blob: e12d13e0cbe9744b790c3b1089ac485aced7a2a8 [file] [log] [blame]
/*
* Driver for Xceive XC5000 "QAM/8VSB single chip tuner"
*
* Copyright (c) 2007 Xceive Corporation
* Copyright (c) 2007 Steven Toth <stoth@linuxtv.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
*
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/videodev2.h>
#include <linux/delay.h>
#include <linux/dvb/frontend.h>
#include <linux/i2c.h>
#include "dvb_frontend.h"
#include "xc5000.h"
#include "tuner-i2c.h"
static int debug;
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "Turn on/off debugging (default:off).");
static int xc5000_load_fw_on_attach;
module_param_named(init_fw, xc5000_load_fw_on_attach, int, 0644);
MODULE_PARM_DESC(init_fw, "Load firmware during driver initialization.");
static DEFINE_MUTEX(xc5000_list_mutex);
static LIST_HEAD(hybrid_tuner_instance_list);
#define dprintk(level, fmt, arg...) if (debug >= level) \
printk(KERN_INFO "%s: " fmt, "xc5000", ## arg)
#define XC5000_DEFAULT_FIRMWARE "dvb-fe-xc5000-1.1.fw"
#define XC5000_DEFAULT_FIRMWARE_SIZE 12332
struct xc5000_priv {
struct tuner_i2c_props i2c_props;
struct list_head hybrid_tuner_instance_list;
u32 if_khz;
u32 freq_hz;
u32 bandwidth;
u8 video_standard;
u8 rf_mode;
};
/* Misc Defines */
#define MAX_TV_STANDARD 23
#define XC_MAX_I2C_WRITE_LENGTH 64
/* Signal Types */
#define XC_RF_MODE_AIR 0
#define XC_RF_MODE_CABLE 1
/* Result codes */
#define XC_RESULT_SUCCESS 0
#define XC_RESULT_RESET_FAILURE 1
#define XC_RESULT_I2C_WRITE_FAILURE 2
#define XC_RESULT_I2C_READ_FAILURE 3
#define XC_RESULT_OUT_OF_RANGE 5
/* Product id */
#define XC_PRODUCT_ID_FW_NOT_LOADED 0x2000
#define XC_PRODUCT_ID_FW_LOADED 0x1388
/* Registers */
#define XREG_INIT 0x00
#define XREG_VIDEO_MODE 0x01
#define XREG_AUDIO_MODE 0x02
#define XREG_RF_FREQ 0x03
#define XREG_D_CODE 0x04
#define XREG_IF_OUT 0x05
#define XREG_SEEK_MODE 0x07
#define XREG_POWER_DOWN 0x0A
#define XREG_SIGNALSOURCE 0x0D /* 0=Air, 1=Cable */
#define XREG_SMOOTHEDCVBS 0x0E
#define XREG_XTALFREQ 0x0F
#define XREG_FINERFFREQ 0x10
#define XREG_DDIMODE 0x11
#define XREG_ADC_ENV 0x00
#define XREG_QUALITY 0x01
#define XREG_FRAME_LINES 0x02
#define XREG_HSYNC_FREQ 0x03
#define XREG_LOCK 0x04
#define XREG_FREQ_ERROR 0x05
#define XREG_SNR 0x06
#define XREG_VERSION 0x07
#define XREG_PRODUCT_ID 0x08
#define XREG_BUSY 0x09
/*
Basic firmware description. This will remain with
the driver for documentation purposes.
This represents an I2C firmware file encoded as a
string of unsigned char. Format is as follows:
char[0 ]=len0_MSB -> len = len_MSB * 256 + len_LSB
char[1 ]=len0_LSB -> length of first write transaction
char[2 ]=data0 -> first byte to be sent
char[3 ]=data1
char[4 ]=data2
char[ ]=...
char[M ]=dataN -> last byte to be sent
char[M+1]=len1_MSB -> len = len_MSB * 256 + len_LSB
char[M+2]=len1_LSB -> length of second write transaction
char[M+3]=data0
char[M+4]=data1
...
etc.
