| /* |
| * Copyright © 2008 Intel Corporation |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the next |
| * paragraph) shall be included in all copies or substantial portions of the |
| * Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS |
| * IN THE SOFTWARE. |
| * |
| * Authors: |
| * Keith Packard <keithp@keithp.com> |
| * |
| */ |
| |
| #include <linux/i2c.h> |
| #include "drmP.h" |
| #include "drm.h" |
| #include "drm_crtc.h" |
| #include "drm_crtc_helper.h" |
| #include "intel_drv.h" |
| #include "i915_drm.h" |
| #include "i915_drv.h" |
| #include "intel_dp.h" |
| |
| |
| #define DP_LINK_STATUS_SIZE 6 |
| #define DP_LINK_CHECK_TIMEOUT (10 * 1000) |
| |
| #define DP_LINK_CONFIGURATION_SIZE 9 |
| |
| #define IS_eDP(i) ((i)->type == INTEL_OUTPUT_EDP) |
| |
| struct intel_dp_priv { |
| uint32_t output_reg; |
| uint32_t DP; |
| uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE]; |
| uint32_t save_DP; |
| uint8_t save_link_configuration[DP_LINK_CONFIGURATION_SIZE]; |
| bool has_audio; |
| int dpms_mode; |
| uint8_t link_bw; |
| uint8_t lane_count; |
| uint8_t dpcd[4]; |
| struct intel_output *intel_output; |
| struct i2c_adapter adapter; |
| struct i2c_algo_dp_aux_data algo; |
| }; |
| |
| static void |
| intel_dp_link_train(struct intel_output *intel_output, uint32_t DP, |
| uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE]); |
| |
| static void |
| intel_dp_link_down(struct intel_output *intel_output, uint32_t DP); |
| |
| void |
| intel_edp_link_config (struct intel_output *intel_output, |
| int *lane_num, int *link_bw) |
| { |
| struct intel_dp_priv *dp_priv = intel_output->dev_priv; |
| |
| *lane_num = dp_priv->lane_count; |
| if (dp_priv->link_bw == DP_LINK_BW_1_62) |
| *link_bw = 162000; |
| else if (dp_priv->link_bw == DP_LINK_BW_2_7) |
| *link_bw = 270000; |
| } |
| |
| static int |
| intel_dp_max_lane_count(struct intel_output *intel_output) |
| { |
| struct intel_dp_priv *dp_priv = intel_output->dev_priv; |
| int max_lane_count = 4; |
| |
| if (dp_priv->dpcd[0] >= 0x11) { |
| max_lane_count = dp_priv->dpcd[2] & 0x1f; |
| switch (max_lane_count) { |
| case 1: case 2: case 4: |
| break; |
| default: |
| max_lane_count = 4; |
| } |
| } |
| return max_lane_count; |
| } |
| |
| static int |
| intel_dp_max_link_bw(struct intel_output *intel_output) |
| { |
| struct intel_dp_priv *dp_priv = intel_output->dev_priv; |
| int max_link_bw = dp_priv->dpcd[1]; |
| |
| switch (max_link_bw) { |
| case DP_LINK_BW_1_62: |
| case DP_LINK_BW_2_7: |
| break; |
| default: |
| max_link_bw = DP_LINK_BW_1_62; |
| break; |
| } |
| return max_link_bw; |
| } |
| |
| static int |
| intel_dp_link_clock(uint8_t link_bw) |
| { |
| if (link_bw == DP_LINK_BW_2_7) |
| return 270000; |
| else |
| return 162000; |
| } |
| |
| /* I think this is a fiction */ |
| static int |
| intel_dp_link_required(int pixel_clock) |
| { |
| return pixel_clock * 3; |
| } |
| |
| static int |
| intel_dp_mode_valid(struct drm_connector *connector, |
| struct drm_display_mode *mode) |
| { |
| struct intel_output *intel_output = to_intel_output(connector); |
| int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_output)); |
| int max_lanes = intel_dp_max_lane_count(intel_output); |
| |
| if (intel_dp_link_required(mode->clock) > max_link_clock * max_lanes) |
| return MODE_CLOCK_HIGH; |
| |
| if (mode->clock < 10000) |
| return MODE_CLOCK_LOW; |
| |
| return MODE_OK; |
| } |
| |
| static uint32_t |
| pack_aux(uint8_t *src, int src_bytes) |
| { |
| int i; |
| uint32_t v = 0; |
| |
| if (src_bytes > 4) |
| src_bytes = 4; |
| for (i = 0; i < src_bytes; i++) |
| v |= ((uint32_t) src[i]) << ((3-i) * 8); |
| return v; |
| } |
| |
| static void |
| unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes) |
| { |
| int i; |
| if (dst_bytes > 4) |
| dst_bytes = 4; |
| for (i = 0; i < dst_bytes; i++) |
| dst[i] = src >> ((3-i) * 8); |
| } |
| |
| /* hrawclock is 1/4 the FSB frequency */ |
| static int |
| intel_hrawclk(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| uint32_t clkcfg; |
| |
| clkcfg = I915_READ(CLKCFG); |
| switch (clkcfg & CLKCFG_FSB_MASK) { |
| case CLKCFG_FSB_400: |
| return 100; |
| case CLKCFG_FSB_533: |
| return 133; |
| case CLKCFG_FSB_667: |
| return 166; |
| case CLKCFG_FSB_800: |
| return 200; |
| case CLKCFG_FSB_1067: |
| return 266; |
| case CLKCFG_FSB_1333: |
| return 333; |
| /* these two are just a guess; one of them might be right */ |
| case CLKCFG_FSB_1600: |
| case CLKCFG_FSB_1600_ALT: |
| return 400; |
| default: |
| return 133; |
| } |
| } |
| |
| static int |
| intel_dp_aux_ch(struct intel_output *intel_output, |
| uint8_t *send, int send_bytes, |
| uint8_t *recv, int recv_size) |
| { |
| struct intel_dp_priv *dp_priv = intel_output->dev_priv; |
| uint32_t output_reg = dp_priv->output_reg; |
| struct drm_device *dev = intel_output->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| uint32_t ch_ctl = output_reg + 0x10; |
