| /* |
| * Copyright (c) 2000-2005 Silicon Graphics, Inc. |
| * All Rights Reserved. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it would be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write the Free Software Foundation, |
| * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA |
| */ |
| #include "xfs.h" |
| #include "xfs_fs.h" |
| #include "xfs_shared.h" |
| #include "xfs_format.h" |
| #include "xfs_log_format.h" |
| #include "xfs_trans_resv.h" |
| #include "xfs_bit.h" |
| #include "xfs_inum.h" |
| #include "xfs_sb.h" |
| #include "xfs_ag.h" |
| #include "xfs_mount.h" |
| #include "xfs_da_format.h" |
| #include "xfs_inode.h" |
| #include "xfs_dir2.h" |
| #include "xfs_ialloc.h" |
| #include "xfs_alloc.h" |
| #include "xfs_rtalloc.h" |
| #include "xfs_bmap.h" |
| #include "xfs_trans.h" |
| #include "xfs_trans_priv.h" |
| #include "xfs_log.h" |
| #include "xfs_error.h" |
| #include "xfs_quota.h" |
| #include "xfs_fsops.h" |
| #include "xfs_trace.h" |
| #include "xfs_icache.h" |
| #include "xfs_dinode.h" |
| |
| |
| #ifdef HAVE_PERCPU_SB |
| STATIC void xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t, |
| int); |
| STATIC void xfs_icsb_balance_counter_locked(xfs_mount_t *, xfs_sb_field_t, |
| int); |
| STATIC void xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t); |
| #else |
| |
| #define xfs_icsb_balance_counter(mp, a, b) do { } while (0) |
| #define xfs_icsb_balance_counter_locked(mp, a, b) do { } while (0) |
| #endif |
| |
| static DEFINE_MUTEX(xfs_uuid_table_mutex); |
| static int xfs_uuid_table_size; |
| static uuid_t *xfs_uuid_table; |
| |
| /* |
| * See if the UUID is unique among mounted XFS filesystems. |
| * Mount fails if UUID is nil or a FS with the same UUID is already mounted. |
| */ |
| STATIC int |
| xfs_uuid_mount( |
| struct xfs_mount *mp) |
| { |
| uuid_t *uuid = &mp->m_sb.sb_uuid; |
| int hole, i; |
| |
| if (mp->m_flags & XFS_MOUNT_NOUUID) |
| return 0; |
| |
| if (uuid_is_nil(uuid)) { |
| xfs_warn(mp, "Filesystem has nil UUID - can't mount"); |
| return XFS_ERROR(EINVAL); |
| } |
| |
| mutex_lock(&xfs_uuid_table_mutex); |
| for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) { |
| if (uuid_is_nil(&xfs_uuid_table[i])) { |
| hole = i; |
| continue; |
| } |
| if (uuid_equal(uuid, &xfs_uuid_table[i])) |
| goto out_duplicate; |
| } |
| |
| if (hole < 0) { |
| xfs_uuid_table = kmem_realloc(xfs_uuid_table, |
| (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table), |
| xfs_uuid_table_size * sizeof(*xfs_uuid_table), |
| KM_SLEEP); |
| hole = xfs_uuid_table_size++; |
| } |
| xfs_uuid_table[hole] = *uuid; |
| mutex_unlock(&xfs_uuid_table_mutex); |
| |
| return 0; |
| |
| out_duplicate: |
| mutex_unlock(&xfs_uuid_table_mutex); |
| xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid); |
| return XFS_ERROR(EINVAL); |
| } |
| |
| STATIC void |
| xfs_uuid_unmount( |
| struct xfs_mount *mp) |
| { |
| uuid_t *uuid = &mp->m_sb.sb_uuid; |
| int i; |
| |
| if (mp->m_flags & XFS_MOUNT_NOUUID) |
| return; |
| |
| mutex_lock(&xfs_uuid_table_mutex); |
| for (i = 0; i < xfs_uuid_table_size; i++) { |
| if (uuid_is_nil(&xfs_uuid_table[i])) |
| continue; |
| if (!uuid_equal(uuid, &xfs_uuid_table[i])) |
| continue; |
| memset(&xfs_uuid_table[i], 0, sizeof(uuid_t)); |
| break; |
| } |
| ASSERT(i < xfs_uuid_table_size); |
| mutex_unlock(&xfs_uuid_table_mutex); |
| } |
| |
| |
| STATIC void |
| __xfs_free_perag( |
| struct rcu_head *head) |
| { |
| struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head); |
| |
| ASSERT(atomic_read(&pag->pag_ref) == 0); |
| kmem_free(pag); |
| } |
| |
| /* |
| * Free up the per-ag resources associated with the mount structure. |
| */ |
| STATIC void |
| xfs_free_perag( |
| xfs_mount_t *mp) |
| { |
| xfs_agnumber_t agno; |
| struct xfs_perag *pag; |
| |
| for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { |
| spin_lock(&mp->m_perag_lock); |
| pag = radix_tree_delete(&mp->m_perag_tree, agno); |
| spin_unlock(&mp->m_perag_lock); |
| ASSERT(pag); |
| ASSERT(atomic_read(&pag->pag_ref) == 0); |
| call_rcu(&pag->rcu_head, __xfs_free_perag); |
| } |
| } |
| |
| /* |
| * Check size of device based on the (data/realtime) block count. |
| * Note: this check is used by the growfs code as well as mount. |
| */ |
| int |
| xfs_sb_validate_fsb_count( |
| xfs_sb_t *sbp, |
| __uint64_t nblocks) |
| { |
| ASSERT(PAGE_SHIFT >= sbp->sb_blocklog); |
| ASSERT(sbp->sb_blocklog >= BBSHIFT); |
| |
| #if XFS_BIG_BLKNOS /* Limited by ULONG_MAX of page cache index */ |
| if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX) |
| return EFBIG; |
| #else /* Limited by UINT_MAX of sectors */ |
| if (nblocks << (sbp->sb_blocklog - BBSHIFT) > UINT_MAX) |
| return EFBIG; |
| #endif |
| return 0; |
| } |
| |
| int |
| xfs_initialize_perag( |
| xfs_mount_t *mp, |
| xfs_agnumber_t agcount, |
| xfs_agnumber_t *maxagi) |
| { |
| xfs_agnumber_t index; |
| xfs_agnumber_t first_initialised = 0; |
| xfs_perag_t *pag; |
| xfs_agino_t agino; |
| xfs_ino_t ino; |
| xfs_sb_t *sbp = &mp->m_sb; |
| int error = -ENOMEM; |
| |
| /* |
| * Walk the current per-ag tree so we don't try to initialise AGs |
| * that already exist (growfs case). Allocate and insert all the |
| * AGs we don't find ready for initialisation. |
| */ |
| for (index = 0; index < agcount; index++) { |
| pag = xfs_perag_get(mp, index); |
| if (pag) { |
| xfs_perag_put(pag); |
| continue; |
| } |
| if (!first_initialised) |
| first_initialised = index; |
| |
| pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL); |
| if (!pag) |
| goto out_unwind; |
| pag->pag_agno = index; |
| pag->pag_mount = mp; |
| spin_lock_init(&pag->pag_ici_lock); |
| mutex_init(&pag->pag_ici_reclaim_lock); |
| INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC); |
| spin_lock_init(&pag->pag_buf_lock); |
| pag->pag_buf_tree = RB_ROOT; |
| |
| if (radix_tree_preload(GFP_NOFS)) |
| goto out_unwind; |
| |
| spin_lock(&mp->m_perag_lock); |
| if (radix_tree_insert(&mp->m_perag_tree, index, pag)) { |
| BUG(); |
| spin_unlock(&mp->m_perag_lock); |
| radix_tree_preload_end(); |
| error = -EEXIST; |
| goto out_unwind; |
| } |
| spin_unlock(&mp->m_perag_lock); |
| radix_tree_preload_end(); |
| } |
| |
| /* |
| * If we mount with the inode64 option, or no inode overflows |
| * the legacy 32-bit address space clear the inode32 option. |
| */ |
| agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0); |
| ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino); |
| |
| if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > XFS_MAXINUMBER_32) |
| mp->m_flags |= XFS_MOUNT_32BITINODES; |
| else |
| mp->m_flags &= ~XFS_MOUNT_32BITINODES; |
| |
| if (mp->m_flags & XFS_MOUNT_32BITINODES) |
| index = xfs_set_inode32(mp); |
| else |
| index = xfs_set_inode64(mp); |
| |
| if (maxagi) |
| *maxagi = index; |
| return 0; |
| |
| out_unwind: |
| kmem_free(pag); |
| for (; index > first_initialised; index--) { |
| pag = radix_tree_delete(&mp->m_perag_tree, index); |
| kmem_free(pag); |
| } |
| return error; |
| } |
| |
| /* |
| * xfs_readsb |
| * |
| * Does the initial read of the superblock. |
| */ |
