| /* |
| * Codec driver for ST STA32x 2.1-channel high-efficiency digital audio system |
| * |
| * Copyright: 2011 Raumfeld GmbH |
| * Author: Johannes Stezenbach <js@sig21.net> |
| * |
| * based on code from: |
| * Wolfson Microelectronics PLC. |
| * Mark Brown <broonie@opensource.wolfsonmicro.com> |
| * Freescale Semiconductor, Inc. |
| * Timur Tabi <timur@freescale.com> |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms of the GNU General Public License as published by the |
| * Free Software Foundation; either version 2 of the License, or (at your |
| * option) any later version. |
| */ |
| |
| #define pr_fmt(fmt) KBUILD_MODNAME ":%s:%d: " fmt, __func__, __LINE__ |
| |
| #include <linux/module.h> |
| #include <linux/moduleparam.h> |
| #include <linux/init.h> |
| #include <linux/delay.h> |
| #include <linux/pm.h> |
| #include <linux/i2c.h> |
| #include <linux/of_device.h> |
| #include <linux/of_gpio.h> |
| #include <linux/regmap.h> |
| #include <linux/regulator/consumer.h> |
| #include <linux/gpio/consumer.h> |
| #include <linux/slab.h> |
| #include <linux/workqueue.h> |
| #include <sound/core.h> |
| #include <sound/pcm.h> |
| #include <sound/pcm_params.h> |
| #include <sound/soc.h> |
| #include <sound/soc-dapm.h> |
| #include <sound/initval.h> |
| #include <sound/tlv.h> |
| |
| #include <sound/sta32x.h> |
| #include "sta32x.h" |
| |
| #define STA32X_RATES (SNDRV_PCM_RATE_32000 | \ |
| SNDRV_PCM_RATE_44100 | \ |
| SNDRV_PCM_RATE_48000 | \ |
| SNDRV_PCM_RATE_88200 | \ |
| SNDRV_PCM_RATE_96000 | \ |
| SNDRV_PCM_RATE_176400 | \ |
| SNDRV_PCM_RATE_192000) |
| |
| #define STA32X_FORMATS \ |
| (SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S16_BE | \ |
| SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S18_3BE | \ |
| SNDRV_PCM_FMTBIT_S20_3LE | SNDRV_PCM_FMTBIT_S20_3BE | \ |
| SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S24_3BE | \ |
| SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S24_BE | \ |
| SNDRV_PCM_FMTBIT_S32_LE | SNDRV_PCM_FMTBIT_S32_BE) |
| |
| /* Power-up register defaults */ |
| static const struct reg_default sta32x_regs[] = { |
| { 0x0, 0x63 }, |
| { 0x1, 0x80 }, |
| { 0x2, 0xc2 }, |
| { 0x3, 0x40 }, |
| { 0x4, 0xc2 }, |
| { 0x5, 0x5c }, |
| { 0x6, 0x10 }, |
| { 0x7, 0xff }, |
| { 0x8, 0x60 }, |
| { 0x9, 0x60 }, |
| { 0xa, 0x60 }, |
| { 0xb, 0x80 }, |
| { 0xc, 0x00 }, |
| { 0xd, 0x00 }, |
| { 0xe, 0x00 }, |
| { 0xf, 0x40 }, |
| { 0x10, 0x80 }, |
| { 0x11, 0x77 }, |
| { 0x12, 0x6a }, |
| { 0x13, 0x69 }, |
| { 0x14, 0x6a }, |
| { 0x15, 0x69 }, |
| { 0x16, 0x00 }, |
| { 0x17, 0x00 }, |
| { 0x18, 0x00 }, |
| { 0x19, 0x00 }, |
| { 0x1a, 0x00 }, |
| { 0x1b, 0x00 }, |
| { 0x1c, 0x00 }, |
| { 0x1d, 0x00 }, |