| uint32_t ch_data = ch_ctl + 4; |
| int i; |
| int recv_bytes; |
| uint32_t ctl; |
| uint32_t status; |
| uint32_t aux_clock_divider; |
| int try; |
| |
| /* The clock divider is based off the hrawclk, |
| * and would like to run at 2MHz. So, take the |
| * hrawclk value and divide by 2 and use that |
| */ |
| if (IS_eDP(intel_output)) |
| aux_clock_divider = 225; /* eDP input clock at 450Mhz */ |
| else if (IS_IRONLAKE(dev)) |
| aux_clock_divider = 62; /* IRL input clock fixed at 125Mhz */ |
| else |
| aux_clock_divider = intel_hrawclk(dev) / 2; |
| |
| /* Must try at least 3 times according to DP spec */ |
| for (try = 0; try < 5; try++) { |
| /* Load the send data into the aux channel data registers */ |
| for (i = 0; i < send_bytes; i += 4) { |
| uint32_t d = pack_aux(send + i, send_bytes - i); |
| |
| I915_WRITE(ch_data + i, d); |
| } |
| |
| ctl = (DP_AUX_CH_CTL_SEND_BUSY | |
| DP_AUX_CH_CTL_TIME_OUT_400us | |
| (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) | |
| (5 << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) | |
| (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) | |
| DP_AUX_CH_CTL_DONE | |
| DP_AUX_CH_CTL_TIME_OUT_ERROR | |
| DP_AUX_CH_CTL_RECEIVE_ERROR); |
| |
| /* Send the command and wait for it to complete */ |
| I915_WRITE(ch_ctl, ctl); |
| (void) I915_READ(ch_ctl); |
| for (;;) { |
| udelay(100); |
| status = I915_READ(ch_ctl); |
| if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0) |
| break; |
| } |
| |
| /* Clear done status and any errors */ |
| I915_WRITE(ch_ctl, (status | |
| DP_AUX_CH_CTL_DONE | |
| DP_AUX_CH_CTL_TIME_OUT_ERROR | |
| DP_AUX_CH_CTL_RECEIVE_ERROR)); |
| (void) I915_READ(ch_ctl); |
| if ((status & DP_AUX_CH_CTL_TIME_OUT_ERROR) == 0) |
| break; |
| } |
| |
| if ((status & DP_AUX_CH_CTL_DONE) == 0) { |
| DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status); |
| return -EBUSY; |
| } |
| |
| /* Check for timeout or receive error. |
| * Timeouts occur when the sink is not connected |
| */ |
| if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) { |
| DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status); |
| return -EIO; |
| } |
| |
| /* Timeouts occur when the device isn't connected, so they're |
| * "normal" -- don't fill the kernel log with these */ |
| if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) { |
| DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status); |
| return -ETIMEDOUT; |
| } |
| |
| /* Unload any bytes sent back from the other side */ |
| recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >> |
| DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT); |
| |
| if (recv_bytes > recv_size) |
| recv_bytes = recv_size; |
| |
| for (i = 0; i < recv_bytes; i += 4) { |
| uint32_t d = I915_READ(ch_data + i); |
| |
| unpack_aux(d, recv + i, recv_bytes - i); |
| } |
| |
| return recv_bytes; |
| } |
| |
| /* Write data to the aux channel in native mode */ |
| static int |
| intel_dp_aux_native_write(struct intel_output *intel_output, |
| uint16_t address, uint8_t *send, int send_bytes) |
| { |
| int ret; |
| uint8_t msg[20]; |
| int msg_bytes; |
| uint8_t ack; |
| |
| if (send_bytes > 16) |
| return -1; |
| msg[0] = AUX_NATIVE_WRITE << 4; |
| msg[1] = address >> 8; |
| msg[2] = address & 0xff; |
| msg[3] = send_bytes - 1; |
| memcpy(&msg[4], send, send_bytes); |
| msg_bytes = send_bytes + 4; |
| for (;;) { |
| ret = intel_dp_aux_ch(intel_output, msg, msg_bytes, &ack, 1); |
| if (ret < 0) |
| return ret; |
| if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) |
| break; |
| else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER) |
| udelay(100); |
| else |
| return -EIO; |
| } |
| return send_bytes; |
| } |
| |
| /* Write a single byte to the aux channel in native mode */ |
| static int |
| intel_dp_aux_native_write_1(struct intel_output *intel_output, |
| uint16_t address, uint8_t byte) |
| { |
| return intel_dp_aux_native_write(intel_output, address, &byte, 1); |
| } |
| |
| /* read bytes from a native aux channel */ |
| static int |
| intel_dp_aux_native_read(struct intel_output *intel_output, |
| uint16_t address, uint8_t *recv, int recv_bytes) |
| { |
| uint8_t msg[4]; |
| int msg_bytes; |
| uint8_t reply[20]; |
| int reply_bytes; |
| uint8_t ack; |
| int ret; |
| |
| msg[0] = AUX_NATIVE_READ << 4; |
| msg[1] = address >> 8; |
| msg[2] = address & 0xff; |
| msg[3] = recv_bytes - 1; |
| |
| msg_bytes = 4; |
| reply_bytes = recv_bytes + 1; |
| |
| for (;;) { |
| ret = intel_dp_aux_ch(intel_output, msg, msg_bytes, |
| reply, reply_bytes); |
| if (ret == 0) |
| return -EPROTO; |
| if (ret < 0) |
| return ret; |
| ack = reply[0]; |
| if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) { |
| memcpy(recv, reply + 1, ret - 1); |
| return ret - 1; |
| } |
| else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER) |
| udelay(100); |