| int |
| xfs_readsb( |
| struct xfs_mount *mp, |
| int flags) |
| { |
| unsigned int sector_size; |
| struct xfs_buf *bp; |
| struct xfs_sb *sbp = &mp->m_sb; |
| int error; |
| int loud = !(flags & XFS_MFSI_QUIET); |
| const struct xfs_buf_ops *buf_ops; |
| |
| ASSERT(mp->m_sb_bp == NULL); |
| ASSERT(mp->m_ddev_targp != NULL); |
| |
| /* |
| * For the initial read, we must guess at the sector |
| * size based on the block device. It's enough to |
| * get the sb_sectsize out of the superblock and |
| * then reread with the proper length. |
| * We don't verify it yet, because it may not be complete. |
| */ |
| sector_size = xfs_getsize_buftarg(mp->m_ddev_targp); |
| buf_ops = NULL; |
| |
| /* |
| * Allocate a (locked) buffer to hold the superblock. |
| * This will be kept around at all times to optimize |
| * access to the superblock. |
| */ |
| reread: |
| bp = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR, |
| BTOBB(sector_size), 0, buf_ops); |
| if (!bp) { |
| if (loud) |
| xfs_warn(mp, "SB buffer read failed"); |
| return EIO; |
| } |
| if (bp->b_error) { |
| error = bp->b_error; |
| if (loud) |
| xfs_warn(mp, "SB validate failed with error %d.", error); |
| /* bad CRC means corrupted metadata */ |
| if (error == EFSBADCRC) |
| error = EFSCORRUPTED; |
| goto release_buf; |
| } |
| |
| /* |
| * Initialize the mount structure from the superblock. |
| */ |
| xfs_sb_from_disk(&mp->m_sb, XFS_BUF_TO_SBP(bp)); |
| xfs_sb_quota_from_disk(&mp->m_sb); |
| |
| /* |
| * We must be able to do sector-sized and sector-aligned IO. |
| */ |
| if (sector_size > sbp->sb_sectsize) { |
| if (loud) |
| xfs_warn(mp, "device supports %u byte sectors (not %u)", |
| sector_size, sbp->sb_sectsize); |
| error = ENOSYS; |
| goto release_buf; |
| } |
| |
| /* |
| * Re-read the superblock so the buffer is correctly sized, |
| * and properly verified. |
| */ |
| if (buf_ops == NULL) { |
| xfs_buf_relse(bp); |
| sector_size = sbp->sb_sectsize; |
| buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops; |
| goto reread; |
| } |
| |
| /* Initialize per-cpu counters */ |
| xfs_icsb_reinit_counters(mp); |
| |
| /* no need to be quiet anymore, so reset the buf ops */ |
| bp->b_ops = &xfs_sb_buf_ops; |
| |
| mp->m_sb_bp = bp; |
| xfs_buf_unlock(bp); |
| return 0; |
| |
| release_buf: |
| xfs_buf_relse(bp); |
| return error; |
| } |
| |
| /* |
| * Update alignment values based on mount options and sb values |
| */ |
| STATIC int |
| xfs_update_alignment(xfs_mount_t *mp) |
| { |
| xfs_sb_t *sbp = &(mp->m_sb); |
| |
| if (mp->m_dalign) { |
| /* |
| * If stripe unit and stripe width are not multiples |
| * of the fs blocksize turn off alignment. |
| */ |
| if ((BBTOB(mp->m_dalign) & mp->m_blockmask) || |
| (BBTOB(mp->m_swidth) & mp->m_blockmask)) { |
| xfs_warn(mp, |
| "alignment check failed: sunit/swidth vs. blocksize(%d)", |
| sbp->sb_blocksize); |
| return XFS_ERROR(EINVAL); |
| } else { |
| /* |
| * Convert the stripe unit and width to FSBs. |
| */ |
| mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign); |
| if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) { |
| xfs_warn(mp, |
| "alignment check failed: sunit/swidth vs. agsize(%d)", |
| sbp->sb_agblocks); |
| return XFS_ERROR(EINVAL); |
| } else if (mp->m_dalign) { |
| mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth); |
| } else { |
| xfs_warn(mp, |
| "alignment check failed: sunit(%d) less than bsize(%d)", |
| mp->m_dalign, sbp->sb_blocksize); |
| return XFS_ERROR(EINVAL); |
| } |
| } |
| |
| /* |
| * Update superblock with new values |
| * and log changes |
| */ |
| if (xfs_sb_version_hasdalign(sbp)) { |
| if (sbp->sb_unit != mp->m_dalign) { |
| sbp->sb_unit = mp->m_dalign; |
| mp->m_update_flags |= XFS_SB_UNIT; |
| } |
| if (sbp->sb_width != mp->m_swidth) { |
| sbp->sb_width = mp->m_swidth; |
| mp->m_update_flags |= XFS_SB_WIDTH; |
| } |
| } else { |
| xfs_warn(mp, |
| "cannot change alignment: superblock does not support data alignment"); |
| return XFS_ERROR(EINVAL); |
| } |
| } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN && |
| xfs_sb_version_hasdalign(&mp->m_sb)) { |
| mp->m_dalign = sbp->sb_unit; |
| mp->m_swidth = sbp->sb_width; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Set the maximum inode count for this filesystem |
| */ |
| STATIC void |
| xfs_set_maxicount(xfs_mount_t *mp) |
| { |
| xfs_sb_t *sbp = &(mp->m_sb); |
| __uint64_t icount; |
| |
| if (sbp->sb_imax_pct) { |
| /* |
| * Make sure the maximum inode count is a multiple |
| * of the units we allocate inodes in. |
| */ |
| icount = sbp->sb_dblocks * sbp->sb_imax_pct; |
| do_div(icount, 100); |
| do_div(icount, mp->m_ialloc_blks); |
| mp->m_maxicount = (icount * mp->m_ialloc_blks) << |
| sbp->sb_inopblog; |
| } else { |
| mp->m_maxicount = 0; |
| } |
| } |
| |
| /* |
| * Set the default minimum read and write sizes unless |
| * already specified in a mount option. |
| * We use smaller I/O sizes when the file system |
| * is being used for NFS service (wsync mount option). |
| */ |
| STATIC void |
| xfs_set_rw_sizes(xfs_mount_t *mp) |
| { |
| xfs_sb_t *sbp = &(mp->m_sb); |
| int readio_log, writeio_log; |
| |
| if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) { |
| if (mp->m_flags & XFS_MOUNT_WSYNC) { |
| readio_log = XFS_WSYNC_READIO_LOG; |
| writeio_log = XFS_WSYNC_WRITEIO_LOG; |
| } else { |
| readio_log = XFS_READIO_LOG_LARGE; |
| writeio_log = XFS_WRITEIO_LOG_LARGE; |
| } |
| } else { |
| readio_log = mp->m_readio_log; |
| writeio_log = mp->m_writeio_log; |
| } |
| |
| if (sbp->sb_blocklog > readio_log) { |
| mp->m_readio_log = sbp->sb_blocklog; |
| } else { |
| mp->m_readio_log = readio_log; |
| } |
| mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog); |
| if (sbp->sb_blocklog > writeio_log) { |
| mp->m_writeio_log = sbp->sb_blocklog; |
| } else { |
| mp->m_writeio_log = writeio_log; |
| } |
| mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog); |
| } |
| |
| /* |
| * precalculate the low space thresholds for dynamic speculative preallocation. |
| */ |
| void |
| xfs_set_low_space_thresholds( |
| struct xfs_mount *mp) |
| { |
| int i; |
| |
| for (i = 0; i < XFS_LOWSP_MAX; i++) { |
| __uint64_t space = mp->m_sb.sb_dblocks; |
| |
| do_div(space, 100); |
| mp->m_low_space[i] = space * (i + 1); |
| } |
| } |
| |
| |
| /* |
| * Set whether we're using inode alignment. |
| */ |
| STATIC void |
| xfs_set_inoalignment(xfs_mount_t *mp) |
| { |
| if (xfs_sb_version_hasalign(&mp->m_sb) && |
| mp->m_sb.sb_inoalignmt >= |
| XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)) |
| mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1; |
| else |
| mp->m_inoalign_mask = 0; |
| /* |
| * If we are using stripe alignment, check whether |
| * the stripe unit is a multiple of the inode alignment |
| */ |
| if (mp->m_dalign && mp->m_inoalign_mask && |
| !(mp->m_dalign & mp->m_inoalign_mask)) |
| mp->m_sinoalign = mp->m_dalign; |
| else |
| mp->m_sinoalign = 0; |
| } |
| |
| /* |
| * Check that the data (and log if separate) is an ok size. |
| */ |
| STATIC int |
| xfs_check_sizes(xfs_mount_t *mp) |
| { |
| xfs_buf_t *bp; |
