| /* |
| * NVM Express device driver |
| * Copyright (c) 2011-2014, Intel Corporation. |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms and conditions of the GNU General Public License, |
| * version 2, as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope it will be useful, but WITHOUT |
| * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| * more details. |
| */ |
| |
| #include <linux/blkdev.h> |
| #include <linux/blk-mq.h> |
| #include <linux/delay.h> |
| #include <linux/errno.h> |
| #include <linux/hdreg.h> |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/list_sort.h> |
| #include <linux/slab.h> |
| #include <linux/types.h> |
| #include <linux/pr.h> |
| #include <linux/ptrace.h> |
| #include <linux/nvme_ioctl.h> |
| #include <linux/t10-pi.h> |
| #include <linux/pm_qos.h> |
| #include <scsi/sg.h> |
| #include <asm/unaligned.h> |
| |
| #include "nvme.h" |
| #include "fabrics.h" |
| |
| #define NVME_MINORS (1U << MINORBITS) |
| |
| unsigned char admin_timeout = 60; |
| module_param(admin_timeout, byte, 0644); |
| MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands"); |
| EXPORT_SYMBOL_GPL(admin_timeout); |
| |
| unsigned char nvme_io_timeout = 30; |
| module_param_named(io_timeout, nvme_io_timeout, byte, 0644); |
| MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O"); |
| EXPORT_SYMBOL_GPL(nvme_io_timeout); |
| |
| unsigned char shutdown_timeout = 5; |
| module_param(shutdown_timeout, byte, 0644); |
| MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown"); |
| |
| static u8 nvme_max_retries = 5; |
| module_param_named(max_retries, nvme_max_retries, byte, 0644); |
| MODULE_PARM_DESC(max_retries, "max number of retries a command may have"); |
| |
| static int nvme_char_major; |
| module_param(nvme_char_major, int, 0); |
| |
| static unsigned long default_ps_max_latency_us = 25000; |
| module_param(default_ps_max_latency_us, ulong, 0644); |
| MODULE_PARM_DESC(default_ps_max_latency_us, |
| "max power saving latency for new devices; use PM QOS to change per device"); |
| |
| static bool force_apst; |
| module_param(force_apst, bool, 0644); |
| MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off"); |
| |
| static LIST_HEAD(nvme_ctrl_list); |
| static DEFINE_SPINLOCK(dev_list_lock); |
| |
| static struct class *nvme_class; |
| |
| static int nvme_error_status(struct request *req) |
| { |
| switch (nvme_req(req)->status & 0x7ff) { |
| case NVME_SC_SUCCESS: |
| return 0; |
| case NVME_SC_CAP_EXCEEDED: |
| return -ENOSPC; |
| default: |
| return -EIO; |
| |
| /* |
| * XXX: these errors are a nasty side-band protocol to |
| * drivers/md/dm-mpath.c:noretry_error() that aren't documented |
| * anywhere.. |
| */ |
| case NVME_SC_CMD_SEQ_ERROR: |
| return -EILSEQ; |
| case NVME_SC_ONCS_NOT_SUPPORTED: |
| return -EOPNOTSUPP; |
| case NVME_SC_WRITE_FAULT: |
| case NVME_SC_READ_ERROR: |
| case NVME_SC_UNWRITTEN_BLOCK: |
| return -ENODATA; |
| } |
| } |
| |
| static inline bool nvme_req_needs_retry(struct request *req) |
| { |
| if (blk_noretry_request(req)) |
| return false; |
| if (nvme_req(req)->status & NVME_SC_DNR) |
| return false; |
| if (jiffies - req->start_time >= req->timeout) |
| return false; |
| if (nvme_req(req)->retries >= nvme_max_retries) |
| return false; |
| return true; |
| } |
| |
| void nvme_complete_rq(struct request *req) |
| { |
| if (unlikely(nvme_req(req)->status && nvme_req_needs_retry(req))) { |
| nvme_req(req)->retries++; |
| blk_mq_requeue_request(req, !blk_mq_queue_stopped(req->q)); |
| return; |
| } |
| |
| blk_mq_end_request(req, nvme_error_status(req)); |
| } |
| EXPORT_SYMBOL_GPL(nvme_complete_rq); |
| |
| void nvme_cancel_request(struct request *req, void *data, bool reserved) |
| { |
| int status; |
| |
| if (!blk_mq_request_started(req)) |
| return; |
| |
| dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device, |
| "Cancelling I/O %d", req->tag); |
| |
| status = NVME_SC_ABORT_REQ; |
| if (blk_queue_dying(req->q)) |
| status |= NVME_SC_DNR; |
| nvme_req(req)->status = status; |
| blk_mq_complete_request(req); |
| |
| } |
| EXPORT_SYMBOL_GPL(nvme_cancel_request); |
| |
| bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl, |
| enum nvme_ctrl_state new_state) |
| { |
| enum nvme_ctrl_state old_state; |
| bool changed = false; |
| |
| spin_lock_irq(&ctrl->lock); |
| |
| old_state = ctrl->state; |
| switch (new_state) { |
| case NVME_CTRL_LIVE: |
| switch (old_state) { |
| case NVME_CTRL_NEW: |
| case NVME_CTRL_RESETTING: |
| case NVME_CTRL_RECONNECTING: |
| changed = true; |
| /* FALLTHRU */ |
| default: |
| break; |
| } |
| break; |
| case NVME_CTRL_RESETTING: |
| switch (old_state) { |
| case NVME_CTRL_NEW: |
| case NVME_CTRL_LIVE: |
| case NVME_CTRL_RECONNECTING: |
| changed = true; |
| /* FALLTHRU */ |
| default: |
| break; |
| } |
| break; |
| case NVME_CTRL_RECONNECTING: |
| switch (old_state) { |
| case NVME_CTRL_LIVE: |
| changed = true; |
| /* FALLTHRU */ |
| default: |
| break; |
| } |
| break; |
| case NVME_CTRL_DELETING: |
| switch (old_state) { |
| case NVME_CTRL_LIVE: |
| case NVME_CTRL_RESETTING: |
| case NVME_CTRL_RECONNECTING: |
| changed = true; |
| /* FALLTHRU */ |
| default: |
| break; |
| } |
| break; |
| case NVME_CTRL_DEAD: |
| switch (old_state) { |
| case NVME_CTRL_DELETING: |
| changed = true; |
| /* FALLTHRU */ |
| default: |
| break; |
| } |
| break; |
| default: |
| break; |
| } |
| |
| if (changed) |
| ctrl->state = new_state; |
| |
| spin_unlock_irq(&ctrl->lock); |
| |
| return changed; |
| } |
| EXPORT_SYMBOL_GPL(nvme_change_ctrl_state); |
| |
| static void nvme_free_ns(struct kref *kref) |
| { |
| struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref); |
| |
| if (ns->ndev) |
| nvme_nvm_unregister(ns); |
| |
| if (ns->disk) { |
| spin_lock(&dev_list_lock); |
| ns->disk->private_data = NULL; |
| spin_unlock(&dev_list_lock); |
| } |
| |
| put_disk(ns->disk); |
| ida_simple_remove(&ns->ctrl->ns_ida, ns->instance); |
| nvme_put_ctrl(ns->ctrl); |
| kfree(ns); |
| } |
| |
| static void nvme_put_ns(struct nvme_ns *ns) |
| { |
| kref_put(&ns->kref, nvme_free_ns); |
| } |
| |
| static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk) |
| { |
| struct nvme_ns *ns; |
| |
| spin_lock(&dev_list_lock); |
| ns = disk->private_data; |
| if (ns) { |
| if (!kref_get_unless_zero(&ns->kref)) |
| goto fail; |
| if (!try_module_get(ns->ctrl->ops->module)) |
| goto fail_put_ns; |
| } |
| spin_unlock(&dev_list_lock); |
| |
| return ns; |
| |
| fail_put_ns: |
| kref_put(&ns->kref, nvme_free_ns); |
| fail: |
| spin_unlock(&dev_list_lock); |
| return NULL; |
| } |
| |
| struct request *nvme_alloc_request(struct request_queue *q, |
| struct nvme_command *cmd, unsigned int flags, int qid) |
| { |
| unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN; |
| struct request *req; |
| |
| if (qid == NVME_QID_ANY) { |
| req = blk_mq_alloc_request(q, op, flags); |
| } else { |
| req = blk_mq_alloc_request_hctx(q, op, flags, |
| qid ? qid - 1 : 0); |
| } |
| if (IS_ERR(req)) |
| return req; |
| |
| req->cmd_flags |= REQ_FAILFAST_DRIVER; |
| nvme_req(req)->cmd = cmd; |
| |
| return req; |
| } |
| EXPORT_SYMBOL_GPL(nvme_alloc_request); |
| |
| static inline void nvme_setup_flush(struct nvme_ns *ns, |
| struct nvme_command *cmnd) |
| { |
| memset(cmnd, 0, sizeof(*cmnd)); |
| cmnd->common.opcode = nvme_cmd_flush; |
| cmnd->common.nsid = cpu_to_le32(ns->ns_id); |
| } |
| |
| static inline int nvme_setup_discard(struct nvme_ns *ns, struct request *req, |
| struct nvme_command *cmnd) |
| { |
| unsigned short segments = blk_rq_nr_discard_segments(req), n = 0; |
| struct nvme_dsm_range *range; |
| struct bio *bio; |
| |
| range = kmalloc_array(segments, sizeof(*range), GFP_ATOMIC); |
| if (!range) |
| return BLK_MQ_RQ_QUEUE_BUSY; |
| |
| __rq_for_each_bio(bio, req) { |
| u64 slba = nvme_block_nr(ns, bio->bi_iter.bi_sector); |
| u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift; |
| |
| range[n].cattr = cpu_to_le32(0); |
| range[n].nlb = cpu_to_le32(nlb); |
| range[n].slba = cpu_to_le64(slba); |
| n++; |
| } |
| |
| if (WARN_ON_ONCE(n != segments)) { |
| kfree(range); |
| return BLK_MQ_RQ_QUEUE_ERROR; |
| } |
| |
| memset(cmnd, 0, sizeof(*cmnd)); |
| cmnd->dsm.opcode = nvme_cmd_dsm; |
| cmnd->dsm.nsid = cpu_to_le32(ns->ns_id); |
| cmnd->dsm.nr = cpu_to_le32(segments - 1); |
| cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD); |
| |
| req->special_vec.bv_page = virt_to_page(range); |
| req->special_vec.bv_offset = offset_in_page(range); |
| req->special_vec.bv_len = sizeof(*range) * segments; |
| req->rq_flags |= RQF_SPECIAL_PAYLOAD; |
| |
| return BLK_MQ_RQ_QUEUE_OK; |
| } |
| |
| static inline void nvme_setup_rw(struct nvme_ns *ns, struct request *req, |
| struct nvme_command *cmnd) |
| { |
| u16 control = 0; |
| u32 dsmgmt = 0; |
| |
| if (req->cmd_flags & REQ_FUA) |
| control |= NVME_RW_FUA; |
| if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD)) |