| else |
| return -EIO; |
| } |
| } |
| |
| static int |
| intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, |
| uint8_t *send, int send_bytes, |
| uint8_t *recv, int recv_bytes) |
| { |
| struct intel_dp_priv *dp_priv = container_of(adapter, |
| struct intel_dp_priv, |
| adapter); |
| struct intel_output *intel_output = dp_priv->intel_output; |
| |
| return intel_dp_aux_ch(intel_output, |
| send, send_bytes, recv, recv_bytes); |
| } |
| |
| static int |
| intel_dp_i2c_init(struct intel_output *intel_output, const char *name) |
| { |
| struct intel_dp_priv *dp_priv = intel_output->dev_priv; |
| |
| DRM_DEBUG_KMS("i2c_init %s\n", name); |
| dp_priv->algo.running = false; |
| dp_priv->algo.address = 0; |
| dp_priv->algo.aux_ch = intel_dp_i2c_aux_ch; |
| |
| memset(&dp_priv->adapter, '\0', sizeof (dp_priv->adapter)); |
| dp_priv->adapter.owner = THIS_MODULE; |
| dp_priv->adapter.class = I2C_CLASS_DDC; |
| strncpy (dp_priv->adapter.name, name, sizeof(dp_priv->adapter.name) - 1); |
| dp_priv->adapter.name[sizeof(dp_priv->adapter.name) - 1] = '\0'; |
| dp_priv->adapter.algo_data = &dp_priv->algo; |
| dp_priv->adapter.dev.parent = &intel_output->base.kdev; |
| |
| return i2c_dp_aux_add_bus(&dp_priv->adapter); |
| } |
| |
| static bool |
| intel_dp_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode, |
| struct drm_display_mode *adjusted_mode) |
| { |
| struct intel_output *intel_output = enc_to_intel_output(encoder); |
| struct intel_dp_priv *dp_priv = intel_output->dev_priv; |
| int lane_count, clock; |
| int max_lane_count = intel_dp_max_lane_count(intel_output); |
| int max_clock = intel_dp_max_link_bw(intel_output) == DP_LINK_BW_2_7 ? 1 : 0; |
| static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 }; |
| |
| for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) { |
| for (clock = 0; clock <= max_clock; clock++) { |
| int link_avail = intel_dp_link_clock(bws[clock]) * lane_count; |
| |
| if (intel_dp_link_required(mode->clock) <= link_avail) { |
| dp_priv->link_bw = bws[clock]; |
| dp_priv->lane_count = lane_count; |
| adjusted_mode->clock = intel_dp_link_clock(dp_priv->link_bw); |
| DRM_DEBUG_KMS("Display port link bw %02x lane " |
| "count %d clock %d\n", |
| dp_priv->link_bw, dp_priv->lane_count, |
| adjusted_mode->clock); |
| return true; |
| } |
| } |
| } |
| return false; |
| } |
| |
| struct intel_dp_m_n { |
| uint32_t tu; |
| uint32_t gmch_m; |
| uint32_t gmch_n; |
| uint32_t link_m; |
| uint32_t link_n; |
| }; |
| |
| static void |
| intel_reduce_ratio(uint32_t *num, uint32_t *den) |
| { |
| while (*num > 0xffffff || *den > 0xffffff) { |
| *num >>= 1; |
| *den >>= 1; |
| } |
| } |
| |
| static void |
| intel_dp_compute_m_n(int bytes_per_pixel, |
| int nlanes, |
| int pixel_clock, |
| int link_clock, |
| struct intel_dp_m_n *m_n) |
| { |
| m_n->tu = 64; |
| m_n->gmch_m = pixel_clock * bytes_per_pixel; |
| m_n->gmch_n = link_clock * nlanes; |
| intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n); |
| m_n->link_m = pixel_clock; |
| m_n->link_n = link_clock; |
| intel_reduce_ratio(&m_n->link_m, &m_n->link_n); |
| } |
| |
| void |
| intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode, |
| struct drm_display_mode *adjusted_mode) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_mode_config *mode_config = &dev->mode_config; |
| struct drm_connector *connector; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| int lane_count = 4; |
| struct intel_dp_m_n m_n; |
| |
| /* |
| * Find the lane count in the intel_output private |
| */ |
| list_for_each_entry(connector, &mode_config->connector_list, head) { |
| struct intel_output *intel_output = to_intel_output(connector); |
| struct intel_dp_priv *dp_priv = intel_output->dev_priv; |
| |
| if (!connector->encoder || connector->encoder->crtc != crtc) |
| continue; |
| |
| if (intel_output->type == INTEL_OUTPUT_DISPLAYPORT) { |
| lane_count = dp_priv->lane_count; |
| break; |
| } |
| } |
| |
| /* |
| * Compute the GMCH and Link ratios. The '3' here is |
| * the number of bytes_per_pixel post-LUT, which we always |
| * set up for 8-bits of R/G/B, or 3 bytes total. |
| */ |
| intel_dp_compute_m_n(3, lane_count, |
| mode->clock, adjusted_mode->clock, &m_n); |
| |
| if (IS_IRONLAKE(dev)) { |
| if (intel_crtc->pipe == 0) { |
| I915_WRITE(TRANSA_DATA_M1, |
| ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) | |
| m_n.gmch_m); |
| I915_WRITE(TRANSA_DATA_N1, m_n.gmch_n); |
| I915_WRITE(TRANSA_DP_LINK_M1, m_n.link_m); |
| I915_WRITE(TRANSA_DP_LINK_N1, m_n.link_n); |
| } else { |
| I915_WRITE(TRANSB_DATA_M1, |
| ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) | |
| m_n.gmch_m); |
| I915_WRITE(TRANSB_DATA_N1, m_n.gmch_n); |
| I915_WRITE(TRANSB_DP_LINK_M1, m_n.link_m); |
| I915_WRITE(TRANSB_DP_LINK_N1, m_n.link_n); |
| } |
| } else { |
| if (intel_crtc->pipe == 0) { |
| I915_WRITE(PIPEA_GMCH_DATA_M, |
| ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) | |
| m_n.gmch_m); |
| I915_WRITE(PIPEA_GMCH_DATA_N, |
| m_n.gmch_n); |
| I915_WRITE(PIPEA_DP_LINK_M, m_n.link_m); |
| I915_WRITE(PIPEA_DP_LINK_N, m_n.link_n); |
| } else { |
| I915_WRITE(PIPEB_GMCH_DATA_M, |
| ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) | |
| m_n.gmch_m); |
| I915_WRITE(PIPEB_GMCH_DATA_N, |
| m_n.gmch_n); |
| I915_WRITE(PIPEB_DP_LINK_M, m_n.link_m); |
| I915_WRITE(PIPEB_DP_LINK_N, m_n.link_n); |
| } |
| } |
| } |
| |
| static void |
| intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode, |
| struct drm_display_mode *adjusted_mode) |
| { |
| struct intel_output *intel_output = enc_to_intel_output(encoder); |
| struct intel_dp_priv *dp_priv = intel_output->dev_priv; |
| struct drm_crtc *crtc = intel_output->enc.crtc; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| |
| dp_priv->DP = (DP_LINK_TRAIN_OFF | |
| DP_VOLTAGE_0_4 | |
| DP_PRE_EMPHASIS_0 | |
| DP_SYNC_VS_HIGH | |
| DP_SYNC_HS_HIGH); |
| |
| switch (dp_priv->lane_count) { |
| case 1: |
| dp_priv->DP |= DP_PORT_WIDTH_1; |
| break; |
| case 2: |
| dp_priv->DP |= DP_PORT_WIDTH_2; |
| break; |
| case 4: |
| dp_priv->DP |= DP_PORT_WIDTH_4; |
| break; |
| } |
| if (dp_priv->has_audio) |
| dp_priv->DP |= DP_AUDIO_OUTPUT_ENABLE; |
| |
| memset(dp_priv->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE); |
| dp_priv->link_configuration[0] = dp_priv->link_bw; |
| dp_priv->link_configuration[1] = dp_priv->lane_count; |
| |
| /* |
| * Check for DPCD version > 1.1, |
| * enable enahanced frame stuff in that case |
| */ |
| if (dp_priv->dpcd[0] >= 0x11) { |
| dp_priv->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN; |
| dp_priv->DP |= DP_ENHANCED_FRAMING; |
| } |
| |
| if (intel_crtc->pipe == 1) |
| dp_priv->DP |= DP_PIPEB_SELECT; |
| |
| if (IS_eDP(intel_output)) { |
| /* don't miss out required setting for eDP */ |
| dp_priv->DP |= DP_PLL_ENABLE; |
| if (adjusted_mode->clock < 200000) |
| dp_priv->DP |= DP_PLL_FREQ_160MHZ; |
| else |
| dp_priv->DP |= DP_PLL_FREQ_270MHZ; |
| } |
| } |
| |
| static void ironlake_edp_backlight_on (struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| u32 pp; |
| |
| DRM_DEBUG_KMS("\n"); |
| pp = I915_READ(PCH_PP_CONTROL); |
| pp |= EDP_BLC_ENABLE; |
| I915_WRITE(PCH_PP_CONTROL, pp); |
| } |
| |
| static void ironlake_edp_backlight_off (struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| u32 pp; |
| |
| DRM_DEBUG_KMS("\n"); |
| pp = I915_READ(PCH_PP_CONTROL); |
| pp &= ~EDP_BLC_ENABLE; |
| I915_WRITE(PCH_PP_CONTROL, pp); |
| } |
| |
| static void |
| intel_dp_dpms(struct drm_encoder *encoder, int mode) |
| { |
| struct intel_output *intel_output = enc_to_intel_output(encoder); |
| struct intel_dp_priv *dp_priv = intel_output->dev_priv; |
| struct drm_device *dev = intel_output->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| uint32_t dp_reg = I915_READ(dp_priv->output_reg); |
| |
| if (mode != DRM_MODE_DPMS_ON) { |
| if (dp_reg & DP_PORT_EN) { |
| intel_dp_link_down(intel_output, dp_priv->DP); |
| if (IS_eDP(intel_output)) |
| ironlake_edp_backlight_off(dev); |
| } |
| } else { |
| if (!(dp_reg & DP_PORT_EN)) { |
| intel_dp_link_train(intel_output, dp_priv->DP, dp_priv->link_configuration); |
| if (IS_eDP(intel_output)) |
| ironlake_edp_backlight_on(dev); |
| } |
| } |
| dp_priv->dpms_mode = mode; |
| } |
| |
| /* |
| * Fetch AUX CH registers 0x202 - 0x207 which contain |
| * link status information |
| */ |
| static bool |
| intel_dp_get_link_status(struct intel_output *intel_output, |
| uint8_t link_status[DP_LINK_STATUS_SIZE]) |
| { |
| int ret; |
| |
| ret = intel_dp_aux_native_read(intel_output, |
| DP_LANE0_1_STATUS, |
| link_status, DP_LINK_STATUS_SIZE); |
| if (ret != DP_LINK_STATUS_SIZE) |
| return false; |
| return true; |
| } |
| |
| static uint8_t |
| intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE], |
| int r) |
| { |
| return link_status[r - DP_LANE0_1_STATUS]; |
| } |
| |
| static void |
| intel_dp_save(struct drm_connector *connector) |
| { |
| struct intel_output *intel_output = to_intel_output(connector); |
| struct drm_device *dev = intel_output->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_dp_priv *dp_priv = intel_output->dev_priv; |
| |
| dp_priv->save_DP = I915_READ(dp_priv->output_reg); |
| intel_dp_aux_native_read(intel_output, DP_LINK_BW_SET, |
| dp_priv->save_link_configuration, |
| sizeof (dp_priv->save_link_configuration)); |
| } |
| |
| static uint8_t |
| intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE], |
| int lane) |
| { |
| int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1); |
| int s = ((lane & 1) ? |
| DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT : |
| DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT); |
| uint8_t l = intel_dp_link_status(link_status, i); |
| |
| return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT; |
