| * efficient for small numbers of hard links since they will |
| * be packed into one item. Extended refs will kick in if we |
| * add more hard links than can fit in the ref item. |
| */ |
| key[1].objectid = objectid; |
| key[1].type = BTRFS_INODE_REF_KEY; |
| key[1].offset = ref_objectid; |
| |
| sizes[1] = name_len + sizeof(*ref); |
| } |
| |
| location = &BTRFS_I(inode)->location; |
| location->objectid = objectid; |
| location->offset = 0; |
| location->type = BTRFS_INODE_ITEM_KEY; |
| |
| ret = btrfs_insert_inode_locked(inode); |
| if (ret < 0) |
| goto fail; |
| |
| path->leave_spinning = 1; |
| ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems); |
| if (ret != 0) |
| goto fail_unlock; |
| |
| inode_init_owner(inode, dir, mode); |
| inode_set_bytes(inode, 0); |
| |
| inode->i_mtime = current_fs_time(inode->i_sb); |
| inode->i_atime = inode->i_mtime; |
| inode->i_ctime = inode->i_mtime; |
| BTRFS_I(inode)->i_otime = inode->i_mtime; |
| |
| inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], |
| struct btrfs_inode_item); |
| memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item, |
| sizeof(*inode_item)); |
| fill_inode_item(trans, path->nodes[0], inode_item, inode); |
| |
| if (name) { |
| ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, |
| struct btrfs_inode_ref); |
| btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); |
| btrfs_set_inode_ref_index(path->nodes[0], ref, *index); |
| ptr = (unsigned long)(ref + 1); |
| write_extent_buffer(path->nodes[0], name, ptr, name_len); |
| } |
| |
| btrfs_mark_buffer_dirty(path->nodes[0]); |
| btrfs_free_path(path); |
| |
| btrfs_inherit_iflags(inode, dir); |
| |
| if (S_ISREG(mode)) { |
| if (btrfs_test_opt(root, NODATASUM)) |
| BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; |
| if (btrfs_test_opt(root, NODATACOW)) |
| BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | |
| BTRFS_INODE_NODATASUM; |
| } |
| |
| inode_tree_add(inode); |
| |
| trace_btrfs_inode_new(inode); |
| btrfs_set_inode_last_trans(trans, inode); |
| |
| btrfs_update_root_times(trans, root); |
| |
| ret = btrfs_inode_inherit_props(trans, inode, dir); |
| if (ret) |
| btrfs_err(root->fs_info, |
| "error inheriting props for ino %llu (root %llu): %d", |
| btrfs_ino(inode), root->root_key.objectid, ret); |
| |
| return inode; |
| |
| fail_unlock: |
| unlock_new_inode(inode); |
| fail: |
| if (dir && name) |
| BTRFS_I(dir)->index_cnt--; |
| btrfs_free_path(path); |
| iput(inode); |
| return ERR_PTR(ret); |
| } |
| |
| static inline u8 btrfs_inode_type(struct inode *inode) |
| { |
| return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT]; |
| } |
| |
| /* |
| * utility function to add 'inode' into 'parent_inode' with |
| * a give name and a given sequence number. |
| * if 'add_backref' is true, also insert a backref from the |
| * inode to the parent directory. |
| */ |
| int btrfs_add_link(struct btrfs_trans_handle *trans, |
| struct inode *parent_inode, struct inode *inode, |
| const char *name, int name_len, int add_backref, u64 index) |
| { |
| int ret = 0; |
| struct btrfs_key key; |
| struct btrfs_root *root = BTRFS_I(parent_inode)->root; |
| u64 ino = btrfs_ino(inode); |
| u64 parent_ino = btrfs_ino(parent_inode); |
| |
| if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { |
| memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key)); |
| } else { |
| key.objectid = ino; |
| key.type = BTRFS_INODE_ITEM_KEY; |
| key.offset = 0; |
| } |
| |
| if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { |
| ret = btrfs_add_root_ref(trans, root->fs_info->tree_root, |
| key.objectid, root->root_key.objectid, |
| parent_ino, index, name, name_len); |
| } else if (add_backref) { |
| ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino, |
| parent_ino, index); |
| } |
| |
| /* Nothing to clean up yet */ |
| if (ret) |
| return ret; |
| |
| ret = btrfs_insert_dir_item(trans, root, name, name_len, |
| parent_inode, &key, |
| btrfs_inode_type(inode), index); |
| if (ret == -EEXIST || ret == -EOVERFLOW) |
| goto fail_dir_item; |
| else if (ret) { |
| btrfs_abort_transaction(trans, root, ret); |
| return ret; |
| } |
| |
| btrfs_i_size_write(parent_inode, parent_inode->i_size + |
| name_len * 2); |
| inode_inc_iversion(parent_inode); |
| parent_inode->i_mtime = parent_inode->i_ctime = |
| current_fs_time(parent_inode->i_sb); |
| ret = btrfs_update_inode(trans, root, parent_inode); |
| if (ret) |
| btrfs_abort_transaction(trans, root, ret); |
| return ret; |
| |
| fail_dir_item: |
| if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { |
| u64 local_index; |
| int err; |
| err = btrfs_del_root_ref(trans, root->fs_info->tree_root, |
| key.objectid, root->root_key.objectid, |
| parent_ino, &local_index, name, name_len); |
| |
| } else if (add_backref) { |
| u64 local_index; |
| int err; |
| |
| err = btrfs_del_inode_ref(trans, root, name, name_len, |
| ino, parent_ino, &local_index); |
| } |
| return ret; |
| } |
| |
| static int btrfs_add_nondir(struct btrfs_trans_handle *trans, |
| struct inode *dir, struct dentry *dentry, |
| struct inode *inode, int backref, u64 index) |
| { |
| int err = btrfs_add_link(trans, dir, inode, |
| dentry->d_name.name, dentry->d_name.len, |
| backref, index); |
| if (err > 0) |
| err = -EEXIST; |
| return err; |
| } |
| |
| static int btrfs_mknod(struct inode *dir, struct dentry *dentry, |
| umode_t mode, dev_t rdev) |
| { |
| struct btrfs_trans_handle *trans; |
| struct btrfs_root *root = BTRFS_I(dir)->root; |
| struct inode *inode = NULL; |
| int err; |
| int drop_inode = 0; |
| u64 objectid; |
| u64 index = 0; |
| |
| /* |
| * 2 for inode item and ref |
| * 2 for dir items |
| * 1 for xattr if selinux is on |
| */ |
| trans = btrfs_start_transaction(root, 5); |
| if (IS_ERR(trans)) |
| return PTR_ERR(trans); |
| |
| err = btrfs_find_free_ino(root, &objectid); |
| if (err) |
| goto out_unlock; |
| |
| inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, |
| dentry->d_name.len, btrfs_ino(dir), objectid, |
| mode, &index); |
| if (IS_ERR(inode)) { |
| err = PTR_ERR(inode); |
| goto out_unlock; |
| } |
| |
| /* |
| * If the active LSM wants to access the inode during |
| * d_instantiate it needs these. Smack checks to see |
| * if the filesystem supports xattrs by looking at the |
| * ops vector. |
| */ |
| inode->i_op = &btrfs_special_inode_operations; |
| init_special_inode(inode, inode->i_mode, rdev); |
| |
| err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); |
| if (err) |
| goto out_unlock_inode; |
| |
| err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); |
| if (err) { |
| goto out_unlock_inode; |
| } else { |
| btrfs_update_inode(trans, root, inode); |
| unlock_new_inode(inode); |
| d_instantiate(dentry, inode); |
| } |
| |
| out_unlock: |
| btrfs_end_transaction(trans, root); |
| btrfs_balance_delayed_items(root); |
| btrfs_btree_balance_dirty(root); |
| if (drop_inode) { |
| inode_dec_link_count(inode); |
| iput(inode); |
| } |
| return err; |
| |
| out_unlock_inode: |
| drop_inode = 1; |
| unlock_new_inode(inode); |
| goto out_unlock; |
| |
| } |
| |
| static int btrfs_create(struct inode *dir, struct dentry *dentry, |
| umode_t mode, bool excl) |
| { |
| struct btrfs_trans_handle *trans; |
| struct btrfs_root *root = BTRFS_I(dir)->root; |
| struct inode *inode = NULL; |
| int drop_inode_on_err = 0; |
| int err; |
| u64 objectid; |
| u64 index = 0; |
| |
| /* |
| * 2 for inode item and ref |
| * 2 for dir items |
| * 1 for xattr if selinux is on |
| */ |
| trans = btrfs_start_transaction(root, 5); |
| if (IS_ERR(trans)) |
| return PTR_ERR(trans); |
| |
| err = btrfs_find_free_ino(root, &objectid); |
| if (err) |
| goto out_unlock; |
| |
| inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, |
| dentry->d_name.len, btrfs_ino(dir), objectid, |
| mode, &index); |
| if (IS_ERR(inode)) { |
| err = PTR_ERR(inode); |
| goto out_unlock; |
| } |
| drop_inode_on_err = 1; |
| /* |
| * If the active LSM wants to access the inode during |
| * d_instantiate it needs these. Smack checks to see |
| * if the filesystem supports xattrs by looking at the |
| * ops vector. |
| */ |
| inode->i_fop = &btrfs_file_operations; |
| inode->i_op = &btrfs_file_inode_operations; |
| inode->i_mapping->a_ops = &btrfs_aops; |
| |
| err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); |
| if (err) |
| goto out_unlock_inode; |
| |
| err = btrfs_update_inode(trans, root, inode); |
| if (err) |
| goto out_unlock_inode; |
| |
| err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); |
| if (err) |
| goto out_unlock_inode; |
| |
| BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; |
| unlock_new_inode(inode); |
| d_instantiate(dentry, inode); |
| |
| out_unlock: |
| btrfs_end_transaction(trans, root); |
| if (err && drop_inode_on_err) { |
| inode_dec_link_count(inode); |
| iput(inode); |
| } |
| btrfs_balance_delayed_items(root); |
| btrfs_btree_balance_dirty(root); |
| return err; |
| |
| out_unlock_inode: |
| unlock_new_inode(inode); |
| goto out_unlock; |
| |
| } |
| |
| static int btrfs_link(struct dentry *old_dentry, struct inode *dir, |
| struct dentry *dentry) |
| { |
| struct btrfs_trans_handle *trans = NULL; |
| struct btrfs_root *root = BTRFS_I(dir)->root; |
| struct inode *inode = d_inode(old_dentry); |
| u64 index; |
| int err; |
| int drop_inode = 0; |
| |
| /* do not allow sys_link's with other subvols of the same device */ |
| if (root->objectid != BTRFS_I(inode)->root->objectid) |
| return -EXDEV; |
| |
| if (inode->i_nlink >= BTRFS_LINK_MAX) |
| return -EMLINK; |
| |
| err = btrfs_set_inode_index(dir, &index); |
| if (err) |
| goto fail; |
| |
| /* |
| * 2 items for inode and inode ref |
| * 2 items for dir items |
| * 1 item for parent inode |
| */ |
| trans = btrfs_start_transaction(root, 5); |
| if (IS_ERR(trans)) { |
| err = PTR_ERR(trans); |
| trans = NULL; |
| goto fail; |
| } |
| |
| /* There are several dir indexes for this inode, clear the cache. */ |
| BTRFS_I(inode)->dir_index = 0ULL; |
| inc_nlink(inode); |
| inode_inc_iversion(inode); |
| inode->i_ctime = current_fs_time(inode->i_sb); |
| ihold(inode); |
| set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags); |
| |
| err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index); |
| |
| if (err) { |
| drop_inode = 1; |
| } else { |
| struct dentry *parent = dentry->d_parent; |
| err = btrfs_update_inode(trans, root, inode); |
| if (err) |
| goto fail; |
| if (inode->i_nlink == 1) { |
| /* |
| * If new hard link count is 1, it's a file created |
| * with open(2) O_TMPFILE flag. |
| */ |
| err = btrfs_orphan_del(trans, inode); |
| if (err) |
| goto fail; |
| } |
| d_instantiate(dentry, inode); |
| btrfs_log_new_name(trans, inode, NULL, parent); |
| } |
| |
| btrfs_balance_delayed_items(root); |
| fail: |
| if (trans) |
| btrfs_end_transaction(trans, root); |
| if (drop_inode) { |
| inode_dec_link_count(inode); |
| iput(inode); |
| } |
| btrfs_btree_balance_dirty(root); |
| return err; |
| } |
| |
| static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) |
| { |
| struct inode *inode = NULL; |
| struct btrfs_trans_handle *trans; |
| struct btrfs_root *root = BTRFS_I(dir)->root; |
| int err = 0; |
| int drop_on_err = 0; |
| u64 objectid = 0; |
| u64 index = 0; |
| |
| /* |
| * 2 items for inode and ref |
| * 2 items for dir items |
| * 1 for xattr if selinux is on |
| */ |
| trans = btrfs_start_transaction(root, 5); |
| if (IS_ERR(trans)) |
| return PTR_ERR(trans); |
| |
| err = btrfs_find_free_ino(root, &objectid); |
| if (err) |
| goto out_fail; |
| |
| inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, |
| dentry->d_name.len, btrfs_ino(dir), objectid, |
| S_IFDIR | mode, &index); |
| if (IS_ERR(inode)) { |
| err = PTR_ERR(inode); |
| goto out_fail; |
| } |
| |
| drop_on_err = 1; |
| /* these must be set before we unlock the inode */ |
| inode->i_op = &btrfs_dir_inode_operations; |
| inode->i_fop = &btrfs_dir_file_operations; |
| |
| err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); |
| if (err) |
| goto out_fail_inode; |
| |
| btrfs_i_size_write(inode, 0); |
| err = btrfs_update_inode(trans, root, inode); |
| if (err) |
| goto out_fail_inode; |
| |
| err = btrfs_add_link(trans, dir, inode, dentry->d_name.name, |
| dentry->d_name.len, 0, index); |
| if (err) |
| goto out_fail_inode; |
| |
| d_instantiate(dentry, inode); |
| /* |
| * mkdir is special. We're unlocking after we call d_instantiate |
| * to avoid a race with nfsd calling d_instantiate. |
| */ |
| unlock_new_inode(inode); |
| drop_on_err = 0; |
| |
| out_fail: |
| btrfs_end_transaction(trans, root); |
| if (drop_on_err) { |
| inode_dec_link_count(inode); |
| iput(inode); |
| } |
| btrfs_balance_delayed_items(root); |
| btrfs_btree_balance_dirty(root); |
| return err; |
| |
| out_fail_inode: |
| unlock_new_inode(inode); |
| goto out_fail; |
| } |
| |
| /* Find next extent map of a given extent map, caller needs to ensure locks */ |
| static struct extent_map *next_extent_map(struct extent_map *em) |
| { |
| struct rb_node *next; |
| |
| next = rb_next(&em->rb_node); |
| if (!next) |
| return NULL; |
| return container_of(next, struct extent_map, rb_node); |
| } |
| |
| static struct extent_map *prev_extent_map(struct extent_map *em) |
| { |
| struct rb_node *prev; |
| |
| prev = rb_prev(&em->rb_node); |
| if (!prev) |
| return NULL; |
| return container_of(prev, struct extent_map, rb_node); |
| } |
| |
| /* helper for btfs_get_extent. Given an existing extent in the tree, |
| * the existing extent is the nearest extent to map_start, |
| * and an extent that you want to insert, deal with overlap and insert |
| * the best fitted new extent into the tree. |
| */ |
| static int merge_extent_mapping(struct extent_map_tree *em_tree, |
| struct extent_map *existing, |
| struct extent_map *em, |
| u64 map_start) |
| { |
| struct extent_map *prev; |
| struct extent_map *next; |
| u64 start; |
| u64 end; |
| u64 start_diff; |
| |
| BUG_ON(map_start < em->start || map_start >= extent_map_end(em)); |
| |
| if (existing->start > map_start) { |
| next = existing; |
| prev = prev_extent_map(next); |
| } else { |
| prev = existing; |
| next = next_extent_map(prev); |
| } |
| |
| start = prev ? extent_map_end(prev) : em->start; |
| start = max_t(u64, start, em->start); |
| end = next ? next->start : extent_map_end(em); |
| end = min_t(u64, end, extent_map_end(em)); |
| start_diff = start - em->start; |
| em->start = start; |
| em->len = end - start; |
| if (em->block_start < EXTENT_MAP_LAST_BYTE && |
| !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { |
| em->block_start += start_diff; |
| em->block_len -= start_diff; |
| } |
| return add_extent_mapping(em_tree, em, 0); |
| } |
| |
| static noinline int uncompress_inline(struct btrfs_path *path, |
| struct page *page, |
| size_t pg_offset, u64 extent_offset, |
| struct btrfs_file_extent_item *item) |
| { |
| int ret; |
| struct extent_buffer *leaf = path->nodes[0]; |
| char *tmp; |
| size_t max_size; |
| unsigned long inline_size; |
| unsigned long ptr; |
| int compress_type; |
| |
| WARN_ON(pg_offset != 0); |
| compress_type = btrfs_file_extent_compression(leaf, item); |
| max_size = btrfs_file_extent_ram_bytes(leaf, item); |
| inline_size = btrfs_file_extent_inline_item_len(leaf, |
| btrfs_item_nr(path->slots[0])); |
| tmp = kmalloc(inline_size, GFP_NOFS); |
| if (!tmp) |
| return -ENOMEM; |
| ptr = btrfs_file_extent_inline_start(item); |
| |
| read_extent_buffer(leaf, tmp, ptr, inline_size); |
| |
| max_size = min_t(unsigned long, PAGE_SIZE, max_size); |
| ret = btrfs_decompress(compress_type, tmp, page, |
| extent_offset, inline_size, max_size); |
| kfree(tmp); |
| return ret; |
| } |
| |
| /* |
| * a bit scary, this does extent mapping from logical file offset to the disk. |
| * the ugly parts come from merging extents from the disk with the in-ram |
| * representation. This gets more complex because of the data=ordered code, |