| control |= NVME_RW_LR; |
| |
| if (req->cmd_flags & REQ_RAHEAD) |
| dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH; |
| |
| memset(cmnd, 0, sizeof(*cmnd)); |
| cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read); |
| cmnd->rw.nsid = cpu_to_le32(ns->ns_id); |
| cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req))); |
| cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1); |
| |
| if (ns->ms) { |
| switch (ns->pi_type) { |
| case NVME_NS_DPS_PI_TYPE3: |
| control |= NVME_RW_PRINFO_PRCHK_GUARD; |
| break; |
| case NVME_NS_DPS_PI_TYPE1: |
| case NVME_NS_DPS_PI_TYPE2: |
| control |= NVME_RW_PRINFO_PRCHK_GUARD | |
| NVME_RW_PRINFO_PRCHK_REF; |
| cmnd->rw.reftag = cpu_to_le32( |
| nvme_block_nr(ns, blk_rq_pos(req))); |
| break; |
| } |
| if (!blk_integrity_rq(req)) |
| control |= NVME_RW_PRINFO_PRACT; |
| } |
| |
| cmnd->rw.control = cpu_to_le16(control); |
| cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt); |
| } |
| |
| int nvme_setup_cmd(struct nvme_ns *ns, struct request *req, |
| struct nvme_command *cmd) |
| { |
| int ret = BLK_MQ_RQ_QUEUE_OK; |
| |
| if (!(req->rq_flags & RQF_DONTPREP)) { |
| nvme_req(req)->retries = 0; |
| nvme_req(req)->flags = 0; |
| req->rq_flags |= RQF_DONTPREP; |
| } |
| |
| switch (req_op(req)) { |
| case REQ_OP_DRV_IN: |
| case REQ_OP_DRV_OUT: |
| memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd)); |
| break; |
| case REQ_OP_FLUSH: |
| nvme_setup_flush(ns, cmd); |
| break; |
| case REQ_OP_WRITE_ZEROES: |
| /* currently only aliased to deallocate for a few ctrls: */ |
| case REQ_OP_DISCARD: |
| ret = nvme_setup_discard(ns, req, cmd); |
| break; |
| case REQ_OP_READ: |
| case REQ_OP_WRITE: |
| nvme_setup_rw(ns, req, cmd); |
| break; |
| default: |
| WARN_ON_ONCE(1); |
| return BLK_MQ_RQ_QUEUE_ERROR; |
| } |
| |
| cmd->common.command_id = req->tag; |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(nvme_setup_cmd); |
| |
| /* |
| * Returns 0 on success. If the result is negative, it's a Linux error code; |
| * if the result is positive, it's an NVM Express status code |
| */ |
| int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, |
| union nvme_result *result, void *buffer, unsigned bufflen, |
| unsigned timeout, int qid, int at_head, int flags) |
| { |
| struct request *req; |
| int ret; |
| |
| req = nvme_alloc_request(q, cmd, flags, qid); |
| if (IS_ERR(req)) |
| return PTR_ERR(req); |
| |
| req->timeout = timeout ? timeout : ADMIN_TIMEOUT; |
| |
| if (buffer && bufflen) { |
| ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL); |
| if (ret) |
| goto out; |
| } |
| |
| blk_execute_rq(req->q, NULL, req, at_head); |
| if (result) |
| *result = nvme_req(req)->result; |
| if (nvme_req(req)->flags & NVME_REQ_CANCELLED) |
| ret = -EINTR; |
| else |
| ret = nvme_req(req)->status; |
| out: |
| blk_mq_free_request(req); |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd); |
| |
| int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, |
| void *buffer, unsigned bufflen) |
| { |
| return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0, |
| NVME_QID_ANY, 0, 0); |
| } |
| EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd); |
| |
| int __nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd, |
| void __user *ubuffer, unsigned bufflen, |
| void __user *meta_buffer, unsigned meta_len, u32 meta_seed, |
| u32 *result, unsigned timeout) |
| { |
| bool write = nvme_is_write(cmd); |
| struct nvme_ns *ns = q->queuedata; |
| struct gendisk *disk = ns ? ns->disk : NULL; |
| struct request *req; |
| struct bio *bio = NULL; |
| void *meta = NULL; |
| int ret; |
| |
| req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY); |
| if (IS_ERR(req)) |
| return PTR_ERR(req); |
| |
| req->timeout = timeout ? timeout : ADMIN_TIMEOUT; |
| |
| if (ubuffer && bufflen) { |
| ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen, |
| GFP_KERNEL); |
| if (ret) |
| goto out; |
| bio = req->bio; |
| |
| if (!disk) |
| goto submit; |
| bio->bi_bdev = bdget_disk(disk, 0); |
| if (!bio->bi_bdev) { |
| ret = -ENODEV; |
| goto out_unmap; |
| } |
| |
| if (meta_buffer && meta_len) { |
| struct bio_integrity_payload *bip; |
| |
| meta = kmalloc(meta_len, GFP_KERNEL); |
| if (!meta) { |
| ret = -ENOMEM; |
| goto out_unmap; |
| } |
| |
| if (write) { |
| if (copy_from_user(meta, meta_buffer, |
| meta_len)) { |
| ret = -EFAULT; |
| goto out_free_meta; |
| } |
| } |
| |
| bip = bio_integrity_alloc(bio, GFP_KERNEL, 1); |
| if (IS_ERR(bip)) { |
| ret = PTR_ERR(bip); |
| goto out_free_meta; |
| } |
| |
| bip->bip_iter.bi_size = meta_len; |
| bip->bip_iter.bi_sector = meta_seed; |
| |
| ret = bio_integrity_add_page(bio, virt_to_page(meta), |
| meta_len, offset_in_page(meta)); |
| if (ret != meta_len) { |
| ret = -ENOMEM; |
| goto out_free_meta; |
| } |
| } |
| } |
| submit: |
| blk_execute_rq(req->q, disk, req, 0); |
| if (nvme_req(req)->flags & NVME_REQ_CANCELLED) |
| ret = -EINTR; |
| else |
| ret = nvme_req(req)->status; |
| if (result) |
| *result = le32_to_cpu(nvme_req(req)->result.u32); |
| if (meta && !ret && !write) { |
| if (copy_to_user(meta_buffer, meta, meta_len)) |
| ret = -EFAULT; |
| } |
| out_free_meta: |
| kfree(meta); |
| out_unmap: |
| if (bio) { |
| if (disk && bio->bi_bdev) |
| bdput(bio->bi_bdev); |
| blk_rq_unmap_user(bio); |
| } |
| out: |
| blk_mq_free_request(req); |
| return ret; |
| } |
| |
| int nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd, |
| void __user *ubuffer, unsigned bufflen, u32 *result, |
| unsigned timeout) |
| { |
| return __nvme_submit_user_cmd(q, cmd, ubuffer, bufflen, NULL, 0, 0, |
| result, timeout); |
| } |
| |
| static void nvme_keep_alive_end_io(struct request *rq, int error) |
| { |
| struct nvme_ctrl *ctrl = rq->end_io_data; |
| |
| blk_mq_free_request(rq); |
| |
| if (error) { |
| dev_err(ctrl->device, |
| "failed nvme_keep_alive_end_io error=%d\n", error); |
| return; |
| } |
| |
| schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ); |
| } |
| |
| static int nvme_keep_alive(struct nvme_ctrl *ctrl) |
| { |
| struct nvme_command c; |
| struct request *rq; |
| |
| memset(&c, 0, sizeof(c)); |
| c.common.opcode = nvme_admin_keep_alive; |
| |
| rq = nvme_alloc_request(ctrl->admin_q, &c, BLK_MQ_REQ_RESERVED, |
| NVME_QID_ANY); |
| if (IS_ERR(rq)) |
| return PTR_ERR(rq); |
| |
| rq->timeout = ctrl->kato * HZ; |
| rq->end_io_data = ctrl; |
| |
| blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io); |
| |
| return 0; |
| } |
| |
| static void nvme_keep_alive_work(struct work_struct *work) |
| { |
| struct nvme_ctrl *ctrl = container_of(to_delayed_work(work), |
| struct nvme_ctrl, ka_work); |
| |
| if (nvme_keep_alive(ctrl)) { |
| /* allocation failure, reset the controller */ |
| dev_err(ctrl->device, "keep-alive failed\n"); |
| ctrl->ops->reset_ctrl(ctrl); |
| return; |
| } |
| } |
| |
| void nvme_start_keep_alive(struct nvme_ctrl *ctrl) |
| { |
| if (unlikely(ctrl->kato == 0)) |
| return; |
| |
| INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work); |
| schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ); |
| } |
| EXPORT_SYMBOL_GPL(nvme_start_keep_alive); |
| |
| void nvme_stop_keep_alive(struct nvme_ctrl *ctrl) |
| { |
| if (unlikely(ctrl->kato == 0)) |
| return; |
| |
| cancel_delayed_work_sync(&ctrl->ka_work); |
| } |
| EXPORT_SYMBOL_GPL(nvme_stop_keep_alive); |
| |
| int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id) |
| { |
| struct nvme_command c = { }; |
| int error; |
| |
| /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ |
| c.identify.opcode = nvme_admin_identify; |
| c.identify.cns = NVME_ID_CNS_CTRL; |
| |
| *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL); |
| if (!*id) |
| return -ENOMEM; |
| |
| error = nvme_submit_sync_cmd(dev->admin_q, &c, *id, |
| sizeof(struct nvme_id_ctrl)); |
| if (error) |
| kfree(*id); |
| return error; |
| } |
| |
| static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list) |
| { |
| struct nvme_command c = { }; |
| |
| c.identify.opcode = nvme_admin_identify; |
| c.identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST; |
| c.identify.nsid = cpu_to_le32(nsid); |
| return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list, 0x1000); |
| } |
| |
| int nvme_identify_ns(struct nvme_ctrl *dev, unsigned nsid, |
| struct nvme_id_ns **id) |
| { |
| struct nvme_command c = { }; |
| int error; |
| |
| /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ |
| c.identify.opcode = nvme_admin_identify; |
| c.identify.nsid = cpu_to_le32(nsid); |
| c.identify.cns = NVME_ID_CNS_NS; |
| |
| *id = kmalloc(sizeof(struct nvme_id_ns), GFP_KERNEL); |
| if (!*id) |
| return -ENOMEM; |
| |
| error = nvme_submit_sync_cmd(dev->admin_q, &c, *id, |
| sizeof(struct nvme_id_ns)); |
| if (error) |
| kfree(*id); |
| return error; |
| } |
| |
| int nvme_get_features(struct nvme_ctrl *dev, unsigned fid, unsigned nsid, |