| { 0x1e, 0x00 }, |
| { 0x1f, 0x00 }, |
| { 0x20, 0x00 }, |
| { 0x21, 0x00 }, |
| { 0x22, 0x00 }, |
| { 0x23, 0x00 }, |
| { 0x24, 0x00 }, |
| { 0x25, 0x00 }, |
| { 0x26, 0x00 }, |
| { 0x27, 0x2d }, |
| { 0x28, 0xc0 }, |
| { 0x2b, 0x00 }, |
| { 0x2c, 0x0c }, |
| }; |
| |
| static const struct regmap_range sta32x_write_regs_range[] = { |
| regmap_reg_range(STA32X_CONFA, STA32X_FDRC2), |
| }; |
| |
| static const struct regmap_range sta32x_read_regs_range[] = { |
| regmap_reg_range(STA32X_CONFA, STA32X_FDRC2), |
| }; |
| |
| static const struct regmap_range sta32x_volatile_regs_range[] = { |
| regmap_reg_range(STA32X_CFADDR2, STA32X_CFUD), |
| }; |
| |
| static const struct regmap_access_table sta32x_write_regs = { |
| .yes_ranges = sta32x_write_regs_range, |
| .n_yes_ranges = ARRAY_SIZE(sta32x_write_regs_range), |
| }; |
| |
| static const struct regmap_access_table sta32x_read_regs = { |
| .yes_ranges = sta32x_read_regs_range, |
| .n_yes_ranges = ARRAY_SIZE(sta32x_read_regs_range), |
| }; |
| |
| static const struct regmap_access_table sta32x_volatile_regs = { |
| .yes_ranges = sta32x_volatile_regs_range, |
| .n_yes_ranges = ARRAY_SIZE(sta32x_volatile_regs_range), |
| }; |
| |
| /* regulator power supply names */ |
| static const char *sta32x_supply_names[] = { |
| "Vdda", /* analog supply, 3.3VV */ |
| "Vdd3", /* digital supply, 3.3V */ |
| "Vcc" /* power amp spply, 10V - 36V */ |
| }; |
| |
| /* codec private data */ |
| struct sta32x_priv { |
| struct regmap *regmap; |
| struct regulator_bulk_data supplies[ARRAY_SIZE(sta32x_supply_names)]; |
| struct snd_soc_component *component; |
| struct sta32x_platform_data *pdata; |
| |
| unsigned int mclk; |
| unsigned int format; |
| |
| u32 coef_shadow[STA32X_COEF_COUNT]; |
| struct delayed_work watchdog_work; |
| int shutdown; |
| struct gpio_desc *gpiod_nreset; |
| struct mutex coeff_lock; |
| }; |
| |
| static const DECLARE_TLV_DB_SCALE(mvol_tlv, -12700, 50, 1); |
| static const DECLARE_TLV_DB_SCALE(chvol_tlv, -7950, 50, 1); |
| static const DECLARE_TLV_DB_SCALE(tone_tlv, -120, 200, 0); |
| |
| static const char *sta32x_drc_ac[] = { |
| "Anti-Clipping", "Dynamic Range Compression" }; |
| static const char *sta32x_auto_eq_mode[] = { |
| "User", "Preset", "Loudness" }; |
| static const char *sta32x_auto_gc_mode[] = { |
| "User", "AC no clipping", "AC limited clipping (10%)", |
| "DRC nighttime listening mode" }; |
| static const char *sta32x_auto_xo_mode[] = { |
| "User", "80Hz", "100Hz", "120Hz", "140Hz", "160Hz", "180Hz", "200Hz", |
| "220Hz", "240Hz", "260Hz", "280Hz", "300Hz", "320Hz", "340Hz", "360Hz" }; |
| static const char *sta32x_preset_eq_mode[] = { |
| "Flat", "Rock", "Soft Rock", "Jazz", "Classical", "Dance", "Pop", "Soft", |