| xfs_daddr_t d; |
| |
| d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks); |
| if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) { |
| xfs_warn(mp, "filesystem size mismatch detected"); |
| return XFS_ERROR(EFBIG); |
| } |
| bp = xfs_buf_read_uncached(mp->m_ddev_targp, |
| d - XFS_FSS_TO_BB(mp, 1), |
| XFS_FSS_TO_BB(mp, 1), 0, NULL); |
| if (!bp) { |
| xfs_warn(mp, "last sector read failed"); |
| return EIO; |
| } |
| xfs_buf_relse(bp); |
| |
| if (mp->m_logdev_targp != mp->m_ddev_targp) { |
| d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks); |
| if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) { |
| xfs_warn(mp, "log size mismatch detected"); |
| return XFS_ERROR(EFBIG); |
| } |
| bp = xfs_buf_read_uncached(mp->m_logdev_targp, |
| d - XFS_FSB_TO_BB(mp, 1), |
| XFS_FSB_TO_BB(mp, 1), 0, NULL); |
| if (!bp) { |
| xfs_warn(mp, "log device read failed"); |
| return EIO; |
| } |
| xfs_buf_relse(bp); |
| } |
| return 0; |
| } |
| |
| /* |
| * Clear the quotaflags in memory and in the superblock. |
| */ |
| int |
| xfs_mount_reset_sbqflags( |
| struct xfs_mount *mp) |
| { |
| int error; |
| struct xfs_trans *tp; |
| |
| mp->m_qflags = 0; |
| |
| /* |
| * It is OK to look at sb_qflags here in mount path, |
| * without m_sb_lock. |
| */ |
| if (mp->m_sb.sb_qflags == 0) |
| return 0; |
| spin_lock(&mp->m_sb_lock); |
| mp->m_sb.sb_qflags = 0; |
| spin_unlock(&mp->m_sb_lock); |
| |
| /* |
| * If the fs is readonly, let the incore superblock run |
| * with quotas off but don't flush the update out to disk |
| */ |
| if (mp->m_flags & XFS_MOUNT_RDONLY) |
| return 0; |
| |
| tp = xfs_trans_alloc(mp, XFS_TRANS_QM_SBCHANGE); |
| error = xfs_trans_reserve(tp, &M_RES(mp)->tr_qm_sbchange, 0, 0); |
| if (error) { |
| xfs_trans_cancel(tp, 0); |
| xfs_alert(mp, "%s: Superblock update failed!", __func__); |
| return error; |
| } |
| |
| xfs_mod_sb(tp, XFS_SB_QFLAGS); |
| return xfs_trans_commit(tp, 0); |
| } |
| |
| __uint64_t |
| xfs_default_resblks(xfs_mount_t *mp) |
| { |
| __uint64_t resblks; |
| |
| /* |
| * We default to 5% or 8192 fsbs of space reserved, whichever is |
| * smaller. This is intended to cover concurrent allocation |
| * transactions when we initially hit enospc. These each require a 4 |
| * block reservation. Hence by default we cover roughly 2000 concurrent |
| * allocation reservations. |
| */ |
| resblks = mp->m_sb.sb_dblocks; |
| do_div(resblks, 20); |
| resblks = min_t(__uint64_t, resblks, 8192); |
| return resblks; |
| } |
| |
| /* |
| * This function does the following on an initial mount of a file system: |
| * - reads the superblock from disk and init the mount struct |
| * - if we're a 32-bit kernel, do a size check on the superblock |
| * so we don't mount terabyte filesystems |
| * - init mount struct realtime fields |
| * - allocate inode hash table for fs |
| * - init directory manager |
| * - perform recovery and init the log manager |
| */ |
| int |
| xfs_mountfs( |
| xfs_mount_t *mp) |
| { |
| xfs_sb_t *sbp = &(mp->m_sb); |
| xfs_inode_t *rip; |
| __uint64_t resblks; |
| uint quotamount = 0; |
| uint quotaflags = 0; |
| int error = 0; |
| |
| xfs_sb_mount_common(mp, sbp); |
| |
| /* |
| * Check for a mismatched features2 values. Older kernels |
| * read & wrote into the wrong sb offset for sb_features2 |
| * on some platforms due to xfs_sb_t not being 64bit size aligned |
| * when sb_features2 was added, which made older superblock |
| * reading/writing routines swap it as a 64-bit value. |
| * |
| * For backwards compatibility, we make both slots equal. |
| * |
| * If we detect a mismatched field, we OR the set bits into the |
| * existing features2 field in case it has already been modified; we |
| * don't want to lose any features. We then update the bad location |
| * with the ORed value so that older kernels will see any features2 |
| * flags, and mark the two fields as needing updates once the |
| * transaction subsystem is online. |
| */ |
| if (xfs_sb_has_mismatched_features2(sbp)) { |
| xfs_warn(mp, "correcting sb_features alignment problem"); |
| sbp->sb_features2 |= sbp->sb_bad_features2; |
| sbp->sb_bad_features2 = sbp->sb_features2; |
| mp->m_update_flags |= XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2; |
| |
| /* |
| * Re-check for ATTR2 in case it was found in bad_features2 |
| * slot. |
| */ |
| if (xfs_sb_version_hasattr2(&mp->m_sb) && |
| !(mp->m_flags & XFS_MOUNT_NOATTR2)) |
| mp->m_flags |= XFS_MOUNT_ATTR2; |
| } |
| |
| if (xfs_sb_version_hasattr2(&mp->m_sb) && |
| (mp->m_flags & XFS_MOUNT_NOATTR2)) { |
| xfs_sb_version_removeattr2(&mp->m_sb); |
| mp->m_update_flags |= XFS_SB_FEATURES2; |
| |
| /* update sb_versionnum for the clearing of the morebits */ |
| if (!sbp->sb_features2) |
| mp->m_update_flags |= XFS_SB_VERSIONNUM; |
| } |
| |
| /* |
| * Check if sb_agblocks is aligned at stripe boundary |
| * If sb_agblocks is NOT aligned turn off m_dalign since |
| * allocator alignment is within an ag, therefore ag has |
| * to be aligned at stripe boundary. |
| */ |
| error = xfs_update_alignment(mp); |
| if (error) |
| goto out; |
| |
| xfs_alloc_compute_maxlevels(mp); |
| xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK); |
| xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK); |
| xfs_ialloc_compute_maxlevels(mp); |
| |
| xfs_set_maxicount(mp); |
| |
| error = xfs_uuid_mount(mp); |
| if (error) |
| goto out; |
| |
| /* |
| * Set the minimum read and write sizes |
| */ |
| xfs_set_rw_sizes(mp); |
| |
| /* set the low space thresholds for dynamic preallocation */ |
| xfs_set_low_space_thresholds(mp); |
| |
| /* |
| * Set the inode cluster size. |
| * This may still be overridden by the file system |
| * block size if it is larger than the chosen cluster size. |
| * |
| * For v5 filesystems, scale the cluster size with the inode size to |
| * keep a constant ratio of inode per cluster buffer, but only if mkfs |
| * has set the inode alignment value appropriately for larger cluster |
| * sizes. |
| */ |
| mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE; |
| if (xfs_sb_version_hascrc(&mp->m_sb)) { |
| int new_size = mp->m_inode_cluster_size; |
| |
| new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE; |
| if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size)) |
| mp->m_inode_cluster_size = new_size; |
| } |
| |
| /* |
| * Set inode alignment fields |
| */ |
| xfs_set_inoalignment(mp); |
| |
| /* |
| * Check that the data (and log if separate) is an ok size. |
| */ |
| error = xfs_check_sizes(mp); |
| if (error) |
| goto out_remove_uuid; |
| |
| /* |
| * Initialize realtime fields in the mount structure |
| */ |
| error = xfs_rtmount_init(mp); |
| if (error) { |
| xfs_warn(mp, "RT mount failed"); |
| goto out_remove_uuid; |
| } |
| |
| /* |
| * Copies the low order bits of the timestamp and the randomly |
| * set "sequence" number out of a UUID. |
| */ |
| uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid); |
| |
| mp->m_dmevmask = 0; /* not persistent; set after each mount */ |
| |
| xfs_dir_mount(mp); |
| |
| /* |
| * Initialize the attribute manager's entries. |