| void *buffer, size_t buflen, u32 *result) |
| { |
| struct nvme_command c; |
| union nvme_result res; |
| int ret; |
| |
| memset(&c, 0, sizeof(c)); |
| c.features.opcode = nvme_admin_get_features; |
| c.features.nsid = cpu_to_le32(nsid); |
| c.features.fid = cpu_to_le32(fid); |
| |
| ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res, buffer, buflen, 0, |
| NVME_QID_ANY, 0, 0); |
| if (ret >= 0 && result) |
| *result = le32_to_cpu(res.u32); |
| return ret; |
| } |
| |
| int nvme_set_features(struct nvme_ctrl *dev, unsigned fid, unsigned dword11, |
| void *buffer, size_t buflen, u32 *result) |
| { |
| struct nvme_command c; |
| union nvme_result res; |
| int ret; |
| |
| memset(&c, 0, sizeof(c)); |
| c.features.opcode = nvme_admin_set_features; |
| c.features.fid = cpu_to_le32(fid); |
| c.features.dword11 = cpu_to_le32(dword11); |
| |
| ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res, |
| buffer, buflen, 0, NVME_QID_ANY, 0, 0); |
| if (ret >= 0 && result) |
| *result = le32_to_cpu(res.u32); |
| return ret; |
| } |
| |
| int nvme_get_log_page(struct nvme_ctrl *dev, struct nvme_smart_log **log) |
| { |
| struct nvme_command c = { }; |
| int error; |
| |
| c.common.opcode = nvme_admin_get_log_page, |
| c.common.nsid = cpu_to_le32(0xFFFFFFFF), |
| c.common.cdw10[0] = cpu_to_le32( |
| (((sizeof(struct nvme_smart_log) / 4) - 1) << 16) | |
| NVME_LOG_SMART), |
| |
| *log = kmalloc(sizeof(struct nvme_smart_log), GFP_KERNEL); |
| if (!*log) |
| return -ENOMEM; |
| |
| error = nvme_submit_sync_cmd(dev->admin_q, &c, *log, |
| sizeof(struct nvme_smart_log)); |
| if (error) |
| kfree(*log); |
| return error; |
| } |
| |
| int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count) |
| { |
| u32 q_count = (*count - 1) | ((*count - 1) << 16); |
| u32 result; |
| int status, nr_io_queues; |
| |
| status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0, |
| &result); |
| if (status < 0) |
| return status; |
| |
| /* |
| * Degraded controllers might return an error when setting the queue |
| * count. We still want to be able to bring them online and offer |
| * access to the admin queue, as that might be only way to fix them up. |
| */ |
| if (status > 0) { |
| dev_err(ctrl->dev, "Could not set queue count (%d)\n", status); |
| *count = 0; |
| } else { |
| nr_io_queues = min(result & 0xffff, result >> 16) + 1; |
| *count = min(*count, nr_io_queues); |
| } |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(nvme_set_queue_count); |
| |
| static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio) |
| { |
| struct nvme_user_io io; |
| struct nvme_command c; |
| unsigned length, meta_len; |
| void __user *metadata; |
| |
| if (copy_from_user(&io, uio, sizeof(io))) |
| return -EFAULT; |
| if (io.flags) |
| return -EINVAL; |
| |
| switch (io.opcode) { |
| case nvme_cmd_write: |
| case nvme_cmd_read: |
| case nvme_cmd_compare: |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| length = (io.nblocks + 1) << ns->lba_shift; |
| meta_len = (io.nblocks + 1) * ns->ms; |
| metadata = (void __user *)(uintptr_t)io.metadata; |
| |
| if (ns->ext) { |
| length += meta_len; |
| meta_len = 0; |
| } else if (meta_len) { |
| if ((io.metadata & 3) || !io.metadata) |
| return -EINVAL; |
| } |
| |
| memset(&c, 0, sizeof(c)); |
| c.rw.opcode = io.opcode; |
| c.rw.flags = io.flags; |
| c.rw.nsid = cpu_to_le32(ns->ns_id); |
| c.rw.slba = cpu_to_le64(io.slba); |
| c.rw.length = cpu_to_le16(io.nblocks); |
| c.rw.control = cpu_to_le16(io.control); |
| c.rw.dsmgmt = cpu_to_le32(io.dsmgmt); |
| c.rw.reftag = cpu_to_le32(io.reftag); |
| c.rw.apptag = cpu_to_le16(io.apptag); |
| c.rw.appmask = cpu_to_le16(io.appmask); |
| |
| return __nvme_submit_user_cmd(ns->queue, &c, |
| (void __user *)(uintptr_t)io.addr, length, |
| metadata, meta_len, io.slba, NULL, 0); |
| } |
| |
| static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns, |
| struct nvme_passthru_cmd __user *ucmd) |
| { |
| struct nvme_passthru_cmd cmd; |
| struct nvme_command c; |
| unsigned timeout = 0; |
| int status; |
| |
| if (!capable(CAP_SYS_ADMIN)) |
| return -EACCES; |
| if (copy_from_user(&cmd, ucmd, sizeof(cmd))) |
| return -EFAULT; |
| if (cmd.flags) |
| return -EINVAL; |
| |
| memset(&c, 0, sizeof(c)); |
| c.common.opcode = cmd.opcode; |
| c.common.flags = cmd.flags; |
| c.common.nsid = cpu_to_le32(cmd.nsid); |
| c.common.cdw2[0] = cpu_to_le32(cmd.cdw2); |
| c.common.cdw2[1] = cpu_to_le32(cmd.cdw3); |
| c.common.cdw10[0] = cpu_to_le32(cmd.cdw10); |
| c.common.cdw10[1] = cpu_to_le32(cmd.cdw11); |
| c.common.cdw10[2] = cpu_to_le32(cmd.cdw12); |
| c.common.cdw10[3] = cpu_to_le32(cmd.cdw13); |
| c.common.cdw10[4] = cpu_to_le32(cmd.cdw14); |
| c.common.cdw10[5] = cpu_to_le32(cmd.cdw15); |
| |
| if (cmd.timeout_ms) |
| timeout = msecs_to_jiffies(cmd.timeout_ms); |
| |
| status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c, |
| (void __user *)(uintptr_t)cmd.addr, cmd.data_len, |
| &cmd.result, timeout); |
| if (status >= 0) { |
| if (put_user(cmd.result, &ucmd->result)) |
| return -EFAULT; |
| } |
| |
| return status; |
| } |
| |
| static int nvme_ioctl(struct block_device *bdev, fmode_t mode, |
| unsigned int cmd, unsigned long arg) |
| { |
| struct nvme_ns *ns = bdev->bd_disk->private_data; |
| |
| switch (cmd) { |
| case NVME_IOCTL_ID: |
| force_successful_syscall_return(); |
| return ns->ns_id; |
| case NVME_IOCTL_ADMIN_CMD: |
| return nvme_user_cmd(ns->ctrl, NULL, (void __user *)arg); |
| case NVME_IOCTL_IO_CMD: |
| return nvme_user_cmd(ns->ctrl, ns, (void __user *)arg); |
| case NVME_IOCTL_SUBMIT_IO: |
| return nvme_submit_io(ns, (void __user *)arg); |
| #ifdef CONFIG_BLK_DEV_NVME_SCSI |
| case SG_GET_VERSION_NUM: |
| return nvme_sg_get_version_num((void __user *)arg); |
| case SG_IO: |
| return nvme_sg_io(ns, (void __user *)arg); |
| #endif |
| default: |
| #ifdef CONFIG_NVM |
| if (ns->ndev) |
| return nvme_nvm_ioctl(ns, cmd, arg); |
| #endif |
| if (is_sed_ioctl(cmd)) |
| return sed_ioctl(ns->ctrl->opal_dev, cmd, |
| (void __user *) arg); |
| return -ENOTTY; |
| } |
| } |
| |
| #ifdef CONFIG_COMPAT |
| static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode, |
| unsigned int cmd, unsigned long arg) |
| { |
| switch (cmd) { |
| case SG_IO: |
| return -ENOIOCTLCMD; |
| } |
| return nvme_ioctl(bdev, mode, cmd, arg); |
| } |
| #else |
| #define nvme_compat_ioctl NULL |
| #endif |
| |
| static int nvme_open(struct block_device *bdev, fmode_t mode) |
| { |
| return nvme_get_ns_from_disk(bdev->bd_disk) ? 0 : -ENXIO; |
| } |
| |
| static void nvme_release(struct gendisk *disk, fmode_t mode) |
| { |
| struct nvme_ns *ns = disk->private_data; |
| |
| module_put(ns->ctrl->ops->module); |
| nvme_put_ns(ns); |
| } |
| |
| static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo) |
| { |
| /* some standard values */ |
| geo->heads = 1 << 6; |
| geo->sectors = 1 << 5; |
| geo->cylinders = get_capacity(bdev->bd_disk) >> 11; |
| return 0; |
| } |
| |
| #ifdef CONFIG_BLK_DEV_INTEGRITY |
| static void nvme_prep_integrity(struct gendisk *disk, struct nvme_id_ns *id, |
| u16 bs) |
| { |
| struct nvme_ns *ns = disk->private_data; |
| u16 old_ms = ns->ms; |
| u8 pi_type = 0; |
| |
| ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms); |
| ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT); |
| |
| /* PI implementation requires metadata equal t10 pi tuple size */ |
| if (ns->ms == sizeof(struct t10_pi_tuple)) |
| pi_type = id->dps & NVME_NS_DPS_PI_MASK; |
| |
| if (blk_get_integrity(disk) && |
| (ns->pi_type != pi_type || ns->ms != old_ms || |
| bs != queue_logical_block_size(disk->queue) || |
| (ns->ms && ns->ext))) |
| blk_integrity_unregister(disk); |
| |
| ns->pi_type = pi_type; |
| } |
| |
| static void nvme_init_integrity(struct nvme_ns *ns) |
| { |
| struct blk_integrity integrity; |
| |
| memset(&integrity, 0, sizeof(integrity)); |
| switch (ns->pi_type) { |
| case NVME_NS_DPS_PI_TYPE3: |
| integrity.profile = &t10_pi_type3_crc; |
| integrity.tag_size = sizeof(u16) + sizeof(u32); |
| integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; |
| break; |
| case NVME_NS_DPS_PI_TYPE1: |
| case NVME_NS_DPS_PI_TYPE2: |
| integrity.profile = &t10_pi_type1_crc; |
| integrity.tag_size = sizeof(u16); |
| integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; |
| break; |
| default: |
| integrity.profile = NULL; |
| break; |
| } |
| integrity.tuple_size = ns->ms; |
| blk_integrity_register(ns->disk, &integrity); |
| blk_queue_max_integrity_segments(ns->queue, 1); |
| } |
| #else |
| static void nvme_prep_integrity(struct gendisk *disk, struct nvme_id_ns *id, |
| u16 bs) |
| { |
| } |
| static void nvme_init_integrity(struct nvme_ns *ns) |
| { |
| } |
| #endif /* CONFIG_BLK_DEV_INTEGRITY */ |
| |
| static void nvme_config_discard(struct nvme_ns *ns) |
| { |
| struct nvme_ctrl *ctrl = ns->ctrl; |
| u32 logical_block_size = queue_logical_block_size(ns->queue); |