The [len] value should be interpreted as follows:
len= len_MSB _ len_LSB
len=1111_1111_1111_1111 : End of I2C_SEQUENCE
len=0000_0000_0000_0000 : Reset command: Do hardware reset
len=0NNN_NNNN_NNNN_NNNN : Normal transaction: number of bytes = {1:32767)
len=1WWW_WWWW_WWWW_WWWW : Wait command: wait for {1:32767} ms
For the RESET and WAIT commands, the two following bytes will contain
immediately the length of the following transaction.
*/
struct XC_TV_STANDARD {
char *Name;
u16 AudioMode;
u16 VideoMode;
};
/* Tuner standards */
#define MN_NTSC_PAL_BTSC 0
#define MN_NTSC_PAL_A2 1
#define MN_NTSC_PAL_EIAJ 2
#define MN_NTSC_PAL_Mono 3
#define BG_PAL_A2 4
#define BG_PAL_NICAM 5
#define BG_PAL_MONO 6
#define I_PAL_NICAM 7
#define I_PAL_NICAM_MONO 8
#define DK_PAL_A2 9
#define DK_PAL_NICAM 10
#define DK_PAL_MONO 11
#define DK_SECAM_A2DK1 12
#define DK_SECAM_A2LDK3 13
#define DK_SECAM_A2MONO 14
#define L_SECAM_NICAM 15
#define LC_SECAM_NICAM 16
#define DTV6 17
#define DTV8 18
#define DTV7_8 19
#define DTV7 20
#define FM_Radio_INPUT2 21
#define FM_Radio_INPUT1 22
static struct XC_TV_STANDARD XC5000_Standard[MAX_TV_STANDARD] = {
{"M/N-NTSC/PAL-BTSC", 0x0400, 0x8020},
{"M/N-NTSC/PAL-A2", 0x0600, 0x8020},
{"M/N-NTSC/PAL-EIAJ", 0x0440, 0x8020},
{"M/N-NTSC/PAL-Mono", 0x0478, 0x8020},
{"B/G-PAL-A2", 0x0A00, 0x8049},
{"B/G-PAL-NICAM", 0x0C04, 0x8049},
{"B/G-PAL-MONO", 0x0878, 0x8059},
{"I-PAL-NICAM", 0x1080, 0x8009},
{"I-PAL-NICAM-MONO", 0x0E78, 0x8009},
{"D/K-PAL-A2", 0x1600, 0x8009},
{"D/K-PAL-NICAM", 0x0E80, 0x8009},
{"D/K-PAL-MONO", 0x1478, 0x8009},
{"D/K-SECAM-A2 DK1", 0x1200, 0x8009},
{"D/K-SECAM-A2 L/DK3", 0x0E00, 0x8009},
{"D/K-SECAM-A2 MONO", 0x1478, 0x8009},
{"L-SECAM-NICAM", 0x8E82, 0x0009},
{"L'-SECAM-NICAM", 0x8E82, 0x4009},
{"DTV6", 0x00C0, 0x8002},
{"DTV8", 0x00C0, 0x800B},
{"DTV7/8", 0x00C0, 0x801B},
{"DTV7", 0x00C0, 0x8007},
{"FM Radio-INPUT2", 0x9802, 0x9002},
{"FM Radio-INPUT1", 0x0208, 0x9002}
};
static int xc5000_is_firmware_loaded(struct dvb_frontend *fe);
static int xc5000_writeregs(struct xc5000_priv *priv, u8 *buf, u8 len);
static int xc5000_readregs(struct xc5000_priv *priv, u8 *buf, u8 len);
static void xc5000_TunerReset(struct dvb_frontend *fe);
static int xc_send_i2c_data(struct xc5000_priv *priv, u8 *buf, int len)
{
return xc5000_writeregs(priv, buf, len)
? XC_RESULT_I2C_WRITE_FAILURE : XC_RESULT_SUCCESS;
}
static int xc_read_i2c_data(struct xc5000_priv *priv, u8 *buf, int len)
{
return xc5000_readregs(priv, buf, len)
? XC_RESULT_I2C_READ_FAILURE : XC_RESULT_SUCCESS;
}
static int xc_reset(struct dvb_frontend *fe)
{
xc5000_TunerReset(fe);
return XC_RESULT_SUCCESS;
}
static void xc_wait(int wait_ms)
{
msleep(wait_ms);
}
static void xc5000_TunerReset(struct dvb_frontend *fe)
{
struct xc5000_priv *priv = fe->tuner_priv;
int ret;
dprintk(1, "%s()\n", __func__);
if (fe->callback) {
ret = fe->callback(((fe->dvb) && (fe->dvb->priv)) ?
