blob: c4cd5081d78bc4b66e34f3c283d9b1f6ba48518c [file] [log] [blame]
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _ASM_EFI_H
#define _ASM_EFI_H
#include <asm/boot.h>
#include <asm/cpufeature.h>
#include <asm/fpsimd.h>
#include <asm/io.h>
#include <asm/memory.h>
#include <asm/mmu_context.h>
#include <asm/neon.h>
#include <asm/ptrace.h>
#include <asm/tlbflush.h>
#ifdef CONFIG_EFI
extern void efi_init(void);
#else
#define efi_init()
#endif
int efi_create_mapping(struct mm_struct *mm, efi_memory_desc_t *md);
int efi_set_mapping_permissions(struct mm_struct *mm, efi_memory_desc_t *md);
#define arch_efi_call_virt_setup() \
({ \
efi_virtmap_load(); \
__efi_fpsimd_begin(); \
})
#define arch_efi_call_virt(p, f, args...) \
({ \
efi_##f##_t *__f; \
__f = p->f; \
__f(args); \
})
#define arch_efi_call_virt_teardown() \
({ \
__efi_fpsimd_end(); \
efi_virtmap_unload(); \
})
#define ARCH_EFI_IRQ_FLAGS_MASK (PSR_D_BIT | PSR_A_BIT | PSR_I_BIT | PSR_F_BIT)
/* arch specific definitions used by the stub code */
/*
* AArch64 requires the DTB to be 8-byte aligned in the first 512MiB from
* start of kernel and may not cross a 2MiB boundary. We set alignment to
* 2MiB so we know it won't cross a 2MiB boundary.
*/
#define EFI_FDT_ALIGN SZ_2M /* used by allocate_new_fdt_and_exit_boot() */
/*
* In some configurations (e.g. VMAP_STACK && 64K pages), stacks built into the
* kernel need greater alignment than we require the segments to be padded to.
*/
#define EFI_KIMG_ALIGN \
(SEGMENT_ALIGN > THREAD_ALIGN ? SEGMENT_ALIGN : THREAD_ALIGN)
/* on arm64, the FDT may be located anywhere in system RAM */
static inline unsigned long efi_get_max_fdt_addr(unsigned long dram_base)
{
return ULONG_MAX;
}
/*
* On arm64, we have to ensure that the initrd ends up in the linear region,
* which is a 1 GB aligned region of size '1UL << (VA_BITS - 1)' that is
* guaranteed to cover the kernel Image.
*
* Since the EFI stub is part of the kernel Image, we can relax the
* usual requirements in Documentation/arm64/booting.txt, which still
* apply to other bootloaders, and are required for some kernel
* configurations.
*/
static inline unsigned long efi_get_max_initrd_addr(unsigned long dram_base,
unsigned long image_addr)
{
return (image_addr & ~(SZ_1G - 1UL)) + (1UL << (VA_BITS - 1));
}
#define efi_call_early(f, ...) sys_table_arg->boottime->f(__VA_ARGS__)
#define __efi_call_early(f, ...) f(__VA_ARGS__)
#define efi_call_runtime(f, ...) sys_table_arg->runtime->f(__VA_ARGS__)
#define efi_is_64bit() (true)
#define efi_call_proto(protocol, f, instance, ...) \
((protocol##_t *)instance)->f(instance, ##__VA_ARGS__)
#define alloc_screen_info(x...) &screen_info
#define free_screen_info(x...)
/* redeclare as 'hidden' so the compiler will generate relative references */
extern struct screen_info screen_info __attribute__((__visibility__("hidden")));
static inline void efifb_setup_from_dmi(struct screen_info *si, const char *opt)
{
}
#define EFI_ALLOC_ALIGN SZ_64K
/*
* On ARM systems, virtually remapped UEFI runtime services are set up in two
* distinct stages:
* - The stub retrieves the final version of the memory map from UEFI, populates
* the virt_addr fields and calls the SetVirtualAddressMap() [SVAM] runtime
* service to communicate the new mapping to the firmware (Note that the new
* mapping is not live at this time)
* - During an early initcall(), the EFI system table is permanently remapped
* and the virtual remapping of the UEFI Runtime Services regions is loaded
* into a private set of page tables. If this all succeeds, the Runtime
* Services are enabled and the EFI_RUNTIME_SERVICES bit set.
*/
static inline void efi_set_pgd(struct mm_struct *mm)
{
__switch_mm(mm);
if (system_uses_ttbr0_pan()) {
if (mm != current->active_mm) {
/*
* Update the current thread's saved ttbr0 since it is
* restored as part of a return from exception. Set
* the hardware TTBR0_EL1 using cpu_switch_mm()
* directly to enable potential errata workarounds.
*/
update_saved_ttbr0(current, mm);
cpu_switch_mm(mm->pgd, mm);
} else {
/*
* Defer the switch to the current thread's TTBR0_EL1
* until uaccess_enable(). Restore the current
* thread's saved ttbr0 corresponding to its active_mm
*/
cpu_set_reserved_ttbr0();
update_saved_ttbr0(current, current->active_mm);
}
}
}
void efi_virtmap_load(void);
void efi_virtmap_unload(void);
#endif /* _ASM_EFI_H */