| } |
| |
| static uint8_t |
| intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE], |
| int lane) |
| { |
| int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1); |
| int s = ((lane & 1) ? |
| DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT : |
| DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT); |
| uint8_t l = intel_dp_link_status(link_status, i); |
| |
| return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT; |
| } |
| |
| |
| #if 0 |
| static char *voltage_names[] = { |
| "0.4V", "0.6V", "0.8V", "1.2V" |
| }; |
| static char *pre_emph_names[] = { |
| "0dB", "3.5dB", "6dB", "9.5dB" |
| }; |
| static char *link_train_names[] = { |
| "pattern 1", "pattern 2", "idle", "off" |
| }; |
| #endif |
| |
| /* |
| * These are source-specific values; current Intel hardware supports |
| * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB |
| */ |
| #define I830_DP_VOLTAGE_MAX DP_TRAIN_VOLTAGE_SWING_800 |
| |
| static uint8_t |
| intel_dp_pre_emphasis_max(uint8_t voltage_swing) |
| { |
| switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) { |
| case DP_TRAIN_VOLTAGE_SWING_400: |
| return DP_TRAIN_PRE_EMPHASIS_6; |
| case DP_TRAIN_VOLTAGE_SWING_600: |
| return DP_TRAIN_PRE_EMPHASIS_6; |
| case DP_TRAIN_VOLTAGE_SWING_800: |
| return DP_TRAIN_PRE_EMPHASIS_3_5; |
| case DP_TRAIN_VOLTAGE_SWING_1200: |
| default: |
| return DP_TRAIN_PRE_EMPHASIS_0; |
| } |
| } |
| |
| static void |
| intel_get_adjust_train(struct intel_output *intel_output, |
| uint8_t link_status[DP_LINK_STATUS_SIZE], |
| int lane_count, |
| uint8_t train_set[4]) |
| { |
| uint8_t v = 0; |
| uint8_t p = 0; |
| int lane; |
| |
| for (lane = 0; lane < lane_count; lane++) { |
| uint8_t this_v = intel_get_adjust_request_voltage(link_status, lane); |
| uint8_t this_p = intel_get_adjust_request_pre_emphasis(link_status, lane); |
| |
| if (this_v > v) |
| v = this_v; |
| if (this_p > p) |
| p = this_p; |
| } |
| |
| if (v >= I830_DP_VOLTAGE_MAX) |
| v = I830_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED; |
| |
| if (p >= intel_dp_pre_emphasis_max(v)) |
| p = intel_dp_pre_emphasis_max(v) | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED; |
| |
| for (lane = 0; lane < 4; lane++) |
| train_set[lane] = v | p; |
| } |
| |
| static uint32_t |
| intel_dp_signal_levels(uint8_t train_set, int lane_count) |
| { |
| uint32_t signal_levels = 0; |
| |
| switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { |
| case DP_TRAIN_VOLTAGE_SWING_400: |
| default: |
| signal_levels |= DP_VOLTAGE_0_4; |
| break; |
| case DP_TRAIN_VOLTAGE_SWING_600: |
| signal_levels |= DP_VOLTAGE_0_6; |
| break; |
| case DP_TRAIN_VOLTAGE_SWING_800: |
| signal_levels |= DP_VOLTAGE_0_8; |
| break; |
| case DP_TRAIN_VOLTAGE_SWING_1200: |
| signal_levels |= DP_VOLTAGE_1_2; |
| break; |
| } |
| switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) { |
| case DP_TRAIN_PRE_EMPHASIS_0: |
| default: |
| signal_levels |= DP_PRE_EMPHASIS_0; |
| break; |
| case DP_TRAIN_PRE_EMPHASIS_3_5: |
| signal_levels |= DP_PRE_EMPHASIS_3_5; |
| break; |
| case DP_TRAIN_PRE_EMPHASIS_6: |
| signal_levels |= DP_PRE_EMPHASIS_6; |
| break; |
| case DP_TRAIN_PRE_EMPHASIS_9_5: |
| signal_levels |= DP_PRE_EMPHASIS_9_5; |
| break; |
| } |
| return signal_levels; |
| } |
| |
| static uint8_t |
| intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE], |
| int lane) |
| { |
| int i = DP_LANE0_1_STATUS + (lane >> 1); |
| int s = (lane & 1) * 4; |
| uint8_t l = intel_dp_link_status(link_status, i); |
| |
| return (l >> s) & 0xf; |
| } |
| |
| /* Check for clock recovery is done on all channels */ |
| static bool |
| intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count) |
| { |
| int lane; |
| uint8_t lane_status; |
| |
| for (lane = 0; lane < lane_count; lane++) { |
| lane_status = intel_get_lane_status(link_status, lane); |
| if ((lane_status & DP_LANE_CR_DONE) == 0) |
| return false; |
| } |
| return true; |
| } |
| |
| /* Check to see if channel eq is done on all channels */ |
| #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\ |
| DP_LANE_CHANNEL_EQ_DONE|\ |
| DP_LANE_SYMBOL_LOCKED) |
| static bool |
| intel_channel_eq_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count) |
| { |
| uint8_t lane_align; |
| uint8_t lane_status; |
| int lane; |
| |
| lane_align = intel_dp_link_status(link_status, |
| DP_LANE_ALIGN_STATUS_UPDATED); |
| if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0) |
| return false; |
| for (lane = 0; lane < lane_count; lane++) { |
| lane_status = intel_get_lane_status(link_status, lane); |
| if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS) |
| return false; |
| } |
| return true; |
| } |
| |
| static bool |
| intel_dp_set_link_train(struct intel_output *intel_output, |
| uint32_t dp_reg_value, |
| uint8_t dp_train_pat, |
| uint8_t train_set[4], |
| bool first) |
| { |