| * where the in-ram extents might be locked pending data=ordered completion. |
| * |
| * This also copies inline extents directly into the page. |
| */ |
| |
| struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page, |
| size_t pg_offset, u64 start, u64 len, |
| int create) |
| { |
| int ret; |
| int err = 0; |
| u64 extent_start = 0; |
| u64 extent_end = 0; |
| u64 objectid = btrfs_ino(inode); |
| u32 found_type; |
| struct btrfs_path *path = NULL; |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| struct btrfs_file_extent_item *item; |
| struct extent_buffer *leaf; |
| struct btrfs_key found_key; |
| struct extent_map *em = NULL; |
| struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; |
| struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; |
| struct btrfs_trans_handle *trans = NULL; |
| const bool new_inline = !page || create; |
| |
| again: |
| read_lock(&em_tree->lock); |
| em = lookup_extent_mapping(em_tree, start, len); |
| if (em) |
| em->bdev = root->fs_info->fs_devices->latest_bdev; |
| read_unlock(&em_tree->lock); |
| |
| if (em) { |
| if (em->start > start || em->start + em->len <= start) |
| free_extent_map(em); |
| else if (em->block_start == EXTENT_MAP_INLINE && page) |
| free_extent_map(em); |
| else |
| goto out; |
| } |
| em = alloc_extent_map(); |
| if (!em) { |
| err = -ENOMEM; |
| goto out; |
| } |
| em->bdev = root->fs_info->fs_devices->latest_bdev; |
| em->start = EXTENT_MAP_HOLE; |
| em->orig_start = EXTENT_MAP_HOLE; |
| em->len = (u64)-1; |
| em->block_len = (u64)-1; |
| |
| if (!path) { |
| path = btrfs_alloc_path(); |
| if (!path) { |
| err = -ENOMEM; |
| goto out; |
| } |
| /* |
| * Chances are we'll be called again, so go ahead and do |
| * readahead |
| */ |
| path->reada = READA_FORWARD; |
| } |
| |
| ret = btrfs_lookup_file_extent(trans, root, path, |
| objectid, start, trans != NULL); |
| if (ret < 0) { |
| err = ret; |
| goto out; |
| } |
| |
| if (ret != 0) { |
| if (path->slots[0] == 0) |
| goto not_found; |
| path->slots[0]--; |
| } |
| |
| leaf = path->nodes[0]; |
| item = btrfs_item_ptr(leaf, path->slots[0], |
| struct btrfs_file_extent_item); |
| /* are we inside the extent that was found? */ |
| btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); |
| found_type = found_key.type; |
| if (found_key.objectid != objectid || |
| found_type != BTRFS_EXTENT_DATA_KEY) { |
| /* |
| * If we backup past the first extent we want to move forward |
| * and see if there is an extent in front of us, otherwise we'll |
| * say there is a hole for our whole search range which can |
| * cause problems. |
| */ |
| extent_end = start; |
| goto next; |
| } |
| |
| found_type = btrfs_file_extent_type(leaf, item); |
| extent_start = found_key.offset; |
| if (found_type == BTRFS_FILE_EXTENT_REG || |
| found_type == BTRFS_FILE_EXTENT_PREALLOC) { |
| extent_end = extent_start + |
| btrfs_file_extent_num_bytes(leaf, item); |
| } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { |
| size_t size; |
| size = btrfs_file_extent_inline_len(leaf, path->slots[0], item); |
| extent_end = ALIGN(extent_start + size, root->sectorsize); |
| } |
| next: |
| if (start >= extent_end) { |
| path->slots[0]++; |
| if (path->slots[0] >= btrfs_header_nritems(leaf)) { |
| ret = btrfs_next_leaf(root, path); |
| if (ret < 0) { |
| err = ret; |
| goto out; |
| } |
| if (ret > 0) |
| goto not_found; |
| leaf = path->nodes[0]; |
| } |
| btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); |
| if (found_key.objectid != objectid || |
| found_key.type != BTRFS_EXTENT_DATA_KEY) |
| goto not_found; |
| if (start + len <= found_key.offset) |
| goto not_found; |
| if (start > found_key.offset) |
| goto next; |
| em->start = start; |
| em->orig_start = start; |
| em->len = found_key.offset - start; |
| goto not_found_em; |
| } |
| |
| btrfs_extent_item_to_extent_map(inode, path, item, new_inline, em); |
| |
| if (found_type == BTRFS_FILE_EXTENT_REG || |
| found_type == BTRFS_FILE_EXTENT_PREALLOC) { |
| goto insert; |
| } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { |
| unsigned long ptr; |
| char *map; |
| size_t size; |
| size_t extent_offset; |
| size_t copy_size; |
| |
| if (new_inline) |
| goto out; |
| |
| size = btrfs_file_extent_inline_len(leaf, path->slots[0], item); |
| extent_offset = page_offset(page) + pg_offset - extent_start; |
| copy_size = min_t(u64, PAGE_SIZE - pg_offset, |
| size - extent_offset); |
| em->start = extent_start + extent_offset; |
| em->len = ALIGN(copy_size, root->sectorsize); |
| em->orig_block_len = em->len; |
| em->orig_start = em->start; |
| ptr = btrfs_file_extent_inline_start(item) + extent_offset; |
| if (create == 0 && !PageUptodate(page)) { |
| if (btrfs_file_extent_compression(leaf, item) != |
| BTRFS_COMPRESS_NONE) { |
| ret = uncompress_inline(path, page, pg_offset, |
| extent_offset, item); |
| if (ret) { |
| err = ret; |
| goto out; |
| } |
| } else { |
| map = kmap(page); |
| read_extent_buffer(leaf, map + pg_offset, ptr, |
| copy_size); |
| if (pg_offset + copy_size < PAGE_SIZE) { |
| memset(map + pg_offset + copy_size, 0, |
| PAGE_SIZE - pg_offset - |
| copy_size); |
| } |
| kunmap(page); |
| } |
| flush_dcache_page(page); |
| } else if (create && PageUptodate(page)) { |
| BUG(); |
| if (!trans) { |
| kunmap(page); |
| free_extent_map(em); |
| em = NULL; |
| |
| btrfs_release_path(path); |
| trans = btrfs_join_transaction(root); |
| |
| if (IS_ERR(trans)) |
| return ERR_CAST(trans); |
| goto again; |
| } |
| map = kmap(page); |
| write_extent_buffer(leaf, map + pg_offset, ptr, |
| copy_size); |
| kunmap(page); |
| btrfs_mark_buffer_dirty(leaf); |
| } |
| set_extent_uptodate(io_tree, em->start, |
| extent_map_end(em) - 1, NULL, GFP_NOFS); |
| goto insert; |
| } |
| not_found: |
| em->start = start; |
| em->orig_start = start; |
| em->len = len; |
| not_found_em: |
| em->block_start = EXTENT_MAP_HOLE; |
| set_bit(EXTENT_FLAG_VACANCY, &em->flags); |
| insert: |
| btrfs_release_path(path); |
| if (em->start > start || extent_map_end(em) <= start) { |
| btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]", |
| em->start, em->len, start, len); |
| err = -EIO; |
| goto out; |
| } |
| |
| err = 0; |
| write_lock(&em_tree->lock); |
| ret = add_extent_mapping(em_tree, em, 0); |
| /* it is possible that someone inserted the extent into the tree |
| * while we had the lock dropped. It is also possible that |
| * an overlapping map exists in the tree |
| */ |
| if (ret == -EEXIST) { |
| struct extent_map *existing; |
| |
| ret = 0; |
| |
| existing = search_extent_mapping(em_tree, start, len); |
| /* |
| * existing will always be non-NULL, since there must be |
| * extent causing the -EEXIST. |
| */ |
| if (start >= extent_map_end(existing) || |
| start <= existing->start) { |
| /* |
| * The existing extent map is the one nearest to |
| * the [start, start + len) range which overlaps |
| */ |
| err = merge_extent_mapping(em_tree, existing, |
| em, start); |
| free_extent_map(existing); |
| if (err) { |
| free_extent_map(em); |
| em = NULL; |
| } |
| } else { |
| free_extent_map(em); |
| em = existing; |
| err = 0; |
| } |
| } |
| write_unlock(&em_tree->lock); |
| out: |
| |
| trace_btrfs_get_extent(root, em); |
| |
| btrfs_free_path(path); |
| if (trans) { |
| ret = btrfs_end_transaction(trans, root); |
| if (!err) |
| err = ret; |
| } |
| if (err) { |
| free_extent_map(em); |
| return ERR_PTR(err); |
| } |
| BUG_ON(!em); /* Error is always set */ |
| return em; |
| } |
| |
| struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page, |
| size_t pg_offset, u64 start, u64 len, |
| int create) |
| { |
| struct extent_map *em; |
| struct extent_map *hole_em = NULL; |
| u64 range_start = start; |
| u64 end; |
| u64 found; |
| u64 found_end; |
| int err = 0; |
| |
| em = btrfs_get_extent(inode, page, pg_offset, start, len, create); |
| if (IS_ERR(em)) |
| return em; |
| if (em) { |
| /* |
| * if our em maps to |
| * - a hole or |
| * - a pre-alloc extent, |
| * there might actually be delalloc bytes behind it. |
| */ |
| if (em->block_start != EXTENT_MAP_HOLE && |
| !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) |
| return em; |
| else |
| hole_em = em; |
| } |
| |
| /* check to see if we've wrapped (len == -1 or similar) */ |
| end = start + len; |
| if (end < start) |
| end = (u64)-1; |
| else |
| end -= 1; |
| |
| em = NULL; |
| |
| /* ok, we didn't find anything, lets look for delalloc */ |
| found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start, |
| end, len, EXTENT_DELALLOC, 1); |
| found_end = range_start + found; |
| if (found_end < range_start) |
| found_end = (u64)-1; |
| |
| /* |
| * we didn't find anything useful, return |
| * the original results from get_extent() |
| */ |
| if (range_start > end || found_end <= start) { |
| em = hole_em; |
| hole_em = NULL; |
| goto out; |
| } |
| |
| /* adjust the range_start to make sure it doesn't |
| * go backwards from the start they passed in |
| */ |
| range_start = max(start, range_start); |
| found = found_end - range_start; |
| |
| if (found > 0) { |
| u64 hole_start = start; |
| u64 hole_len = len; |
| |
| em = alloc_extent_map(); |
| if (!em) { |
| err = -ENOMEM; |
| goto out; |
| } |
| /* |
| * when btrfs_get_extent can't find anything it |
| * returns one huge hole |
| * |
| * make sure what it found really fits our range, and |
| * adjust to make sure it is based on the start from |
| * the caller |
| */ |
| if (hole_em) { |
| u64 calc_end = extent_map_end(hole_em); |
| |
| if (calc_end <= start || (hole_em->start > end)) { |
| free_extent_map(hole_em); |
| hole_em = NULL; |
| } else { |
| hole_start = max(hole_em->start, start); |
| hole_len = calc_end - hole_start; |
| } |
| } |
| em->bdev = NULL; |
| if (hole_em && range_start > hole_start) { |
| /* our hole starts before our delalloc, so we |
| * have to return just the parts of the hole |
| * that go until the delalloc starts |
| */ |
| em->len = min(hole_len, |
| range_start - hole_start); |
| em->start = hole_start; |
| em->orig_start = hole_start; |
| /* |
| * don't adjust block start at all, |
| * it is fixed at EXTENT_MAP_HOLE |
| */ |
| em->block_start = hole_em->block_start; |
| em->block_len = hole_len; |
| if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags)) |
| set_bit(EXTENT_FLAG_PREALLOC, &em->flags); |
| } else { |
| em->start = range_start; |
| em->len = found; |
| em->orig_start = range_start; |
| em->block_start = EXTENT_MAP_DELALLOC; |
| em->block_len = found; |
| } |
| } else if (hole_em) { |
| return hole_em; |
| } |
| out: |
| |
| free_extent_map(hole_em); |
| if (err) { |
| free_extent_map(em); |
| return ERR_PTR(err); |
| } |
| return em; |
| } |
| |
| static struct extent_map *btrfs_create_dio_extent(struct inode *inode, |
| const u64 start, |
| const u64 len, |
| const u64 orig_start, |
| const u64 block_start, |
| const u64 block_len, |
| const u64 orig_block_len, |
| const u64 ram_bytes, |
| const int type) |
| { |
| struct extent_map *em = NULL; |
| int ret; |
| |
| down_read(&BTRFS_I(inode)->dio_sem); |
| if (type != BTRFS_ORDERED_NOCOW) { |
| em = create_pinned_em(inode, start, len, orig_start, |
| block_start, block_len, orig_block_len, |
| ram_bytes, type); |
| if (IS_ERR(em)) |
| goto out; |
| } |
| ret = btrfs_add_ordered_extent_dio(inode, start, block_start, |
| len, block_len, type); |
| if (ret) { |
| if (em) { |
| free_extent_map(em); |
| btrfs_drop_extent_cache(inode, start, |
| start + len - 1, 0); |
| } |
| em = ERR_PTR(ret); |
| } |
| out: |
| up_read(&BTRFS_I(inode)->dio_sem); |
| |
| return em; |
| } |
| |
| static struct extent_map *btrfs_new_extent_direct(struct inode *inode, |
| u64 start, u64 len) |
| { |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| struct extent_map *em; |
| struct btrfs_key ins; |
| u64 alloc_hint; |
| int ret; |
| |
| alloc_hint = get_extent_allocation_hint(inode, start, len); |
| ret = btrfs_reserve_extent(root, len, root->sectorsize, 0, |
| alloc_hint, &ins, 1, 1); |
| if (ret) |
| return ERR_PTR(ret); |
| |
| em = btrfs_create_dio_extent(inode, start, ins.offset, start, |
| ins.objectid, ins.offset, ins.offset, |
| ins.offset, 0); |
| btrfs_dec_block_group_reservations(root->fs_info, ins.objectid); |
| if (IS_ERR(em)) |
| btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1); |
| |
| return em; |
| } |
| |
| /* |
| * returns 1 when the nocow is safe, < 1 on error, 0 if the |
| * block must be cow'd |
| */ |
| noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, |
| u64 *orig_start, u64 *orig_block_len, |
| u64 *ram_bytes) |
| { |
| struct btrfs_trans_handle *trans; |
| struct btrfs_path *path; |
| int ret; |
| struct extent_buffer *leaf; |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; |
| struct btrfs_file_extent_item *fi; |
| struct btrfs_key key; |
| u64 disk_bytenr; |
| u64 backref_offset; |
| u64 extent_end; |
| u64 num_bytes; |
| int slot; |
| int found_type; |
| bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW); |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), |
| offset, 0); |
| if (ret < 0) |
| goto out; |
| |
| slot = path->slots[0]; |
| if (ret == 1) { |
| if (slot == 0) { |
| /* can't find the item, must cow */ |
| ret = 0; |
| goto out; |
| } |
| slot--; |
| } |
| ret = 0; |
| leaf = path->nodes[0]; |
| btrfs_item_key_to_cpu(leaf, &key, slot); |
| if (key.objectid != btrfs_ino(inode) || |
| key.type != BTRFS_EXTENT_DATA_KEY) { |
| /* not our file or wrong item type, must cow */ |
| goto out; |
| } |
| |
| if (key.offset > offset) { |
| /* Wrong offset, must cow */ |
| goto out; |
| } |
| |
| fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); |
| found_type = btrfs_file_extent_type(leaf, fi); |
| if (found_type != BTRFS_FILE_EXTENT_REG && |
| found_type != BTRFS_FILE_EXTENT_PREALLOC) { |
| /* not a regular extent, must cow */ |
| goto out; |
| } |
| |
| if (!nocow && found_type == BTRFS_FILE_EXTENT_REG) |
| goto out; |
| |
| extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); |
| if (extent_end <= offset) |
| goto out; |
| |
| disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); |
| if (disk_bytenr == 0) |
| goto out; |
| |
| if (btrfs_file_extent_compression(leaf, fi) || |
| btrfs_file_extent_encryption(leaf, fi) || |
| btrfs_file_extent_other_encoding(leaf, fi)) |
| goto out; |
| |
| backref_offset = btrfs_file_extent_offset(leaf, fi); |
| |
| if (orig_start) { |
| *orig_start = key.offset - backref_offset; |
| *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi); |
| *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); |
| } |
| |
| if (btrfs_extent_readonly(root, disk_bytenr)) |
| goto out; |
| |
| num_bytes = min(offset + *len, extent_end) - offset; |
| if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) { |
| u64 range_end; |
| |
| range_end = round_up(offset + num_bytes, root->sectorsize) - 1; |
| ret = test_range_bit(io_tree, offset, range_end, |
| EXTENT_DELALLOC, 0, NULL); |
| if (ret) { |
| ret = -EAGAIN; |
| goto out; |
| } |
| } |
| |
| btrfs_release_path(path); |
| |
| /* |
| * look for other files referencing this extent, if we |
| * find any we must cow |
| */ |
| trans = btrfs_join_transaction(root); |
| if (IS_ERR(trans)) { |
| ret = 0; |
| goto out; |
| } |
| |
| ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode), |
| key.offset - backref_offset, disk_bytenr); |
| btrfs_end_transaction(trans, root); |
| if (ret) { |
| ret = 0; |
| goto out; |
| } |
| |
| /* |
| * adjust disk_bytenr and num_bytes to cover just the bytes |
| * in this extent we are about to write. If there |
| * are any csums in that range we have to cow in order |
| * to keep the csums correct |
| */ |
| disk_bytenr += backref_offset; |
| disk_bytenr += offset - key.offset; |
| if (csum_exist_in_range(root, disk_bytenr, num_bytes)) |
| goto out; |
| /* |
| * all of the above have passed, it is safe to overwrite this extent |
| * without cow |
| */ |
| *len = num_bytes; |
| ret = 1; |
| out: |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end) |