fe->dvb->priv :
priv->i2c_props.adap->algo_data,
DVB_FRONTEND_COMPONENT_TUNER,
XC5000_TUNER_RESET, 0);
if (ret)
printk(KERN_ERR "xc5000: reset failed\n");
} else
printk(KERN_ERR "xc5000: no tuner reset callback function, fatal\n");
}
static int xc_write_reg(struct xc5000_priv *priv, u16 regAddr, u16 i2cData)
{
u8 buf[4];
int WatchDogTimer = 5;
int result;
buf[0] = (regAddr >> 8) & 0xFF;
buf[1] = regAddr & 0xFF;
buf[2] = (i2cData >> 8) & 0xFF;
buf[3] = i2cData & 0xFF;
result = xc_send_i2c_data(priv, buf, 4);
if (result == XC_RESULT_SUCCESS) {
/* wait for busy flag to clear */
while ((WatchDogTimer > 0) && (result == XC_RESULT_SUCCESS)) {
buf[0] = 0;
buf[1] = XREG_BUSY;
result = xc_send_i2c_data(priv, buf, 2);
if (result == XC_RESULT_SUCCESS) {
result = xc_read_i2c_data(priv, buf, 2);
if (result == XC_RESULT_SUCCESS) {
if ((buf[0] == 0) && (buf[1] == 0)) {
/* busy flag cleared */
break;
} else {
xc_wait(100); /* wait 5 ms */
WatchDogTimer--;
}
}
}
}
}
if (WatchDogTimer < 0)
result = XC_RESULT_I2C_WRITE_FAILURE;
return result;
}
static int xc_read_reg(struct xc5000_priv *priv, u16 regAddr, u16 *i2cData)
{
u8 buf[2];
int result;
buf[0] = (regAddr >> 8) & 0xFF;
buf[1] = regAddr & 0xFF;
result = xc_send_i2c_data(priv, buf, 2);
if (result != XC_RESULT_SUCCESS)
return result;
result = xc_read_i2c_data(priv, buf, 2);
if (result != XC_RESULT_SUCCESS)
return result;
*i2cData = buf[0] * 256 + buf[1];
return result;
}
static int xc_load_i2c_sequence(struct dvb_frontend *fe, const u8 *i2c_sequence)
{
struct xc5000_priv *priv = fe->tuner_priv;
int i, nbytes_to_send, result;
unsigned int len, pos, index;
u8 buf[XC_MAX_I2C_WRITE_LENGTH];
index = 0;
while ((i2c_sequence[index] != 0xFF) ||
(i2c_sequence[index + 1] != 0xFF)) {
len = i2c_sequence[index] * 256 + i2c_sequence[index+1];
if (len == 0x0000) {
/* RESET command */
result = xc_reset(fe);
index += 2;
if (result != XC_RESULT_SUCCESS)
return result;
} else if (len & 0x8000) {
/* WAIT command */
xc_wait(len & 0x7FFF);
index += 2;
} else {
/* Send i2c data whilst ensuring individual transactions
* do not exceed XC_MAX_I2C_WRITE_LENGTH bytes.
*/
index += 2;
buf[0] = i2c_sequence[index];
buf[1] = i2c_sequence[index + 1];
pos = 2;
while (pos < len) {
if ((len - pos) > XC_MAX_I2C_WRITE_LENGTH - 2)
nbytes_to_send =
XC_MAX_I2C_WRITE_LENGTH;
else
nbytes_to_send = (len - pos + 2);
for (i = 2; i < nbytes_to_send; i++) {
buf[i] = i2c_sequence[index + pos +
i - 2];
}
result = xc_send_i2c_data(priv, buf,
nbytes_to_send);
if (result != XC_RESULT_SUCCESS)
return result;
pos += nbytes_to_send - 2;
}
index += len;
}
}
return XC_RESULT_SUCCESS;
}
static int xc_initialize(struct xc5000_priv *priv)
{
dprintk(1, "%s()\n", __func__);
return xc_write_reg(priv, XREG_INIT, 0);
}
static int xc_SetTVStandard(struct xc5000_priv *priv,
u16 VideoMode, u16 AudioMode)
{
int ret;
dprintk(1, "%s(0x%04x,0x%04x)\n", __func__, VideoMode, AudioMode);
dprintk(1, "%s() Standard = %s\n",
__func__,
XC5000_Standard[priv->video_standard].Name);
ret = xc_write_reg(priv, XREG_VIDEO_MODE, VideoMode);
if (ret == XC_RESULT_SUCCESS)
ret = xc_write_reg(priv, XREG_AUDIO_MODE, AudioMode);
return ret;
}
static int xc_shutdown(struct xc5000_priv *priv)
{
return XC_RESULT_SUCCESS;
/* Fixme: cannot bring tuner back alive once shutdown
* without reloading the driver modules.