| |
| BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) < |
| NVME_DSM_MAX_RANGES); |
| |
| ns->queue->limits.discard_alignment = logical_block_size; |
| ns->queue->limits.discard_granularity = logical_block_size; |
| blk_queue_max_discard_sectors(ns->queue, UINT_MAX); |
| blk_queue_max_discard_segments(ns->queue, NVME_DSM_MAX_RANGES); |
| queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue); |
| |
| if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) |
| blk_queue_max_write_zeroes_sectors(ns->queue, UINT_MAX); |
| } |
| |
| static int nvme_revalidate_ns(struct nvme_ns *ns, struct nvme_id_ns **id) |
| { |
| if (nvme_identify_ns(ns->ctrl, ns->ns_id, id)) { |
| dev_warn(ns->ctrl->dev, "%s: Identify failure\n", __func__); |
| return -ENODEV; |
| } |
| |
| if ((*id)->ncap == 0) { |
| kfree(*id); |
| return -ENODEV; |
| } |
| |
| if (ns->ctrl->vs >= NVME_VS(1, 1, 0)) |
| memcpy(ns->eui, (*id)->eui64, sizeof(ns->eui)); |
| if (ns->ctrl->vs >= NVME_VS(1, 2, 0)) |
| memcpy(ns->uuid, (*id)->nguid, sizeof(ns->uuid)); |
| |
| return 0; |
| } |
| |
| static void __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id) |
| { |
| struct nvme_ns *ns = disk->private_data; |
| u16 bs; |
| |
| /* |
| * If identify namespace failed, use default 512 byte block size so |
| * block layer can use before failing read/write for 0 capacity. |
| */ |
| ns->lba_shift = id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ds; |
| if (ns->lba_shift == 0) |
| ns->lba_shift = 9; |
| bs = 1 << ns->lba_shift; |
| |
| blk_mq_freeze_queue(disk->queue); |
| |
| if (ns->ctrl->ops->flags & NVME_F_METADATA_SUPPORTED) |
| nvme_prep_integrity(disk, id, bs); |
| blk_queue_logical_block_size(ns->queue, bs); |
| if (ns->ms && !blk_get_integrity(disk) && !ns->ext) |
| nvme_init_integrity(ns); |
| if (ns->ms && !(ns->ms == 8 && ns->pi_type) && !blk_get_integrity(disk)) |
| set_capacity(disk, 0); |
| else |
| set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9)); |
| |
| if (ns->ctrl->oncs & NVME_CTRL_ONCS_DSM) |
| nvme_config_discard(ns); |
| blk_mq_unfreeze_queue(disk->queue); |
| } |
| |
| static int nvme_revalidate_disk(struct gendisk *disk) |
| { |
| struct nvme_ns *ns = disk->private_data; |
| struct nvme_id_ns *id = NULL; |
| int ret; |
| |
| if (test_bit(NVME_NS_DEAD, &ns->flags)) { |
| set_capacity(disk, 0); |
| return -ENODEV; |
| } |
| |
| ret = nvme_revalidate_ns(ns, &id); |
| if (ret) |
| return ret; |
| |
| __nvme_revalidate_disk(disk, id); |
| kfree(id); |
| |
| return 0; |
| } |
| |
| static char nvme_pr_type(enum pr_type type) |
| { |
| switch (type) { |
| case PR_WRITE_EXCLUSIVE: |
| return 1; |
| case PR_EXCLUSIVE_ACCESS: |
| return 2; |
| case PR_WRITE_EXCLUSIVE_REG_ONLY: |
| return 3; |
| case PR_EXCLUSIVE_ACCESS_REG_ONLY: |
| return 4; |
| case PR_WRITE_EXCLUSIVE_ALL_REGS: |
| return 5; |
| case PR_EXCLUSIVE_ACCESS_ALL_REGS: |
| return 6; |
| default: |
| return 0; |
| } |
| }; |
| |
| static int nvme_pr_command(struct block_device *bdev, u32 cdw10, |
| u64 key, u64 sa_key, u8 op) |
| { |
| struct nvme_ns *ns = bdev->bd_disk->private_data; |
| struct nvme_command c; |
| u8 data[16] = { 0, }; |
| |
| put_unaligned_le64(key, &data[0]); |
| put_unaligned_le64(sa_key, &data[8]); |
| |
| memset(&c, 0, sizeof(c)); |
| c.common.opcode = op; |
| c.common.nsid = cpu_to_le32(ns->ns_id); |
| c.common.cdw10[0] = cpu_to_le32(cdw10); |
| |
| return nvme_submit_sync_cmd(ns->queue, &c, data, 16); |
| } |
| |
| static int nvme_pr_register(struct block_device *bdev, u64 old, |
| u64 new, unsigned flags) |
| { |
| u32 cdw10; |
| |
| if (flags & ~PR_FL_IGNORE_KEY) |
| return -EOPNOTSUPP; |
| |
| cdw10 = old ? 2 : 0; |
| cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0; |
| cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */ |
| return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register); |
| } |
| |
| static int nvme_pr_reserve(struct block_device *bdev, u64 key, |
| enum pr_type type, unsigned flags) |
| { |
| u32 cdw10; |
| |
| if (flags & ~PR_FL_IGNORE_KEY) |
| return -EOPNOTSUPP; |
| |
| cdw10 = nvme_pr_type(type) << 8; |
| cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0); |
| return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire); |
| } |
| |
| static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new, |
| enum pr_type type, bool abort) |
| { |
| u32 cdw10 = nvme_pr_type(type) << 8 | abort ? 2 : 1; |
| return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire); |
| } |
| |
| static int nvme_pr_clear(struct block_device *bdev, u64 key) |
| { |
| u32 cdw10 = 1 | (key ? 1 << 3 : 0); |
| return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register); |
| } |
| |
| static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type) |
| { |
| u32 cdw10 = nvme_pr_type(type) << 8 | key ? 1 << 3 : 0; |
| return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release); |
| } |
| |
| static const struct pr_ops nvme_pr_ops = { |
| .pr_register = nvme_pr_register, |
| .pr_reserve = nvme_pr_reserve, |
| .pr_release = nvme_pr_release, |
| .pr_preempt = nvme_pr_preempt, |
| .pr_clear = nvme_pr_clear, |
| }; |
| |
| #ifdef CONFIG_BLK_SED_OPAL |
| int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len, |
| bool send) |
| { |
| struct nvme_ctrl *ctrl = data; |
| struct nvme_command cmd; |
| |
| memset(&cmd, 0, sizeof(cmd)); |
| if (send) |
| cmd.common.opcode = nvme_admin_security_send; |
| else |
| cmd.common.opcode = nvme_admin_security_recv; |
| cmd.common.nsid = 0; |
| cmd.common.cdw10[0] = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8); |
| cmd.common.cdw10[1] = cpu_to_le32(len); |
| |
| return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len, |
| ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0); |
| } |
| EXPORT_SYMBOL_GPL(nvme_sec_submit); |
| #endif /* CONFIG_BLK_SED_OPAL */ |
| |
| static const struct block_device_operations nvme_fops = { |
| .owner = THIS_MODULE, |
| .ioctl = nvme_ioctl, |
| .compat_ioctl = nvme_compat_ioctl, |
| .open = nvme_open, |
| .release = nvme_release, |
| .getgeo = nvme_getgeo, |
| .revalidate_disk= nvme_revalidate_disk, |
| .pr_ops = &nvme_pr_ops, |
| }; |
| |
| static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled) |
| { |
| unsigned long timeout = |
| ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies; |
| u32 csts, bit = enabled ? NVME_CSTS_RDY : 0; |
| int ret; |
| |
| while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { |
| if (csts == ~0) |
| return -ENODEV; |
| if ((csts & NVME_CSTS_RDY) == bit) |
| break; |
| |
| msleep(100); |
| if (fatal_signal_pending(current)) |
| return -EINTR; |
| if (time_after(jiffies, timeout)) { |
| dev_err(ctrl->device, |
| "Device not ready; aborting %s\n", enabled ? |
| "initialisation" : "reset"); |
| return -ENODEV; |
| } |
| } |
| |
| return ret; |
| } |
| |
| /* |
| * If the device has been passed off to us in an enabled state, just clear |
| * the enabled bit. The spec says we should set the 'shutdown notification |
| * bits', but doing so may cause the device to complete commands to the |
| * admin queue ... and we don't know what memory that might be pointing at! |
| */ |
| int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap) |
| { |
| int ret; |
| |
| ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; |
| ctrl->ctrl_config &= ~NVME_CC_ENABLE; |
| |
| ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); |
| if (ret) |
| return ret; |
| |
| if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY) |
| msleep(NVME_QUIRK_DELAY_AMOUNT); |
| |
| return nvme_wait_ready(ctrl, cap, false); |
| } |
| EXPORT_SYMBOL_GPL(nvme_disable_ctrl); |
| |
| int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap) |
| { |
| /* |
| * Default to a 4K page size, with the intention to update this |
| * path in the future to accomodate architectures with differing |
| * kernel and IO page sizes. |
| */ |
| unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12, page_shift = 12; |
| int ret; |
| |
| if (page_shift < dev_page_min) { |
| dev_err(ctrl->device, |
| "Minimum device page size %u too large for host (%u)\n", |
| 1 << dev_page_min, 1 << page_shift); |
| return -ENODEV; |
| } |
| |
| ctrl->page_size = 1 << page_shift; |
| |
| ctrl->ctrl_config = NVME_CC_CSS_NVM; |
| ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT; |
| ctrl->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE; |
| ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES; |
| ctrl->ctrl_config |= NVME_CC_ENABLE; |
| |
| ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); |
| if (ret) |
| return ret; |
| return nvme_wait_ready(ctrl, cap, true); |
| } |
| EXPORT_SYMBOL_GPL(nvme_enable_ctrl); |
| |
| int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl) |
| { |
| unsigned long timeout = SHUTDOWN_TIMEOUT + jiffies; |
| u32 csts; |
| int ret; |
| |
| ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; |