| "Hard", "Party", "Vocal", "Hip-Hop", "Dialog", "Bass-boost #1", |
| "Bass-boost #2", "Bass-boost #3", "Loudness 1", "Loudness 2", |
| "Loudness 3", "Loudness 4", "Loudness 5", "Loudness 6", "Loudness 7", |
| "Loudness 8", "Loudness 9", "Loudness 10", "Loudness 11", "Loudness 12", |
| "Loudness 13", "Loudness 14", "Loudness 15", "Loudness 16" }; |
| static const char *sta32x_limiter_select[] = { |
| "Limiter Disabled", "Limiter #1", "Limiter #2" }; |
| static const char *sta32x_limiter_attack_rate[] = { |
| "3.1584", "2.7072", "2.2560", "1.8048", "1.3536", "0.9024", |
| "0.4512", "0.2256", "0.1504", "0.1123", "0.0902", "0.0752", |
| "0.0645", "0.0564", "0.0501", "0.0451" }; |
| static const char *sta32x_limiter_release_rate[] = { |
| "0.5116", "0.1370", "0.0744", "0.0499", "0.0360", "0.0299", |
| "0.0264", "0.0208", "0.0198", "0.0172", "0.0147", "0.0137", |
| "0.0134", "0.0117", "0.0110", "0.0104" }; |
| static DECLARE_TLV_DB_RANGE(sta32x_limiter_ac_attack_tlv, |
| 0, 7, TLV_DB_SCALE_ITEM(-1200, 200, 0), |
| 8, 16, TLV_DB_SCALE_ITEM(300, 100, 0), |
| ); |
| |
| static DECLARE_TLV_DB_RANGE(sta32x_limiter_ac_release_tlv, |
| 0, 0, TLV_DB_SCALE_ITEM(TLV_DB_GAIN_MUTE, 0, 0), |
| 1, 1, TLV_DB_SCALE_ITEM(-2900, 0, 0), |
| 2, 2, TLV_DB_SCALE_ITEM(-2000, 0, 0), |
| 3, 8, TLV_DB_SCALE_ITEM(-1400, 200, 0), |
| 8, 16, TLV_DB_SCALE_ITEM(-700, 100, 0), |
| ); |
| |
| static DECLARE_TLV_DB_RANGE(sta32x_limiter_drc_attack_tlv, |
| 0, 7, TLV_DB_SCALE_ITEM(-3100, 200, 0), |
| 8, 13, TLV_DB_SCALE_ITEM(-1600, 100, 0), |
| 14, 16, TLV_DB_SCALE_ITEM(-1000, 300, 0), |
| ); |
| |
| static DECLARE_TLV_DB_RANGE(sta32x_limiter_drc_release_tlv, |
| 0, 0, TLV_DB_SCALE_ITEM(TLV_DB_GAIN_MUTE, 0, 0), |
| 1, 2, TLV_DB_SCALE_ITEM(-3800, 200, 0), |
| 3, 4, TLV_DB_SCALE_ITEM(-3300, 200, 0), |
| 5, 12, TLV_DB_SCALE_ITEM(-3000, 200, 0), |
| 13, 16, TLV_DB_SCALE_ITEM(-1500, 300, 0), |
| ); |
| |
| static SOC_ENUM_SINGLE_DECL(sta32x_drc_ac_enum, |
| STA32X_CONFD, STA32X_CONFD_DRC_SHIFT, |
| sta32x_drc_ac); |
| static SOC_ENUM_SINGLE_DECL(sta32x_auto_eq_enum, |
| STA32X_AUTO1, STA32X_AUTO1_AMEQ_SHIFT, |
| sta32x_auto_eq_mode); |
| static SOC_ENUM_SINGLE_DECL(sta32x_auto_gc_enum, |
| STA32X_AUTO1, STA32X_AUTO1_AMGC_SHIFT, |
| sta32x_auto_gc_mode); |
| static SOC_ENUM_SINGLE_DECL(sta32x_auto_xo_enum, |
| STA32X_AUTO2, STA32X_AUTO2_XO_SHIFT, |
| sta32x_auto_xo_mode); |
| static SOC_ENUM_SINGLE_DECL(sta32x_preset_eq_enum, |
| STA32X_AUTO3, STA32X_AUTO3_PEQ_SHIFT, |
| sta32x_preset_eq_mode); |
| static SOC_ENUM_SINGLE_DECL(sta32x_limiter_ch1_enum, |
| STA32X_C1CFG, STA32X_CxCFG_LS_SHIFT, |
| sta32x_limiter_select); |
| static SOC_ENUM_SINGLE_DECL(sta32x_limiter_ch2_enum, |