* return xc_write_reg(priv, XREG_POWER_DOWN, 0);
*/
}
static int xc_SetSignalSource(struct xc5000_priv *priv, u16 rf_mode)
{
dprintk(1, "%s(%d) Source = %s\n", __func__, rf_mode,
rf_mode == XC_RF_MODE_AIR ? "ANTENNA" : "CABLE");
if ((rf_mode != XC_RF_MODE_AIR) && (rf_mode != XC_RF_MODE_CABLE)) {
rf_mode = XC_RF_MODE_CABLE;
printk(KERN_ERR
"%s(), Invalid mode, defaulting to CABLE",
__func__);
}
return xc_write_reg(priv, XREG_SIGNALSOURCE, rf_mode);
}
static const struct dvb_tuner_ops xc5000_tuner_ops;
static int xc_set_RF_frequency(struct xc5000_priv *priv, u32 freq_hz)
{
u16 freq_code;
dprintk(1, "%s(%u)\n", __func__, freq_hz);
if ((freq_hz > xc5000_tuner_ops.info.frequency_max) ||
(freq_hz < xc5000_tuner_ops.info.frequency_min))
return XC_RESULT_OUT_OF_RANGE;
freq_code = (u16)(freq_hz / 15625);
return xc_write_reg(priv, XREG_RF_FREQ, freq_code);
}
static int xc_set_IF_frequency(struct xc5000_priv *priv, u32 freq_khz)
{
u32 freq_code = (freq_khz * 1024)/1000;
dprintk(1, "%s(freq_khz = %d) freq_code = 0x%x\n",
__func__, freq_khz, freq_code);
return xc_write_reg(priv, XREG_IF_OUT, freq_code);
}
static int xc_get_ADC_Envelope(struct xc5000_priv *priv, u16 *adc_envelope)
{
return xc_read_reg(priv, XREG_ADC_ENV, adc_envelope);
}
static int xc_get_frequency_error(struct xc5000_priv *priv, u32 *freq_error_hz)
{
int result;
u16 regData;
u32 tmp;
result = xc_read_reg(priv, XREG_FREQ_ERROR, &regData);
if (result)
return result;
tmp = (u32)regData;
(*freq_error_hz) = (tmp * 15625) / 1000;
return result;
}
static int xc_get_lock_status(struct xc5000_priv *priv, u16 *lock_status)
{
return xc_read_reg(priv, XREG_LOCK, lock_status);
}
static int xc_get_version(struct xc5000_priv *priv,
u8 *hw_majorversion, u8 *hw_minorversion,
u8 *fw_majorversion, u8 *fw_minorversion)
{
u16 data;
int result;
result = xc_read_reg(priv, XREG_VERSION, &data);
if (result)
return result;
(*hw_majorversion) = (data >> 12) & 0x0F;
(*hw_minorversion) = (data >> 8) & 0x0F;
(*fw_majorversion) = (data >> 4) & 0x0F;
(*fw_minorversion) = data & 0x0F;
return 0;
}
static int xc_get_hsync_freq(struct xc5000_priv *priv, u32 *hsync_freq_hz)
{
u16 regData;
int result;
result = xc_read_reg(priv, XREG_HSYNC_FREQ, &regData);
if (result)
return result;
(*hsync_freq_hz) = ((regData & 0x0fff) * 763)/100;
return result;
}
static int xc_get_frame_lines(struct xc5000_priv *priv, u16 *frame_lines)
{
return xc_read_reg(priv, XREG_FRAME_LINES, frame_lines);
}
static int xc_get_quality(struct xc5000_priv *priv, u16 *quality)
{
return xc_read_reg(priv, XREG_QUALITY, quality);
}
static u16 WaitForLock(struct xc5000_priv *priv)
{
u16 lockState = 0;
int watchDogCount = 40;
while ((lockState == 0) && (watchDogCount > 0)) {