| struct drm_device *dev = intel_output->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_dp_priv *dp_priv = intel_output->dev_priv; |
| int ret; |
| |
| I915_WRITE(dp_priv->output_reg, dp_reg_value); |
| POSTING_READ(dp_priv->output_reg); |
| if (first) |
| intel_wait_for_vblank(dev); |
| |
| intel_dp_aux_native_write_1(intel_output, |
| DP_TRAINING_PATTERN_SET, |
| dp_train_pat); |
| |
| ret = intel_dp_aux_native_write(intel_output, |
| DP_TRAINING_LANE0_SET, train_set, 4); |
| if (ret != 4) |
| return false; |
| |
| return true; |
| } |
| |
| static void |
| intel_dp_link_train(struct intel_output *intel_output, uint32_t DP, |
| uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE]) |
| { |
| struct drm_device *dev = intel_output->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_dp_priv *dp_priv = intel_output->dev_priv; |
| uint8_t train_set[4]; |
| uint8_t link_status[DP_LINK_STATUS_SIZE]; |
| int i; |
| uint8_t voltage; |
| bool clock_recovery = false; |
| bool channel_eq = false; |
| bool first = true; |
| int tries; |
| |
| /* Write the link configuration data */ |
| intel_dp_aux_native_write(intel_output, 0x100, |
| link_configuration, DP_LINK_CONFIGURATION_SIZE); |
| |
| DP |= DP_PORT_EN; |
| DP &= ~DP_LINK_TRAIN_MASK; |
| memset(train_set, 0, 4); |
| voltage = 0xff; |
| tries = 0; |
| clock_recovery = false; |
| for (;;) { |
| /* Use train_set[0] to set the voltage and pre emphasis values */ |
| uint32_t signal_levels = intel_dp_signal_levels(train_set[0], dp_priv->lane_count); |
| DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels; |
| |
| if (!intel_dp_set_link_train(intel_output, DP | DP_LINK_TRAIN_PAT_1, |
| DP_TRAINING_PATTERN_1, train_set, first)) |
| break; |
| first = false; |
| /* Set training pattern 1 */ |
| |
| udelay(100); |
| if (!intel_dp_get_link_status(intel_output, link_status)) |
| break; |
| |
| if (intel_clock_recovery_ok(link_status, dp_priv->lane_count)) { |
| clock_recovery = true; |
| break; |
| } |
| |
| /* Check to see if we've tried the max voltage */ |
| for (i = 0; i < dp_priv->lane_count; i++) |
| if ((train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0) |
| break; |
| if (i == dp_priv->lane_count) |
| break; |
| |
| /* Check to see if we've tried the same voltage 5 times */ |
| if ((train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) { |
| ++tries; |
| if (tries == 5) |
| break; |
| } else |
| tries = 0; |
| voltage = train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK; |
| |
| /* Compute new train_set as requested by target */ |
| intel_get_adjust_train(intel_output, link_status, dp_priv->lane_count, train_set); |
| } |
| |
| /* channel equalization */ |
| tries = 0; |
| channel_eq = false; |
| for (;;) { |
| /* Use train_set[0] to set the voltage and pre emphasis values */ |
| uint32_t signal_levels = intel_dp_signal_levels(train_set[0], dp_priv->lane_count); |
| DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels; |
| |
| /* channel eq pattern */ |
| if (!intel_dp_set_link_train(intel_output, DP | DP_LINK_TRAIN_PAT_2, |
| DP_TRAINING_PATTERN_2, train_set, |
| false)) |
| break; |
| |
| udelay(400); |
| if (!intel_dp_get_link_status(intel_output, link_status)) |
| break; |
| |
| if (intel_channel_eq_ok(link_status, dp_priv->lane_count)) { |
| channel_eq = true; |
| break; |
| } |
| |
| /* Try 5 times */ |
| if (tries > 5) |
| break; |
| |
| /* Compute new train_set as requested by target */ |
| intel_get_adjust_train(intel_output, link_status, dp_priv->lane_count, train_set); |
| ++tries; |
| } |
| |
| I915_WRITE(dp_priv->output_reg, DP | DP_LINK_TRAIN_OFF); |
| POSTING_READ(dp_priv->output_reg); |
| intel_dp_aux_native_write_1(intel_output, |
| DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE); |
| } |
| |
| static void |
| intel_dp_link_down(struct intel_output *intel_output, uint32_t DP) |
| { |
| struct drm_device *dev = intel_output->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_dp_priv *dp_priv = intel_output->dev_priv; |
| |
| DRM_DEBUG_KMS("\n"); |
| |
| if (IS_eDP(intel_output)) { |
| DP &= ~DP_PLL_ENABLE; |
| I915_WRITE(dp_priv->output_reg, DP); |
| POSTING_READ(dp_priv->output_reg); |
| udelay(100); |
| } |
| |
| DP &= ~DP_LINK_TRAIN_MASK; |
| I915_WRITE(dp_priv->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE); |
| POSTING_READ(dp_priv->output_reg); |
| |
| udelay(17000); |
| |
| if (IS_eDP(intel_output)) |
| DP |= DP_LINK_TRAIN_OFF; |
| I915_WRITE(dp_priv->output_reg, DP & ~DP_PORT_EN); |
| POSTING_READ(dp_priv->output_reg); |
| } |
| |
| static void |
| intel_dp_restore(struct drm_connector *connector) |
| { |
| struct intel_output *intel_output = to_intel_output(connector); |
| struct intel_dp_priv *dp_priv = intel_output->dev_priv; |
| |
| if (dp_priv->save_DP & DP_PORT_EN) |
| intel_dp_link_train(intel_output, dp_priv->save_DP, dp_priv->save_link_configuration); |
| else |