| STA32X_C2CFG, STA32X_CxCFG_LS_SHIFT, |
| sta32x_limiter_select); |
| static SOC_ENUM_SINGLE_DECL(sta32x_limiter_ch3_enum, |
| STA32X_C3CFG, STA32X_CxCFG_LS_SHIFT, |
| sta32x_limiter_select); |
| static SOC_ENUM_SINGLE_DECL(sta32x_limiter1_attack_rate_enum, |
| STA32X_L1AR, STA32X_LxA_SHIFT, |
| sta32x_limiter_attack_rate); |
| static SOC_ENUM_SINGLE_DECL(sta32x_limiter2_attack_rate_enum, |
| STA32X_L2AR, STA32X_LxA_SHIFT, |
| sta32x_limiter_attack_rate); |
| static SOC_ENUM_SINGLE_DECL(sta32x_limiter1_release_rate_enum, |
| STA32X_L1AR, STA32X_LxR_SHIFT, |
| sta32x_limiter_release_rate); |
| static SOC_ENUM_SINGLE_DECL(sta32x_limiter2_release_rate_enum, |
| STA32X_L2AR, STA32X_LxR_SHIFT, |
| sta32x_limiter_release_rate); |
| |
| /* byte array controls for setting biquad, mixer, scaling coefficients; |
| * for biquads all five coefficients need to be set in one go, |
| * mixer and pre/postscale coefs can be set individually; |
| * each coef is 24bit, the bytes are ordered in the same way |
| * as given in the STA32x data sheet (big endian; b1, b2, a1, a2, b0) |
| */ |
| |
| static int sta32x_coefficient_info(struct snd_kcontrol *kcontrol, |
| struct snd_ctl_elem_info *uinfo) |
| { |
| int numcoef = kcontrol->private_value >> 16; |
| uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES; |
| uinfo->count = 3 * numcoef; |
| return 0; |
| } |
| |
| static int sta32x_coefficient_get(struct snd_kcontrol *kcontrol, |
| struct snd_ctl_elem_value *ucontrol) |
| { |
| struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol); |
| struct sta32x_priv *sta32x = snd_soc_component_get_drvdata(component); |
| int numcoef = kcontrol->private_value >> 16; |
| int index = kcontrol->private_value & 0xffff; |
| unsigned int cfud, val; |
| int i, ret = 0; |
| |
| mutex_lock(&sta32x->coeff_lock); |
| |
| /* preserve reserved bits in STA32X_CFUD */ |
| regmap_read(sta32x->regmap, STA32X_CFUD, &cfud); |
| cfud &= 0xf0; |
| /* |
| * chip documentation does not say if the bits are self clearing, |
| * so do it explicitly |
| */ |
| regmap_write(sta32x->regmap, STA32X_CFUD, cfud); |
| |
| regmap_write(sta32x->regmap, STA32X_CFADDR2, index); |
| if (numcoef == 1) { |
| regmap_write(sta32x->regmap, STA32X_CFUD, cfud | 0x04); |
| } else if (numcoef == 5) { |
| regmap_write(sta32x->regmap, STA32X_CFUD, cfud | 0x08); |
| } else { |
| ret = -EINVAL; |
| goto exit_unlock; |
| } |
| |
| for (i = 0; i < 3 * numcoef; i++) { |
| regmap_read(sta32x->regmap, STA32X_B1CF1 + i, &val); |
| ucontrol->value.bytes.data[i] = val; |
| } |
| |
| exit_unlock: |
| mutex_unlock(&sta32x->coeff_lock); |
| |
| return ret; |
| } |
| |
| static int sta32x_coefficient_put(struct snd_kcontrol *kcontrol, |