| { |
| struct radix_tree_root *root = &inode->i_mapping->page_tree; |
| int found = false; |
| void **pagep = NULL; |
| struct page *page = NULL; |
| int start_idx; |
| int end_idx; |
| |
| start_idx = start >> PAGE_SHIFT; |
| |
| /* |
| * end is the last byte in the last page. end == start is legal |
| */ |
| end_idx = end >> PAGE_SHIFT; |
| |
| rcu_read_lock(); |
| |
| /* Most of the code in this while loop is lifted from |
| * find_get_page. It's been modified to begin searching from a |
| * page and return just the first page found in that range. If the |
| * found idx is less than or equal to the end idx then we know that |
| * a page exists. If no pages are found or if those pages are |
| * outside of the range then we're fine (yay!) */ |
| while (page == NULL && |
| radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) { |
| page = radix_tree_deref_slot(pagep); |
| if (unlikely(!page)) |
| break; |
| |
| if (radix_tree_exception(page)) { |
| if (radix_tree_deref_retry(page)) { |
| page = NULL; |
| continue; |
| } |
| /* |
| * Otherwise, shmem/tmpfs must be storing a swap entry |
| * here as an exceptional entry: so return it without |
| * attempting to raise page count. |
| */ |
| page = NULL; |
| break; /* TODO: Is this relevant for this use case? */ |
| } |
| |
| if (!page_cache_get_speculative(page)) { |
| page = NULL; |
| continue; |
| } |
| |
| /* |
| * Has the page moved? |
| * This is part of the lockless pagecache protocol. See |
| * include/linux/pagemap.h for details. |
| */ |
| if (unlikely(page != *pagep)) { |
| put_page(page); |
| page = NULL; |
| } |
| } |
| |
| if (page) { |
| if (page->index <= end_idx) |
| found = true; |
| put_page(page); |
| } |
| |
| rcu_read_unlock(); |
| return found; |
| } |
| |
| static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend, |
| struct extent_state **cached_state, int writing) |
| { |
| struct btrfs_ordered_extent *ordered; |
| int ret = 0; |
| |
| while (1) { |
| lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, |
| cached_state); |
| /* |
| * We're concerned with the entire range that we're going to be |
| * doing DIO to, so we need to make sure theres no ordered |
| * extents in this range. |
| */ |
| ordered = btrfs_lookup_ordered_range(inode, lockstart, |
| lockend - lockstart + 1); |
| |
| /* |
| * We need to make sure there are no buffered pages in this |
| * range either, we could have raced between the invalidate in |
| * generic_file_direct_write and locking the extent. The |
| * invalidate needs to happen so that reads after a write do not |
| * get stale data. |
| */ |
| if (!ordered && |
| (!writing || |
| !btrfs_page_exists_in_range(inode, lockstart, lockend))) |
| break; |
| |
| unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, |
| cached_state, GFP_NOFS); |
| |
| if (ordered) { |
| /* |
| * If we are doing a DIO read and the ordered extent we |
| * found is for a buffered write, we can not wait for it |
| * to complete and retry, because if we do so we can |
| * deadlock with concurrent buffered writes on page |
| * locks. This happens only if our DIO read covers more |
| * than one extent map, if at this point has already |
| * created an ordered extent for a previous extent map |
| * and locked its range in the inode's io tree, and a |
| * concurrent write against that previous extent map's |
| * range and this range started (we unlock the ranges |
| * in the io tree only when the bios complete and |
| * buffered writes always lock pages before attempting |
| * to lock range in the io tree). |
| */ |
| if (writing || |
| test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) |
| btrfs_start_ordered_extent(inode, ordered, 1); |
| else |
| ret = -ENOTBLK; |
| btrfs_put_ordered_extent(ordered); |
| } else { |
| /* |
| * We could trigger writeback for this range (and wait |
| * for it to complete) and then invalidate the pages for |
| * this range (through invalidate_inode_pages2_range()), |
| * but that can lead us to a deadlock with a concurrent |
| * call to readpages() (a buffered read or a defrag call |
| * triggered a readahead) on a page lock due to an |
| * ordered dio extent we created before but did not have |
| * yet a corresponding bio submitted (whence it can not |
| * complete), which makes readpages() wait for that |
| * ordered extent to complete while holding a lock on |
| * that page. |
| */ |
| ret = -ENOTBLK; |
| } |
| |
| if (ret) |
| break; |
| |
| cond_resched(); |
| } |
| |
| return ret; |
| } |
| |
| static struct extent_map *create_pinned_em(struct inode *inode, u64 start, |
| u64 len, u64 orig_start, |
| u64 block_start, u64 block_len, |
| u64 orig_block_len, u64 ram_bytes, |
| int type) |
| { |
| struct extent_map_tree *em_tree; |
| struct extent_map *em; |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| int ret; |
| |
| em_tree = &BTRFS_I(inode)->extent_tree; |
| em = alloc_extent_map(); |
| if (!em) |
| return ERR_PTR(-ENOMEM); |
| |
| em->start = start; |
| em->orig_start = orig_start; |
| em->mod_start = start; |
| em->mod_len = len; |
| em->len = len; |
| em->block_len = block_len; |
| em->block_start = block_start; |
| em->bdev = root->fs_info->fs_devices->latest_bdev; |
| em->orig_block_len = orig_block_len; |
| em->ram_bytes = ram_bytes; |
| em->generation = -1; |
| set_bit(EXTENT_FLAG_PINNED, &em->flags); |
| if (type == BTRFS_ORDERED_PREALLOC) |
| set_bit(EXTENT_FLAG_FILLING, &em->flags); |
| |
| do { |
| btrfs_drop_extent_cache(inode, em->start, |
| em->start + em->len - 1, 0); |
| write_lock(&em_tree->lock); |
| ret = add_extent_mapping(em_tree, em, 1); |
| write_unlock(&em_tree->lock); |
| } while (ret == -EEXIST); |
| |
| if (ret) { |
| free_extent_map(em); |
| return ERR_PTR(ret); |
| } |
| |
| return em; |
| } |
| |
| static void adjust_dio_outstanding_extents(struct inode *inode, |
| struct btrfs_dio_data *dio_data, |
| const u64 len) |
| { |
| unsigned num_extents; |
| |
| num_extents = (unsigned) div64_u64(len + BTRFS_MAX_EXTENT_SIZE - 1, |
| BTRFS_MAX_EXTENT_SIZE); |
| /* |
| * If we have an outstanding_extents count still set then we're |
| * within our reservation, otherwise we need to adjust our inode |
| * counter appropriately. |
| */ |
| if (dio_data->outstanding_extents) { |
| dio_data->outstanding_extents -= num_extents; |
| } else { |
| spin_lock(&BTRFS_I(inode)->lock); |
| BTRFS_I(inode)->outstanding_extents += num_extents; |
| spin_unlock(&BTRFS_I(inode)->lock); |
| } |
| } |
| |
| static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock, |
| struct buffer_head *bh_result, int create) |
| { |
| struct extent_map *em; |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| struct extent_state *cached_state = NULL; |
| struct btrfs_dio_data *dio_data = NULL; |
| u64 start = iblock << inode->i_blkbits; |
| u64 lockstart, lockend; |
| u64 len = bh_result->b_size; |
| int unlock_bits = EXTENT_LOCKED; |
| int ret = 0; |
| |
| if (create) |
| unlock_bits |= EXTENT_DIRTY; |
| else |
| len = min_t(u64, len, root->sectorsize); |
| |
| lockstart = start; |
| lockend = start + len - 1; |
| |
| if (current->journal_info) { |
| /* |
| * Need to pull our outstanding extents and set journal_info to NULL so |
| * that anything that needs to check if there's a transction doesn't get |
| * confused. |
| */ |
| dio_data = current->journal_info; |
| current->journal_info = NULL; |
| } |
| |
| /* |
| * If this errors out it's because we couldn't invalidate pagecache for |
| * this range and we need to fallback to buffered. |
| */ |
| if (lock_extent_direct(inode, lockstart, lockend, &cached_state, |
| create)) { |
| ret = -ENOTBLK; |
| goto err; |
| } |
| |
| em = btrfs_get_extent(inode, NULL, 0, start, len, 0); |
| if (IS_ERR(em)) { |
| ret = PTR_ERR(em); |
| goto unlock_err; |
| } |
| |
| /* |
| * Ok for INLINE and COMPRESSED extents we need to fallback on buffered |
| * io. INLINE is special, and we could probably kludge it in here, but |
| * it's still buffered so for safety lets just fall back to the generic |
| * buffered path. |
| * |
| * For COMPRESSED we _have_ to read the entire extent in so we can |
| * decompress it, so there will be buffering required no matter what we |
| * do, so go ahead and fallback to buffered. |
| * |
| * We return -ENOTBLK because thats what makes DIO go ahead and go back |
| * to buffered IO. Don't blame me, this is the price we pay for using |
| * the generic code. |
| */ |
| if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) || |
| em->block_start == EXTENT_MAP_INLINE) { |
| free_extent_map(em); |
| ret = -ENOTBLK; |
| goto unlock_err; |
| } |
| |
| /* Just a good old fashioned hole, return */ |
| if (!create && (em->block_start == EXTENT_MAP_HOLE || |
| test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { |
| free_extent_map(em); |
| goto unlock_err; |
| } |
| |
| /* |
| * We don't allocate a new extent in the following cases |
| * |
| * 1) The inode is marked as NODATACOW. In this case we'll just use the |
| * existing extent. |
| * 2) The extent is marked as PREALLOC. We're good to go here and can |
| * just use the extent. |
| * |
| */ |
| if (!create) { |
| len = min(len, em->len - (start - em->start)); |
| lockstart = start + len; |
| goto unlock; |
| } |
| |
| if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || |
| ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && |
| em->block_start != EXTENT_MAP_HOLE)) { |
| int type; |
| u64 block_start, orig_start, orig_block_len, ram_bytes; |
| |
| if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) |
| type = BTRFS_ORDERED_PREALLOC; |
| else |
| type = BTRFS_ORDERED_NOCOW; |
| len = min(len, em->len - (start - em->start)); |
| block_start = em->block_start + (start - em->start); |
| |
| if (can_nocow_extent(inode, start, &len, &orig_start, |
| &orig_block_len, &ram_bytes) == 1 && |
| btrfs_inc_nocow_writers(root->fs_info, block_start)) { |
| struct extent_map *em2; |
| |
| em2 = btrfs_create_dio_extent(inode, start, len, |
| orig_start, block_start, |
| len, orig_block_len, |
| ram_bytes, type); |
| btrfs_dec_nocow_writers(root->fs_info, block_start); |
| if (type == BTRFS_ORDERED_PREALLOC) { |
| free_extent_map(em); |
| em = em2; |
| } |
| if (em2 && IS_ERR(em2)) { |
| ret = PTR_ERR(em2); |
| goto unlock_err; |
| } |
| goto unlock; |
| } |
| } |
| |
| /* |
| * this will cow the extent, reset the len in case we changed |
| * it above |
| */ |
| len = bh_result->b_size; |
| free_extent_map(em); |
| em = btrfs_new_extent_direct(inode, start, len); |
| if (IS_ERR(em)) { |
| ret = PTR_ERR(em); |
| goto unlock_err; |
| } |
| len = min(len, em->len - (start - em->start)); |
| unlock: |
| bh_result->b_blocknr = (em->block_start + (start - em->start)) >> |
| inode->i_blkbits; |
| bh_result->b_size = len; |
| bh_result->b_bdev = em->bdev; |
| set_buffer_mapped(bh_result); |
| if (create) { |
| if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) |
| set_buffer_new(bh_result); |
| |
| /* |
| * Need to update the i_size under the extent lock so buffered |
| * readers will get the updated i_size when we unlock. |
| */ |
| if (start + len > i_size_read(inode)) |
| i_size_write(inode, start + len); |
| |
| adjust_dio_outstanding_extents(inode, dio_data, len); |
| btrfs_free_reserved_data_space(inode, start, len); |
| WARN_ON(dio_data->reserve < len); |
| dio_data->reserve -= len; |
| dio_data->unsubmitted_oe_range_end = start + len; |
| current->journal_info = dio_data; |
| } |
| |
| /* |
| * In the case of write we need to clear and unlock the entire range, |
| * in the case of read we need to unlock only the end area that we |
| * aren't using if there is any left over space. |
| */ |
| if (lockstart < lockend) { |
| clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, |
| lockend, unlock_bits, 1, 0, |
| &cached_state, GFP_NOFS); |
| } else { |
| free_extent_state(cached_state); |
| } |
| |
| free_extent_map(em); |
| |
| return 0; |
| |
| unlock_err: |
| clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend, |
| unlock_bits, 1, 0, &cached_state, GFP_NOFS); |
| err: |
| if (dio_data) |
| current->journal_info = dio_data; |
| /* |
| * Compensate the delalloc release we do in btrfs_direct_IO() when we |
| * write less data then expected, so that we don't underflow our inode's |
| * outstanding extents counter. |
| */ |
| if (create && dio_data) |
| adjust_dio_outstanding_extents(inode, dio_data, len); |
| |
| return ret; |
| } |
| |
| static inline int submit_dio_repair_bio(struct inode *inode, struct bio *bio, |
| int rw, int mirror_num) |
| { |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| int ret; |
| |
| BUG_ON(rw & REQ_WRITE); |
| |
| bio_get(bio); |
| |
| ret = btrfs_bio_wq_end_io(root->fs_info, bio, |
| BTRFS_WQ_ENDIO_DIO_REPAIR); |
| if (ret) |
| goto err; |
| |
| ret = btrfs_map_bio(root, rw, bio, mirror_num, 0); |
| err: |
| bio_put(bio); |
| return ret; |
| } |
| |
| static int btrfs_check_dio_repairable(struct inode *inode, |
| struct bio *failed_bio, |
| struct io_failure_record *failrec, |
| int failed_mirror) |
| { |
| int num_copies; |
| |
| num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info, |
| failrec->logical, failrec->len); |
| if (num_copies == 1) { |
| /* |
| * we only have a single copy of the data, so don't bother with |
| * all the retry and error correction code that follows. no |
| * matter what the error is, it is very likely to persist. |
| */ |
| pr_debug("Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n", |
| num_copies, failrec->this_mirror, failed_mirror); |
| return 0; |
| } |
| |
| failrec->failed_mirror = failed_mirror; |
| failrec->this_mirror++; |
| if (failrec->this_mirror == failed_mirror) |
| failrec->this_mirror++; |
| |
| if (failrec->this_mirror > num_copies) { |
| pr_debug("Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n", |
| num_copies, failrec->this_mirror, failed_mirror); |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| static int dio_read_error(struct inode *inode, struct bio *failed_bio, |
| struct page *page, unsigned int pgoff, |
| u64 start, u64 end, int failed_mirror, |
| bio_end_io_t *repair_endio, void *repair_arg) |
| { |
| struct io_failure_record *failrec; |
| struct bio *bio; |
| int isector; |
| int read_mode; |
| int ret; |
| |
| BUG_ON(failed_bio->bi_rw & REQ_WRITE); |
| |
| ret = btrfs_get_io_failure_record(inode, start, end, &failrec); |
| if (ret) |
| return ret; |
| |
| ret = btrfs_check_dio_repairable(inode, failed_bio, failrec, |
| failed_mirror); |
| if (!ret) { |
| free_io_failure(inode, failrec); |
| return -EIO; |
| } |
| |
| if ((failed_bio->bi_vcnt > 1) |
| || (failed_bio->bi_io_vec->bv_len |
| > BTRFS_I(inode)->root->sectorsize)) |
| read_mode = READ_SYNC | REQ_FAILFAST_DEV; |
| else |
| read_mode = READ_SYNC; |
| |
| isector = start - btrfs_io_bio(failed_bio)->logical; |
| isector >>= inode->i_sb->s_blocksize_bits; |
| bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page, |
| pgoff, isector, repair_endio, repair_arg); |
| if (!bio) { |
| free_io_failure(inode, failrec); |
| return -EIO; |
| } |
| |
| btrfs_debug(BTRFS_I(inode)->root->fs_info, |
| "Repair DIO Read Error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d\n", |
| read_mode, failrec->this_mirror, failrec->in_validation); |
| |
| ret = submit_dio_repair_bio(inode, bio, read_mode, |
| failrec->this_mirror); |
| if (ret) { |
| free_io_failure(inode, failrec); |
| bio_put(bio); |
| } |
| |
| return ret; |
| } |
| |
| struct btrfs_retry_complete { |
| struct completion done; |
| struct inode *inode; |
| u64 start; |
| int uptodate; |
| }; |
| |
| static void btrfs_retry_endio_nocsum(struct bio *bio) |
| { |
| struct btrfs_retry_complete *done = bio->bi_private; |
| struct inode *inode; |
| struct bio_vec *bvec; |
| int i; |
| |
| if (bio->bi_error) |
| goto end; |
| |
| ASSERT(bio->bi_vcnt == 1); |
| inode = bio->bi_io_vec->bv_page->mapping->host; |
| ASSERT(bio->bi_io_vec->bv_len == BTRFS_I(inode)->root->sectorsize); |
| |