| intel_dp_link_down(intel_output, dp_priv->save_DP); |
| } |
| |
| /* |
| * According to DP spec |
| * 5.1.2: |
| * 1. Read DPCD |
| * 2. Configure link according to Receiver Capabilities |
| * 3. Use Link Training from 2.5.3.3 and 3.5.1.3 |
| * 4. Check link status on receipt of hot-plug interrupt |
| */ |
| |
| static void |
| intel_dp_check_link_status(struct intel_output *intel_output) |
| { |
| struct intel_dp_priv *dp_priv = intel_output->dev_priv; |
| uint8_t link_status[DP_LINK_STATUS_SIZE]; |
| |
| if (!intel_output->enc.crtc) |
| return; |
| |
| if (!intel_dp_get_link_status(intel_output, link_status)) { |
| intel_dp_link_down(intel_output, dp_priv->DP); |
| return; |
| } |
| |
| if (!intel_channel_eq_ok(link_status, dp_priv->lane_count)) |
| intel_dp_link_train(intel_output, dp_priv->DP, dp_priv->link_configuration); |
| } |
| |
| static enum drm_connector_status |
| ironlake_dp_detect(struct drm_connector *connector) |
| { |
| struct intel_output *intel_output = to_intel_output(connector); |
| struct intel_dp_priv *dp_priv = intel_output->dev_priv; |
| enum drm_connector_status status; |
| |
| status = connector_status_disconnected; |
| if (intel_dp_aux_native_read(intel_output, |
| 0x000, dp_priv->dpcd, |
| sizeof (dp_priv->dpcd)) == sizeof (dp_priv->dpcd)) |
| { |
| if (dp_priv->dpcd[0] != 0) |
| status = connector_status_connected; |
| } |
| return status; |
| } |
| |
| /** |
| * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection. |
| * |
| * \return true if DP port is connected. |
| * \return false if DP port is disconnected. |
| */ |
| static enum drm_connector_status |
| intel_dp_detect(struct drm_connector *connector) |
| { |
| struct intel_output *intel_output = to_intel_output(connector); |
| struct drm_device *dev = intel_output->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_dp_priv *dp_priv = intel_output->dev_priv; |
| uint32_t temp, bit; |
| enum drm_connector_status status; |
| |
| dp_priv->has_audio = false; |
| |
| if (IS_IRONLAKE(dev)) |
| return ironlake_dp_detect(connector); |
| |
| temp = I915_READ(PORT_HOTPLUG_EN); |
| |
| I915_WRITE(PORT_HOTPLUG_EN, |
| temp | |
| DPB_HOTPLUG_INT_EN | |
| DPC_HOTPLUG_INT_EN | |
| DPD_HOTPLUG_INT_EN); |
| |
| POSTING_READ(PORT_HOTPLUG_EN); |
| |
| switch (dp_priv->output_reg) { |
| case DP_B: |
| bit = DPB_HOTPLUG_INT_STATUS; |
| break; |
| case DP_C: |
| bit = DPC_HOTPLUG_INT_STATUS; |
| break; |
| case DP_D: |
| bit = DPD_HOTPLUG_INT_STATUS; |
| break; |
| default: |
| return connector_status_unknown; |
| } |
| |
| temp = I915_READ(PORT_HOTPLUG_STAT); |
| |
| if ((temp & bit) == 0) |
| return connector_status_disconnected; |
| |
| status = connector_status_disconnected; |
| if (intel_dp_aux_native_read(intel_output, |
| 0x000, dp_priv->dpcd, |
| sizeof (dp_priv->dpcd)) == sizeof (dp_priv->dpcd)) |
| { |
| if (dp_priv->dpcd[0] != 0) |
| status = connector_status_connected; |
| } |
| return status; |
| } |
| |
| static int intel_dp_get_modes(struct drm_connector *connector) |
| { |
| struct intel_output *intel_output = to_intel_output(connector); |
| struct drm_device *dev = intel_output->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| int ret; |
| |
| /* We should parse the EDID data and find out if it has an audio sink |
| */ |
| |
| ret = intel_ddc_get_modes(intel_output); |
| if (ret) |
| return ret; |
| |
| /* if eDP has no EDID, try to use fixed panel mode from VBT */ |
| if (IS_eDP(intel_output)) { |
| if (dev_priv->panel_fixed_mode != NULL) { |
| struct drm_display_mode *mode; |
| mode = drm_mode_duplicate(dev, dev_priv->panel_fixed_mode); |
| drm_mode_probed_add(connector, mode); |
| return 1; |
| } |
| } |
| return 0; |
| } |
| |
| static void |
| intel_dp_destroy (struct drm_connector *connector) |
| { |
| struct intel_output *intel_output = to_intel_output(connector); |
| |
| if (intel_output->i2c_bus) |
| intel_i2c_destroy(intel_output->i2c_bus); |
| drm_sysfs_connector_remove(connector); |
| drm_connector_cleanup(connector); |
| kfree(intel_output); |
| } |
| |
| static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = { |
| .dpms = intel_dp_dpms, |
| .mode_fixup = intel_dp_mode_fixup, |
| .prepare = intel_encoder_prepare, |
| .mode_set = intel_dp_mode_set, |
| .commit = intel_encoder_commit, |
| }; |
| |
| static const struct drm_connector_funcs intel_dp_connector_funcs = { |
| .dpms = drm_helper_connector_dpms, |
| .save = intel_dp_save, |
| .restore = intel_dp_restore, |
| .detect = intel_dp_detect, |
| .fill_modes = drm_helper_probe_single_connector_modes, |
| .destroy = intel_dp_destroy, |
| }; |
| |
| static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = { |
| .get_modes = intel_dp_get_modes, |
| .mode_valid = intel_dp_mode_valid, |
| .best_encoder = intel_best_encoder, |
| }; |
| |
| static void intel_dp_enc_destroy(struct drm_encoder *encoder) |
| { |
| drm_encoder_cleanup(encoder); |