| struct snd_ctl_elem_value *ucontrol) |
| { |
| struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol); |
| struct sta32x_priv *sta32x = snd_soc_component_get_drvdata(component); |
| int numcoef = kcontrol->private_value >> 16; |
| int index = kcontrol->private_value & 0xffff; |
| unsigned int cfud; |
| int i; |
| |
| /* preserve reserved bits in STA32X_CFUD */ |
| regmap_read(sta32x->regmap, STA32X_CFUD, &cfud); |
| cfud &= 0xf0; |
| /* |
| * chip documentation does not say if the bits are self clearing, |
| * so do it explicitly |
| */ |
| regmap_write(sta32x->regmap, STA32X_CFUD, cfud); |
| |
| regmap_write(sta32x->regmap, STA32X_CFADDR2, index); |
| for (i = 0; i < numcoef && (index + i < STA32X_COEF_COUNT); i++) |
| sta32x->coef_shadow[index + i] = |
| (ucontrol->value.bytes.data[3 * i] << 16) |
| | (ucontrol->value.bytes.data[3 * i + 1] << 8) |
| | (ucontrol->value.bytes.data[3 * i + 2]); |
| for (i = 0; i < 3 * numcoef; i++) |
| regmap_write(sta32x->regmap, STA32X_B1CF1 + i, |
| ucontrol->value.bytes.data[i]); |
| if (numcoef == 1) |
| regmap_write(sta32x->regmap, STA32X_CFUD, cfud | 0x01); |
| else if (numcoef == 5) |
| regmap_write(sta32x->regmap, STA32X_CFUD, cfud | 0x02); |
| else |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| static int sta32x_sync_coef_shadow(struct snd_soc_component *component) |
| { |
| struct sta32x_priv *sta32x = snd_soc_component_get_drvdata(component); |
| unsigned int cfud; |
| int i; |
| |
| /* preserve reserved bits in STA32X_CFUD */ |
| regmap_read(sta32x->regmap, STA32X_CFUD, &cfud); |
| cfud &= 0xf0; |
| |
| for (i = 0; i < STA32X_COEF_COUNT; i++) { |
| regmap_write(sta32x->regmap, STA32X_CFADDR2, i); |
| regmap_write(sta32x->regmap, STA32X_B1CF1, |
| (sta32x->coef_shadow[i] >> 16) & 0xff); |
| regmap_write(sta32x->regmap, STA32X_B1CF2, |
| (sta32x->coef_shadow[i] >> 8) & 0xff); |
| regmap_write(sta32x->regmap, STA32X_B1CF3, |
| (sta32x->coef_shadow[i]) & 0xff); |
| /* |
| * chip documentation does not say if the bits are |
| * self-clearing, so do it explicitly |
| */ |
| regmap_write(sta32x->regmap, STA32X_CFUD, cfud); |
| regmap_write(sta32x->regmap, STA32X_CFUD, cfud | 0x01); |
| } |
| return 0; |
| } |
| |
| static int sta32x_cache_sync(struct snd_soc_component *component) |
| { |
| struct sta32x_priv *sta32x = snd_soc_component_get_drvdata(component); |
| unsigned int mute; |
| int rc; |
| |
| /* mute during register sync */ |
| regmap_read(sta32x->regmap, STA32X_MMUTE, &mute); |
| regmap_write(sta32x->regmap, STA32X_MMUTE, mute | STA32X_MMUTE_MMUTE); |
| sta32x_sync_coef_shadow(component); |
| rc = regcache_sync(sta32x->regmap); |
| regmap_write(sta32x->regmap, STA32X_MMUTE, mute); |