xc_get_lock_status(priv, &lockState);
if (lockState != 1) {
xc_wait(5);
watchDogCount--;
}
}
return lockState;
}
static int xc_tune_channel(struct xc5000_priv *priv, u32 freq_hz)
{
int found = 0;
dprintk(1, "%s(%u)\n", __func__, freq_hz);
if (xc_set_RF_frequency(priv, freq_hz) != XC_RESULT_SUCCESS)
return 0;
if (WaitForLock(priv) == 1)
found = 1;
return found;
}
static int xc5000_readreg(struct xc5000_priv *priv, u16 reg, u16 *val)
{
u8 buf[2] = { reg >> 8, reg & 0xff };
u8 bval[2] = { 0, 0 };
struct i2c_msg msg[2] = {
{ .addr = priv->i2c_props.addr,
.flags = 0, .buf = &buf[0], .len = 2 },
{ .addr = priv->i2c_props.addr,
.flags = I2C_M_RD, .buf = &bval[0], .len = 2 },
};
if (i2c_transfer(priv->i2c_props.adap, msg, 2) != 2) {
printk(KERN_WARNING "xc5000: I2C read failed\n");
return -EREMOTEIO;
}
*val = (bval[0] << 8) | bval[1];
return 0;
}
static int xc5000_writeregs(struct xc5000_priv *priv, u8 *buf, u8 len)
{
struct i2c_msg msg = { .addr = priv->i2c_props.addr,
.flags = 0, .buf = buf, .len = len };
if (i2c_transfer(priv->i2c_props.adap, &msg, 1) != 1) {
printk(KERN_ERR "xc5000: I2C write failed (len=%i)\n",
(int)len);
return -EREMOTEIO;
}
return 0;
}
static int xc5000_readregs(struct xc5000_priv *priv, u8 *buf, u8 len)
{
struct i2c_msg msg = { .addr = priv->i2c_props.addr,
.flags = I2C_M_RD, .buf = buf, .len = len };
if (i2c_transfer(priv->i2c_props.adap, &msg, 1) != 1) {
printk(KERN_ERR "xc5000 I2C read failed (len=%i)\n", (int)len);
return -EREMOTEIO;
}
return 0;
}
static int xc5000_fwupload(struct dvb_frontend *fe)
{
struct xc5000_priv *priv = fe->tuner_priv;
const struct firmware *fw;
int ret;
/* request the firmware, this will block and timeout */
printk(KERN_INFO "xc5000: waiting for firmware upload (%s)...\n",
XC5000_DEFAULT_FIRMWARE);
ret = request_firmware(&fw, XC5000_DEFAULT_FIRMWARE,
&priv->i2c_props.adap->dev);
if (ret) {
printk(KERN_ERR "xc5000: Upload failed. (file not found?)\n");
ret = XC_RESULT_RESET_FAILURE;
goto out;
} else {
printk(KERN_INFO "xc5000: firmware read %Zu bytes.\n",
fw->size);
ret = XC_RESULT_SUCCESS;
}
if (fw->size != XC5000_DEFAULT_FIRMWARE_SIZE) {
printk(KERN_ERR "xc5000: firmware incorrect size\n");
ret = XC_RESULT_RESET_FAILURE;
} else {
printk(KERN_INFO "xc5000: firmware upload\n");
ret = xc_load_i2c_sequence(fe, fw->data);
}
out:
release_firmware(fw);
return ret;
}
static void xc_debug_dump(struct xc5000_priv *priv)
{
u16 adc_envelope;
u32 freq_error_hz = 0;
u16 lock_status;
u32 hsync_freq_hz = 0;
u16 frame_lines;
u16 quality;
u8 hw_majorversion = 0, hw_minorversion = 0;
u8 fw_majorversion = 0, fw_minorversion = 0;
/* Wait for stats to stabilize.
* Frame Lines needs two frame times after initial lock
* before it is valid.