| */ |
| mp->m_attr_magicpct = (mp->m_sb.sb_blocksize * 37) / 100; |
| |
| /* |
| * Initialize the precomputed transaction reservations values. |
| */ |
| xfs_trans_init(mp); |
| |
| /* |
| * Allocate and initialize the per-ag data. |
| */ |
| spin_lock_init(&mp->m_perag_lock); |
| INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC); |
| error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi); |
| if (error) { |
| xfs_warn(mp, "Failed per-ag init: %d", error); |
| goto out_remove_uuid; |
| } |
| |
| if (!sbp->sb_logblocks) { |
| xfs_warn(mp, "no log defined"); |
| XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp); |
| error = XFS_ERROR(EFSCORRUPTED); |
| goto out_free_perag; |
| } |
| |
| /* |
| * log's mount-time initialization. Perform 1st part recovery if needed |
| */ |
| error = xfs_log_mount(mp, mp->m_logdev_targp, |
| XFS_FSB_TO_DADDR(mp, sbp->sb_logstart), |
| XFS_FSB_TO_BB(mp, sbp->sb_logblocks)); |
| if (error) { |
| xfs_warn(mp, "log mount failed"); |
| goto out_fail_wait; |
| } |
| |
| /* |
| * Now the log is mounted, we know if it was an unclean shutdown or |
| * not. If it was, with the first phase of recovery has completed, we |
| * have consistent AG blocks on disk. We have not recovered EFIs yet, |
| * but they are recovered transactionally in the second recovery phase |
| * later. |
| * |
| * Hence we can safely re-initialise incore superblock counters from |
| * the per-ag data. These may not be correct if the filesystem was not |
| * cleanly unmounted, so we need to wait for recovery to finish before |
| * doing this. |
| * |
| * If the filesystem was cleanly unmounted, then we can trust the |
| * values in the superblock to be correct and we don't need to do |
| * anything here. |
| * |
| * If we are currently making the filesystem, the initialisation will |
| * fail as the perag data is in an undefined state. |
| */ |
| if (xfs_sb_version_haslazysbcount(&mp->m_sb) && |
| !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) && |
| !mp->m_sb.sb_inprogress) { |
| error = xfs_initialize_perag_data(mp, sbp->sb_agcount); |
| if (error) |
| goto out_fail_wait; |
| } |
| |
| /* |
| * Get and sanity-check the root inode. |
| * Save the pointer to it in the mount structure. |
| */ |
| error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip); |
| if (error) { |
| xfs_warn(mp, "failed to read root inode"); |
| goto out_log_dealloc; |
| } |
| |
| ASSERT(rip != NULL); |
| |
| if (unlikely(!S_ISDIR(rip->i_d.di_mode))) { |
| xfs_warn(mp, "corrupted root inode %llu: not a directory", |
| (unsigned long long)rip->i_ino); |
| xfs_iunlock(rip, XFS_ILOCK_EXCL); |
| XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW, |
| mp); |
| error = XFS_ERROR(EFSCORRUPTED); |
| goto out_rele_rip; |
| } |
| mp->m_rootip = rip; /* save it */ |
| |
| xfs_iunlock(rip, XFS_ILOCK_EXCL); |
| |
| /* |
| * Initialize realtime inode pointers in the mount structure |
| */ |
| error = xfs_rtmount_inodes(mp); |
| if (error) { |
| /* |
| * Free up the root inode. |
| */ |
| xfs_warn(mp, "failed to read RT inodes"); |
| goto out_rele_rip; |
| } |
| |
| /* |
| * If this is a read-only mount defer the superblock updates until |
| * the next remount into writeable mode. Otherwise we would never |
| * perform the update e.g. for the root filesystem. |
| */ |
| if (mp->m_update_flags && !(mp->m_flags & XFS_MOUNT_RDONLY)) { |
| error = xfs_mount_log_sb(mp, mp->m_update_flags); |
| if (error) { |
| xfs_warn(mp, "failed to write sb changes"); |
| goto out_rtunmount; |
| } |
| } |
| |
| /* |
| * Initialise the XFS quota management subsystem for this mount |
| */ |
| if (XFS_IS_QUOTA_RUNNING(mp)) { |
| error = xfs_qm_newmount(mp, "amount, "aflags); |
| if (error) |
| goto out_rtunmount; |
| } else { |
| ASSERT(!XFS_IS_QUOTA_ON(mp)); |
| |
| /* |
| * If a file system had quotas running earlier, but decided to |
| * mount without -o uquota/pquota/gquota options, revoke the |
| * quotachecked license. |
| */ |
| if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) { |
| xfs_notice(mp, "resetting quota flags"); |
| error = xfs_mount_reset_sbqflags(mp); |
| if (error) |
| return error; |
| } |
| } |
| |
| /* |
| * Finish recovering the file system. This part needed to be |
| * delayed until after the root and real-time bitmap inodes |
| * were consistently read in. |
| */ |
| error = xfs_log_mount_finish(mp); |
| if (error) { |
| xfs_warn(mp, "log mount finish failed"); |
| goto out_rtunmount; |
| } |
| |
| /* |
| * Complete the quota initialisation, post-log-replay component. |
| */ |
| if (quotamount) { |
| ASSERT(mp->m_qflags == 0); |
| mp->m_qflags = quotaflags; |
| |
| xfs_qm_mount_quotas(mp); |
| } |
| |
| /* |
| * Now we are mounted, reserve a small amount of unused space for |
| * privileged transactions. This is needed so that transaction |
| * space required for critical operations can dip into this pool |
| * when at ENOSPC. This is needed for operations like create with |
| * attr, unwritten extent conversion at ENOSPC, etc. Data allocations |
| * are not allowed to use this reserved space. |
| * |
| * This may drive us straight to ENOSPC on mount, but that implies |
| * we were already there on the last unmount. Warn if this occurs. |
| */ |
| if (!(mp->m_flags & XFS_MOUNT_RDONLY)) { |
| resblks = xfs_default_resblks(mp); |
| error = xfs_reserve_blocks(mp, &resblks, NULL); |
| if (error) |
| xfs_warn(mp, |
| "Unable to allocate reserve blocks. Continuing without reserve pool."); |
| } |
| |
| return 0; |
| |
| out_rtunmount: |
| xfs_rtunmount_inodes(mp); |
| out_rele_rip: |
| IRELE(rip); |
| out_log_dealloc: |
| xfs_log_unmount(mp); |
| out_fail_wait: |
| if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) |
| xfs_wait_buftarg(mp->m_logdev_targp); |
| xfs_wait_buftarg(mp->m_ddev_targp); |
| out_free_perag: |
| xfs_free_perag(mp); |
| out_remove_uuid: |
| xfs_uuid_unmount(mp); |
| out: |
| return error; |
| } |
| |
| /* |
| * This flushes out the inodes,dquots and the superblock, unmounts the |
| * log and makes sure that incore structures are freed. |
| */ |
| void |
| xfs_unmountfs( |
| struct xfs_mount *mp) |
| { |
| __uint64_t resblks; |
| int error; |
| |
| cancel_delayed_work_sync(&mp->m_eofblocks_work); |
| |
| xfs_qm_unmount_quotas(mp); |
| xfs_rtunmount_inodes(mp); |
| IRELE(mp->m_rootip); |
| |
| /* |
| * We can potentially deadlock here if we have an inode cluster |
| * that has been freed has its buffer still pinned in memory because |
| * the transaction is still sitting in a iclog. The stale inodes |
| * on that buffer will have their flush locks held until the |
| * transaction hits the disk and the callbacks run. the inode |
| * flush takes the flush lock unconditionally and with nothing to |
| * push out the iclog we will never get that unlocked. hence we |
| * need to force the log first. |
| */ |
| xfs_log_force(mp, XFS_LOG_SYNC); |
| |
| /* |
| * Flush all pending changes from the AIL. |
| */ |
| xfs_ail_push_all_sync(mp->m_ail); |
| |
| /* |
| * And reclaim all inodes. At this point there should be no dirty |