| } |
| |
| static const struct drm_encoder_funcs intel_dp_enc_funcs = { |
| .destroy = intel_dp_enc_destroy, |
| }; |
| |
| void |
| intel_dp_hot_plug(struct intel_output *intel_output) |
| { |
| struct intel_dp_priv *dp_priv = intel_output->dev_priv; |
| |
| if (dp_priv->dpms_mode == DRM_MODE_DPMS_ON) |
| intel_dp_check_link_status(intel_output); |
| } |
| /* |
| * Enumerate the child dev array parsed from VBT to check whether |
| * the given DP is present. |
| * If it is present, return 1. |
| * If it is not present, return false. |
| * If no child dev is parsed from VBT, it is assumed that the given |
| * DP is present. |
| */ |
| static int dp_is_present_in_vbt(struct drm_device *dev, int dp_reg) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct child_device_config *p_child; |
| int i, dp_port, ret; |
| |
| if (!dev_priv->child_dev_num) |
| return 1; |
| |
| dp_port = 0; |
| if (dp_reg == DP_B || dp_reg == PCH_DP_B) |
| dp_port = PORT_IDPB; |
| else if (dp_reg == DP_C || dp_reg == PCH_DP_C) |
| dp_port = PORT_IDPC; |
| else if (dp_reg == DP_D || dp_reg == PCH_DP_D) |
| dp_port = PORT_IDPD; |
| |
| ret = 0; |
| for (i = 0; i < dev_priv->child_dev_num; i++) { |
| p_child = dev_priv->child_dev + i; |
| /* |
| * If the device type is not DP, continue. |
| */ |
| if (p_child->device_type != DEVICE_TYPE_DP && |
| p_child->device_type != DEVICE_TYPE_eDP) |
| continue; |
| /* Find the eDP port */ |
| if (dp_reg == DP_A && p_child->device_type == DEVICE_TYPE_eDP) { |
| ret = 1; |
| break; |
| } |
| /* Find the DP port */ |
| if (p_child->dvo_port == dp_port) { |
| ret = 1; |
| break; |
| } |
| } |
| return ret; |
| } |
| void |
| intel_dp_init(struct drm_device *dev, int output_reg) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct drm_connector *connector; |
| struct intel_output *intel_output; |
| struct intel_dp_priv *dp_priv; |
| const char *name = NULL; |
| |
| if (!dp_is_present_in_vbt(dev, output_reg)) { |
| DRM_DEBUG_KMS("DP is not present. Ignore it\n"); |
| return; |
| } |
| intel_output = kcalloc(sizeof(struct intel_output) + |
| sizeof(struct intel_dp_priv), 1, GFP_KERNEL); |
| if (!intel_output) |
| return; |
| |
| dp_priv = (struct intel_dp_priv *)(intel_output + 1); |
| |
| connector = &intel_output->base; |
| drm_connector_init(dev, connector, &intel_dp_connector_funcs, |
| DRM_MODE_CONNECTOR_DisplayPort); |
| drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs); |
| |
| if (output_reg == DP_A) |
| intel_output->type = INTEL_OUTPUT_EDP; |
| else |
| intel_output->type = INTEL_OUTPUT_DISPLAYPORT; |
| |
| if (output_reg == DP_B || output_reg == PCH_DP_B) |
| intel_output->clone_mask = (1 << INTEL_DP_B_CLONE_BIT); |
| else if (output_reg == DP_C || output_reg == PCH_DP_C) |
| intel_output->clone_mask = (1 << INTEL_DP_C_CLONE_BIT); |
| else if (output_reg == DP_D || output_reg == PCH_DP_D) |
| intel_output->clone_mask = (1 << INTEL_DP_D_CLONE_BIT); |
| |
| if (IS_eDP(intel_output)) { |
| intel_output->crtc_mask = (1 << 1); |
| intel_output->clone_mask = (1 << INTEL_EDP_CLONE_BIT); |
| } else |
| intel_output->crtc_mask = (1 << 0) | (1 << 1); |
| connector->interlace_allowed = true; |
| connector->doublescan_allowed = 0; |
| |
| dp_priv->intel_output = intel_output; |
| dp_priv->output_reg = output_reg; |
| dp_priv->has_audio = false; |
| dp_priv->dpms_mode = DRM_MODE_DPMS_ON; |
| intel_output->dev_priv = dp_priv; |
| |
| drm_encoder_init(dev, &intel_output->enc, &intel_dp_enc_funcs, |
| DRM_MODE_ENCODER_TMDS); |
| drm_encoder_helper_add(&intel_output->enc, &intel_dp_helper_funcs); |
| |
| drm_mode_connector_attach_encoder(&intel_output->base, |
| &intel_output->enc); |
| drm_sysfs_connector_add(connector); |
| |
| /* Set up the DDC bus. */ |
| switch (output_reg) { |
| case DP_A: |
| name = "DPDDC-A"; |
| break; |
| case DP_B: |
| case PCH_DP_B: |
| name = "DPDDC-B"; |
| break; |
| case DP_C: |
| case PCH_DP_C: |
| name = "DPDDC-C"; |
| break; |
| case DP_D: |
| case PCH_DP_D: |
| name = "DPDDC-D"; |
| break; |
| } |
| |
| intel_dp_i2c_init(intel_output, name); |
| |
| intel_output->ddc_bus = &dp_priv->adapter; |
| intel_output->hot_plug = intel_dp_hot_plug; |
| |
| if (output_reg == DP_A) { |
| /* initialize panel mode from VBT if available for eDP */ |
| if (dev_priv->lfp_lvds_vbt_mode) { |
| dev_priv->panel_fixed_mode = |
| drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode); |
| if (dev_priv->panel_fixed_mode) { |
| dev_priv->panel_fixed_mode->type |= |
| DRM_MODE_TYPE_PREFERRED; |
| } |
| } |
| } |
| |
| /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written |
| * 0xd. Failure to do so will result in spurious interrupts being |
| * generated on the port when a cable is not attached. |
| */ |
| if (IS_G4X(dev) && !IS_GM45(dev)) { |
| u32 temp = I915_READ(PEG_BAND_GAP_DATA); |
| I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd); |
| } |
| } |