| ctrl->ctrl_config |= NVME_CC_SHN_NORMAL; |
| |
| ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); |
| if (ret) |
| return ret; |
| |
| while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { |
| if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT) |
| break; |
| |
| msleep(100); |
| if (fatal_signal_pending(current)) |
| return -EINTR; |
| if (time_after(jiffies, timeout)) { |
| dev_err(ctrl->device, |
| "Device shutdown incomplete; abort shutdown\n"); |
| return -ENODEV; |
| } |
| } |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl); |
| |
| static void nvme_set_queue_limits(struct nvme_ctrl *ctrl, |
| struct request_queue *q) |
| { |
| bool vwc = false; |
| |
| if (ctrl->max_hw_sectors) { |
| u32 max_segments = |
| (ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1; |
| |
| blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors); |
| blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX)); |
| } |
| if (ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) |
| blk_queue_chunk_sectors(q, ctrl->max_hw_sectors); |
| blk_queue_virt_boundary(q, ctrl->page_size - 1); |
| if (ctrl->vwc & NVME_CTRL_VWC_PRESENT) |
| vwc = true; |
| blk_queue_write_cache(q, vwc, vwc); |
| } |
| |
| static void nvme_configure_apst(struct nvme_ctrl *ctrl) |
| { |
| /* |
| * APST (Autonomous Power State Transition) lets us program a |
| * table of power state transitions that the controller will |
| * perform automatically. We configure it with a simple |
| * heuristic: we are willing to spend at most 2% of the time |
| * transitioning between power states. Therefore, when running |
| * in any given state, we will enter the next lower-power |
| * non-operational state after waiting 50 * (enlat + exlat) |
| * microseconds, as long as that state's total latency is under |
| * the requested maximum latency. |
| * |
| * We will not autonomously enter any non-operational state for |
| * which the total latency exceeds ps_max_latency_us. Users |
| * can set ps_max_latency_us to zero to turn off APST. |
| */ |
| |
| unsigned apste; |
| struct nvme_feat_auto_pst *table; |
| u64 max_lat_us = 0; |
| int max_ps = -1; |
| int ret; |
| |
| /* |
| * If APST isn't supported or if we haven't been initialized yet, |
| * then don't do anything. |
| */ |
| if (!ctrl->apsta) |
| return; |
| |
| if (ctrl->npss > 31) { |
| dev_warn(ctrl->device, "NPSS is invalid; not using APST\n"); |
| return; |
| } |
| |
| table = kzalloc(sizeof(*table), GFP_KERNEL); |
| if (!table) |
| return; |
| |
| if (ctrl->ps_max_latency_us == 0) { |
| /* Turn off APST. */ |
| apste = 0; |
| dev_dbg(ctrl->device, "APST disabled\n"); |
| } else { |
| __le64 target = cpu_to_le64(0); |
| int state; |
| |
| /* |
| * Walk through all states from lowest- to highest-power. |
| * According to the spec, lower-numbered states use more |
| * power. NPSS, despite the name, is the index of the |
| * lowest-power state, not the number of states. |
| */ |
| for (state = (int)ctrl->npss; state >= 0; state--) { |
| u64 total_latency_us, transition_ms; |
| |
| if (target) |
| table->entries[state] = target; |
| |
| /* |
| * Don't allow transitions to the deepest state |
| * if it's quirked off. |
| */ |
| if (state == ctrl->npss && |
| (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) |
| continue; |
| |
| /* |
| * Is this state a useful non-operational state for |
| * higher-power states to autonomously transition to? |
| */ |
| if (!(ctrl->psd[state].flags & |
| NVME_PS_FLAGS_NON_OP_STATE)) |
| continue; |
| |
| total_latency_us = |
| (u64)le32_to_cpu(ctrl->psd[state].entry_lat) + |
| + le32_to_cpu(ctrl->psd[state].exit_lat); |
| if (total_latency_us > ctrl->ps_max_latency_us) |
| continue; |
| |
| /* |
| * This state is good. Use it as the APST idle |
| * target for higher power states. |
| */ |
| transition_ms = total_latency_us + 19; |
| do_div(transition_ms, 20); |
| if (transition_ms > (1 << 24) - 1) |
| transition_ms = (1 << 24) - 1; |
| |
| target = cpu_to_le64((state << 3) | |
| (transition_ms << 8)); |
| |
| if (max_ps == -1) |
| max_ps = state; |
| |
| if (total_latency_us > max_lat_us) |
| max_lat_us = total_latency_us; |
| } |
| |
| apste = 1; |
| |
| if (max_ps == -1) { |
| dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n"); |
| } else { |
| dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n", |
| max_ps, max_lat_us, (int)sizeof(*table), table); |
| } |
| } |
| |
| ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste, |
| table, sizeof(*table), NULL); |
| if (ret) |
| dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret); |
| |
| kfree(table); |
| } |
| |
| static void nvme_set_latency_tolerance(struct device *dev, s32 val) |
| { |
| struct nvme_ctrl *ctrl = dev_get_drvdata(dev); |
| u64 latency; |
| |
| switch (val) { |
| case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT: |
| case PM_QOS_LATENCY_ANY: |
| latency = U64_MAX; |
| break; |
| |
| default: |
| latency = val; |
| } |
| |
| if (ctrl->ps_max_latency_us != latency) { |
| ctrl->ps_max_latency_us = latency; |
| nvme_configure_apst(ctrl); |
| } |
| } |
| |
| struct nvme_core_quirk_entry { |
| /* |
| * NVMe model and firmware strings are padded with spaces. For |
| * simplicity, strings in the quirk table are padded with NULLs |
| * instead. |
| */ |
| u16 vid; |
| const char *mn; |
| const char *fr; |
| unsigned long quirks; |
| }; |
| |
| static const struct nvme_core_quirk_entry core_quirks[] = { |
| { |
| /* |
| * This Toshiba device seems to die using any APST states. See: |
| * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11 |
| */ |
| .vid = 0x1179, |
| .mn = "THNSF5256GPUK TOSHIBA", |
| .quirks = NVME_QUIRK_NO_APST, |
| } |
| }; |
| |
| /* match is null-terminated but idstr is space-padded. */ |
| static bool string_matches(const char *idstr, const char *match, size_t len) |
| { |
| size_t matchlen; |
| |
| if (!match) |
| return true; |
| |
| matchlen = strlen(match); |
| WARN_ON_ONCE(matchlen > len); |
| |
| if (memcmp(idstr, match, matchlen)) |
| return false; |
| |
| for (; matchlen < len; matchlen++) |
| if (idstr[matchlen] != ' ') |
| return false; |
| |
| return true; |
| } |
| |
| static bool quirk_matches(const struct nvme_id_ctrl *id, |
| const struct nvme_core_quirk_entry *q) |
| { |
| return q->vid == le16_to_cpu(id->vid) && |
| string_matches(id->mn, q->mn, sizeof(id->mn)) && |
| string_matches(id->fr, q->fr, sizeof(id->fr)); |
| } |
| |
| /* |
| * Initialize the cached copies of the Identify data and various controller |
| * register in our nvme_ctrl structure. This should be called as soon as |
| * the admin queue is fully up and running. |
| */ |
| int nvme_init_identify(struct nvme_ctrl *ctrl) |
| { |
| struct nvme_id_ctrl *id; |
| u64 cap; |
| int ret, page_shift; |
| u32 max_hw_sectors; |
| u8 prev_apsta; |
| |
| ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs); |
| if (ret) { |
| dev_err(ctrl->device, "Reading VS failed (%d)\n", ret); |
| return ret; |
| } |
| |
| ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap); |
| if (ret) { |
| dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret); |
| return ret; |
| } |
| page_shift = NVME_CAP_MPSMIN(cap) + 12; |
| |
| if (ctrl->vs >= NVME_VS(1, 1, 0)) |
| ctrl->subsystem = NVME_CAP_NSSRC(cap); |
| |
| ret = nvme_identify_ctrl(ctrl, &id); |
| if (ret) { |
| dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret); |
| return -EIO; |
| } |
| |
| if (!ctrl->identified) { |
| /* |
| * Check for quirks. Quirk can depend on firmware version, |
| * so, in principle, the set of quirks present can change |
| * across a reset. As a possible future enhancement, we |
| * could re-scan for quirks every time we reinitialize |
| * the device, but we'd have to make sure that the driver |
| * behaves intelligently if the quirks change. |
| */ |
| |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(core_quirks); i++) { |
| if (quirk_matches(id, &core_quirks[i])) |
| ctrl->quirks |= core_quirks[i].quirks; |
| } |
| } |
| |
| if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) { |
| dev_warn(ctrl->dev, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n"); |
| ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS; |
| } |
| |
| ctrl->oacs = le16_to_cpu(id->oacs); |
| ctrl->vid = le16_to_cpu(id->vid); |
| ctrl->oncs = le16_to_cpup(&id->oncs); |
| atomic_set(&ctrl->abort_limit, id->acl + 1); |
| ctrl->vwc = id->vwc; |
| ctrl->cntlid = le16_to_cpup(&id->cntlid); |
| memcpy(ctrl->serial, id->sn, sizeof(id->sn)); |
| memcpy(ctrl->model, id->mn, sizeof(id->mn)); |
| memcpy(ctrl->firmware_rev, id->fr, sizeof(id->fr)); |
| if (id->mdts) |
| max_hw_sectors = 1 << (id->mdts + page_shift - 9); |
| else |
| max_hw_sectors = UINT_MAX; |
| ctrl->max_hw_sectors = |
| min_not_zero(ctrl->max_hw_sectors, max_hw_sectors); |
| |
| nvme_set_queue_limits(ctrl, ctrl->admin_q); |
| ctrl->sgls = le32_to_cpu(id->sgls); |