*/
xc_wait(100);
xc_get_ADC_Envelope(priv, &adc_envelope);
dprintk(1, "*** ADC envelope (0-1023) = %d\n", adc_envelope);
xc_get_frequency_error(priv, &freq_error_hz);
dprintk(1, "*** Frequency error = %d Hz\n", freq_error_hz);
xc_get_lock_status(priv, &lock_status);
dprintk(1, "*** Lock status (0-Wait, 1-Locked, 2-No-signal) = %d\n",
lock_status);
xc_get_version(priv, &hw_majorversion, &hw_minorversion,
&fw_majorversion, &fw_minorversion);
dprintk(1, "*** HW: V%02x.%02x, FW: V%02x.%02x\n",
hw_majorversion, hw_minorversion,
fw_majorversion, fw_minorversion);
xc_get_hsync_freq(priv, &hsync_freq_hz);
dprintk(1, "*** Horizontal sync frequency = %d Hz\n", hsync_freq_hz);
xc_get_frame_lines(priv, &frame_lines);
dprintk(1, "*** Frame lines = %d\n", frame_lines);
xc_get_quality(priv, &quality);
dprintk(1, "*** Quality (0:<8dB, 7:>56dB) = %d\n", quality);
}
static int xc5000_set_params(struct dvb_frontend *fe,
struct dvb_frontend_parameters *params)
{
struct xc5000_priv *priv = fe->tuner_priv;
int ret;
dprintk(1, "%s() frequency=%d (Hz)\n", __func__, params->frequency);
switch (params->u.vsb.modulation) {
case VSB_8:
case VSB_16:
dprintk(1, "%s() VSB modulation\n", __func__);
priv->rf_mode = XC_RF_MODE_AIR;
priv->freq_hz = params->frequency - 1750000;
priv->bandwidth = BANDWIDTH_6_MHZ;
priv->video_standard = DTV6;
break;
case QAM_64:
case QAM_256:
case QAM_AUTO:
dprintk(1, "%s() QAM modulation\n", __func__);
priv->rf_mode = XC_RF_MODE_CABLE;
priv->freq_hz = params->frequency - 1750000;
priv->bandwidth = BANDWIDTH_6_MHZ;
priv->video_standard = DTV6;
break;
default:
return -EINVAL;
}
dprintk(1, "%s() frequency=%d (compensated)\n",
__func__, priv->freq_hz);
ret = xc_SetSignalSource(priv, priv->rf_mode);
if (ret != XC_RESULT_SUCCESS) {
printk(KERN_ERR
"xc5000: xc_SetSignalSource(%d) failed\n",
priv->rf_mode);
return -EREMOTEIO;
}
ret = xc_SetTVStandard(priv,
XC5000_Standard[priv->video_standard].VideoMode,
XC5000_Standard[priv->video_standard].AudioMode);
if (ret != XC_RESULT_SUCCESS) {
printk(KERN_ERR "xc5000: xc_SetTVStandard failed\n");
return -EREMOTEIO;
}
ret = xc_set_IF_frequency(priv, priv->if_khz);
if (ret != XC_RESULT_SUCCESS) {
printk(KERN_ERR "xc5000: xc_Set_IF_frequency(%d) failed\n",
priv->if_khz);
return -EIO;
}
xc_tune_channel(priv, priv->freq_hz);
if (debug)
xc_debug_dump(priv);
return 0;
}
static int xc5000_is_firmware_loaded(struct dvb_frontend *fe)
{
struct xc5000_priv *priv = fe->tuner_priv;
int ret;
u16 id;
ret = xc5000_readreg(priv, XREG_PRODUCT_ID, &id);
if (ret == XC_RESULT_SUCCESS) {
if (id == XC_PRODUCT_ID_FW_NOT_LOADED)
ret = XC_RESULT_RESET_FAILURE;
else
ret = XC_RESULT_SUCCESS;
}
dprintk(1, "%s() returns %s id = 0x%x\n", __func__,
ret == XC_RESULT_SUCCESS ? "True" : "False", id);
return ret;
}
static int xc_load_fw_and_init_tuner(struct dvb_frontend *fe);
static int xc5000_set_analog_params(struct dvb_frontend *fe,
struct analog_parameters *params)
{
struct xc5000_priv *priv = fe->tuner_priv;
int ret;
if (xc5000_is_firmware_loaded(fe) != XC_RESULT_SUCCESS)
xc_load_fw_and_init_tuner(fe);
dprintk(1, "%s() frequency=%d (in units of 62.5khz)\n",
__func__, params->frequency);
priv->rf_mode = XC_RF_MODE_CABLE; /* Fix me: it could be air. */
/* params->frequency is in units of 62.5khz */
priv->freq_hz = params->frequency * 62500;
/* FIX ME: Some video standards may have several possible audio
standards. We simply default to one of them here.