| done->uptodate = 1; |
| bio_for_each_segment_all(bvec, bio, i) |
| clean_io_failure(done->inode, done->start, bvec->bv_page, 0); |
| end: |
| complete(&done->done); |
| bio_put(bio); |
| } |
| |
| static int __btrfs_correct_data_nocsum(struct inode *inode, |
| struct btrfs_io_bio *io_bio) |
| { |
| struct btrfs_fs_info *fs_info; |
| struct bio_vec *bvec; |
| struct btrfs_retry_complete done; |
| u64 start; |
| unsigned int pgoff; |
| u32 sectorsize; |
| int nr_sectors; |
| int i; |
| int ret; |
| |
| fs_info = BTRFS_I(inode)->root->fs_info; |
| sectorsize = BTRFS_I(inode)->root->sectorsize; |
| |
| start = io_bio->logical; |
| done.inode = inode; |
| |
| bio_for_each_segment_all(bvec, &io_bio->bio, i) { |
| nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len); |
| pgoff = bvec->bv_offset; |
| |
| next_block_or_try_again: |
| done.uptodate = 0; |
| done.start = start; |
| init_completion(&done.done); |
| |
| ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, |
| pgoff, start, start + sectorsize - 1, |
| io_bio->mirror_num, |
| btrfs_retry_endio_nocsum, &done); |
| if (ret) |
| return ret; |
| |
| wait_for_completion(&done.done); |
| |
| if (!done.uptodate) { |
| /* We might have another mirror, so try again */ |
| goto next_block_or_try_again; |
| } |
| |
| start += sectorsize; |
| |
| if (nr_sectors--) { |
| pgoff += sectorsize; |
| goto next_block_or_try_again; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static void btrfs_retry_endio(struct bio *bio) |
| { |
| struct btrfs_retry_complete *done = bio->bi_private; |
| struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); |
| struct inode *inode; |
| struct bio_vec *bvec; |
| u64 start; |
| int uptodate; |
| int ret; |
| int i; |
| |
| if (bio->bi_error) |
| goto end; |
| |
| uptodate = 1; |
| |
| start = done->start; |
| |
| ASSERT(bio->bi_vcnt == 1); |
| inode = bio->bi_io_vec->bv_page->mapping->host; |
| ASSERT(bio->bi_io_vec->bv_len == BTRFS_I(inode)->root->sectorsize); |
| |
| bio_for_each_segment_all(bvec, bio, i) { |
| ret = __readpage_endio_check(done->inode, io_bio, i, |
| bvec->bv_page, bvec->bv_offset, |
| done->start, bvec->bv_len); |
| if (!ret) |
| clean_io_failure(done->inode, done->start, |
| bvec->bv_page, bvec->bv_offset); |
| else |
| uptodate = 0; |
| } |
| |
| done->uptodate = uptodate; |
| end: |
| complete(&done->done); |
| bio_put(bio); |
| } |
| |
| static int __btrfs_subio_endio_read(struct inode *inode, |
| struct btrfs_io_bio *io_bio, int err) |
| { |
| struct btrfs_fs_info *fs_info; |
| struct bio_vec *bvec; |
| struct btrfs_retry_complete done; |
| u64 start; |
| u64 offset = 0; |
| u32 sectorsize; |
| int nr_sectors; |
| unsigned int pgoff; |
| int csum_pos; |
| int i; |
| int ret; |
| |
| fs_info = BTRFS_I(inode)->root->fs_info; |
| sectorsize = BTRFS_I(inode)->root->sectorsize; |
| |
| err = 0; |
| start = io_bio->logical; |
| done.inode = inode; |
| |
| bio_for_each_segment_all(bvec, &io_bio->bio, i) { |
| nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len); |
| |
| pgoff = bvec->bv_offset; |
| next_block: |
| csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset); |
| ret = __readpage_endio_check(inode, io_bio, csum_pos, |
| bvec->bv_page, pgoff, start, |
| sectorsize); |
| if (likely(!ret)) |
| goto next; |
| try_again: |
| done.uptodate = 0; |
| done.start = start; |
| init_completion(&done.done); |
| |
| ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, |
| pgoff, start, start + sectorsize - 1, |
| io_bio->mirror_num, |
| btrfs_retry_endio, &done); |
| if (ret) { |
| err = ret; |
| goto next; |
| } |
| |
| wait_for_completion(&done.done); |
| |
| if (!done.uptodate) { |
| /* We might have another mirror, so try again */ |
| goto try_again; |
| } |
| next: |
| offset += sectorsize; |
| start += sectorsize; |
| |
| ASSERT(nr_sectors); |
| |
| if (--nr_sectors) { |
| pgoff += sectorsize; |
| goto next_block; |
| } |
| } |
| |
| return err; |
| } |
| |
| static int btrfs_subio_endio_read(struct inode *inode, |
| struct btrfs_io_bio *io_bio, int err) |
| { |
| bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; |
| |
| if (skip_csum) { |
| if (unlikely(err)) |
| return __btrfs_correct_data_nocsum(inode, io_bio); |
| else |
| return 0; |
| } else { |
| return __btrfs_subio_endio_read(inode, io_bio, err); |
| } |
| } |
| |
| static void btrfs_endio_direct_read(struct bio *bio) |
| { |
| struct btrfs_dio_private *dip = bio->bi_private; |
| struct inode *inode = dip->inode; |
| struct bio *dio_bio; |
| struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); |
| int err = bio->bi_error; |
| |
| if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED) |
| err = btrfs_subio_endio_read(inode, io_bio, err); |
| |
| unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset, |
| dip->logical_offset + dip->bytes - 1); |
| dio_bio = dip->dio_bio; |
| |
| kfree(dip); |
| |
| dio_bio->bi_error = bio->bi_error; |
| dio_end_io(dio_bio, bio->bi_error); |
| |
| if (io_bio->end_io) |
| io_bio->end_io(io_bio, err); |
| bio_put(bio); |
| } |
| |
| static void btrfs_endio_direct_write_update_ordered(struct inode *inode, |
| const u64 offset, |
| const u64 bytes, |
| const int uptodate) |
| { |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| struct btrfs_ordered_extent *ordered = NULL; |
| u64 ordered_offset = offset; |
| u64 ordered_bytes = bytes; |
| int ret; |
| |
| again: |
| ret = btrfs_dec_test_first_ordered_pending(inode, &ordered, |
| &ordered_offset, |
| ordered_bytes, |
| uptodate); |
| if (!ret) |
| goto out_test; |
| |
| btrfs_init_work(&ordered->work, btrfs_endio_write_helper, |
| finish_ordered_fn, NULL, NULL); |
| btrfs_queue_work(root->fs_info->endio_write_workers, |
| &ordered->work); |
| out_test: |
| /* |
| * our bio might span multiple ordered extents. If we haven't |
| * completed the accounting for the whole dio, go back and try again |
| */ |
| if (ordered_offset < offset + bytes) { |
| ordered_bytes = offset + bytes - ordered_offset; |
| ordered = NULL; |
| goto again; |
| } |
| } |
| |
| static void btrfs_endio_direct_write(struct bio *bio) |
| { |
| struct btrfs_dio_private *dip = bio->bi_private; |
| struct bio *dio_bio = dip->dio_bio; |
| |
| btrfs_endio_direct_write_update_ordered(dip->inode, |
| dip->logical_offset, |
| dip->bytes, |
| !bio->bi_error); |
| |
| kfree(dip); |
| |
| dio_bio->bi_error = bio->bi_error; |
| dio_end_io(dio_bio, bio->bi_error); |
| bio_put(bio); |
| } |
| |
| static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw, |
| struct bio *bio, int mirror_num, |
| unsigned long bio_flags, u64 offset) |
| { |
| int ret; |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| ret = btrfs_csum_one_bio(root, inode, bio, offset, 1); |
| BUG_ON(ret); /* -ENOMEM */ |
| return 0; |
| } |
| |
| static void btrfs_end_dio_bio(struct bio *bio) |
| { |
| struct btrfs_dio_private *dip = bio->bi_private; |
| int err = bio->bi_error; |
| |
| if (err) |
| btrfs_warn(BTRFS_I(dip->inode)->root->fs_info, |
| "direct IO failed ino %llu rw %lu sector %#Lx len %u err no %d", |
| btrfs_ino(dip->inode), bio->bi_rw, |
| (unsigned long long)bio->bi_iter.bi_sector, |
| bio->bi_iter.bi_size, err); |
| |
| if (dip->subio_endio) |
| err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err); |
| |
| if (err) { |
| dip->errors = 1; |
| |
| /* |
| * before atomic variable goto zero, we must make sure |
| * dip->errors is perceived to be set. |
| */ |
| smp_mb__before_atomic(); |
| } |
| |
| /* if there are more bios still pending for this dio, just exit */ |
| if (!atomic_dec_and_test(&dip->pending_bios)) |
| goto out; |
| |
| if (dip->errors) { |
| bio_io_error(dip->orig_bio); |
| } else { |
| dip->dio_bio->bi_error = 0; |
| bio_endio(dip->orig_bio); |
| } |
| out: |
| bio_put(bio); |
| } |
| |
| static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev, |
| u64 first_sector, gfp_t gfp_flags) |
| { |
| struct bio *bio; |
| bio = btrfs_bio_alloc(bdev, first_sector, BIO_MAX_PAGES, gfp_flags); |
| if (bio) |
| bio_associate_current(bio); |
| return bio; |
| } |
| |
| static inline int btrfs_lookup_and_bind_dio_csum(struct btrfs_root *root, |
| struct inode *inode, |
| struct btrfs_dio_private *dip, |
| struct bio *bio, |
| u64 file_offset) |
| { |
| struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); |
| struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio); |
| int ret; |
| |
| /* |
| * We load all the csum data we need when we submit |
| * the first bio to reduce the csum tree search and |
| * contention. |
| */ |
| if (dip->logical_offset == file_offset) { |
| ret = btrfs_lookup_bio_sums_dio(root, inode, dip->orig_bio, |
| file_offset); |
| if (ret) |
| return ret; |
| } |
| |
| if (bio == dip->orig_bio) |
| return 0; |
| |
| file_offset -= dip->logical_offset; |
| file_offset >>= inode->i_sb->s_blocksize_bits; |
| io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset); |
| |
| return 0; |
| } |
| |
| static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode, |
| int rw, u64 file_offset, int skip_sum, |
| int async_submit) |
| { |
| struct btrfs_dio_private *dip = bio->bi_private; |
| int write = rw & REQ_WRITE; |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| int ret; |
| |
| if (async_submit) |
| async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers); |
| |
| bio_get(bio); |
| |
| if (!write) { |
| ret = btrfs_bio_wq_end_io(root->fs_info, bio, |
| BTRFS_WQ_ENDIO_DATA); |
| if (ret) |
| goto err; |
| } |
| |
| if (skip_sum) |
| goto map; |
| |
| if (write && async_submit) { |
| ret = btrfs_wq_submit_bio(root->fs_info, |
| inode, rw, bio, 0, 0, |
| file_offset, |
| __btrfs_submit_bio_start_direct_io, |
| __btrfs_submit_bio_done); |
| goto err; |
| } else if (write) { |
| /* |
| * If we aren't doing async submit, calculate the csum of the |
| * bio now. |
| */ |
| ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1); |
| if (ret) |
| goto err; |
| } else { |
| ret = btrfs_lookup_and_bind_dio_csum(root, inode, dip, bio, |
| file_offset); |
| if (ret) |
| goto err; |
| } |
| map: |
| ret = btrfs_map_bio(root, rw, bio, 0, async_submit); |
| err: |
| bio_put(bio); |
| return ret; |
| } |
| |
| static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip, |
| int skip_sum) |
| { |
| struct inode *inode = dip->inode; |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| struct bio *bio; |
| struct bio *orig_bio = dip->orig_bio; |
| struct bio_vec *bvec = orig_bio->bi_io_vec; |
| u64 start_sector = orig_bio->bi_iter.bi_sector; |
| u64 file_offset = dip->logical_offset; |
| u64 submit_len = 0; |
| u64 map_length; |
| u32 blocksize = root->sectorsize; |
| int async_submit = 0; |
| int nr_sectors; |
| int ret; |
| int i; |
| |
| map_length = orig_bio->bi_iter.bi_size; |
| ret = btrfs_map_block(root->fs_info, rw, start_sector << 9, |
| &map_length, NULL, 0); |
| if (ret) |
| return -EIO; |
| |
| if (map_length >= orig_bio->bi_iter.bi_size) { |
| bio = orig_bio; |
| dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED; |
| goto submit; |
| } |
| |
| /* async crcs make it difficult to collect full stripe writes. */ |
| if (btrfs_get_alloc_profile(root, 1) & BTRFS_BLOCK_GROUP_RAID56_MASK) |
| async_submit = 0; |
| else |
| async_submit = 1; |
| |
| bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS); |
| if (!bio) |
| return -ENOMEM; |
| |
| bio->bi_private = dip; |
| bio->bi_end_io = btrfs_end_dio_bio; |
| btrfs_io_bio(bio)->logical = file_offset; |
| atomic_inc(&dip->pending_bios); |
| |
| while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) { |
| nr_sectors = BTRFS_BYTES_TO_BLKS(root->fs_info, bvec->bv_len); |
| i = 0; |
| next_block: |
| if (unlikely(map_length < submit_len + blocksize || |
| bio_add_page(bio, bvec->bv_page, blocksize, |
| bvec->bv_offset + (i * blocksize)) < blocksize)) { |
| /* |
| * inc the count before we submit the bio so |
| * we know the end IO handler won't happen before |
| * we inc the count. Otherwise, the dip might get freed |
| * before we're done setting it up |
| */ |
| atomic_inc(&dip->pending_bios); |
| ret = __btrfs_submit_dio_bio(bio, inode, rw, |
| file_offset, skip_sum, |
| async_submit); |
| if (ret) { |
| bio_put(bio); |
| atomic_dec(&dip->pending_bios); |
| goto out_err; |
| } |
| |
| start_sector += submit_len >> 9; |
| file_offset += submit_len; |
| |
| submit_len = 0; |
| |
| bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, |
| start_sector, GFP_NOFS); |
| if (!bio) |
| goto out_err; |
| bio->bi_private = dip; |
| bio->bi_end_io = btrfs_end_dio_bio; |
| btrfs_io_bio(bio)->logical = file_offset; |
| |
| map_length = orig_bio->bi_iter.bi_size; |
| ret = btrfs_map_block(root->fs_info, rw, |
| start_sector << 9, |
| &map_length, NULL, 0); |
| if (ret) { |
| bio_put(bio); |
| goto out_err; |
| } |
| |
| goto next_block; |
| } else { |
| submit_len += blocksize; |
| if (--nr_sectors) { |
| i++; |
| goto next_block; |
| } |
| bvec++; |
| } |
| } |
| |
| submit: |
| ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum, |
| async_submit); |
| if (!ret) |
| return 0; |
| |
| bio_put(bio); |
| out_err: |
| dip->errors = 1; |
| /* |
| * before atomic variable goto zero, we must |
| * make sure dip->errors is perceived to be set. |
| */ |
| smp_mb__before_atomic(); |
| if (atomic_dec_and_test(&dip->pending_bios)) |
| bio_io_error(dip->orig_bio); |
| |
| /* bio_end_io() will handle error, so we needn't return it */ |
| return 0; |
| } |
| |
| static void btrfs_submit_direct(int rw, struct bio *dio_bio, |
| struct inode *inode, loff_t file_offset) |
| { |
| struct btrfs_dio_private *dip = NULL; |
| struct bio *io_bio = NULL; |
| struct btrfs_io_bio *btrfs_bio; |
| int skip_sum; |
| int write = rw & REQ_WRITE; |
| int ret = 0; |
| |
| skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; |
| |
| io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS); |
| if (!io_bio) { |
| ret = -ENOMEM; |
| goto free_ordered; |
| } |
| |
| dip = kzalloc(sizeof(*dip), GFP_NOFS); |
| if (!dip) { |
| ret = -ENOMEM; |
| goto free_ordered; |
| } |
| |
| dip->private = dio_bio->bi_private; |
| dip->inode = inode; |
| dip->logical_offset = file_offset; |
| dip->bytes = dio_bio->bi_iter.bi_size; |
| dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9; |
| io_bio->bi_private = dip; |
| dip->orig_bio = io_bio; |
| dip->dio_bio = dio_bio; |
| atomic_set(&dip->pending_bios, 0); |
| btrfs_bio = btrfs_io_bio(io_bio); |
| btrfs_bio->logical = file_offset; |
| |
| if (write) { |
| io_bio->bi_end_io = btrfs_endio_direct_write; |
| } else { |
| io_bio->bi_end_io = btrfs_endio_direct_read; |
| dip->subio_endio = btrfs_subio_endio_read; |
| } |
| |
| /* |
| * Reset the range for unsubmitted ordered extents (to a 0 length range) |
| * even if we fail to submit a bio, because in such case we do the |
| * corresponding error handling below and it must not be done a second |
| * time by btrfs_direct_IO(). |
| */ |
| if (write) { |
| struct btrfs_dio_data *dio_data = current->journal_info; |
| |
| dio_data->unsubmitted_oe_range_end = dip->logical_offset + |
| dip->bytes; |
| dio_data->unsubmitted_oe_range_start = |
| dio_data->unsubmitted_oe_range_end; |
| } |
| |
| ret = btrfs_submit_direct_hook(rw, dip, skip_sum); |
| if (!ret) |
| return; |
| |
| if (btrfs_bio->end_io) |
| btrfs_bio->end_io(btrfs_bio, ret); |
| |
| free_ordered: |
| /* |
| * If we arrived here it means either we failed to submit the dip |
| * or we either failed to clone the dio_bio or failed to allocate the |
| * dip. If we cloned the dio_bio and allocated the dip, we can just |
| * call bio_endio against our io_bio so that we get proper resource |
| * cleanup if we fail to submit the dip, otherwise, we must do the |
| * same as btrfs_endio_direct_[write|read] because we can't call these |
| * callbacks - they require an allocated dip and a clone of dio_bio. |
| */ |
| if (io_bio && dip) { |
| io_bio->bi_error = -EIO; |
| bio_endio(io_bio); |
| /* |
| * The end io callbacks free our dip, do the final put on io_bio |