| ctrl->kas = le16_to_cpu(id->kas); |
| |
| ctrl->npss = id->npss; |
| prev_apsta = ctrl->apsta; |
| if (ctrl->quirks & NVME_QUIRK_NO_APST) { |
| if (force_apst && id->apsta) { |
| dev_warn(ctrl->dev, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n"); |
| ctrl->apsta = 1; |
| } else { |
| ctrl->apsta = 0; |
| } |
| } else { |
| ctrl->apsta = id->apsta; |
| } |
| memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd)); |
| |
| if (ctrl->ops->flags & NVME_F_FABRICS) { |
| ctrl->icdoff = le16_to_cpu(id->icdoff); |
| ctrl->ioccsz = le32_to_cpu(id->ioccsz); |
| ctrl->iorcsz = le32_to_cpu(id->iorcsz); |
| ctrl->maxcmd = le16_to_cpu(id->maxcmd); |
| |
| /* |
| * In fabrics we need to verify the cntlid matches the |
| * admin connect |
| */ |
| if (ctrl->cntlid != le16_to_cpu(id->cntlid)) |
| ret = -EINVAL; |
| |
| if (!ctrl->opts->discovery_nqn && !ctrl->kas) { |
| dev_err(ctrl->dev, |
| "keep-alive support is mandatory for fabrics\n"); |
| ret = -EINVAL; |
| } |
| } else { |
| ctrl->cntlid = le16_to_cpu(id->cntlid); |
| } |
| |
| kfree(id); |
| |
| if (ctrl->apsta && !prev_apsta) |
| dev_pm_qos_expose_latency_tolerance(ctrl->device); |
| else if (!ctrl->apsta && prev_apsta) |
| dev_pm_qos_hide_latency_tolerance(ctrl->device); |
| |
| nvme_configure_apst(ctrl); |
| |
| ctrl->identified = true; |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(nvme_init_identify); |
| |
| static int nvme_dev_open(struct inode *inode, struct file *file) |
| { |
| struct nvme_ctrl *ctrl; |
| int instance = iminor(inode); |
| int ret = -ENODEV; |
| |
| spin_lock(&dev_list_lock); |
| list_for_each_entry(ctrl, &nvme_ctrl_list, node) { |
| if (ctrl->instance != instance) |
| continue; |
| |
| if (!ctrl->admin_q) { |
| ret = -EWOULDBLOCK; |
| break; |
| } |
| if (!kref_get_unless_zero(&ctrl->kref)) |
| break; |
| file->private_data = ctrl; |
| ret = 0; |
| break; |
| } |
| spin_unlock(&dev_list_lock); |
| |
| return ret; |
| } |
| |
| static int nvme_dev_release(struct inode *inode, struct file *file) |
| { |
| nvme_put_ctrl(file->private_data); |
| return 0; |
| } |
| |
| static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp) |
| { |
| struct nvme_ns *ns; |
| int ret; |
| |
| mutex_lock(&ctrl->namespaces_mutex); |
| if (list_empty(&ctrl->namespaces)) { |
| ret = -ENOTTY; |
| goto out_unlock; |
| } |
| |
| ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list); |
| if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) { |
| dev_warn(ctrl->device, |
| "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n"); |
| ret = -EINVAL; |
| goto out_unlock; |
| } |
| |
| dev_warn(ctrl->device, |
| "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n"); |
| kref_get(&ns->kref); |
| mutex_unlock(&ctrl->namespaces_mutex); |
| |
| ret = nvme_user_cmd(ctrl, ns, argp); |
| nvme_put_ns(ns); |
| return ret; |
| |
| out_unlock: |
| mutex_unlock(&ctrl->namespaces_mutex); |
| return ret; |
| } |
| |
| static long nvme_dev_ioctl(struct file *file, unsigned int cmd, |
| unsigned long arg) |
| { |
| struct nvme_ctrl *ctrl = file->private_data; |
| void __user *argp = (void __user *)arg; |
| |
| switch (cmd) { |
| case NVME_IOCTL_ADMIN_CMD: |
| return nvme_user_cmd(ctrl, NULL, argp); |
| case NVME_IOCTL_IO_CMD: |
| return nvme_dev_user_cmd(ctrl, argp); |
| case NVME_IOCTL_RESET: |
| dev_warn(ctrl->device, "resetting controller\n"); |
| return ctrl->ops->reset_ctrl(ctrl); |
| case NVME_IOCTL_SUBSYS_RESET: |
| return nvme_reset_subsystem(ctrl); |
| case NVME_IOCTL_RESCAN: |
| nvme_queue_scan(ctrl); |
| return 0; |
| default: |
| return -ENOTTY; |
| } |
| } |
| |
| static const struct file_operations nvme_dev_fops = { |
| .owner = THIS_MODULE, |
| .open = nvme_dev_open, |
| .release = nvme_dev_release, |
| .unlocked_ioctl = nvme_dev_ioctl, |
| .compat_ioctl = nvme_dev_ioctl, |
| }; |
| |
| static ssize_t nvme_sysfs_reset(struct device *dev, |
| struct device_attribute *attr, const char *buf, |
| size_t count) |
| { |
| struct nvme_ctrl *ctrl = dev_get_drvdata(dev); |
| int ret; |
| |
| ret = ctrl->ops->reset_ctrl(ctrl); |
| if (ret < 0) |
| return ret; |
| return count; |
| } |
| static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset); |
| |
| static ssize_t nvme_sysfs_rescan(struct device *dev, |
| struct device_attribute *attr, const char *buf, |
| size_t count) |
| { |
| struct nvme_ctrl *ctrl = dev_get_drvdata(dev); |
| |
| nvme_queue_scan(ctrl); |
| return count; |
| } |
| static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan); |
| |
| static ssize_t wwid_show(struct device *dev, struct device_attribute *attr, |
| char *buf) |
| { |
| struct nvme_ns *ns = nvme_get_ns_from_dev(dev); |
| struct nvme_ctrl *ctrl = ns->ctrl; |
| int serial_len = sizeof(ctrl->serial); |
| int model_len = sizeof(ctrl->model); |
| |
| if (memchr_inv(ns->uuid, 0, sizeof(ns->uuid))) |
| return sprintf(buf, "eui.%16phN\n", ns->uuid); |
| |
| if (memchr_inv(ns->eui, 0, sizeof(ns->eui))) |
| return sprintf(buf, "eui.%8phN\n", ns->eui); |
| |
| while (ctrl->serial[serial_len - 1] == ' ') |
| serial_len--; |
| while (ctrl->model[model_len - 1] == ' ') |
| model_len--; |
| |
| return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", ctrl->vid, |
| serial_len, ctrl->serial, model_len, ctrl->model, ns->ns_id); |
| } |
| static DEVICE_ATTR(wwid, S_IRUGO, wwid_show, NULL); |
| |
| static ssize_t uuid_show(struct device *dev, struct device_attribute *attr, |
| char *buf) |
| { |
| struct nvme_ns *ns = nvme_get_ns_from_dev(dev); |
| return sprintf(buf, "%pU\n", ns->uuid); |
| } |
| static DEVICE_ATTR(uuid, S_IRUGO, uuid_show, NULL); |
| |
| static ssize_t eui_show(struct device *dev, struct device_attribute *attr, |
| char *buf) |
| { |
| struct nvme_ns *ns = nvme_get_ns_from_dev(dev); |
| return sprintf(buf, "%8phd\n", ns->eui); |
| } |
| static DEVICE_ATTR(eui, S_IRUGO, eui_show, NULL); |
| |
| static ssize_t nsid_show(struct device *dev, struct device_attribute *attr, |
| char *buf) |
| { |
| struct nvme_ns *ns = nvme_get_ns_from_dev(dev); |
| return sprintf(buf, "%d\n", ns->ns_id); |
| } |
| static DEVICE_ATTR(nsid, S_IRUGO, nsid_show, NULL); |
| |
| static struct attribute *nvme_ns_attrs[] = { |
| &dev_attr_wwid.attr, |
| &dev_attr_uuid.attr, |
| &dev_attr_eui.attr, |
| &dev_attr_nsid.attr, |
| NULL, |
| }; |
| |
| static umode_t nvme_ns_attrs_are_visible(struct kobject *kobj, |
| struct attribute *a, int n) |
| { |
| struct device *dev = container_of(kobj, struct device, kobj); |
| struct nvme_ns *ns = nvme_get_ns_from_dev(dev); |
| |
| if (a == &dev_attr_uuid.attr) { |
| if (!memchr_inv(ns->uuid, 0, sizeof(ns->uuid))) |
| return 0; |
| } |
| if (a == &dev_attr_eui.attr) { |
| if (!memchr_inv(ns->eui, 0, sizeof(ns->eui))) |
| return 0; |
| } |
| return a->mode; |
| } |
| |
| static const struct attribute_group nvme_ns_attr_group = { |
| .attrs = nvme_ns_attrs, |
| .is_visible = nvme_ns_attrs_are_visible, |
| }; |
| |
| #define nvme_show_str_function(field) \ |
| static ssize_t field##_show(struct device *dev, \ |
| struct device_attribute *attr, char *buf) \ |
| { \ |
| struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \ |
| return sprintf(buf, "%.*s\n", (int)sizeof(ctrl->field), ctrl->field); \ |
| } \ |
| static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL); |
| |
| #define nvme_show_int_function(field) \ |
| static ssize_t field##_show(struct device *dev, \ |
| struct device_attribute *attr, char *buf) \ |
| { \ |
| struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \ |
| return sprintf(buf, "%d\n", ctrl->field); \ |
| } \ |
| static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL); |
| |
| nvme_show_str_function(model); |
| nvme_show_str_function(serial); |
| nvme_show_str_function(firmware_rev); |
| nvme_show_int_function(cntlid); |
| |
| static ssize_t nvme_sysfs_delete(struct device *dev, |
| struct device_attribute *attr, const char *buf, |
| size_t count) |
| { |
| struct nvme_ctrl *ctrl = dev_get_drvdata(dev); |
| |
| if (device_remove_file_self(dev, attr)) |
| ctrl->ops->delete_ctrl(ctrl); |
| return count; |
| } |
| static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete); |
| |
| static ssize_t nvme_sysfs_show_transport(struct device *dev, |
| struct device_attribute *attr, |
| char *buf) |
| { |
| struct nvme_ctrl *ctrl = dev_get_drvdata(dev); |
| |
| return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name); |
| } |
| static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL); |
| |
| static ssize_t nvme_sysfs_show_state(struct device *dev, |
| struct device_attribute *attr, |
| char *buf) |
| { |
| struct nvme_ctrl *ctrl = dev_get_drvdata(dev); |
| static const char *const state_name[] = { |
| [NVME_CTRL_NEW] = "new", |
| [NVME_CTRL_LIVE] = "live", |
| [NVME_CTRL_RESETTING] = "resetting", |
| [NVME_CTRL_RECONNECTING]= "reconnecting", |
| [NVME_CTRL_DELETING] = "deleting", |