| * inodes and none should be pinned or locked, but use synchronous |
| * reclaim just to be sure. We can stop background inode reclaim |
| * here as well if it is still running. |
| */ |
| cancel_delayed_work_sync(&mp->m_reclaim_work); |
| xfs_reclaim_inodes(mp, SYNC_WAIT); |
| |
| xfs_qm_unmount(mp); |
| |
| /* |
| * Unreserve any blocks we have so that when we unmount we don't account |
| * the reserved free space as used. This is really only necessary for |
| * lazy superblock counting because it trusts the incore superblock |
| * counters to be absolutely correct on clean unmount. |
| * |
| * We don't bother correcting this elsewhere for lazy superblock |
| * counting because on mount of an unclean filesystem we reconstruct the |
| * correct counter value and this is irrelevant. |
| * |
| * For non-lazy counter filesystems, this doesn't matter at all because |
| * we only every apply deltas to the superblock and hence the incore |
| * value does not matter.... |
| */ |
| resblks = 0; |
| error = xfs_reserve_blocks(mp, &resblks, NULL); |
| if (error) |
| xfs_warn(mp, "Unable to free reserved block pool. " |
| "Freespace may not be correct on next mount."); |
| |
| error = xfs_log_sbcount(mp); |
| if (error) |
| xfs_warn(mp, "Unable to update superblock counters. " |
| "Freespace may not be correct on next mount."); |
| |
| xfs_log_unmount(mp); |
| xfs_uuid_unmount(mp); |
| |
| #if defined(DEBUG) |
| xfs_errortag_clearall(mp, 0); |
| #endif |
| xfs_free_perag(mp); |
| } |
| |
| int |
| xfs_fs_writable(xfs_mount_t *mp) |
| { |
| return !(mp->m_super->s_writers.frozen || XFS_FORCED_SHUTDOWN(mp) || |
| (mp->m_flags & XFS_MOUNT_RDONLY)); |
| } |
| |
| /* |
| * xfs_log_sbcount |
| * |
| * Sync the superblock counters to disk. |
| * |
| * Note this code can be called during the process of freezing, so |
| * we may need to use the transaction allocator which does not |
| * block when the transaction subsystem is in its frozen state. |
| */ |
| int |
| xfs_log_sbcount(xfs_mount_t *mp) |
| { |
| xfs_trans_t *tp; |
| int error; |
| |
| if (!xfs_fs_writable(mp)) |
| return 0; |
| |
| xfs_icsb_sync_counters(mp, 0); |
| |
| /* |
| * we don't need to do this if we are updating the superblock |
| * counters on every modification. |
| */ |
| if (!xfs_sb_version_haslazysbcount(&mp->m_sb)) |
| return 0; |
| |
| tp = _xfs_trans_alloc(mp, XFS_TRANS_SB_COUNT, KM_SLEEP); |
| error = xfs_trans_reserve(tp, &M_RES(mp)->tr_sb, 0, 0); |
| if (error) { |
| xfs_trans_cancel(tp, 0); |
| return error; |
| } |
| |
| xfs_mod_sb(tp, XFS_SB_IFREE | XFS_SB_ICOUNT | XFS_SB_FDBLOCKS); |
| xfs_trans_set_sync(tp); |
| error = xfs_trans_commit(tp, 0); |
| return error; |
| } |
| |
| /* |
| * xfs_mod_incore_sb_unlocked() is a utility routine commonly used to apply |
| * a delta to a specified field in the in-core superblock. Simply |
| * switch on the field indicated and apply the delta to that field. |
| * Fields are not allowed to dip below zero, so if the delta would |
| * do this do not apply it and return EINVAL. |
| * |
| * The m_sb_lock must be held when this routine is called. |
| */ |
| STATIC int |
| xfs_mod_incore_sb_unlocked( |
| xfs_mount_t *mp, |
| xfs_sb_field_t field, |
| int64_t delta, |
| int rsvd) |
| { |
| int scounter; /* short counter for 32 bit fields */ |
| long long lcounter; /* long counter for 64 bit fields */ |
| long long res_used, rem; |
| |
| /* |
| * With the in-core superblock spin lock held, switch |
| * on the indicated field. Apply the delta to the |
| * proper field. If the fields value would dip below |
| * 0, then do not apply the delta and return EINVAL. |
| */ |
| switch (field) { |
| case XFS_SBS_ICOUNT: |
| lcounter = (long long)mp->m_sb.sb_icount; |
| lcounter += delta; |
| if (lcounter < 0) { |
| ASSERT(0); |
| return XFS_ERROR(EINVAL); |
| } |
| mp->m_sb.sb_icount = lcounter; |
| return 0; |
| case XFS_SBS_IFREE: |
| lcounter = (long long)mp->m_sb.sb_ifree; |
| lcounter += delta; |
| if (lcounter < 0) { |
| ASSERT(0); |
| return XFS_ERROR(EINVAL); |
| } |
| mp->m_sb.sb_ifree = lcounter; |
| return 0; |
| case XFS_SBS_FDBLOCKS: |
| lcounter = (long long) |
| mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp); |
| res_used = (long long)(mp->m_resblks - mp->m_resblks_avail); |
| |
| if (delta > 0) { /* Putting blocks back */ |
| if (res_used > delta) { |
| mp->m_resblks_avail += delta; |
| } else { |
| rem = delta - res_used; |
| mp->m_resblks_avail = mp->m_resblks; |
| lcounter += rem; |
| } |
| } else { /* Taking blocks away */ |
| lcounter += delta; |
| if (lcounter >= 0) { |
| mp->m_sb.sb_fdblocks = lcounter + |
| XFS_ALLOC_SET_ASIDE(mp); |
| return 0; |
| } |
| |
| /* |
| * We are out of blocks, use any available reserved |
| * blocks if were allowed to. |
| */ |
| if (!rsvd) |
| return XFS_ERROR(ENOSPC); |
| |
| lcounter = (long long)mp->m_resblks_avail + delta; |
| if (lcounter >= 0) { |
| mp->m_resblks_avail = lcounter; |
| return 0; |
| } |
| printk_once(KERN_WARNING |
| "Filesystem \"%s\": reserve blocks depleted! " |
| "Consider increasing reserve pool size.", |
| mp->m_fsname); |
| return XFS_ERROR(ENOSPC); |
| } |
| |
| mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp); |
| return 0; |
| case XFS_SBS_FREXTENTS: |
| lcounter = (long long)mp->m_sb.sb_frextents; |
| lcounter += delta; |
| if (lcounter < 0) { |
| return XFS_ERROR(ENOSPC); |
| } |
| mp->m_sb.sb_frextents = lcounter; |
| return 0; |
| case XFS_SBS_DBLOCKS: |
| lcounter = (long long)mp->m_sb.sb_dblocks; |
| lcounter += delta; |
| if (lcounter < 0) { |
| ASSERT(0); |
| return XFS_ERROR(EINVAL); |
| } |
| mp->m_sb.sb_dblocks = lcounter; |
| return 0; |
| case XFS_SBS_AGCOUNT: |
| scounter = mp->m_sb.sb_agcount; |
| scounter += delta; |
| if (scounter < 0) { |
| ASSERT(0); |
| return XFS_ERROR(EINVAL); |
| } |
| mp->m_sb.sb_agcount = scounter; |
| return 0; |
| case XFS_SBS_IMAX_PCT: |
| scounter = mp->m_sb.sb_imax_pct; |
| scounter += delta; |
| if (scounter < 0) { |
| ASSERT(0); |
| return XFS_ERROR(EINVAL); |
| } |
| mp->m_sb.sb_imax_pct = scounter; |
| return 0; |
| case XFS_SBS_REXTSIZE: |
| scounter = mp->m_sb.sb_rextsize; |
| scounter += delta; |
| if (scounter < 0) { |
| ASSERT(0); |
| return XFS_ERROR(EINVAL); |
| } |
| mp->m_sb.sb_rextsize = scounter; |
| return 0; |
| case XFS_SBS_RBMBLOCKS: |
| scounter = mp->m_sb.sb_rbmblocks; |
| scounter += delta; |
| if (scounter < 0) { |
| ASSERT(0); |
| return XFS_ERROR(EINVAL); |
| } |
| mp->m_sb.sb_rbmblocks = scounter; |
| return 0; |
| case XFS_SBS_RBLOCKS: |
| lcounter = (long long)mp->m_sb.sb_rblocks; |
| lcounter += delta; |
| if (lcounter < 0) { |
| ASSERT(0); |
| return XFS_ERROR(EINVAL); |
| } |
| mp->m_sb.sb_rblocks = lcounter; |
| return 0; |
| case XFS_SBS_REXTENTS: |
| lcounter = (long long)mp->m_sb.sb_rextents; |
| lcounter += delta; |
| if (lcounter < 0) { |
| ASSERT(0); |
| return XFS_ERROR(EINVAL); |
| } |
| mp->m_sb.sb_rextents = lcounter; |
| return 0; |
| case XFS_SBS_REXTSLOG: |
| scounter = mp->m_sb.sb_rextslog; |
| scounter += delta; |
| if (scounter < 0) { |
| ASSERT(0); |
| return XFS_ERROR(EINVAL); |
| } |
| mp->m_sb.sb_rextslog = scounter; |