| return rc; |
| } |
| |
| /* work around ESD issue where sta32x resets and loses all configuration */ |
| static void sta32x_watchdog(struct work_struct *work) |
| { |
| struct sta32x_priv *sta32x = container_of(work, struct sta32x_priv, |
| watchdog_work.work); |
| struct snd_soc_component *component = sta32x->component; |
| unsigned int confa, confa_cached; |
| |
| /* check if sta32x has reset itself */ |
| confa_cached = snd_soc_component_read32(component, STA32X_CONFA); |
| regcache_cache_bypass(sta32x->regmap, true); |
| confa = snd_soc_component_read32(component, STA32X_CONFA); |
| regcache_cache_bypass(sta32x->regmap, false); |
| if (confa != confa_cached) { |
| regcache_mark_dirty(sta32x->regmap); |
| sta32x_cache_sync(component); |
| } |
| |
| if (!sta32x->shutdown) |
| queue_delayed_work(system_power_efficient_wq, |
| &sta32x->watchdog_work, |
| round_jiffies_relative(HZ)); |
| } |
| |
| static void sta32x_watchdog_start(struct sta32x_priv *sta32x) |
| { |
| if (sta32x->pdata->needs_esd_watchdog) { |
| sta32x->shutdown = 0; |
| queue_delayed_work(system_power_efficient_wq, |
| &sta32x->watchdog_work, |
| round_jiffies_relative(HZ)); |
| } |
| } |
| |
| static void sta32x_watchdog_stop(struct sta32x_priv *sta32x) |
| { |
| if (sta32x->pdata->needs_esd_watchdog) { |
| sta32x->shutdown = 1; |
| cancel_delayed_work_sync(&sta32x->watchdog_work); |
| } |
| } |
| |
| #define SINGLE_COEF(xname, index) \ |
| { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ |
| .info = sta32x_coefficient_info, \ |
| .get = sta32x_coefficient_get,\ |
| .put = sta32x_coefficient_put, \ |
| .private_value = index | (1 << 16) } |
| |
| #define BIQUAD_COEFS(xname, index) \ |
| { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ |
| .info = sta32x_coefficient_info, \ |
| .get = sta32x_coefficient_get,\ |
| .put = sta32x_coefficient_put, \ |
| .private_value = index | (5 << 16) } |
| |
| static const struct snd_kcontrol_new sta32x_snd_controls[] = { |
| SOC_SINGLE_TLV("Master Volume", STA32X_MVOL, 0, 0xff, 1, mvol_tlv), |
| SOC_SINGLE("Master Switch", STA32X_MMUTE, 0, 1, 1), |
| SOC_SINGLE("Ch1 Switch", STA32X_MMUTE, 1, 1, 1), |
| SOC_SINGLE("Ch2 Switch", STA32X_MMUTE, 2, 1, 1), |
| SOC_SINGLE("Ch3 Switch", STA32X_MMUTE, 3, 1, 1), |
| SOC_SINGLE_TLV("Ch1 Volume", STA32X_C1VOL, 0, 0xff, 1, chvol_tlv), |
| SOC_SINGLE_TLV("Ch2 Volume", STA32X_C2VOL, 0, 0xff, 1, chvol_tlv), |
| SOC_SINGLE_TLV("Ch3 Volume", STA32X_C3VOL, 0, 0xff, 1, chvol_tlv), |
| SOC_SINGLE("De-emphasis Filter Switch", STA32X_CONFD, STA32X_CONFD_DEMP_SHIFT, 1, 0), |
| SOC_ENUM("Compressor/Limiter Switch", sta32x_drc_ac_enum), |
| SOC_SINGLE("Miami Mode Switch", STA32X_CONFD, STA32X_CONFD_MME_SHIFT, 1, 0), |