| [NVME_CTRL_DEAD] = "dead", |
| }; |
| |
| if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) && |
| state_name[ctrl->state]) |
| return sprintf(buf, "%s\n", state_name[ctrl->state]); |
| |
| return sprintf(buf, "unknown state\n"); |
| } |
| |
| static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL); |
| |
| static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev, |
| struct device_attribute *attr, |
| char *buf) |
| { |
| struct nvme_ctrl *ctrl = dev_get_drvdata(dev); |
| |
| return snprintf(buf, PAGE_SIZE, "%s\n", |
| ctrl->ops->get_subsysnqn(ctrl)); |
| } |
| static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL); |
| |
| static ssize_t nvme_sysfs_show_address(struct device *dev, |
| struct device_attribute *attr, |
| char *buf) |
| { |
| struct nvme_ctrl *ctrl = dev_get_drvdata(dev); |
| |
| return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE); |
| } |
| static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL); |
| |
| static struct attribute *nvme_dev_attrs[] = { |
| &dev_attr_reset_controller.attr, |
| &dev_attr_rescan_controller.attr, |
| &dev_attr_model.attr, |
| &dev_attr_serial.attr, |
| &dev_attr_firmware_rev.attr, |
| &dev_attr_cntlid.attr, |
| &dev_attr_delete_controller.attr, |
| &dev_attr_transport.attr, |
| &dev_attr_subsysnqn.attr, |
| &dev_attr_address.attr, |
| &dev_attr_state.attr, |
| NULL |
| }; |
| |
| #define CHECK_ATTR(ctrl, a, name) \ |
| if ((a) == &dev_attr_##name.attr && \ |
| !(ctrl)->ops->get_##name) \ |
| return 0 |
| |
| static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj, |
| struct attribute *a, int n) |
| { |
| struct device *dev = container_of(kobj, struct device, kobj); |
| struct nvme_ctrl *ctrl = dev_get_drvdata(dev); |
| |
| if (a == &dev_attr_delete_controller.attr) { |
| if (!ctrl->ops->delete_ctrl) |
| return 0; |
| } |
| |
| CHECK_ATTR(ctrl, a, subsysnqn); |
| CHECK_ATTR(ctrl, a, address); |
| |
| return a->mode; |
| } |
| |
| static struct attribute_group nvme_dev_attrs_group = { |
| .attrs = nvme_dev_attrs, |
| .is_visible = nvme_dev_attrs_are_visible, |
| }; |
| |
| static const struct attribute_group *nvme_dev_attr_groups[] = { |
| &nvme_dev_attrs_group, |
| NULL, |
| }; |
| |
| static int ns_cmp(void *priv, struct list_head *a, struct list_head *b) |
| { |
| struct nvme_ns *nsa = container_of(a, struct nvme_ns, list); |
| struct nvme_ns *nsb = container_of(b, struct nvme_ns, list); |
| |
| return nsa->ns_id - nsb->ns_id; |
| } |
| |
| static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid) |
| { |
| struct nvme_ns *ns, *ret = NULL; |
| |
| mutex_lock(&ctrl->namespaces_mutex); |
| list_for_each_entry(ns, &ctrl->namespaces, list) { |
| if (ns->ns_id == nsid) { |
| kref_get(&ns->kref); |
| ret = ns; |
| break; |
| } |
| if (ns->ns_id > nsid) |
| break; |
| } |
| mutex_unlock(&ctrl->namespaces_mutex); |
| return ret; |
| } |
| |
| static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid) |
| { |
| struct nvme_ns *ns; |
| struct gendisk *disk; |
| struct nvme_id_ns *id; |
| char disk_name[DISK_NAME_LEN]; |
| int node = dev_to_node(ctrl->dev); |
| |
| ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node); |
| if (!ns) |
| return; |
| |
| ns->instance = ida_simple_get(&ctrl->ns_ida, 1, 0, GFP_KERNEL); |
| if (ns->instance < 0) |
| goto out_free_ns; |
| |
| ns->queue = blk_mq_init_queue(ctrl->tagset); |
| if (IS_ERR(ns->queue)) |
| goto out_release_instance; |
| queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue); |
| ns->queue->queuedata = ns; |
| ns->ctrl = ctrl; |
| |
| kref_init(&ns->kref); |
| ns->ns_id = nsid; |
| ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */ |
| |
| blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift); |
| nvme_set_queue_limits(ctrl, ns->queue); |
| |
| sprintf(disk_name, "nvme%dn%d", ctrl->instance, ns->instance); |
| |
| if (nvme_revalidate_ns(ns, &id)) |
| goto out_free_queue; |
| |
| if (nvme_nvm_ns_supported(ns, id) && |
| nvme_nvm_register(ns, disk_name, node)) { |
| dev_warn(ctrl->dev, "%s: LightNVM init failure\n", __func__); |
| goto out_free_id; |
| } |
| |
| disk = alloc_disk_node(0, node); |
| if (!disk) |
| goto out_free_id; |
| |
| disk->fops = &nvme_fops; |
| disk->private_data = ns; |
| disk->queue = ns->queue; |
| disk->flags = GENHD_FL_EXT_DEVT; |
| memcpy(disk->disk_name, disk_name, DISK_NAME_LEN); |
| ns->disk = disk; |
| |
| __nvme_revalidate_disk(disk, id); |
| |
| mutex_lock(&ctrl->namespaces_mutex); |
| list_add_tail(&ns->list, &ctrl->namespaces); |
| mutex_unlock(&ctrl->namespaces_mutex); |
| |
| kref_get(&ctrl->kref); |
| |
| kfree(id); |
| |
| device_add_disk(ctrl->device, ns->disk); |
| if (sysfs_create_group(&disk_to_dev(ns->disk)->kobj, |
| &nvme_ns_attr_group)) |
| pr_warn("%s: failed to create sysfs group for identification\n", |
| ns->disk->disk_name); |
| if (ns->ndev && nvme_nvm_register_sysfs(ns)) |
| pr_warn("%s: failed to register lightnvm sysfs group for identification\n", |
| ns->disk->disk_name); |
| return; |
| out_free_id: |
| kfree(id); |
| out_free_queue: |
| blk_cleanup_queue(ns->queue); |
| out_release_instance: |
| ida_simple_remove(&ctrl->ns_ida, ns->instance); |
| out_free_ns: |
| kfree(ns); |
| } |
| |
| static void nvme_ns_remove(struct nvme_ns *ns) |
| { |
| if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags)) |
| return; |
| |
| if (ns->disk && ns->disk->flags & GENHD_FL_UP) { |
| if (blk_get_integrity(ns->disk)) |
| blk_integrity_unregister(ns->disk); |
| sysfs_remove_group(&disk_to_dev(ns->disk)->kobj, |
| &nvme_ns_attr_group); |
| if (ns->ndev) |
| nvme_nvm_unregister_sysfs(ns); |
| del_gendisk(ns->disk); |
| blk_cleanup_queue(ns->queue); |
| } |
| |
| mutex_lock(&ns->ctrl->namespaces_mutex); |
| list_del_init(&ns->list); |
| mutex_unlock(&ns->ctrl->namespaces_mutex); |
| |
| nvme_put_ns(ns); |
| } |
| |
| static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid) |
| { |
| struct nvme_ns *ns; |
| |
| ns = nvme_find_get_ns(ctrl, nsid); |
| if (ns) { |
| if (ns->disk && revalidate_disk(ns->disk)) |
| nvme_ns_remove(ns); |
| nvme_put_ns(ns); |
| } else |
| nvme_alloc_ns(ctrl, nsid); |
| } |
| |
| static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, |
| unsigned nsid) |
| { |
| struct nvme_ns *ns, *next; |
| |
| list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) { |
| if (ns->ns_id > nsid) |
| nvme_ns_remove(ns); |
| } |
| } |
| |
| static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn) |
| { |
| struct nvme_ns *ns; |
| __le32 *ns_list; |
| unsigned i, j, nsid, prev = 0, num_lists = DIV_ROUND_UP(nn, 1024); |
| int ret = 0; |
| |
| ns_list = kzalloc(0x1000, GFP_KERNEL); |
| if (!ns_list) |
| return -ENOMEM; |
| |
| for (i = 0; i < num_lists; i++) { |
| ret = nvme_identify_ns_list(ctrl, prev, ns_list); |
| if (ret) |
| goto free; |
| |
| for (j = 0; j < min(nn, 1024U); j++) { |
| nsid = le32_to_cpu(ns_list[j]); |
| if (!nsid) |
| goto out; |
| |
| nvme_validate_ns(ctrl, nsid); |
| |
| while (++prev < nsid) { |
| ns = nvme_find_get_ns(ctrl, prev); |
| if (ns) { |
| nvme_ns_remove(ns); |
| nvme_put_ns(ns); |
| } |
| } |
| } |
| nn -= j; |
| } |
| out: |
| nvme_remove_invalid_namespaces(ctrl, prev); |
| free: |
| kfree(ns_list); |
| return ret; |
| } |
| |
| static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn) |
| { |
| unsigned i; |
| |
| for (i = 1; i <= nn; i++) |
| nvme_validate_ns(ctrl, i); |
| |
| nvme_remove_invalid_namespaces(ctrl, nn); |
| } |
| |
| static void nvme_scan_work(struct work_struct *work) |
| { |
| struct nvme_ctrl *ctrl = |
| container_of(work, struct nvme_ctrl, scan_work); |
| struct nvme_id_ctrl *id; |
| unsigned nn; |
| |
| if (ctrl->state != NVME_CTRL_LIVE) |
| return; |
| |
| if (nvme_identify_ctrl(ctrl, &id)) |
| return; |
| |
| nn = le32_to_cpu(id->nn); |
| if (ctrl->vs >= NVME_VS(1, 1, 0) && |
| !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) { |
| if (!nvme_scan_ns_list(ctrl, nn)) |
| goto done; |
| } |
| nvme_scan_ns_sequential(ctrl, nn); |
| done: |
| mutex_lock(&ctrl->namespaces_mutex); |
| list_sort(NULL, &ctrl->namespaces, ns_cmp); |
| mutex_unlock(&ctrl->namespaces_mutex); |
| kfree(id); |
| } |
| |
| void nvme_queue_scan(struct nvme_ctrl *ctrl) |
| { |
| /* |
| * Do not queue new scan work when a controller is reset during |
| * removal. |
| */ |
| if (ctrl->state == NVME_CTRL_LIVE) |
| schedule_work(&ctrl->scan_work); |
| } |
| EXPORT_SYMBOL_GPL(nvme_queue_scan); |
| |
| /* |
| * This function iterates the namespace list unlocked to allow recovery from |
| * controller failure. It is up to the caller to ensure the namespace list is |
| * not modified by scan work while this function is executing. |
| */ |
| void nvme_remove_namespaces(struct nvme_ctrl *ctrl) |
| { |
| struct nvme_ns *ns, *next; |
| |
| /* |
| * The dead states indicates the controller was not gracefully |
| * disconnected. In that case, we won't be able to flush any data while |