*/
if (params->std & V4L2_STD_MN) {
/* default to BTSC audio standard */
priv->video_standard = MN_NTSC_PAL_BTSC;
goto tune_channel;
}
if (params->std & V4L2_STD_PAL_BG) {
/* default to NICAM audio standard */
priv->video_standard = BG_PAL_NICAM;
goto tune_channel;
}
if (params->std & V4L2_STD_PAL_I) {
/* default to NICAM audio standard */
priv->video_standard = I_PAL_NICAM;
goto tune_channel;
}
if (params->std & V4L2_STD_PAL_DK) {
/* default to NICAM audio standard */
priv->video_standard = DK_PAL_NICAM;
goto tune_channel;
}
if (params->std & V4L2_STD_SECAM_DK) {
/* default to A2 DK1 audio standard */
priv->video_standard = DK_SECAM_A2DK1;
goto tune_channel;
}
if (params->std & V4L2_STD_SECAM_L) {
priv->video_standard = L_SECAM_NICAM;
goto tune_channel;
}
if (params->std & V4L2_STD_SECAM_LC) {
priv->video_standard = LC_SECAM_NICAM;
goto tune_channel;
}
tune_channel:
ret = xc_SetSignalSource(priv, priv->rf_mode);
if (ret != XC_RESULT_SUCCESS) {
printk(KERN_ERR
"xc5000: xc_SetSignalSource(%d) failed\n",
priv->rf_mode);
return -EREMOTEIO;
}
ret = xc_SetTVStandard(priv,
XC5000_Standard[priv->video_standard].VideoMode,
XC5000_Standard[priv->video_standard].AudioMode);
if (ret != XC_RESULT_SUCCESS) {
printk(KERN_ERR "xc5000: xc_SetTVStandard failed\n");
return -EREMOTEIO;
}
xc_tune_channel(priv, priv->freq_hz);
if (debug)
xc_debug_dump(priv);
return 0;
}
static int xc5000_get_frequency(struct dvb_frontend *fe, u32 *freq)
{
struct xc5000_priv *priv = fe->tuner_priv;
dprintk(1, "%s()\n", __func__);
*freq = priv->freq_hz;
return 0;
}
static int xc5000_get_bandwidth(struct dvb_frontend *fe, u32 *bw)
{
struct xc5000_priv *priv = fe->tuner_priv;
dprintk(1, "%s()\n", __func__);
*bw = priv->bandwidth;
return 0;
}
static int xc5000_get_status(struct dvb_frontend *fe, u32 *status)
{
struct xc5000_priv *priv = fe->tuner_priv;
u16 lock_status = 0;
xc_get_lock_status(priv, &lock_status);
dprintk(1, "%s() lock_status = 0x%08x\n", __func__, lock_status);
*status = lock_status;
return 0;
}
static int xc_load_fw_and_init_tuner(struct dvb_frontend *fe)
{
struct xc5000_priv *priv = fe->tuner_priv;
int ret = 0;
if (xc5000_is_firmware_loaded(fe) != XC_RESULT_SUCCESS) {
ret = xc5000_fwupload(fe);
if (ret != XC_RESULT_SUCCESS)
return ret;
}
/* Start the tuner self-calibration process */
ret |= xc_initialize(priv);
/* Wait for calibration to complete.
* We could continue but XC5000 will clock stretch subsequent
* I2C transactions until calibration is complete. This way we
* don't have to rely on clock stretching working.
*/
xc_wait(100);
/* Default to "CABLE" mode */
ret |= xc_write_reg(priv, XREG_SIGNALSOURCE, XC_RF_MODE_CABLE);
return ret;
}
static int xc5000_sleep(struct dvb_frontend *fe)
{
struct xc5000_priv *priv = fe->tuner_priv;
int ret;
dprintk(1, "%s()\n", __func__);
/* On Pinnacle PCTV HD 800i, the tuner cannot be reinitialized
* once shutdown without reloading the driver. Maybe I am not
* doing something right.