| return 0; |
| default: |
| ASSERT(0); |
| return XFS_ERROR(EINVAL); |
| } |
| } |
| |
| /* |
| * xfs_mod_incore_sb() is used to change a field in the in-core |
| * superblock structure by the specified delta. This modification |
| * is protected by the m_sb_lock. Just use the xfs_mod_incore_sb_unlocked() |
| * routine to do the work. |
| */ |
| int |
| xfs_mod_incore_sb( |
| struct xfs_mount *mp, |
| xfs_sb_field_t field, |
| int64_t delta, |
| int rsvd) |
| { |
| int status; |
| |
| #ifdef HAVE_PERCPU_SB |
| ASSERT(field < XFS_SBS_ICOUNT || field > XFS_SBS_FDBLOCKS); |
| #endif |
| spin_lock(&mp->m_sb_lock); |
| status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd); |
| spin_unlock(&mp->m_sb_lock); |
| |
| return status; |
| } |
| |
| /* |
| * Change more than one field in the in-core superblock structure at a time. |
| * |
| * The fields and changes to those fields are specified in the array of |
| * xfs_mod_sb structures passed in. Either all of the specified deltas |
| * will be applied or none of them will. If any modified field dips below 0, |
| * then all modifications will be backed out and EINVAL will be returned. |
| * |
| * Note that this function may not be used for the superblock values that |
| * are tracked with the in-memory per-cpu counters - a direct call to |
| * xfs_icsb_modify_counters is required for these. |
| */ |
| int |
| xfs_mod_incore_sb_batch( |
| struct xfs_mount *mp, |
| xfs_mod_sb_t *msb, |
| uint nmsb, |
| int rsvd) |
| { |
| xfs_mod_sb_t *msbp; |
| int error = 0; |
| |
| /* |
| * Loop through the array of mod structures and apply each individually. |
| * If any fail, then back out all those which have already been applied. |
| * Do all of this within the scope of the m_sb_lock so that all of the |
| * changes will be atomic. |
| */ |
| spin_lock(&mp->m_sb_lock); |
| for (msbp = msb; msbp < (msb + nmsb); msbp++) { |
| ASSERT(msbp->msb_field < XFS_SBS_ICOUNT || |
| msbp->msb_field > XFS_SBS_FDBLOCKS); |
| |
| error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field, |
| msbp->msb_delta, rsvd); |
| if (error) |
| goto unwind; |
| } |
| spin_unlock(&mp->m_sb_lock); |
| return 0; |
| |
| unwind: |
| while (--msbp >= msb) { |
| error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field, |
| -msbp->msb_delta, rsvd); |
| ASSERT(error == 0); |
| } |
| spin_unlock(&mp->m_sb_lock); |
| return error; |
| } |
| |
| /* |
| * xfs_getsb() is called to obtain the buffer for the superblock. |
| * The buffer is returned locked and read in from disk. |
| * The buffer should be released with a call to xfs_brelse(). |
| * |
| * If the flags parameter is BUF_TRYLOCK, then we'll only return |
| * the superblock buffer if it can be locked without sleeping. |
| * If it can't then we'll return NULL. |
| */ |
| struct xfs_buf * |
| xfs_getsb( |
| struct xfs_mount *mp, |
| int flags) |
| { |
| struct xfs_buf *bp = mp->m_sb_bp; |
| |
| if (!xfs_buf_trylock(bp)) { |
| if (flags & XBF_TRYLOCK) |
| return NULL; |
| xfs_buf_lock(bp); |
| } |
| |
| xfs_buf_hold(bp); |
| ASSERT(XFS_BUF_ISDONE(bp)); |
| return bp; |
| } |
| |
| /* |
| * Used to free the superblock along various error paths. |
| */ |
| void |
| xfs_freesb( |
| struct xfs_mount *mp) |
| { |
| struct xfs_buf *bp = mp->m_sb_bp; |
| |
| xfs_buf_lock(bp); |
| mp->m_sb_bp = NULL; |
| xfs_buf_relse(bp); |
| } |
| |
| /* |
| * Used to log changes to the superblock unit and width fields which could |
| * be altered by the mount options, as well as any potential sb_features2 |
| * fixup. Only the first superblock is updated. |
| */ |
| int |
| xfs_mount_log_sb( |
| xfs_mount_t *mp, |
| __int64_t fields) |
| { |
| xfs_trans_t *tp; |
| int error; |
| |
| ASSERT(fields & (XFS_SB_UNIT | XFS_SB_WIDTH | XFS_SB_UUID | |
| XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2 | |
| XFS_SB_VERSIONNUM)); |
| |
| tp = xfs_trans_alloc(mp, XFS_TRANS_SB_UNIT); |
| error = xfs_trans_reserve(tp, &M_RES(mp)->tr_sb, 0, 0); |
| if (error) { |
| xfs_trans_cancel(tp, 0); |
| return error; |
| } |
| xfs_mod_sb(tp, fields); |
| error = xfs_trans_commit(tp, 0); |
| return error; |
| } |
| |
| /* |
| * If the underlying (data/log/rt) device is readonly, there are some |
| * operations that cannot proceed. |
| */ |
| int |
| xfs_dev_is_read_only( |
| struct xfs_mount *mp, |
| char *message) |
| { |
| if (xfs_readonly_buftarg(mp->m_ddev_targp) || |
| xfs_readonly_buftarg(mp->m_logdev_targp) || |
| (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) { |
| xfs_notice(mp, "%s required on read-only device.", message); |
| xfs_notice(mp, "write access unavailable, cannot proceed."); |
| return EROFS; |
| } |
| return 0; |
| } |
| |
| #ifdef HAVE_PERCPU_SB |
| /* |
| * Per-cpu incore superblock counters |
| * |
| * Simple concept, difficult implementation |
| * |
| * Basically, replace the incore superblock counters with a distributed per cpu |
| * counter for contended fields (e.g. free block count). |
| * |
| * Difficulties arise in that the incore sb is used for ENOSPC checking, and |
| * hence needs to be accurately read when we are running low on space. Hence |
| * there is a method to enable and disable the per-cpu counters based on how |
| * much "stuff" is available in them. |
| * |
| * Basically, a counter is enabled if there is enough free resource to justify |
| * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local |
| * ENOSPC), then we disable the counters to synchronise all callers and |
| * re-distribute the available resources. |
| * |
| * If, once we redistributed the available resources, we still get a failure, |
| * we disable the per-cpu counter and go through the slow path. |
| * |
| * The slow path is the current xfs_mod_incore_sb() function. This means that |
| * when we disable a per-cpu counter, we need to drain its resources back to |
| * the global superblock. We do this after disabling the counter to prevent |
| * more threads from queueing up on the counter. |
| * |
| * Essentially, this means that we still need a lock in the fast path to enable |
| * synchronisation between the global counters and the per-cpu counters. This |
| * is not a problem because the lock will be local to a CPU almost all the time |
| * and have little contention except when we get to ENOSPC conditions. |
| * |
| * Basically, this lock becomes a barrier that enables us to lock out the fast |
| * path while we do things like enabling and disabling counters and |
| * synchronising the counters. |
| * |
| * Locking rules: |
| * |
| * 1. m_sb_lock before picking up per-cpu locks |
| * 2. per-cpu locks always picked up via for_each_online_cpu() order |
| * 3. accurate counter sync requires m_sb_lock + per cpu locks |
| * 4. modifying per-cpu counters requires holding per-cpu lock |
| * 5. modifying global counters requires holding m_sb_lock |
| * 6. enabling or disabling a counter requires holding the m_sb_lock |
| * and _none_ of the per-cpu locks. |
| * |
| * Disabled counters are only ever re-enabled by a balance operation |
| * that results in more free resources per CPU than a given threshold. |