| * and all the cleanup and final put for dio_bio (through |
| * dio_end_io()). |
| */ |
| dip = NULL; |
| io_bio = NULL; |
| } else { |
| if (write) |
| btrfs_endio_direct_write_update_ordered(inode, |
| file_offset, |
| dio_bio->bi_iter.bi_size, |
| 0); |
| else |
| unlock_extent(&BTRFS_I(inode)->io_tree, file_offset, |
| file_offset + dio_bio->bi_iter.bi_size - 1); |
| |
| dio_bio->bi_error = -EIO; |
| /* |
| * Releases and cleans up our dio_bio, no need to bio_put() |
| * nor bio_endio()/bio_io_error() against dio_bio. |
| */ |
| dio_end_io(dio_bio, ret); |
| } |
| if (io_bio) |
| bio_put(io_bio); |
| kfree(dip); |
| } |
| |
| static ssize_t check_direct_IO(struct btrfs_root *root, struct kiocb *iocb, |
| const struct iov_iter *iter, loff_t offset) |
| { |
| int seg; |
| int i; |
| unsigned blocksize_mask = root->sectorsize - 1; |
| ssize_t retval = -EINVAL; |
| |
| if (offset & blocksize_mask) |
| goto out; |
| |
| if (iov_iter_alignment(iter) & blocksize_mask) |
| goto out; |
| |
| /* If this is a write we don't need to check anymore */ |
| if (iov_iter_rw(iter) == WRITE) |
| return 0; |
| /* |
| * Check to make sure we don't have duplicate iov_base's in this |
| * iovec, if so return EINVAL, otherwise we'll get csum errors |
| * when reading back. |
| */ |
| for (seg = 0; seg < iter->nr_segs; seg++) { |
| for (i = seg + 1; i < iter->nr_segs; i++) { |
| if (iter->iov[seg].iov_base == iter->iov[i].iov_base) |
| goto out; |
| } |
| } |
| retval = 0; |
| out: |
| return retval; |
| } |
| |
| static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter) |
| { |
| struct file *file = iocb->ki_filp; |
| struct inode *inode = file->f_mapping->host; |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| struct btrfs_dio_data dio_data = { 0 }; |
| loff_t offset = iocb->ki_pos; |
| size_t count = 0; |
| int flags = 0; |
| bool wakeup = true; |
| bool relock = false; |
| ssize_t ret; |
| |
| if (check_direct_IO(BTRFS_I(inode)->root, iocb, iter, offset)) |
| return 0; |
| |
| inode_dio_begin(inode); |
| smp_mb__after_atomic(); |
| |
| /* |
| * The generic stuff only does filemap_write_and_wait_range, which |
| * isn't enough if we've written compressed pages to this area, so |
| * we need to flush the dirty pages again to make absolutely sure |
| * that any outstanding dirty pages are on disk. |
| */ |
| count = iov_iter_count(iter); |
| if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, |
| &BTRFS_I(inode)->runtime_flags)) |
| filemap_fdatawrite_range(inode->i_mapping, offset, |
| offset + count - 1); |
| |
| if (iov_iter_rw(iter) == WRITE) { |
| /* |
| * If the write DIO is beyond the EOF, we need update |
| * the isize, but it is protected by i_mutex. So we can |
| * not unlock the i_mutex at this case. |
| */ |
| if (offset + count <= inode->i_size) { |
| inode_unlock(inode); |
| relock = true; |
| } |
| ret = btrfs_delalloc_reserve_space(inode, offset, count); |
| if (ret) |
| goto out; |
| dio_data.outstanding_extents = div64_u64(count + |
| BTRFS_MAX_EXTENT_SIZE - 1, |
| BTRFS_MAX_EXTENT_SIZE); |
| |
| /* |
| * We need to know how many extents we reserved so that we can |
| * do the accounting properly if we go over the number we |
| * originally calculated. Abuse current->journal_info for this. |
| */ |
| dio_data.reserve = round_up(count, root->sectorsize); |
| dio_data.unsubmitted_oe_range_start = (u64)offset; |
| dio_data.unsubmitted_oe_range_end = (u64)offset; |
| current->journal_info = &dio_data; |
| } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK, |
| &BTRFS_I(inode)->runtime_flags)) { |
| inode_dio_end(inode); |
| flags = DIO_LOCKING | DIO_SKIP_HOLES; |
| wakeup = false; |
| } |
| |
| ret = __blockdev_direct_IO(iocb, inode, |
| BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev, |
| iter, btrfs_get_blocks_direct, NULL, |
| btrfs_submit_direct, flags); |
| if (iov_iter_rw(iter) == WRITE) { |
| current->journal_info = NULL; |
| if (ret < 0 && ret != -EIOCBQUEUED) { |
| if (dio_data.reserve) |
| btrfs_delalloc_release_space(inode, offset, |
| dio_data.reserve); |
| /* |
| * On error we might have left some ordered extents |
| * without submitting corresponding bios for them, so |
| * cleanup them up to avoid other tasks getting them |
| * and waiting for them to complete forever. |
| */ |
| if (dio_data.unsubmitted_oe_range_start < |
| dio_data.unsubmitted_oe_range_end) |
| btrfs_endio_direct_write_update_ordered(inode, |
| dio_data.unsubmitted_oe_range_start, |
| dio_data.unsubmitted_oe_range_end - |
| dio_data.unsubmitted_oe_range_start, |
| 0); |
| } else if (ret >= 0 && (size_t)ret < count) |
| btrfs_delalloc_release_space(inode, offset, |
| count - (size_t)ret); |
| } |
| out: |
| if (wakeup) |
| inode_dio_end(inode); |
| if (relock) |
| inode_lock(inode); |
| |
| return ret; |
| } |
| |
| #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC) |
| |
| static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, |
| __u64 start, __u64 len) |
| { |
| int ret; |
| |
| ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS); |
| if (ret) |
| return ret; |
| |
| return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap); |
| } |
| |
| int btrfs_readpage(struct file *file, struct page *page) |
| { |
| struct extent_io_tree *tree; |
| tree = &BTRFS_I(page->mapping->host)->io_tree; |
| return extent_read_full_page(tree, page, btrfs_get_extent, 0); |
| } |
| |
| static int btrfs_writepage(struct page *page, struct writeback_control *wbc) |
| { |
| struct extent_io_tree *tree; |
| struct inode *inode = page->mapping->host; |
| int ret; |
| |
| if (current->flags & PF_MEMALLOC) { |
| redirty_page_for_writepage(wbc, page); |
| unlock_page(page); |
| return 0; |
| } |
| |
| /* |
| * If we are under memory pressure we will call this directly from the |
| * VM, we need to make sure we have the inode referenced for the ordered |
| * extent. If not just return like we didn't do anything. |
| */ |
| if (!igrab(inode)) { |
| redirty_page_for_writepage(wbc, page); |
| return AOP_WRITEPAGE_ACTIVATE; |
| } |
| tree = &BTRFS_I(page->mapping->host)->io_tree; |
| ret = extent_write_full_page(tree, page, btrfs_get_extent, wbc); |
| btrfs_add_delayed_iput(inode); |
| return ret; |
| } |
| |
| static int btrfs_writepages(struct address_space *mapping, |
| struct writeback_control *wbc) |
| { |
| struct extent_io_tree *tree; |
| |
| tree = &BTRFS_I(mapping->host)->io_tree; |
| return extent_writepages(tree, mapping, btrfs_get_extent, wbc); |
| } |
| |
| static int |
| btrfs_readpages(struct file *file, struct address_space *mapping, |
| struct list_head *pages, unsigned nr_pages) |
| { |
| struct extent_io_tree *tree; |
| tree = &BTRFS_I(mapping->host)->io_tree; |
| return extent_readpages(tree, mapping, pages, nr_pages, |
| btrfs_get_extent); |
| } |
| static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags) |
| { |
| struct extent_io_tree *tree; |
| struct extent_map_tree *map; |
| int ret; |
| |
| tree = &BTRFS_I(page->mapping->host)->io_tree; |
| map = &BTRFS_I(page->mapping->host)->extent_tree; |
| ret = try_release_extent_mapping(map, tree, page, gfp_flags); |
| if (ret == 1) { |
| ClearPagePrivate(page); |
| set_page_private(page, 0); |
| put_page(page); |
| } |
| return ret; |
| } |
| |
| static int btrfs_releasepage(struct page *page, gfp_t gfp_flags) |
| { |
| if (PageWriteback(page) || PageDirty(page)) |
| return 0; |
| return __btrfs_releasepage(page, gfp_flags & GFP_NOFS); |
| } |
| |
| static void btrfs_invalidatepage(struct page *page, unsigned int offset, |
| unsigned int length) |
| { |
| struct inode *inode = page->mapping->host; |
| struct extent_io_tree *tree; |
| struct btrfs_ordered_extent *ordered; |
| struct extent_state *cached_state = NULL; |
| u64 page_start = page_offset(page); |
| u64 page_end = page_start + PAGE_SIZE - 1; |
| u64 start; |
| u64 end; |
| int inode_evicting = inode->i_state & I_FREEING; |
| |
| /* |
| * we have the page locked, so new writeback can't start, |
| * and the dirty bit won't be cleared while we are here. |
| * |
| * Wait for IO on this page so that we can safely clear |
| * the PagePrivate2 bit and do ordered accounting |
| */ |
| wait_on_page_writeback(page); |
| |
| tree = &BTRFS_I(inode)->io_tree; |
| if (offset) { |
| btrfs_releasepage(page, GFP_NOFS); |
| return; |
| } |
| |
| if (!inode_evicting) |
| lock_extent_bits(tree, page_start, page_end, &cached_state); |
| again: |
| start = page_start; |
| ordered = btrfs_lookup_ordered_range(inode, start, |
| page_end - start + 1); |
| if (ordered) { |
| end = min(page_end, ordered->file_offset + ordered->len - 1); |
| /* |
| * IO on this page will never be started, so we need |
| * to account for any ordered extents now |
| */ |
| if (!inode_evicting) |
| clear_extent_bit(tree, start, end, |
| EXTENT_DIRTY | EXTENT_DELALLOC | |
| EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | |
| EXTENT_DEFRAG, 1, 0, &cached_state, |
| GFP_NOFS); |
| /* |
| * whoever cleared the private bit is responsible |
| * for the finish_ordered_io |
| */ |
| if (TestClearPagePrivate2(page)) { |
| struct btrfs_ordered_inode_tree *tree; |
| u64 new_len; |
| |
| tree = &BTRFS_I(inode)->ordered_tree; |
| |
| spin_lock_irq(&tree->lock); |
| set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags); |
| new_len = start - ordered->file_offset; |
| if (new_len < ordered->truncated_len) |
| ordered->truncated_len = new_len; |
| spin_unlock_irq(&tree->lock); |
| |
| if (btrfs_dec_test_ordered_pending(inode, &ordered, |
| start, |
| end - start + 1, 1)) |
| btrfs_finish_ordered_io(ordered); |
| } |
| btrfs_put_ordered_extent(ordered); |
| if (!inode_evicting) { |
| cached_state = NULL; |
| lock_extent_bits(tree, start, end, |
| &cached_state); |
| } |
| |
| start = end + 1; |
| if (start < page_end) |
| goto again; |
| } |
| |
| /* |
| * Qgroup reserved space handler |
| * Page here will be either |
| * 1) Already written to disk |
| * In this case, its reserved space is released from data rsv map |
| * and will be freed by delayed_ref handler finally. |
| * So even we call qgroup_free_data(), it won't decrease reserved |
| * space. |
| * 2) Not written to disk |
| * This means the reserved space should be freed here. |
| */ |
| btrfs_qgroup_free_data(inode, page_start, PAGE_SIZE); |
| if (!inode_evicting) { |
| clear_extent_bit(tree, page_start, page_end, |
| EXTENT_LOCKED | EXTENT_DIRTY | |
| EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | |
| EXTENT_DEFRAG, 1, 1, |
| &cached_state, GFP_NOFS); |
| |
| __btrfs_releasepage(page, GFP_NOFS); |
| } |
| |
| ClearPageChecked(page); |
| if (PagePrivate(page)) { |
| ClearPagePrivate(page); |
| set_page_private(page, 0); |
| put_page(page); |
| } |
| } |
| |
| /* |
| * btrfs_page_mkwrite() is not allowed to change the file size as it gets |
| * called from a page fault handler when a page is first dirtied. Hence we must |
| * be careful to check for EOF conditions here. We set the page up correctly |
| * for a written page which means we get ENOSPC checking when writing into |
| * holes and correct delalloc and unwritten extent mapping on filesystems that |
| * support these features. |
| * |
| * We are not allowed to take the i_mutex here so we have to play games to |
| * protect against truncate races as the page could now be beyond EOF. Because |
| * vmtruncate() writes the inode size before removing pages, once we have the |
| * page lock we can determine safely if the page is beyond EOF. If it is not |
| * beyond EOF, then the page is guaranteed safe against truncation until we |
| * unlock the page. |
| */ |
| int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) |
| { |
| struct page *page = vmf->page; |
| struct inode *inode = file_inode(vma->vm_file); |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; |
| struct btrfs_ordered_extent *ordered; |
| struct extent_state *cached_state = NULL; |
| char *kaddr; |
| unsigned long zero_start; |
| loff_t size; |
| int ret; |
| int reserved = 0; |
| u64 reserved_space; |
| u64 page_start; |
| u64 page_end; |
| u64 end; |
| |
| reserved_space = PAGE_SIZE; |
| |
| sb_start_pagefault(inode->i_sb); |
| page_start = page_offset(page); |
| page_end = page_start + PAGE_SIZE - 1; |
| end = page_end; |
| |
| /* |
| * Reserving delalloc space after obtaining the page lock can lead to |
| * deadlock. For example, if a dirty page is locked by this function |
| * and the call to btrfs_delalloc_reserve_space() ends up triggering |
| * dirty page write out, then the btrfs_writepage() function could |
| * end up waiting indefinitely to get a lock on the page currently |
| * being processed by btrfs_page_mkwrite() function. |
| */ |
| ret = btrfs_delalloc_reserve_space(inode, page_start, |
| reserved_space); |
| if (!ret) { |
| ret = file_update_time(vma->vm_file); |
| reserved = 1; |
| } |
| if (ret) { |
| if (ret == -ENOMEM) |
| ret = VM_FAULT_OOM; |
| else /* -ENOSPC, -EIO, etc */ |
| ret = VM_FAULT_SIGBUS; |
| if (reserved) |
| goto out; |
| goto out_noreserve; |
| } |
| |
| ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ |
| again: |
| lock_page(page); |
| size = i_size_read(inode); |
| |
| if ((page->mapping != inode->i_mapping) || |
| (page_start >= size)) { |
| /* page got truncated out from underneath us */ |
| goto out_unlock; |
| } |
| wait_on_page_writeback(page); |
| |
| lock_extent_bits(io_tree, page_start, page_end, &cached_state); |
| set_page_extent_mapped(page); |
| |
| /* |
| * we can't set the delalloc bits if there are pending ordered |
| * extents. Drop our locks and wait for them to finish |
| */ |
| ordered = btrfs_lookup_ordered_range(inode, page_start, page_end); |
| if (ordered) { |
| unlock_extent_cached(io_tree, page_start, page_end, |
| &cached_state, GFP_NOFS); |
| unlock_page(page); |
| btrfs_start_ordered_extent(inode, ordered, 1); |
| btrfs_put_ordered_extent(ordered); |
| goto again; |
| } |
| |
| if (page->index == ((size - 1) >> PAGE_SHIFT)) { |
| reserved_space = round_up(size - page_start, root->sectorsize); |
| if (reserved_space < PAGE_SIZE) { |
| end = page_start + reserved_space - 1; |
| spin_lock(&BTRFS_I(inode)->lock); |
| BTRFS_I(inode)->outstanding_extents++; |
| spin_unlock(&BTRFS_I(inode)->lock); |
| btrfs_delalloc_release_space(inode, page_start, |
| PAGE_SIZE - reserved_space); |
| } |
| } |
| |
| /* |
| * XXX - page_mkwrite gets called every time the page is dirtied, even |
| * if it was already dirty, so for space accounting reasons we need to |
| * clear any delalloc bits for the range we are fixing to save. There |
| * is probably a better way to do this, but for now keep consistent with |
| * prepare_pages in the normal write path. |
| */ |
| clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end, |
| EXTENT_DIRTY | EXTENT_DELALLOC | |
| EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, |
| 0, 0, &cached_state, GFP_NOFS); |
| |
| ret = btrfs_set_extent_delalloc(inode, page_start, end, |
| &cached_state); |
| if (ret) { |
| unlock_extent_cached(io_tree, page_start, page_end, |
| &cached_state, GFP_NOFS); |
| ret = VM_FAULT_SIGBUS; |
| goto out_unlock; |
| } |
| ret = 0; |
| |
| /* page is wholly or partially inside EOF */ |
| if (page_start + PAGE_SIZE > size) |
| zero_start = size & ~PAGE_MASK; |
| else |
| zero_start = PAGE_SIZE; |
| |
| if (zero_start != PAGE_SIZE) { |
| kaddr = kmap(page); |
| memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start); |
| flush_dcache_page(page); |
| kunmap(page); |
| } |
| ClearPageChecked(page); |
| set_page_dirty(page); |
| SetPageUptodate(page); |
| |
| BTRFS_I(inode)->last_trans = root->fs_info->generation; |
| BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid; |
| BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit; |
| |
| unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS); |
| |
| out_unlock: |
| if (!ret) { |
| sb_end_pagefault(inode->i_sb); |
| return VM_FAULT_LOCKED; |
| } |
| unlock_page(page); |
| out: |