| SOC_SINGLE("Zero Cross Switch", STA32X_CONFE, STA32X_CONFE_ZCE_SHIFT, 1, 0), |
| SOC_SINGLE("Soft Ramp Switch", STA32X_CONFE, STA32X_CONFE_SVE_SHIFT, 1, 0), |
| SOC_SINGLE("Auto-Mute Switch", STA32X_CONFF, STA32X_CONFF_IDE_SHIFT, 1, 0), |
| SOC_ENUM("Automode EQ", sta32x_auto_eq_enum), |
| SOC_ENUM("Automode GC", sta32x_auto_gc_enum), |
| SOC_ENUM("Automode XO", sta32x_auto_xo_enum), |
| SOC_ENUM("Preset EQ", sta32x_preset_eq_enum), |
| SOC_SINGLE("Ch1 Tone Control Bypass Switch", STA32X_C1CFG, STA32X_CxCFG_TCB_SHIFT, 1, 0), |
| SOC_SINGLE("Ch2 Tone Control Bypass Switch", STA32X_C2CFG, STA32X_CxCFG_TCB_SHIFT, 1, 0), |
| SOC_SINGLE("Ch1 EQ Bypass Switch", STA32X_C1CFG, STA32X_CxCFG_EQBP_SHIFT, 1, 0), |
| SOC_SINGLE("Ch2 EQ Bypass Switch", STA32X_C2CFG, STA32X_CxCFG_EQBP_SHIFT, 1, 0), |
| SOC_SINGLE("Ch1 Master Volume Bypass Switch", STA32X_C1CFG, STA32X_CxCFG_VBP_SHIFT, 1, 0), |
| SOC_SINGLE("Ch2 Master Volume Bypass Switch", STA32X_C1CFG, STA32X_CxCFG_VBP_SHIFT, 1, 0), |
| SOC_SINGLE("Ch3 Master Volume Bypass Switch", STA32X_C1CFG, STA32X_CxCFG_VBP_SHIFT, 1, 0), |
| SOC_ENUM("Ch1 Limiter Select", sta32x_limiter_ch1_enum), |
| SOC_ENUM("Ch2 Limiter Select", sta32x_limiter_ch2_enum), |
| SOC_ENUM("Ch3 Limiter Select", sta32x_limiter_ch3_enum), |
| SOC_SINGLE_TLV("Bass Tone Control", STA32X_TONE, STA32X_TONE_BTC_SHIFT, 15, 0, tone_tlv), |
| SOC_SINGLE_TLV("Treble Tone Control", STA32X_TONE, STA32X_TONE_TTC_SHIFT, 15, 0, tone_tlv), |
| SOC_ENUM("Limiter1 Attack Rate (dB/ms)", sta32x_limiter1_attack_rate_enum), |
| SOC_ENUM("Limiter2 Attack Rate (dB/ms)", sta32x_limiter2_attack_rate_enum), |
| SOC_ENUM("Limiter1 Release Rate (dB/ms)", sta32x_limiter1_release_rate_enum), |
| SOC_ENUM("Limiter2 Release Rate (dB/ms)", sta32x_limiter2_release_rate_enum), |
| |
| /* depending on mode, the attack/release thresholds have |
| * two different enum definitions; provide both |
| */ |
| SOC_SINGLE_TLV("Limiter1 Attack Threshold (AC Mode)", STA32X_L1ATRT, STA32X_LxA_SHIFT, |
| 16, 0, sta32x_limiter_ac_attack_tlv), |
| SOC_SINGLE_TLV("Limiter2 Attack Threshold (AC Mode)", STA32X_L2ATRT, STA32X_LxA_SHIFT, |
| 16, 0, sta32x_limiter_ac_attack_tlv), |
| SOC_SINGLE_TLV("Limiter1 Release Threshold (AC Mode)", STA32X_L1ATRT, STA32X_LxR_SHIFT, |
| 16, 0, sta32x_limiter_ac_release_tlv), |
| SOC_SINGLE_TLV("Limiter2 Release Threshold (AC Mode)", STA32X_L2ATRT, STA32X_LxR_SHIFT, |
| 16, 0, sta32x_limiter_ac_release_tlv), |
| SOC_SINGLE_TLV("Limiter1 Attack Threshold (DRC Mode)", STA32X_L1ATRT, STA32X_LxA_SHIFT, |
| 16, 0, sta32x_limiter_drc_attack_tlv), |
| SOC_SINGLE_TLV("Limiter2 Attack Threshold (DRC Mode)", STA32X_L2ATRT, STA32X_LxA_SHIFT, |