| * To ensure counters don't remain disabled, they are rebalanced when |
| * the global resource goes above a higher threshold (i.e. some hysteresis |
| * is present to prevent thrashing). |
| */ |
| |
| #ifdef CONFIG_HOTPLUG_CPU |
| /* |
| * hot-plug CPU notifier support. |
| * |
| * We need a notifier per filesystem as we need to be able to identify |
| * the filesystem to balance the counters out. This is achieved by |
| * having a notifier block embedded in the xfs_mount_t and doing pointer |
| * magic to get the mount pointer from the notifier block address. |
| */ |
| STATIC int |
| xfs_icsb_cpu_notify( |
| struct notifier_block *nfb, |
| unsigned long action, |
| void *hcpu) |
| { |
| xfs_icsb_cnts_t *cntp; |
| xfs_mount_t *mp; |
| |
| mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier); |
| cntp = (xfs_icsb_cnts_t *) |
| per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu); |
| switch (action) { |
| case CPU_UP_PREPARE: |
| case CPU_UP_PREPARE_FROZEN: |
| /* Easy Case - initialize the area and locks, and |
| * then rebalance when online does everything else for us. */ |
| memset(cntp, 0, sizeof(xfs_icsb_cnts_t)); |
| break; |
| case CPU_ONLINE: |
| case CPU_ONLINE_FROZEN: |
| xfs_icsb_lock(mp); |
| xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0); |
| xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0); |
| xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0); |
| xfs_icsb_unlock(mp); |
| break; |
| case CPU_DEAD: |
| case CPU_DEAD_FROZEN: |
| /* Disable all the counters, then fold the dead cpu's |
| * count into the total on the global superblock and |
| * re-enable the counters. */ |
| xfs_icsb_lock(mp); |
| spin_lock(&mp->m_sb_lock); |
| xfs_icsb_disable_counter(mp, XFS_SBS_ICOUNT); |
| xfs_icsb_disable_counter(mp, XFS_SBS_IFREE); |
| xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS); |
| |
| mp->m_sb.sb_icount += cntp->icsb_icount; |
| mp->m_sb.sb_ifree += cntp->icsb_ifree; |
| mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks; |
| |
| memset(cntp, 0, sizeof(xfs_icsb_cnts_t)); |
| |
| xfs_icsb_balance_counter_locked(mp, XFS_SBS_ICOUNT, 0); |
| xfs_icsb_balance_counter_locked(mp, XFS_SBS_IFREE, 0); |
| xfs_icsb_balance_counter_locked(mp, XFS_SBS_FDBLOCKS, 0); |
| spin_unlock(&mp->m_sb_lock); |
| xfs_icsb_unlock(mp); |
| break; |
| } |
| |
| return NOTIFY_OK; |
| } |
| #endif /* CONFIG_HOTPLUG_CPU */ |
| |
| int |
| xfs_icsb_init_counters( |
| xfs_mount_t *mp) |
| { |
| xfs_icsb_cnts_t *cntp; |
| int i; |
| |
| mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t); |
| if (mp->m_sb_cnts == NULL) |
| return -ENOMEM; |
| |
| for_each_online_cpu(i) { |
| cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); |
| memset(cntp, 0, sizeof(xfs_icsb_cnts_t)); |
| } |
| |
| mutex_init(&mp->m_icsb_mutex); |
| |
| /* |
| * start with all counters disabled so that the |
| * initial balance kicks us off correctly |
| */ |
| mp->m_icsb_counters = -1; |
| |
| #ifdef CONFIG_HOTPLUG_CPU |
| mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify; |
| mp->m_icsb_notifier.priority = 0; |
| register_hotcpu_notifier(&mp->m_icsb_notifier); |
| #endif /* CONFIG_HOTPLUG_CPU */ |
| |
| return 0; |
| } |
| |
| void |
| xfs_icsb_reinit_counters( |
| xfs_mount_t *mp) |
| { |
| xfs_icsb_lock(mp); |
| /* |
| * start with all counters disabled so that the |
| * initial balance kicks us off correctly |
| */ |
| mp->m_icsb_counters = -1; |
| xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0); |
| xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0); |
| xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0); |
| xfs_icsb_unlock(mp); |
| } |
| |
| void |
| xfs_icsb_destroy_counters( |
| xfs_mount_t *mp) |
| { |
| if (mp->m_sb_cnts) { |
| unregister_hotcpu_notifier(&mp->m_icsb_notifier); |
| free_percpu(mp->m_sb_cnts); |
| } |
| mutex_destroy(&mp->m_icsb_mutex); |
| } |
| |
| STATIC void |
| xfs_icsb_lock_cntr( |
| xfs_icsb_cnts_t *icsbp) |
| { |
| while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) { |
| ndelay(1000); |
| } |
| } |
| |
| STATIC void |
| xfs_icsb_unlock_cntr( |
| xfs_icsb_cnts_t *icsbp) |
| { |
| clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags); |
| } |
| |
| |
| STATIC void |
| xfs_icsb_lock_all_counters( |
| xfs_mount_t *mp) |
| { |
| xfs_icsb_cnts_t *cntp; |
| int i; |
| |
| for_each_online_cpu(i) { |
| cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); |
| xfs_icsb_lock_cntr(cntp); |
| } |
| } |
| |
| STATIC void |
| xfs_icsb_unlock_all_counters( |
| xfs_mount_t *mp) |
| { |
| xfs_icsb_cnts_t *cntp; |
| int i; |
| |
| for_each_online_cpu(i) { |
| cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); |
| xfs_icsb_unlock_cntr(cntp); |
| } |
| } |
| |
| STATIC void |
| xfs_icsb_count( |
| xfs_mount_t *mp, |
| xfs_icsb_cnts_t *cnt, |
| int flags) |
| { |
| xfs_icsb_cnts_t *cntp; |
| int i; |
| |
| memset(cnt, 0, sizeof(xfs_icsb_cnts_t)); |
| |
| if (!(flags & XFS_ICSB_LAZY_COUNT)) |
| xfs_icsb_lock_all_counters(mp); |
| |
| for_each_online_cpu(i) { |
| cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); |
| cnt->icsb_icount += cntp->icsb_icount; |
| cnt->icsb_ifree += cntp->icsb_ifree; |
| cnt->icsb_fdblocks += cntp->icsb_fdblocks; |
| } |
| |
| if (!(flags & XFS_ICSB_LAZY_COUNT)) |
| xfs_icsb_unlock_all_counters(mp); |
| } |
| |
| STATIC int |
| xfs_icsb_counter_disabled( |
| xfs_mount_t *mp, |
| xfs_sb_field_t field) |
| { |
| ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS)); |
| return test_bit(field, &mp->m_icsb_counters); |
| } |
| |
| STATIC void |
| xfs_icsb_disable_counter( |
| xfs_mount_t *mp, |
| xfs_sb_field_t field) |
| { |
| xfs_icsb_cnts_t cnt; |
| |
| ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS)); |
| |
| /* |
| * If we are already disabled, then there is nothing to do |
| * here. We check before locking all the counters to avoid |
| * the expensive lock operation when being called in the |
| * slow path and the counter is already disabled. This is |
| * safe because the only time we set or clear this state is under |
| * the m_icsb_mutex. |
| */ |
| if (xfs_icsb_counter_disabled(mp, field)) |
| return; |
| |
| xfs_icsb_lock_all_counters(mp); |
| if (!test_and_set_bit(field, &mp->m_icsb_counters)) { |
| /* drain back to superblock */ |
| |
| xfs_icsb_count(mp, &cnt, XFS_ICSB_LAZY_COUNT); |
| switch(field) { |
| case XFS_SBS_ICOUNT: |
| mp->m_sb.sb_icount = cnt.icsb_icount; |
| break; |
| case XFS_SBS_IFREE: |
| mp->m_sb.sb_ifree = cnt.icsb_ifree; |
| break; |
| case XFS_SBS_FDBLOCKS: |
| mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks; |
| break; |
| default: |
| BUG(); |
| } |
| } |
| |
| xfs_icsb_unlock_all_counters(mp); |
| } |
| |
| STATIC void |
| xfs_icsb_enable_counter( |
| xfs_mount_t *mp, |
| xfs_sb_field_t field, |
| uint64_t count, |
| uint64_t resid) |
| { |
| xfs_icsb_cnts_t *cntp; |
| int i; |
| |
| ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS)); |
| |
| xfs_icsb_lock_all_counters(mp); |
| for_each_online_cpu(i) { |
| cntp = per_cpu_ptr(mp->m_sb_cnts, i); |
| switch (field) { |
| case XFS_SBS_ICOUNT: |
| cntp->icsb_icount = count + resid; |