| btrfs_delalloc_release_space(inode, page_start, reserved_space); |
| out_noreserve: |
| sb_end_pagefault(inode->i_sb); |
| return ret; |
| } |
| |
| static int btrfs_truncate(struct inode *inode) |
| { |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| struct btrfs_block_rsv *rsv; |
| int ret = 0; |
| int err = 0; |
| struct btrfs_trans_handle *trans; |
| u64 mask = root->sectorsize - 1; |
| u64 min_size = btrfs_calc_trunc_metadata_size(root, 1); |
| |
| ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask), |
| (u64)-1); |
| if (ret) |
| return ret; |
| |
| /* |
| * Yes ladies and gentelment, this is indeed ugly. The fact is we have |
| * 3 things going on here |
| * |
| * 1) We need to reserve space for our orphan item and the space to |
| * delete our orphan item. Lord knows we don't want to have a dangling |
| * orphan item because we didn't reserve space to remove it. |
| * |
| * 2) We need to reserve space to update our inode. |
| * |
| * 3) We need to have something to cache all the space that is going to |
| * be free'd up by the truncate operation, but also have some slack |
| * space reserved in case it uses space during the truncate (thank you |
| * very much snapshotting). |
| * |
| * And we need these to all be seperate. The fact is we can use alot of |
| * space doing the truncate, and we have no earthly idea how much space |
| * we will use, so we need the truncate reservation to be seperate so it |
| * doesn't end up using space reserved for updating the inode or |
| * removing the orphan item. We also need to be able to stop the |
| * transaction and start a new one, which means we need to be able to |
| * update the inode several times, and we have no idea of knowing how |
| * many times that will be, so we can't just reserve 1 item for the |
| * entirety of the opration, so that has to be done seperately as well. |
| * Then there is the orphan item, which does indeed need to be held on |
| * to for the whole operation, and we need nobody to touch this reserved |
| * space except the orphan code. |
| * |
| * So that leaves us with |
| * |
| * 1) root->orphan_block_rsv - for the orphan deletion. |
| * 2) rsv - for the truncate reservation, which we will steal from the |
| * transaction reservation. |
| * 3) fs_info->trans_block_rsv - this will have 1 items worth left for |
| * updating the inode. |
| */ |
| rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); |
| if (!rsv) |
| return -ENOMEM; |
| rsv->size = min_size; |
| rsv->failfast = 1; |
| |
| /* |
| * 1 for the truncate slack space |
| * 1 for updating the inode. |
| */ |
| trans = btrfs_start_transaction(root, 2); |
| if (IS_ERR(trans)) { |
| err = PTR_ERR(trans); |
| goto out; |
| } |
| |
| /* Migrate the slack space for the truncate to our reserve */ |
| ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv, |
| min_size); |
| BUG_ON(ret); |
| |
| /* |
| * So if we truncate and then write and fsync we normally would just |
| * write the extents that changed, which is a problem if we need to |
| * first truncate that entire inode. So set this flag so we write out |
| * all of the extents in the inode to the sync log so we're completely |
| * safe. |
| */ |
| set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); |
| trans->block_rsv = rsv; |
| |
| while (1) { |
| ret = btrfs_truncate_inode_items(trans, root, inode, |
| inode->i_size, |
| BTRFS_EXTENT_DATA_KEY); |
| if (ret != -ENOSPC && ret != -EAGAIN) { |
| err = ret; |
| break; |
| } |
| |
| trans->block_rsv = &root->fs_info->trans_block_rsv; |
| ret = btrfs_update_inode(trans, root, inode); |
| if (ret) { |
| err = ret; |
| break; |
| } |
| |
| btrfs_end_transaction(trans, root); |
| btrfs_btree_balance_dirty(root); |
| |
| trans = btrfs_start_transaction(root, 2); |
| if (IS_ERR(trans)) { |
| ret = err = PTR_ERR(trans); |
| trans = NULL; |
| break; |
| } |
| |
| ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, |
| rsv, min_size); |
| BUG_ON(ret); /* shouldn't happen */ |
| trans->block_rsv = rsv; |
| } |
| |
| if (ret == 0 && inode->i_nlink > 0) { |
| trans->block_rsv = root->orphan_block_rsv; |
| ret = btrfs_orphan_del(trans, inode); |
| if (ret) |
| err = ret; |
| } |
| |
| if (trans) { |
| trans->block_rsv = &root->fs_info->trans_block_rsv; |
| ret = btrfs_update_inode(trans, root, inode); |
| if (ret && !err) |
| err = ret; |
| |
| ret = btrfs_end_transaction(trans, root); |
| btrfs_btree_balance_dirty(root); |
| } |
| |
| out: |
| btrfs_free_block_rsv(root, rsv); |
| |
| if (ret && !err) |
| err = ret; |
| |
| return err; |
| } |
| |
| /* |
| * create a new subvolume directory/inode (helper for the ioctl). |
| */ |
| int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, |
| struct btrfs_root *new_root, |
| struct btrfs_root *parent_root, |
| u64 new_dirid) |
| { |
| struct inode *inode; |
| int err; |
| u64 index = 0; |
| |
| inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, |
| new_dirid, new_dirid, |
| S_IFDIR | (~current_umask() & S_IRWXUGO), |
| &index); |
| if (IS_ERR(inode)) |
| return PTR_ERR(inode); |
| inode->i_op = &btrfs_dir_inode_operations; |
| inode->i_fop = &btrfs_dir_file_operations; |
| |
| set_nlink(inode, 1); |
| btrfs_i_size_write(inode, 0); |
| unlock_new_inode(inode); |
| |
| err = btrfs_subvol_inherit_props(trans, new_root, parent_root); |
| if (err) |
| btrfs_err(new_root->fs_info, |
| "error inheriting subvolume %llu properties: %d", |
| new_root->root_key.objectid, err); |
| |
| err = btrfs_update_inode(trans, new_root, inode); |
| |
| iput(inode); |
| return err; |
| } |
| |
| struct inode *btrfs_alloc_inode(struct super_block *sb) |
| { |
| struct btrfs_inode *ei; |
| struct inode *inode; |
| |
| ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS); |
| if (!ei) |
| return NULL; |
| |
| ei->root = NULL; |
| ei->generation = 0; |
| ei->last_trans = 0; |
| ei->last_sub_trans = 0; |
| ei->logged_trans = 0; |
| ei->delalloc_bytes = 0; |
| ei->defrag_bytes = 0; |
| ei->disk_i_size = 0; |
| ei->flags = 0; |
| ei->csum_bytes = 0; |
| ei->index_cnt = (u64)-1; |
| ei->dir_index = 0; |
| ei->last_unlink_trans = 0; |
| ei->last_log_commit = 0; |
| ei->delayed_iput_count = 0; |
| |
| spin_lock_init(&ei->lock); |
| ei->outstanding_extents = 0; |
| ei->reserved_extents = 0; |
| |
| ei->runtime_flags = 0; |
| ei->force_compress = BTRFS_COMPRESS_NONE; |
| |
| ei->delayed_node = NULL; |
| |
| ei->i_otime.tv_sec = 0; |
| ei->i_otime.tv_nsec = 0; |
| |
| inode = &ei->vfs_inode; |
| extent_map_tree_init(&ei->extent_tree); |
| extent_io_tree_init(&ei->io_tree, &inode->i_data); |
| extent_io_tree_init(&ei->io_failure_tree, &inode->i_data); |
| ei->io_tree.track_uptodate = 1; |
| ei->io_failure_tree.track_uptodate = 1; |
| atomic_set(&ei->sync_writers, 0); |
| mutex_init(&ei->log_mutex); |
| mutex_init(&ei->delalloc_mutex); |
| btrfs_ordered_inode_tree_init(&ei->ordered_tree); |
| INIT_LIST_HEAD(&ei->delalloc_inodes); |
| INIT_LIST_HEAD(&ei->delayed_iput); |
| RB_CLEAR_NODE(&ei->rb_node); |
| init_rwsem(&ei->dio_sem); |
| |
| return inode; |
| } |
| |
| #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS |
| void btrfs_test_destroy_inode(struct inode *inode) |
| { |
| btrfs_drop_extent_cache(inode, 0, (u64)-1, 0); |
| kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); |
| } |
| #endif |
| |
| static void btrfs_i_callback(struct rcu_head *head) |
| { |
| struct inode *inode = container_of(head, struct inode, i_rcu); |
| kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); |
| } |
| |
| void btrfs_destroy_inode(struct inode *inode) |
| { |
| struct btrfs_ordered_extent *ordered; |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| |
| WARN_ON(!hlist_empty(&inode->i_dentry)); |
| WARN_ON(inode->i_data.nrpages); |
| WARN_ON(BTRFS_I(inode)->outstanding_extents); |
| WARN_ON(BTRFS_I(inode)->reserved_extents); |
| WARN_ON(BTRFS_I(inode)->delalloc_bytes); |
| WARN_ON(BTRFS_I(inode)->csum_bytes); |
| WARN_ON(BTRFS_I(inode)->defrag_bytes); |
| |
| /* |
| * This can happen where we create an inode, but somebody else also |
| * created the same inode and we need to destroy the one we already |
| * created. |
| */ |
| if (!root) |
| goto free; |
| |
| if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, |
| &BTRFS_I(inode)->runtime_flags)) { |
| btrfs_info(root->fs_info, "inode %llu still on the orphan list", |
| btrfs_ino(inode)); |
| atomic_dec(&root->orphan_inodes); |
| } |
| |
| while (1) { |
| ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); |
| if (!ordered) |
| break; |
| else { |
| btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup", |
| ordered->file_offset, ordered->len); |
| btrfs_remove_ordered_extent(inode, ordered); |
| btrfs_put_ordered_extent(ordered); |
| btrfs_put_ordered_extent(ordered); |
| } |
| } |
| btrfs_qgroup_check_reserved_leak(inode); |
| inode_tree_del(inode); |
| btrfs_drop_extent_cache(inode, 0, (u64)-1, 0); |
| free: |
| call_rcu(&inode->i_rcu, btrfs_i_callback); |
| } |
| |
| int btrfs_drop_inode(struct inode *inode) |
| { |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| |
| if (root == NULL) |
| return 1; |
| |
| /* the snap/subvol tree is on deleting */ |
| if (btrfs_root_refs(&root->root_item) == 0) |
| return 1; |
| else |
| return generic_drop_inode(inode); |
| } |
| |
| static void init_once(void *foo) |
| { |
| struct btrfs_inode *ei = (struct btrfs_inode *) foo; |
| |
| inode_init_once(&ei->vfs_inode); |
| } |
| |
| void btrfs_destroy_cachep(void) |
| { |
| /* |
| * Make sure all delayed rcu free inodes are flushed before we |
| * destroy cache. |
| */ |
| rcu_barrier(); |
| kmem_cache_destroy(btrfs_inode_cachep); |
| kmem_cache_destroy(btrfs_trans_handle_cachep); |
| kmem_cache_destroy(btrfs_transaction_cachep); |
| kmem_cache_destroy(btrfs_path_cachep); |
| kmem_cache_destroy(btrfs_free_space_cachep); |
| } |
| |
| int btrfs_init_cachep(void) |
| { |
| btrfs_inode_cachep = kmem_cache_create("btrfs_inode", |
| sizeof(struct btrfs_inode), 0, |
| SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT, |
| init_once); |
| if (!btrfs_inode_cachep) |
| goto fail; |
| |
| btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle", |
| sizeof(struct btrfs_trans_handle), 0, |
| SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); |
| if (!btrfs_trans_handle_cachep) |
| goto fail; |
| |
| btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction", |
| sizeof(struct btrfs_transaction), 0, |
| SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); |
| if (!btrfs_transaction_cachep) |
| goto fail; |
| |
| btrfs_path_cachep = kmem_cache_create("btrfs_path", |
| sizeof(struct btrfs_path), 0, |
| SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); |
| if (!btrfs_path_cachep) |
| goto fail; |
| |
| btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space", |
| sizeof(struct btrfs_free_space), 0, |
| SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); |
| if (!btrfs_free_space_cachep) |
| goto fail; |
| |
| return 0; |
| fail: |
| btrfs_destroy_cachep(); |
| return -ENOMEM; |
| } |
| |
| static int btrfs_getattr(struct vfsmount *mnt, |
| struct dentry *dentry, struct kstat *stat) |
| { |
| u64 delalloc_bytes; |
| struct inode *inode = d_inode(dentry); |
| u32 blocksize = inode->i_sb->s_blocksize; |
| |
| generic_fillattr(inode, stat); |
| stat->dev = BTRFS_I(inode)->root->anon_dev; |
| |
| spin_lock(&BTRFS_I(inode)->lock); |
| delalloc_bytes = BTRFS_I(inode)->delalloc_bytes; |
| spin_unlock(&BTRFS_I(inode)->lock); |
| stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) + |
| ALIGN(delalloc_bytes, blocksize)) >> 9; |
| return 0; |
| } |
| |
| static int btrfs_rename_exchange(struct inode *old_dir, |
| struct dentry *old_dentry, |
| struct inode *new_dir, |
| struct dentry *new_dentry) |
| { |
| struct btrfs_trans_handle *trans; |
| struct btrfs_root *root = BTRFS_I(old_dir)->root; |
| struct btrfs_root *dest = BTRFS_I(new_dir)->root; |
| struct inode *new_inode = new_dentry->d_inode; |
| struct inode *old_inode = old_dentry->d_inode; |
| struct timespec ctime = CURRENT_TIME; |
| struct dentry *parent; |
| u64 old_ino = btrfs_ino(old_inode); |
| u64 new_ino = btrfs_ino(new_inode); |
| u64 old_idx = 0; |
| u64 new_idx = 0; |
| u64 root_objectid; |
| int ret; |
| bool root_log_pinned = false; |
| bool dest_log_pinned = false; |
| |
| /* we only allow rename subvolume link between subvolumes */ |
| if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) |
| return -EXDEV; |
| |
| /* close the race window with snapshot create/destroy ioctl */ |
| if (old_ino == BTRFS_FIRST_FREE_OBJECTID) |
| down_read(&root->fs_info->subvol_sem); |
| if (new_ino == BTRFS_FIRST_FREE_OBJECTID) |
| down_read(&dest->fs_info->subvol_sem); |
| |
| /* |
| * We want to reserve the absolute worst case amount of items. So if |
| * both inodes are subvols and we need to unlink them then that would |
| * require 4 item modifications, but if they are both normal inodes it |
| * would require 5 item modifications, so we'll assume their normal |
| * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items |
| * should cover the worst case number of items we'll modify. |
| */ |
| trans = btrfs_start_transaction(root, 12); |
| if (IS_ERR(trans)) { |
| ret = PTR_ERR(trans); |
| goto out_notrans; |
| } |
| |
| /* |
| * We need to find a free sequence number both in the source and |
| * in the destination directory for the exchange. |
| */ |
| ret = btrfs_set_inode_index(new_dir, &old_idx); |
| if (ret) |
| goto out_fail; |
| ret = btrfs_set_inode_index(old_dir, &new_idx); |
| if (ret) |
| goto out_fail; |
| |
| BTRFS_I(old_inode)->dir_index = 0ULL; |
| BTRFS_I(new_inode)->dir_index = 0ULL; |
| |
| /* Reference for the source. */ |
| if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { |
| /* force full log commit if subvolume involved. */ |
| btrfs_set_log_full_commit(root->fs_info, trans); |
| } else { |
| btrfs_pin_log_trans(root); |
| root_log_pinned = true; |
| ret = btrfs_insert_inode_ref(trans, dest, |
| new_dentry->d_name.name, |
| new_dentry->d_name.len, |
| old_ino, |
| btrfs_ino(new_dir), old_idx); |
| if (ret) |
| goto out_fail; |
| } |
| |
| /* And now for the dest. */ |
| if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { |
| /* force full log commit if subvolume involved. */ |
| btrfs_set_log_full_commit(dest->fs_info, trans); |
| } else { |
| btrfs_pin_log_trans(dest); |
| dest_log_pinned = true; |
| ret = btrfs_insert_inode_ref(trans, root, |
| old_dentry->d_name.name, |
| old_dentry->d_name.len, |
| new_ino, |
| btrfs_ino(old_dir), new_idx); |
| if (ret) |
| goto out_fail; |
| } |
| |
| /* Update inode version and ctime/mtime. */ |
| inode_inc_iversion(old_dir); |
| inode_inc_iversion(new_dir); |
| inode_inc_iversion(old_inode); |
| inode_inc_iversion(new_inode); |
| old_dir->i_ctime = old_dir->i_mtime = ctime; |
| new_dir->i_ctime = new_dir->i_mtime = ctime; |
| old_inode->i_ctime = ctime; |
| new_inode->i_ctime = ctime; |
| |
| if (old_dentry->d_parent != new_dentry->d_parent) { |
| btrfs_record_unlink_dir(trans, old_dir, old_inode, 1); |
| btrfs_record_unlink_dir(trans, new_dir, new_inode, 1); |
| } |
| |
| /* src is a subvolume */ |
| if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { |
| root_objectid = BTRFS_I(old_inode)->root->root_key.objectid; |
| ret = btrfs_unlink_subvol(trans, root, old_dir, |
| root_objectid, |
| old_dentry->d_name.name, |
| old_dentry->d_name.len); |
| } else { /* src is an inode */ |
| ret = __btrfs_unlink_inode(trans, root, old_dir, |
| old_dentry->d_inode, |
| old_dentry->d_name.name, |
| old_dentry->d_name.len); |
| if (!ret) |
| ret = btrfs_update_inode(trans, root, old_inode); |
| } |
| if (ret) { |
| btrfs_abort_transaction(trans, root, ret); |
| goto out_fail; |
| } |
| |
| /* dest is a subvolume */ |
| if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { |
| root_objectid = BTRFS_I(new_inode)->root->root_key.objectid; |
| ret = btrfs_unlink_subvol(trans, dest, new_dir, |
| root_objectid, |
| new_dentry->d_name.name, |