*
*/
ret = xc_shutdown(priv);
if (ret != XC_RESULT_SUCCESS) {
printk(KERN_ERR
"xc5000: %s() unable to shutdown tuner\n",
__func__);
return -EREMOTEIO;
} else
return XC_RESULT_SUCCESS;
}
static int xc5000_init(struct dvb_frontend *fe)
{
struct xc5000_priv *priv = fe->tuner_priv;
dprintk(1, "%s()\n", __func__);
if (xc_load_fw_and_init_tuner(fe) != XC_RESULT_SUCCESS) {
printk(KERN_ERR "xc5000: Unable to initialise tuner\n");
return -EREMOTEIO;
}
if (debug)
xc_debug_dump(priv);
return 0;
}
static int xc5000_release(struct dvb_frontend *fe)
{
struct xc5000_priv *priv = fe->tuner_priv;
dprintk(1, "%s()\n", __func__);
mutex_lock(&xc5000_list_mutex);
if (priv)
hybrid_tuner_release_state(priv);
mutex_unlock(&xc5000_list_mutex);
fe->tuner_priv = NULL;
return 0;
}
static const struct dvb_tuner_ops xc5000_tuner_ops = {
.info = {
.name = "Xceive XC5000",
.frequency_min = 1000000,
.frequency_max = 1023000000,
.frequency_step = 50000,
},
.release = xc5000_release,
.init = xc5000_init,
.sleep = xc5000_sleep,
.set_params = xc5000_set_params,
.set_analog_params = xc5000_set_analog_params,
.get_frequency = xc5000_get_frequency,
.get_bandwidth = xc5000_get_bandwidth,
.get_status = xc5000_get_status
};
struct dvb_frontend *xc5000_attach(struct dvb_frontend *fe,
struct i2c_adapter *i2c,
struct xc5000_config *cfg)
{
struct xc5000_priv *priv = NULL;
int instance;
u16 id = 0;
dprintk(1, "%s(%d-%04x)\n", __func__,
i2c ? i2c_adapter_id(i2c) : -1,
cfg ? cfg->i2c_address : -1);
mutex_lock(&xc5000_list_mutex);
instance = hybrid_tuner_request_state(struct xc5000_priv, priv,
hybrid_tuner_instance_list,
i2c, cfg->i2c_address, "xc5000");
switch (instance) {
case 0:
goto fail;
break;
case 1:
/* new tuner instance */
priv->bandwidth = BANDWIDTH_6_MHZ;
priv->if_khz = cfg->if_khz;
fe->tuner_priv = priv;
break;
default:
/* existing tuner instance */
fe->tuner_priv = priv;
break;
}
/* Check if firmware has been loaded. It is possible that another
instance of the driver has loaded the firmware.
*/
if (xc5000_readreg(priv, XREG_PRODUCT_ID, &id) != 0)
goto fail;
switch (id) {
case XC_PRODUCT_ID_FW_LOADED:
printk(KERN_INFO
"xc5000: Successfully identified at address 0x%02x\n",
cfg->i2c_address);
printk(KERN_INFO
"xc5000: Firmware has been loaded previously\n");
break;
case XC_PRODUCT_ID_FW_NOT_LOADED:
printk(KERN_INFO
"xc5000: Successfully identified at address 0x%02x\n",
cfg->i2c_address);
printk(KERN_INFO
"xc5000: Firmware has not been loaded previously\n");
break;
default:
printk(KERN_ERR
"xc5000: Device not found at addr 0x%02x (0x%x)\n",
cfg->i2c_address, id);
goto fail;
}
mutex_unlock(&xc5000_list_mutex);
memcpy(&fe->ops.tuner_ops, &xc5000_tuner_ops,
sizeof(struct dvb_tuner_ops));
if (xc5000_load_fw_on_attach)
xc5000_init(fe);
return fe;
fail:
mutex_unlock(&xc5000_list_mutex);
xc5000_release(fe);
return NULL;
}
EXPORT_SYMBOL(xc5000_attach);
MODULE_AUTHOR("Steven Toth");
MODULE_DESCRIPTION("Xceive xc5000 silicon tuner driver");
MODULE_LICENSE("GPL");