| break; |
| case XFS_SBS_IFREE: |
| cntp->icsb_ifree = count + resid; |
| break; |
| case XFS_SBS_FDBLOCKS: |
| cntp->icsb_fdblocks = count + resid; |
| break; |
| default: |
| BUG(); |
| break; |
| } |
| resid = 0; |
| } |
| clear_bit(field, &mp->m_icsb_counters); |
| xfs_icsb_unlock_all_counters(mp); |
| } |
| |
| void |
| xfs_icsb_sync_counters_locked( |
| xfs_mount_t *mp, |
| int flags) |
| { |
| xfs_icsb_cnts_t cnt; |
| |
| xfs_icsb_count(mp, &cnt, flags); |
| |
| if (!xfs_icsb_counter_disabled(mp, XFS_SBS_ICOUNT)) |
| mp->m_sb.sb_icount = cnt.icsb_icount; |
| if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE)) |
| mp->m_sb.sb_ifree = cnt.icsb_ifree; |
| if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS)) |
| mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks; |
| } |
| |
| /* |
| * Accurate update of per-cpu counters to incore superblock |
| */ |
| void |
| xfs_icsb_sync_counters( |
| xfs_mount_t *mp, |
| int flags) |
| { |
| spin_lock(&mp->m_sb_lock); |
| xfs_icsb_sync_counters_locked(mp, flags); |
| spin_unlock(&mp->m_sb_lock); |
| } |
| |
| /* |
| * Balance and enable/disable counters as necessary. |
| * |
| * Thresholds for re-enabling counters are somewhat magic. inode counts are |
| * chosen to be the same number as single on disk allocation chunk per CPU, and |
| * free blocks is something far enough zero that we aren't going thrash when we |
| * get near ENOSPC. We also need to supply a minimum we require per cpu to |
| * prevent looping endlessly when xfs_alloc_space asks for more than will |
| * be distributed to a single CPU but each CPU has enough blocks to be |
| * reenabled. |
| * |
| * Note that we can be called when counters are already disabled. |
| * xfs_icsb_disable_counter() optimises the counter locking in this case to |
| * prevent locking every per-cpu counter needlessly. |
| */ |
| |
| #define XFS_ICSB_INO_CNTR_REENABLE (uint64_t)64 |
| #define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \ |
| (uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp)) |
| STATIC void |
| xfs_icsb_balance_counter_locked( |
| xfs_mount_t *mp, |
| xfs_sb_field_t field, |
| int min_per_cpu) |
| { |
| uint64_t count, resid; |
| int weight = num_online_cpus(); |
| uint64_t min = (uint64_t)min_per_cpu; |
| |
| /* disable counter and sync counter */ |
| xfs_icsb_disable_counter(mp, field); |
| |
| /* update counters - first CPU gets residual*/ |
| switch (field) { |
| case XFS_SBS_ICOUNT: |
| count = mp->m_sb.sb_icount; |
| resid = do_div(count, weight); |
| if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE)) |
| return; |
| break; |
| case XFS_SBS_IFREE: |
| count = mp->m_sb.sb_ifree; |
| resid = do_div(count, weight); |
| if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE)) |
| return; |
| break; |
| case XFS_SBS_FDBLOCKS: |
| count = mp->m_sb.sb_fdblocks; |
| resid = do_div(count, weight); |
| if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp))) |
| return; |
| break; |
| default: |
| BUG(); |
| count = resid = 0; /* quiet, gcc */ |
| break; |
| } |
| |
| xfs_icsb_enable_counter(mp, field, count, resid); |
| } |
| |
| STATIC void |
| xfs_icsb_balance_counter( |
| xfs_mount_t *mp, |
| xfs_sb_field_t fields, |
| int min_per_cpu) |
| { |
| spin_lock(&mp->m_sb_lock); |
| xfs_icsb_balance_counter_locked(mp, fields, min_per_cpu); |
| spin_unlock(&mp->m_sb_lock); |
| } |
| |
| int |
| xfs_icsb_modify_counters( |
| xfs_mount_t *mp, |
| xfs_sb_field_t field, |
| int64_t delta, |
| int rsvd) |
| { |
| xfs_icsb_cnts_t *icsbp; |
| long long lcounter; /* long counter for 64 bit fields */ |
| int ret = 0; |
| |
| might_sleep(); |
| again: |
| preempt_disable(); |
| icsbp = this_cpu_ptr(mp->m_sb_cnts); |
| |
| /* |
| * if the counter is disabled, go to slow path |
| */ |
| if (unlikely(xfs_icsb_counter_disabled(mp, field))) |
| goto slow_path; |
| xfs_icsb_lock_cntr(icsbp); |
| if (unlikely(xfs_icsb_counter_disabled(mp, field))) { |
| xfs_icsb_unlock_cntr(icsbp); |
| goto slow_path; |
| } |
| |
| switch (field) { |
| case XFS_SBS_ICOUNT: |
| lcounter = icsbp->icsb_icount; |
| lcounter += delta; |
| if (unlikely(lcounter < 0)) |
| goto balance_counter; |
| icsbp->icsb_icount = lcounter; |
| break; |
| |
| case XFS_SBS_IFREE: |
| lcounter = icsbp->icsb_ifree; |
| lcounter += delta; |
| if (unlikely(lcounter < 0)) |
| goto balance_counter; |
| icsbp->icsb_ifree = lcounter; |
| break; |
| |
| case XFS_SBS_FDBLOCKS: |
| BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0); |
| |
| lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp); |
| lcounter += delta; |
| if (unlikely(lcounter < 0)) |
| goto balance_counter; |
| icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp); |
| break; |
| default: |
| BUG(); |
| break; |
| } |
| xfs_icsb_unlock_cntr(icsbp); |
| preempt_enable(); |
| return 0; |
| |
| slow_path: |
| preempt_enable(); |
| |
| /* |
| * serialise with a mutex so we don't burn lots of cpu on |
| * the superblock lock. We still need to hold the superblock |
| * lock, however, when we modify the global structures. |
| */ |
| xfs_icsb_lock(mp); |
| |
| /* |
| * Now running atomically. |
| * |
| * If the counter is enabled, someone has beaten us to rebalancing. |
| * Drop the lock and try again in the fast path.... |
| */ |
| if (!(xfs_icsb_counter_disabled(mp, field))) { |
| xfs_icsb_unlock(mp); |
| goto again; |
| } |
| |
| /* |
| * The counter is currently disabled. Because we are |
| * running atomically here, we know a rebalance cannot |
| * be in progress. Hence we can go straight to operating |
| * on the global superblock. We do not call xfs_mod_incore_sb() |
| * here even though we need to get the m_sb_lock. Doing so |
| * will cause us to re-enter this function and deadlock. |
| * Hence we get the m_sb_lock ourselves and then call |
| * xfs_mod_incore_sb_unlocked() as the unlocked path operates |
| * directly on the global counters. |
| */ |
| spin_lock(&mp->m_sb_lock); |
| ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd); |
| spin_unlock(&mp->m_sb_lock); |
| |
| /* |
| * Now that we've modified the global superblock, we |
| * may be able to re-enable the distributed counters |
| * (e.g. lots of space just got freed). After that |
| * we are done. |
| */ |
| if (ret != ENOSPC) |
| xfs_icsb_balance_counter(mp, field, 0); |
| xfs_icsb_unlock(mp); |
| return ret; |
| |
| balance_counter: |
| xfs_icsb_unlock_cntr(icsbp); |
| preempt_enable(); |
| |
| /* |
| * We may have multiple threads here if multiple per-cpu |
| * counters run dry at the same time. This will mean we can |
| * do more balances than strictly necessary but it is not |
| * the common slowpath case. |
| */ |
| xfs_icsb_lock(mp); |
| |
| /* |
| * running atomically. |
| * |
| * This will leave the counter in the correct state for future |
| * accesses. After the rebalance, we simply try again and our retry |
| * will either succeed through the fast path or slow path without |
| * another balance operation being required. |
| */ |
| xfs_icsb_balance_counter(mp, field, delta); |
| xfs_icsb_unlock(mp); |
| goto again; |
| } |
| |
| #endif |