| new_dentry->d_name.len); |
| } else { /* dest is an inode */ |
| ret = __btrfs_unlink_inode(trans, dest, new_dir, |
| new_dentry->d_inode, |
| new_dentry->d_name.name, |
| new_dentry->d_name.len); |
| if (!ret) |
| ret = btrfs_update_inode(trans, dest, new_inode); |
| } |
| if (ret) { |
| btrfs_abort_transaction(trans, root, ret); |
| goto out_fail; |
| } |
| |
| ret = btrfs_add_link(trans, new_dir, old_inode, |
| new_dentry->d_name.name, |
| new_dentry->d_name.len, 0, old_idx); |
| if (ret) { |
| btrfs_abort_transaction(trans, root, ret); |
| goto out_fail; |
| } |
| |
| ret = btrfs_add_link(trans, old_dir, new_inode, |
| old_dentry->d_name.name, |
| old_dentry->d_name.len, 0, new_idx); |
| if (ret) { |
| btrfs_abort_transaction(trans, root, ret); |
| goto out_fail; |
| } |
| |
| if (old_inode->i_nlink == 1) |
| BTRFS_I(old_inode)->dir_index = old_idx; |
| if (new_inode->i_nlink == 1) |
| BTRFS_I(new_inode)->dir_index = new_idx; |
| |
| if (root_log_pinned) { |
| parent = new_dentry->d_parent; |
| btrfs_log_new_name(trans, old_inode, old_dir, parent); |
| btrfs_end_log_trans(root); |
| root_log_pinned = false; |
| } |
| if (dest_log_pinned) { |
| parent = old_dentry->d_parent; |
| btrfs_log_new_name(trans, new_inode, new_dir, parent); |
| btrfs_end_log_trans(dest); |
| dest_log_pinned = false; |
| } |
| out_fail: |
| /* |
| * If we have pinned a log and an error happened, we unpin tasks |
| * trying to sync the log and force them to fallback to a transaction |
| * commit if the log currently contains any of the inodes involved in |
| * this rename operation (to ensure we do not persist a log with an |
| * inconsistent state for any of these inodes or leading to any |
| * inconsistencies when replayed). If the transaction was aborted, the |
| * abortion reason is propagated to userspace when attempting to commit |
| * the transaction. If the log does not contain any of these inodes, we |
| * allow the tasks to sync it. |
| */ |
| if (ret && (root_log_pinned || dest_log_pinned)) { |
| if (btrfs_inode_in_log(old_dir, root->fs_info->generation) || |
| btrfs_inode_in_log(new_dir, root->fs_info->generation) || |
| btrfs_inode_in_log(old_inode, root->fs_info->generation) || |
| (new_inode && |
| btrfs_inode_in_log(new_inode, root->fs_info->generation))) |
| btrfs_set_log_full_commit(root->fs_info, trans); |
| |
| if (root_log_pinned) { |
| btrfs_end_log_trans(root); |
| root_log_pinned = false; |
| } |
| if (dest_log_pinned) { |
| btrfs_end_log_trans(dest); |
| dest_log_pinned = false; |
| } |
| } |
| ret = btrfs_end_transaction(trans, root); |
| out_notrans: |
| if (new_ino == BTRFS_FIRST_FREE_OBJECTID) |
| up_read(&dest->fs_info->subvol_sem); |
| if (old_ino == BTRFS_FIRST_FREE_OBJECTID) |
| up_read(&root->fs_info->subvol_sem); |
| |
| return ret; |
| } |
| |
| static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct inode *dir, |
| struct dentry *dentry) |
| { |
| int ret; |
| struct inode *inode; |
| u64 objectid; |
| u64 index; |
| |
| ret = btrfs_find_free_ino(root, &objectid); |
| if (ret) |
| return ret; |
| |
| inode = btrfs_new_inode(trans, root, dir, |
| dentry->d_name.name, |
| dentry->d_name.len, |
| btrfs_ino(dir), |
| objectid, |
| S_IFCHR | WHITEOUT_MODE, |
| &index); |
| |
| if (IS_ERR(inode)) { |
| ret = PTR_ERR(inode); |
| return ret; |
| } |
| |
| inode->i_op = &btrfs_special_inode_operations; |
| init_special_inode(inode, inode->i_mode, |
| WHITEOUT_DEV); |
| |
| ret = btrfs_init_inode_security(trans, inode, dir, |
| &dentry->d_name); |
| if (ret) |
| goto out; |
| |
| ret = btrfs_add_nondir(trans, dir, dentry, |
| inode, 0, index); |
| if (ret) |
| goto out; |
| |
| ret = btrfs_update_inode(trans, root, inode); |
| out: |
| unlock_new_inode(inode); |
| if (ret) |
| inode_dec_link_count(inode); |
| iput(inode); |
| |
| return ret; |
| } |
| |
| static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry, |
| struct inode *new_dir, struct dentry *new_dentry, |
| unsigned int flags) |
| { |
| struct btrfs_trans_handle *trans; |
| unsigned int trans_num_items; |
| struct btrfs_root *root = BTRFS_I(old_dir)->root; |
| struct btrfs_root *dest = BTRFS_I(new_dir)->root; |
| struct inode *new_inode = d_inode(new_dentry); |
| struct inode *old_inode = d_inode(old_dentry); |
| u64 index = 0; |
| u64 root_objectid; |
| int ret; |
| u64 old_ino = btrfs_ino(old_inode); |
| bool log_pinned = false; |
| |
| if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) |
| return -EPERM; |
| |
| /* we only allow rename subvolume link between subvolumes */ |
| if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) |
| return -EXDEV; |
| |
| if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || |
| (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID)) |
| return -ENOTEMPTY; |
| |
| if (S_ISDIR(old_inode->i_mode) && new_inode && |
| new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) |
| return -ENOTEMPTY; |
| |
| |
| /* check for collisions, even if the name isn't there */ |
| ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, |
| new_dentry->d_name.name, |
| new_dentry->d_name.len); |
| |
| if (ret) { |
| if (ret == -EEXIST) { |
| /* we shouldn't get |
| * eexist without a new_inode */ |
| if (WARN_ON(!new_inode)) { |
| return ret; |
| } |
| } else { |
| /* maybe -EOVERFLOW */ |
| return ret; |
| } |
| } |
| ret = 0; |
| |
| /* |
| * we're using rename to replace one file with another. Start IO on it |
| * now so we don't add too much work to the end of the transaction |
| */ |
| if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size) |
| filemap_flush(old_inode->i_mapping); |
| |
| /* close the racy window with snapshot create/destroy ioctl */ |
| if (old_ino == BTRFS_FIRST_FREE_OBJECTID) |
| down_read(&root->fs_info->subvol_sem); |
| /* |
| * We want to reserve the absolute worst case amount of items. So if |
| * both inodes are subvols and we need to unlink them then that would |
| * require 4 item modifications, but if they are both normal inodes it |
| * would require 5 item modifications, so we'll assume they are normal |
| * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items |
| * should cover the worst case number of items we'll modify. |
| * If our rename has the whiteout flag, we need more 5 units for the |
| * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item |
| * when selinux is enabled). |
| */ |
| trans_num_items = 11; |
| if (flags & RENAME_WHITEOUT) |
| trans_num_items += 5; |
| trans = btrfs_start_transaction(root, trans_num_items); |
| if (IS_ERR(trans)) { |
| ret = PTR_ERR(trans); |
| goto out_notrans; |
| } |
| |
| if (dest != root) |
| btrfs_record_root_in_trans(trans, dest); |
| |
| ret = btrfs_set_inode_index(new_dir, &index); |
| if (ret) |
| goto out_fail; |
| |
| BTRFS_I(old_inode)->dir_index = 0ULL; |
| if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { |
| /* force full log commit if subvolume involved. */ |
| btrfs_set_log_full_commit(root->fs_info, trans); |
| } else { |
| btrfs_pin_log_trans(root); |
| log_pinned = true; |
| ret = btrfs_insert_inode_ref(trans, dest, |
| new_dentry->d_name.name, |
| new_dentry->d_name.len, |
| old_ino, |
| btrfs_ino(new_dir), index); |
| if (ret) |
| goto out_fail; |
| } |
| |
| inode_inc_iversion(old_dir); |
| inode_inc_iversion(new_dir); |
| inode_inc_iversion(old_inode); |
| old_dir->i_ctime = old_dir->i_mtime = |
| new_dir->i_ctime = new_dir->i_mtime = |
| old_inode->i_ctime = current_fs_time(old_dir->i_sb); |
| |
| if (old_dentry->d_parent != new_dentry->d_parent) |
| btrfs_record_unlink_dir(trans, old_dir, old_inode, 1); |
| |
| if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { |
| root_objectid = BTRFS_I(old_inode)->root->root_key.objectid; |
| ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid, |
| old_dentry->d_name.name, |
| old_dentry->d_name.len); |
| } else { |
| ret = __btrfs_unlink_inode(trans, root, old_dir, |
| d_inode(old_dentry), |
| old_dentry->d_name.name, |
| old_dentry->d_name.len); |
| if (!ret) |
| ret = btrfs_update_inode(trans, root, old_inode); |
| } |
| if (ret) { |
| btrfs_abort_transaction(trans, root, ret); |
| goto out_fail; |
| } |
| |
| if (new_inode) { |
| inode_inc_iversion(new_inode); |
| new_inode->i_ctime = current_fs_time(new_inode->i_sb); |
| if (unlikely(btrfs_ino(new_inode) == |
| BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { |
| root_objectid = BTRFS_I(new_inode)->location.objectid; |
| ret = btrfs_unlink_subvol(trans, dest, new_dir, |
| root_objectid, |
| new_dentry->d_name.name, |
| new_dentry->d_name.len); |
| BUG_ON(new_inode->i_nlink == 0); |
| } else { |
| ret = btrfs_unlink_inode(trans, dest, new_dir, |
| d_inode(new_dentry), |
| new_dentry->d_name.name, |
| new_dentry->d_name.len); |
| } |
| if (!ret && new_inode->i_nlink == 0) |
| ret = btrfs_orphan_add(trans, d_inode(new_dentry)); |
| if (ret) { |
| btrfs_abort_transaction(trans, root, ret); |
| goto out_fail; |
| } |
| } |
| |
| ret = btrfs_add_link(trans, new_dir, old_inode, |
| new_dentry->d_name.name, |
| new_dentry->d_name.len, 0, index); |
| if (ret) { |
| btrfs_abort_transaction(trans, root, ret); |
| goto out_fail; |
| } |
| |
| if (old_inode->i_nlink == 1) |
| BTRFS_I(old_inode)->dir_index = index; |
| |
| if (log_pinned) { |
| struct dentry *parent = new_dentry->d_parent; |
| |
| btrfs_log_new_name(trans, old_inode, old_dir, parent); |
| btrfs_end_log_trans(root); |
| log_pinned = false; |
| } |
| |
| if (flags & RENAME_WHITEOUT) { |
| ret = btrfs_whiteout_for_rename(trans, root, old_dir, |
| old_dentry); |
| |
| if (ret) { |
| btrfs_abort_transaction(trans, root, ret); |
| goto out_fail; |
| } |
| } |
| out_fail: |
| /* |
| * If we have pinned the log and an error happened, we unpin tasks |
| * trying to sync the log and force them to fallback to a transaction |
| * commit if the log currently contains any of the inodes involved in |
| * this rename operation (to ensure we do not persist a log with an |
| * inconsistent state for any of these inodes or leading to any |
| * inconsistencies when replayed). If the transaction was aborted, the |
| * abortion reason is propagated to userspace when attempting to commit |
| * the transaction. If the log does not contain any of these inodes, we |
| * allow the tasks to sync it. |
| */ |
| if (ret && log_pinned) { |
| if (btrfs_inode_in_log(old_dir, root->fs_info->generation) || |
| btrfs_inode_in_log(new_dir, root->fs_info->generation) || |
| btrfs_inode_in_log(old_inode, root->fs_info->generation) || |
| (new_inode && |
| btrfs_inode_in_log(new_inode, root->fs_info->generation))) |
| btrfs_set_log_full_commit(root->fs_info, trans); |
| |
| btrfs_end_log_trans(root); |
| log_pinned = false; |
| } |
| btrfs_end_transaction(trans, root); |
| out_notrans: |
| if (old_ino == BTRFS_FIRST_FREE_OBJECTID) |
| up_read(&root->fs_info->subvol_sem); |
| |
| return ret; |
| } |
| |
| static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry, |
| struct inode *new_dir, struct dentry *new_dentry, |
| unsigned int flags) |
| { |
| if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) |
| return -EINVAL; |
| |
| if (flags & RENAME_EXCHANGE) |
| return btrfs_rename_exchange(old_dir, old_dentry, new_dir, |
| new_dentry); |
| |
| return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags); |
| } |
| |
| static void btrfs_run_delalloc_work(struct btrfs_work *work) |
| { |
| struct btrfs_delalloc_work *delalloc_work; |
| struct inode *inode; |
| |
| delalloc_work = container_of(work, struct btrfs_delalloc_work, |
| work); |
| inode = delalloc_work->inode; |
| filemap_flush(inode->i_mapping); |
| if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, |
| &BTRFS_I(inode)->runtime_flags)) |
| filemap_flush(inode->i_mapping); |
| |
| if (delalloc_work->delay_iput) |
| btrfs_add_delayed_iput(inode); |
| else |
| iput(inode); |
| complete(&delalloc_work->completion); |
| } |
| |
| struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode, |
| int delay_iput) |
| { |
| struct btrfs_delalloc_work *work; |
| |
| work = kmalloc(sizeof(*work), GFP_NOFS); |
| if (!work) |
| return NULL; |
| |
| init_completion(&work->completion); |
| INIT_LIST_HEAD(&work->list); |
| work->inode = inode; |
| work->delay_iput = delay_iput; |
| WARN_ON_ONCE(!inode); |
| btrfs_init_work(&work->work, btrfs_flush_delalloc_helper, |
| btrfs_run_delalloc_work, NULL, NULL); |
| |
| return work; |
| } |
| |
| void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work) |
| { |
| wait_for_completion(&work->completion); |
| kfree(work); |
| } |
| |
| /* |
| * some fairly slow code that needs optimization. This walks the list |
| * of all the inodes with pending delalloc and forces them to disk. |
| */ |
| static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput, |
| int nr) |
| { |
| struct btrfs_inode *binode; |
| struct inode *inode; |
| struct btrfs_delalloc_work *work, *next; |
| struct list_head works; |
| struct list_head splice; |
| int ret = 0; |
| |
| INIT_LIST_HEAD(&works); |
| INIT_LIST_HEAD(&splice); |
| |
| mutex_lock(&root->delalloc_mutex); |
| spin_lock(&root->delalloc_lock); |
| list_splice_init(&root->delalloc_inodes, &splice); |
| while (!list_empty(&splice)) { |
| binode = list_entry(splice.next, struct btrfs_inode, |
| delalloc_inodes); |
| |
| list_move_tail(&binode->delalloc_inodes, |
| &root->delalloc_inodes); |
| inode = igrab(&binode->vfs_inode); |
| if (!inode) { |
| cond_resched_lock(&root->delalloc_lock); |
| continue; |
| } |
| spin_unlock(&root->delalloc_lock); |
| |
| work = btrfs_alloc_delalloc_work(inode, delay_iput); |
| if (!work) { |
| if (delay_iput) |
| btrfs_add_delayed_iput(inode); |
| else |
| iput(inode); |
| ret = -ENOMEM; |
| goto out; |
| } |
| list_add_tail(&work->list, &works); |
| btrfs_queue_work(root->fs_info->flush_workers, |
| &work->work); |
| ret++; |
| if (nr != -1 && ret >= nr) |
| goto out; |
| cond_resched(); |
| spin_lock(&root->delalloc_lock); |
| } |
| spin_unlock(&root->delalloc_lock); |
| |
| out: |
| list_for_each_entry_safe(work, next, &works, list) { |
| list_del_init(&work->list); |
| btrfs_wait_and_free_delalloc_work(work); |
| } |
| |
| if (!list_empty_careful(&splice)) { |
| spin_lock(&root->delalloc_lock); |
| list_splice_tail(&splice, &root->delalloc_inodes); |
| spin_unlock(&root->delalloc_lock); |
| } |
| mutex_unlock(&root->delalloc_mutex); |
| return ret; |
| } |
| |
| int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput) |
| { |
| int ret; |
| |
| if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) |
| return -EROFS; |
| |
| ret = __start_delalloc_inodes(root, delay_iput, -1); |
| if (ret > 0) |
| ret = 0; |
| /* |
| * the filemap_flush will queue IO into the worker threads, but |
| * we have to make sure the IO is actually started and that |
| * ordered extents get created before we return |
| */ |
| atomic_inc(&root->fs_info->async_submit_draining); |
| while (atomic_read(&root->fs_info->nr_async_submits) || |
| atomic_read(&root->fs_info->async_delalloc_pages)) { |
| wait_event(root->fs_info->async_submit_wait, |
| (atomic_read(&root->fs_info->nr_async_submits) == 0 && |
| atomic_read(&root->fs_info->async_delalloc_pages) == 0)); |
| } |
| atomic_dec(&root->fs_info->async_submit_draining); |
| return ret; |
| } |
| |
| int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput, |
| int nr) |
| { |
| struct btrfs_root *root; |
| struct list_head splice; |
| int ret; |
| |
| if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) |
| return -EROFS; |
| |
| INIT_LIST_HEAD(&splice); |
| |
| mutex_lock(&fs_info->delalloc_root_mutex); |
| spin_lock(&fs_info->delalloc_root_lock); |
| list_splice_init(&fs_info->delalloc_roots, &splice); |
| while (!list_empty(&splice) && nr) { |
| root = list_first_entry(&splice, struct btrfs_root, |
| delalloc_root); |
| root = btrfs_grab_fs_root(root); |
| BUG_ON(!root); |
| list_move_tail(&root->delalloc_root, |
| &fs_info->delalloc_roots); |
| spin_unlock(&fs_info->delalloc_root_lock); |