| * removing the namespaces' disks; fail all the queues now to avoid |
| * potentially having to clean up the failed sync later. |
| */ |
| if (ctrl->state == NVME_CTRL_DEAD) |
| nvme_kill_queues(ctrl); |
| |
| list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) |
| nvme_ns_remove(ns); |
| } |
| EXPORT_SYMBOL_GPL(nvme_remove_namespaces); |
| |
| static void nvme_async_event_work(struct work_struct *work) |
| { |
| struct nvme_ctrl *ctrl = |
| container_of(work, struct nvme_ctrl, async_event_work); |
| |
| spin_lock_irq(&ctrl->lock); |
| while (ctrl->event_limit > 0) { |
| int aer_idx = --ctrl->event_limit; |
| |
| spin_unlock_irq(&ctrl->lock); |
| ctrl->ops->submit_async_event(ctrl, aer_idx); |
| spin_lock_irq(&ctrl->lock); |
| } |
| spin_unlock_irq(&ctrl->lock); |
| } |
| |
| void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status, |
| union nvme_result *res) |
| { |
| u32 result = le32_to_cpu(res->u32); |
| bool done = true; |
| |
| switch (le16_to_cpu(status) >> 1) { |
| case NVME_SC_SUCCESS: |
| done = false; |
| /*FALLTHRU*/ |
| case NVME_SC_ABORT_REQ: |
| ++ctrl->event_limit; |
| schedule_work(&ctrl->async_event_work); |
| break; |
| default: |
| break; |
| } |
| |
| if (done) |
| return; |
| |
| switch (result & 0xff07) { |
| case NVME_AER_NOTICE_NS_CHANGED: |
| dev_info(ctrl->device, "rescanning\n"); |
| nvme_queue_scan(ctrl); |
| break; |
| default: |
| dev_warn(ctrl->device, "async event result %08x\n", result); |
| } |
| } |
| EXPORT_SYMBOL_GPL(nvme_complete_async_event); |
| |
| void nvme_queue_async_events(struct nvme_ctrl *ctrl) |
| { |
| ctrl->event_limit = NVME_NR_AERS; |
| schedule_work(&ctrl->async_event_work); |
| } |
| EXPORT_SYMBOL_GPL(nvme_queue_async_events); |
| |
| static DEFINE_IDA(nvme_instance_ida); |
| |
| static int nvme_set_instance(struct nvme_ctrl *ctrl) |
| { |
| int instance, error; |
| |
| do { |
| if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL)) |
| return -ENODEV; |
| |
| spin_lock(&dev_list_lock); |
| error = ida_get_new(&nvme_instance_ida, &instance); |
| spin_unlock(&dev_list_lock); |
| } while (error == -EAGAIN); |
| |
| if (error) |
| return -ENODEV; |
| |
| ctrl->instance = instance; |
| return 0; |
| } |
| |
| static void nvme_release_instance(struct nvme_ctrl *ctrl) |
| { |
| spin_lock(&dev_list_lock); |
| ida_remove(&nvme_instance_ida, ctrl->instance); |
| spin_unlock(&dev_list_lock); |
| } |
| |
| void nvme_uninit_ctrl(struct nvme_ctrl *ctrl) |
| { |
| flush_work(&ctrl->async_event_work); |
| flush_work(&ctrl->scan_work); |
| nvme_remove_namespaces(ctrl); |
| |
| device_destroy(nvme_class, MKDEV(nvme_char_major, ctrl->instance)); |
| |
| spin_lock(&dev_list_lock); |
| list_del(&ctrl->node); |
| spin_unlock(&dev_list_lock); |
| } |
| EXPORT_SYMBOL_GPL(nvme_uninit_ctrl); |
| |
| static void nvme_free_ctrl(struct kref *kref) |
| { |
| struct nvme_ctrl *ctrl = container_of(kref, struct nvme_ctrl, kref); |
| |
| put_device(ctrl->device); |
| nvme_release_instance(ctrl); |
| ida_destroy(&ctrl->ns_ida); |
| |
| ctrl->ops->free_ctrl(ctrl); |
| } |
| |
| void nvme_put_ctrl(struct nvme_ctrl *ctrl) |
| { |
| kref_put(&ctrl->kref, nvme_free_ctrl); |
| } |
| EXPORT_SYMBOL_GPL(nvme_put_ctrl); |
| |
| /* |
| * Initialize a NVMe controller structures. This needs to be called during |
| * earliest initialization so that we have the initialized structured around |
| * during probing. |
| */ |
| int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev, |
| const struct nvme_ctrl_ops *ops, unsigned long quirks) |
| { |
| int ret; |
| |
| ctrl->state = NVME_CTRL_NEW; |
| spin_lock_init(&ctrl->lock); |
| INIT_LIST_HEAD(&ctrl->namespaces); |
| mutex_init(&ctrl->namespaces_mutex); |
| kref_init(&ctrl->kref); |
| ctrl->dev = dev; |
| ctrl->ops = ops; |
| ctrl->quirks = quirks; |
| INIT_WORK(&ctrl->scan_work, nvme_scan_work); |
| INIT_WORK(&ctrl->async_event_work, nvme_async_event_work); |
| |
| ret = nvme_set_instance(ctrl); |
| if (ret) |
| goto out; |
| |
| ctrl->device = device_create_with_groups(nvme_class, ctrl->dev, |
| MKDEV(nvme_char_major, ctrl->instance), |
| ctrl, nvme_dev_attr_groups, |
| "nvme%d", ctrl->instance); |
| if (IS_ERR(ctrl->device)) { |
| ret = PTR_ERR(ctrl->device); |
| goto out_release_instance; |
| } |
| get_device(ctrl->device); |
| ida_init(&ctrl->ns_ida); |
| |
| spin_lock(&dev_list_lock); |
| list_add_tail(&ctrl->node, &nvme_ctrl_list); |
| spin_unlock(&dev_list_lock); |
| |
| /* |
| * Initialize latency tolerance controls. The sysfs files won't |
| * be visible to userspace unless the device actually supports APST. |
| */ |
| ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance; |
| dev_pm_qos_update_user_latency_tolerance(ctrl->device, |
| min(default_ps_max_latency_us, (unsigned long)S32_MAX)); |
| |
| return 0; |
| out_release_instance: |
| nvme_release_instance(ctrl); |
| out: |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(nvme_init_ctrl); |
| |
| /** |
| * nvme_kill_queues(): Ends all namespace queues |
| * @ctrl: the dead controller that needs to end |
| * |
| * Call this function when the driver determines it is unable to get the |
| * controller in a state capable of servicing IO. |
| */ |
| void nvme_kill_queues(struct nvme_ctrl *ctrl) |
| { |
| struct nvme_ns *ns; |
| |
| mutex_lock(&ctrl->namespaces_mutex); |
| list_for_each_entry(ns, &ctrl->namespaces, list) { |
| /* |
| * Revalidating a dead namespace sets capacity to 0. This will |
| * end buffered writers dirtying pages that can't be synced. |
| */ |
| if (!ns->disk || test_and_set_bit(NVME_NS_DEAD, &ns->flags)) |
| continue; |
| revalidate_disk(ns->disk); |
| blk_set_queue_dying(ns->queue); |
| |
| /* |
| * Forcibly start all queues to avoid having stuck requests. |
| * Note that we must ensure the queues are not stopped |
| * when the final removal happens. |
| */ |
| blk_mq_start_hw_queues(ns->queue); |
| |
| /* draining requests in requeue list */ |
| blk_mq_kick_requeue_list(ns->queue); |
| } |
| mutex_unlock(&ctrl->namespaces_mutex); |
| } |
| EXPORT_SYMBOL_GPL(nvme_kill_queues); |
| |
| void nvme_unfreeze(struct nvme_ctrl *ctrl) |
| { |
| struct nvme_ns *ns; |
| |
| mutex_lock(&ctrl->namespaces_mutex); |
| list_for_each_entry(ns, &ctrl->namespaces, list) |
| blk_mq_unfreeze_queue(ns->queue); |
| mutex_unlock(&ctrl->namespaces_mutex); |
| } |
| EXPORT_SYMBOL_GPL(nvme_unfreeze); |
| |
| void nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout) |
| { |
| struct nvme_ns *ns; |
| |
| mutex_lock(&ctrl->namespaces_mutex); |
| list_for_each_entry(ns, &ctrl->namespaces, list) { |
| timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout); |
| if (timeout <= 0) |
| break; |
| } |
| mutex_unlock(&ctrl->namespaces_mutex); |
| } |
| EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout); |
| |
| void nvme_wait_freeze(struct nvme_ctrl *ctrl) |
| { |
| struct nvme_ns *ns; |
| |
| mutex_lock(&ctrl->namespaces_mutex); |
| list_for_each_entry(ns, &ctrl->namespaces, list) |
| blk_mq_freeze_queue_wait(ns->queue); |
| mutex_unlock(&ctrl->namespaces_mutex); |
| } |
| EXPORT_SYMBOL_GPL(nvme_wait_freeze); |
| |
| void nvme_start_freeze(struct nvme_ctrl *ctrl) |
| { |
| struct nvme_ns *ns; |
| |
| mutex_lock(&ctrl->namespaces_mutex); |
| list_for_each_entry(ns, &ctrl->namespaces, list) |
| blk_freeze_queue_start(ns->queue); |
| mutex_unlock(&ctrl->namespaces_mutex); |
| } |
| EXPORT_SYMBOL_GPL(nvme_start_freeze); |
| |
| void nvme_stop_queues(struct nvme_ctrl *ctrl) |
| { |
| struct nvme_ns *ns; |
| |
| mutex_lock(&ctrl->namespaces_mutex); |
| list_for_each_entry(ns, &ctrl->namespaces, list) |
| blk_mq_quiesce_queue(ns->queue); |
| mutex_unlock(&ctrl->namespaces_mutex); |
| } |
| EXPORT_SYMBOL_GPL(nvme_stop_queues); |
| |
| void nvme_start_queues(struct nvme_ctrl *ctrl) |
| { |
| struct nvme_ns *ns; |
| |
| mutex_lock(&ctrl->namespaces_mutex); |
| list_for_each_entry(ns, &ctrl->namespaces, list) { |
| blk_mq_start_stopped_hw_queues(ns->queue, true); |
| blk_mq_kick_requeue_list(ns->queue); |
| } |
| mutex_unlock(&ctrl->namespaces_mutex); |
| } |
| EXPORT_SYMBOL_GPL(nvme_start_queues); |
| |
| int __init nvme_core_init(void) |
| { |
| int result; |
| |
| result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme", |
| &nvme_dev_fops); |
| if (result < 0) |
| return result; |
| else if (result > 0) |
| nvme_char_major = result; |
| |
| nvme_class = class_create(THIS_MODULE, "nvme"); |
| if (IS_ERR(nvme_class)) { |
| result = PTR_ERR(nvme_class); |
| goto unregister_chrdev; |
| } |
| |
| return 0; |
| |
| unregister_chrdev: |
| __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme"); |
| return result; |
| } |
| |
| void nvme_core_exit(void) |
| { |
| class_destroy(nvme_class); |
| __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme"); |
| } |
| |
| MODULE_LICENSE("GPL"); |
| MODULE_VERSION("1.0"); |
| module_init(nvme_core_init); |
| module_exit(nvme_core_exit); |