| |
| ret = __start_delalloc_inodes(root, delay_iput, nr); |
| btrfs_put_fs_root(root); |
| if (ret < 0) |
| goto out; |
| |
| if (nr != -1) { |
| nr -= ret; |
| WARN_ON(nr < 0); |
| } |
| spin_lock(&fs_info->delalloc_root_lock); |
| } |
| spin_unlock(&fs_info->delalloc_root_lock); |
| |
| ret = 0; |
| atomic_inc(&fs_info->async_submit_draining); |
| while (atomic_read(&fs_info->nr_async_submits) || |
| atomic_read(&fs_info->async_delalloc_pages)) { |
| wait_event(fs_info->async_submit_wait, |
| (atomic_read(&fs_info->nr_async_submits) == 0 && |
| atomic_read(&fs_info->async_delalloc_pages) == 0)); |
| } |
| atomic_dec(&fs_info->async_submit_draining); |
| out: |
| if (!list_empty_careful(&splice)) { |
| spin_lock(&fs_info->delalloc_root_lock); |
| list_splice_tail(&splice, &fs_info->delalloc_roots); |
| spin_unlock(&fs_info->delalloc_root_lock); |
| } |
| mutex_unlock(&fs_info->delalloc_root_mutex); |
| return ret; |
| } |
| |
| static int btrfs_symlink(struct inode *dir, struct dentry *dentry, |
| const char *symname) |
| { |
| struct btrfs_trans_handle *trans; |
| struct btrfs_root *root = BTRFS_I(dir)->root; |
| struct btrfs_path *path; |
| struct btrfs_key key; |
| struct inode *inode = NULL; |
| int err; |
| int drop_inode = 0; |
| u64 objectid; |
| u64 index = 0; |
| int name_len; |
| int datasize; |
| unsigned long ptr; |
| struct btrfs_file_extent_item *ei; |
| struct extent_buffer *leaf; |
| |
| name_len = strlen(symname); |
| if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root)) |
| return -ENAMETOOLONG; |
| |
| /* |
| * 2 items for inode item and ref |
| * 2 items for dir items |
| * 1 item for updating parent inode item |
| * 1 item for the inline extent item |
| * 1 item for xattr if selinux is on |
| */ |
| trans = btrfs_start_transaction(root, 7); |
| if (IS_ERR(trans)) |
| return PTR_ERR(trans); |
| |
| err = btrfs_find_free_ino(root, &objectid); |
| if (err) |
| goto out_unlock; |
| |
| inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, |
| dentry->d_name.len, btrfs_ino(dir), objectid, |
| S_IFLNK|S_IRWXUGO, &index); |
| if (IS_ERR(inode)) { |
| err = PTR_ERR(inode); |
| goto out_unlock; |
| } |
| |
| /* |
| * If the active LSM wants to access the inode during |
| * d_instantiate it needs these. Smack checks to see |
| * if the filesystem supports xattrs by looking at the |
| * ops vector. |
| */ |
| inode->i_fop = &btrfs_file_operations; |
| inode->i_op = &btrfs_file_inode_operations; |
| inode->i_mapping->a_ops = &btrfs_aops; |
| BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; |
| |
| err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); |
| if (err) |
| goto out_unlock_inode; |
| |
| path = btrfs_alloc_path(); |
| if (!path) { |
| err = -ENOMEM; |
| goto out_unlock_inode; |
| } |
| key.objectid = btrfs_ino(inode); |
| key.offset = 0; |
| key.type = BTRFS_EXTENT_DATA_KEY; |
| datasize = btrfs_file_extent_calc_inline_size(name_len); |
| err = btrfs_insert_empty_item(trans, root, path, &key, |
| datasize); |
| if (err) { |
| btrfs_free_path(path); |
| goto out_unlock_inode; |
| } |
| leaf = path->nodes[0]; |
| ei = btrfs_item_ptr(leaf, path->slots[0], |
| struct btrfs_file_extent_item); |
| btrfs_set_file_extent_generation(leaf, ei, trans->transid); |
| btrfs_set_file_extent_type(leaf, ei, |
| BTRFS_FILE_EXTENT_INLINE); |
| btrfs_set_file_extent_encryption(leaf, ei, 0); |
| btrfs_set_file_extent_compression(leaf, ei, 0); |
| btrfs_set_file_extent_other_encoding(leaf, ei, 0); |
| btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); |
| |
| ptr = btrfs_file_extent_inline_start(ei); |
| write_extent_buffer(leaf, symname, ptr, name_len); |
| btrfs_mark_buffer_dirty(leaf); |
| btrfs_free_path(path); |
| |
| inode->i_op = &btrfs_symlink_inode_operations; |
| inode_nohighmem(inode); |
| inode->i_mapping->a_ops = &btrfs_symlink_aops; |
| inode_set_bytes(inode, name_len); |
| btrfs_i_size_write(inode, name_len); |
| err = btrfs_update_inode(trans, root, inode); |
| /* |
| * Last step, add directory indexes for our symlink inode. This is the |
| * last step to avoid extra cleanup of these indexes if an error happens |
| * elsewhere above. |
| */ |
| if (!err) |
| err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); |
| if (err) { |
| drop_inode = 1; |
| goto out_unlock_inode; |
| } |
| |
| unlock_new_inode(inode); |
| d_instantiate(dentry, inode); |
| |
| out_unlock: |
| btrfs_end_transaction(trans, root); |
| if (drop_inode) { |
| inode_dec_link_count(inode); |
| iput(inode); |
| } |
| btrfs_btree_balance_dirty(root); |
| return err; |
| |
| out_unlock_inode: |
| drop_inode = 1; |
| unlock_new_inode(inode); |
| goto out_unlock; |
| } |
| |
| static int __btrfs_prealloc_file_range(struct inode *inode, int mode, |
| u64 start, u64 num_bytes, u64 min_size, |
| loff_t actual_len, u64 *alloc_hint, |
| struct btrfs_trans_handle *trans) |
| { |
| struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; |
| struct extent_map *em; |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| struct btrfs_key ins; |
| u64 cur_offset = start; |
| u64 i_size; |
| u64 cur_bytes; |
| u64 last_alloc = (u64)-1; |
| int ret = 0; |
| bool own_trans = true; |
| |
| if (trans) |
| own_trans = false; |
| while (num_bytes > 0) { |
| if (own_trans) { |
| trans = btrfs_start_transaction(root, 3); |
| if (IS_ERR(trans)) { |
| ret = PTR_ERR(trans); |
| break; |
| } |
| } |
| |
| cur_bytes = min_t(u64, num_bytes, SZ_256M); |
| cur_bytes = max(cur_bytes, min_size); |
| /* |
| * If we are severely fragmented we could end up with really |
| * small allocations, so if the allocator is returning small |
| * chunks lets make its job easier by only searching for those |
| * sized chunks. |
| */ |
| cur_bytes = min(cur_bytes, last_alloc); |
| ret = btrfs_reserve_extent(root, cur_bytes, min_size, 0, |
| *alloc_hint, &ins, 1, 0); |
| if (ret) { |
| if (own_trans) |
| btrfs_end_transaction(trans, root); |
| break; |
| } |
| btrfs_dec_block_group_reservations(root->fs_info, ins.objectid); |
| |
| last_alloc = ins.offset; |
| ret = insert_reserved_file_extent(trans, inode, |
| cur_offset, ins.objectid, |
| ins.offset, ins.offset, |
| ins.offset, 0, 0, 0, |
| BTRFS_FILE_EXTENT_PREALLOC); |
| if (ret) { |
| btrfs_free_reserved_extent(root, ins.objectid, |
| ins.offset, 0); |
| btrfs_abort_transaction(trans, root, ret); |
| if (own_trans) |
| btrfs_end_transaction(trans, root); |
| break; |
| } |
| |
| btrfs_drop_extent_cache(inode, cur_offset, |
| cur_offset + ins.offset -1, 0); |
| |
| em = alloc_extent_map(); |
| if (!em) { |
| set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, |
| &BTRFS_I(inode)->runtime_flags); |
| goto next; |
| } |
| |
| em->start = cur_offset; |
| em->orig_start = cur_offset; |
| em->len = ins.offset; |
| em->block_start = ins.objectid; |
| em->block_len = ins.offset; |
| em->orig_block_len = ins.offset; |
| em->ram_bytes = ins.offset; |
| em->bdev = root->fs_info->fs_devices->latest_bdev; |
| set_bit(EXTENT_FLAG_PREALLOC, &em->flags); |
| em->generation = trans->transid; |
| |
| while (1) { |
| write_lock(&em_tree->lock); |
| ret = add_extent_mapping(em_tree, em, 1); |
| write_unlock(&em_tree->lock); |
| if (ret != -EEXIST) |
| break; |
| btrfs_drop_extent_cache(inode, cur_offset, |
| cur_offset + ins.offset - 1, |
| 0); |
| } |
| free_extent_map(em); |
| next: |
| num_bytes -= ins.offset; |
| cur_offset += ins.offset; |
| *alloc_hint = ins.objectid + ins.offset; |
| |
| inode_inc_iversion(inode); |
| inode->i_ctime = current_fs_time(inode->i_sb); |
| BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; |
| if (!(mode & FALLOC_FL_KEEP_SIZE) && |
| (actual_len > inode->i_size) && |
| (cur_offset > inode->i_size)) { |
| if (cur_offset > actual_len) |
| i_size = actual_len; |
| else |
| i_size = cur_offset; |
| i_size_write(inode, i_size); |
| btrfs_ordered_update_i_size(inode, i_size, NULL); |
| } |
| |
| ret = btrfs_update_inode(trans, root, inode); |
| |
| if (ret) { |
| btrfs_abort_transaction(trans, root, ret); |
| if (own_trans) |
| btrfs_end_transaction(trans, root); |
| break; |
| } |
| |
| if (own_trans) |
| btrfs_end_transaction(trans, root); |
| } |
| return ret; |
| } |
| |
| int btrfs_prealloc_file_range(struct inode *inode, int mode, |
| u64 start, u64 num_bytes, u64 min_size, |
| loff_t actual_len, u64 *alloc_hint) |
| { |
| return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, |
| min_size, actual_len, alloc_hint, |
| NULL); |
| } |
| |
| int btrfs_prealloc_file_range_trans(struct inode *inode, |
| struct btrfs_trans_handle *trans, int mode, |
| u64 start, u64 num_bytes, u64 min_size, |
| loff_t actual_len, u64 *alloc_hint) |
| { |
| return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, |
| min_size, actual_len, alloc_hint, trans); |
| } |
| |
| static int btrfs_set_page_dirty(struct page *page) |
| { |
| return __set_page_dirty_nobuffers(page); |
| } |
| |
| static int btrfs_permission(struct inode *inode, int mask) |
| { |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| umode_t mode = inode->i_mode; |
| |
| if (mask & MAY_WRITE && |
| (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { |
| if (btrfs_root_readonly(root)) |
| return -EROFS; |
| if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) |
| return -EACCES; |
| } |
| return generic_permission(inode, mask); |
| } |
| |
| static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode) |
| { |
| struct btrfs_trans_handle *trans; |
| struct btrfs_root *root = BTRFS_I(dir)->root; |
| struct inode *inode = NULL; |
| u64 objectid; |
| u64 index; |
| int ret = 0; |
| |
| /* |
| * 5 units required for adding orphan entry |
| */ |
| trans = btrfs_start_transaction(root, 5); |
| if (IS_ERR(trans)) |
| return PTR_ERR(trans); |
| |
| ret = btrfs_find_free_ino(root, &objectid); |
| if (ret) |
| goto out; |
| |
| inode = btrfs_new_inode(trans, root, dir, NULL, 0, |
| btrfs_ino(dir), objectid, mode, &index); |
| if (IS_ERR(inode)) { |
| ret = PTR_ERR(inode); |
| inode = NULL; |
| goto out; |
| } |
| |
| inode->i_fop = &btrfs_file_operations; |
| inode->i_op = &btrfs_file_inode_operations; |
| |
| inode->i_mapping->a_ops = &btrfs_aops; |
| BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; |
| |
| ret = btrfs_init_inode_security(trans, inode, dir, NULL); |
| if (ret) |
| goto out_inode; |
| |
| ret = btrfs_update_inode(trans, root, inode); |
| if (ret) |
| goto out_inode; |
| ret = btrfs_orphan_add(trans, inode); |
| if (ret) |
| goto out_inode; |
| |
| /* |
| * We set number of links to 0 in btrfs_new_inode(), and here we set |
| * it to 1 because d_tmpfile() will issue a warning if the count is 0, |
| * through: |
| * |
| * d_tmpfile() -> inode_dec_link_count() -> drop_nlink() |
| */ |
| set_nlink(inode, 1); |
| unlock_new_inode(inode); |
| d_tmpfile(dentry, inode); |
| mark_inode_dirty(inode); |
| |
| out: |
| btrfs_end_transaction(trans, root); |
| if (ret) |
| iput(inode); |
| btrfs_balance_delayed_items(root); |
| btrfs_btree_balance_dirty(root); |
| return ret; |
| |
| out_inode: |
| unlock_new_inode(inode); |
| goto out; |
| |
| } |
| |
| /* Inspired by filemap_check_errors() */ |
| int btrfs_inode_check_errors(struct inode *inode) |
| { |
| int ret = 0; |
| |
| if (test_bit(AS_ENOSPC, &inode->i_mapping->flags) && |
| test_and_clear_bit(AS_ENOSPC, &inode->i_mapping->flags)) |
| ret = -ENOSPC; |
| if (test_bit(AS_EIO, &inode->i_mapping->flags) && |
| test_and_clear_bit(AS_EIO, &inode->i_mapping->flags)) |
| ret = -EIO; |
| |
| return ret; |
| } |
| |
| static const struct inode_operations btrfs_dir_inode_operations = { |
| .getattr = btrfs_getattr, |
| .lookup = btrfs_lookup, |
| .create = btrfs_create, |
| .unlink = btrfs_unlink, |
| .link = btrfs_link, |
| .mkdir = btrfs_mkdir, |
| .rmdir = btrfs_rmdir, |
| .rename2 = btrfs_rename2, |
| .symlink = btrfs_symlink, |
| .setattr = btrfs_setattr, |
| .mknod = btrfs_mknod, |
| .setxattr = generic_setxattr, |
| .getxattr = generic_getxattr, |
| .listxattr = btrfs_listxattr, |
| .removexattr = generic_removexattr, |
| .permission = btrfs_permission, |
| .get_acl = btrfs_get_acl, |
| .set_acl = btrfs_set_acl, |
| .update_time = btrfs_update_time, |
| .tmpfile = btrfs_tmpfile, |
| }; |
| static const struct inode_operations btrfs_dir_ro_inode_operations = { |
| .lookup = btrfs_lookup, |
| .permission = btrfs_permission, |
| .get_acl = btrfs_get_acl, |
| .set_acl = btrfs_set_acl, |
| .update_time = btrfs_update_time, |
| }; |
| |
| static const struct file_operations btrfs_dir_file_operations = { |
| .llseek = generic_file_llseek, |
| .read = generic_read_dir, |
| .iterate = btrfs_real_readdir, |
| .unlocked_ioctl = btrfs_ioctl, |
| #ifdef CONFIG_COMPAT |
| .compat_ioctl = btrfs_compat_ioctl, |
| #endif |
| .release = btrfs_release_file, |
| .fsync = btrfs_sync_file, |
| }; |
| |
| static const struct extent_io_ops btrfs_extent_io_ops = { |
| .fill_delalloc = run_delalloc_range, |
| .submit_bio_hook = btrfs_submit_bio_hook, |
| .merge_bio_hook = btrfs_merge_bio_hook, |
| .readpage_end_io_hook = btrfs_readpage_end_io_hook, |
| .writepage_end_io_hook = btrfs_writepage_end_io_hook, |
| .writepage_start_hook = btrfs_writepage_start_hook, |
| .set_bit_hook = btrfs_set_bit_hook, |
| .clear_bit_hook = btrfs_clear_bit_hook, |
| .merge_extent_hook = btrfs_merge_extent_hook, |
| .split_extent_hook = btrfs_split_extent_hook, |
| }; |
| |
| /* |
| * btrfs doesn't support the bmap operation because swapfiles |
| * use bmap to make a mapping of extents in the file. They assume |
| * these extents won't change over the life of the file and they |
| * use the bmap result to do IO directly to the drive. |
| * |
| * the btrfs bmap call would return logical addresses that aren't |
| * suitable for IO and they also will change frequently as COW |
| * operations happen. So, swapfile + btrfs == corruption. |
| * |
| * For now we're avoiding this by dropping bmap. |
| */ |
| static const struct address_space_operations btrfs_aops = { |
| .readpage = btrfs_readpage, |
| .writepage = btrfs_writepage, |
| .writepages = btrfs_writepages, |
| .readpages = btrfs_readpages, |
| .direct_IO = btrfs_direct_IO, |
| .invalidatepage = btrfs_invalidatepage, |
| .releasepage = btrfs_releasepage, |
| .set_page_dirty = btrfs_set_page_dirty, |
| .error_remove_page = generic_error_remove_page, |
| }; |
| |
| static const struct address_space_operations btrfs_symlink_aops = { |
| .readpage = btrfs_readpage, |
| .writepage = btrfs_writepage, |
| .invalidatepage = btrfs_invalidatepage, |
| .releasepage = btrfs_releasepage, |
| }; |
| |
| static const struct inode_operations btrfs_file_inode_operations = { |
| .getattr = btrfs_getattr, |
| .setattr = btrfs_setattr, |
| .setxattr = generic_setxattr, |
| .getxattr = generic_getxattr, |
| .listxattr = btrfs_listxattr, |
| .removexattr = generic_removexattr, |
| .permission = btrfs_permission, |
| .fiemap = btrfs_fiemap, |
| .get_acl = btrfs_get_acl, |
| .set_acl = btrfs_set_acl, |
| .update_time = btrfs_update_time, |
| }; |
| static const struct inode_operations btrfs_special_inode_operations = { |
| .getattr = btrfs_getattr, |
| .setattr = btrfs_setattr, |
| .permission = btrfs_permission, |
| .setxattr = generic_setxattr, |
| .getxattr = generic_getxattr, |
| .listxattr = btrfs_listxattr, |
| .removexattr = generic_removexattr, |
| .get_acl = btrfs_get_acl, |
| .set_acl = btrfs_set_acl, |
| .update_time = btrfs_update_time, |
| }; |
| static const struct inode_operations btrfs_symlink_inode_operations = { |
| .readlink = generic_readlink, |
| .get_link = page_get_link, |
| .getattr = btrfs_getattr, |
| .setattr = btrfs_setattr, |
| .permission = btrfs_permission, |
| .setxattr = generic_setxattr, |
| .getxattr = generic_getxattr, |
| .listxattr = btrfs_listxattr, |
| .removexattr = generic_removexattr, |
| .update_time = btrfs_update_time, |
| }; |
| |
| const struct dentry_operations btrfs_dentry_operations = { |
| .d_delete = btrfs_dentry_delete, |
| .d_release = btrfs_dentry_release, |
| }; |