| 16, 0, sta32x_limiter_drc_attack_tlv), |
| SOC_SINGLE_TLV("Limiter1 Release Threshold (DRC Mode)", STA32X_L1ATRT, STA32X_LxR_SHIFT, |
| 16, 0, sta32x_limiter_drc_release_tlv), |
| SOC_SINGLE_TLV("Limiter2 Release Threshold (DRC Mode)", STA32X_L2ATRT, STA32X_LxR_SHIFT, |
| 16, 0, sta32x_limiter_drc_release_tlv), |
| |
| BIQUAD_COEFS("Ch1 - Biquad 1", 0), |
| BIQUAD_COEFS("Ch1 - Biquad 2", 5), |
| BIQUAD_COEFS("Ch1 - Biquad 3", 10), |
| BIQUAD_COEFS("Ch1 - Biquad 4", 15), |
| BIQUAD_COEFS("Ch2 - Biquad 1", 20), |
| BIQUAD_COEFS("Ch2 - Biquad 2", 25), |
| BIQUAD_COEFS("Ch2 - Biquad 3", 30), |
| BIQUAD_COEFS("Ch2 - Biquad 4", 35), |
| BIQUAD_COEFS("High-pass", 40), |
| BIQUAD_COEFS("Low-pass", 45), |
| SINGLE_COEF("Ch1 - Prescale", 50), |
| SINGLE_COEF("Ch2 - Prescale", 51), |
| SINGLE_COEF("Ch1 - Postscale", 52), |
| SINGLE_COEF("Ch2 - Postscale", 53), |
| SINGLE_COEF("Ch3 - Postscale", 54), |
| SINGLE_COEF("Thermal warning - Postscale", 55), |
| SINGLE_COEF("Ch1 - Mix 1", 56), |
| SINGLE_COEF("Ch1 - Mix 2", 57), |
| SINGLE_COEF("Ch2 - Mix 1", 58), |
| SINGLE_COEF("Ch2 - Mix 2", 59), |
| SINGLE_COEF("Ch3 - Mix 1", 60), |
| SINGLE_COEF("Ch3 - Mix 2", 61), |
| }; |
| |
| static const struct snd_soc_dapm_widget sta32x_dapm_widgets[] = { |
| SND_SOC_DAPM_DAC("DAC", "Playback", SND_SOC_NOPM, 0, 0), |
| SND_SOC_DAPM_OUTPUT("LEFT"), |
| SND_SOC_DAPM_OUTPUT("RIGHT"), |
| SND_SOC_DAPM_OUTPUT("SUB"), |
| }; |
| |
| static const struct snd_soc_dapm_route sta32x_dapm_routes[] = { |
| { "LEFT", NULL, "DAC" }, |
| { "RIGHT", NULL, "DAC" }, |
| { "SUB", NULL, "DAC" }, |
| }; |
| |
| /* MCLK interpolation ratio per fs */ |
| static struct { |
| int fs; |
| int ir; |
| } interpolation_ratios[] = { |
| { 32000, 0 }, |
| { 44100, 0 }, |
| { 48000, 0 }, |
| { 88200, 1 }, |
| { 96000, 1 }, |
| { 176400, 2 }, |
| { 192000, 2 }, |
| }; |
| |
| /* MCLK to fs clock ratios */ |
| static int mcs_ratio_table[3][7] = { |
| { 768, 512, 384, 256, 128, 576, 0 }, |
| { 384, 256, 192, 128, 64, 0 }, |
| { 384, 256, 192, 128, 64, 0 }, |
| }; |
| |
| /** |
| * sta32x_set_dai_sysclk - configure MCLK |
| * @codec_dai: the codec DAI |
| * @clk_id: the clock ID (ignored) |
| * @freq: the MCLK input frequency |
| * @dir: the clock direction (ignored) |
| * |
| * The value of MCLK is used to determine which sample rates are supported |
| * by the STA32X, based on the mclk_ratios table. |
| * |
| * This function must be called by the machine driver's 'startup' function, |
| * otherwise the list of supported sample rates will not be available in |
| * time for ALSA. |
| * |
| * For setups with variable MCLKs, pass 0 as 'freq' argument. This will cause |
| * theoretically possible sample rates to be enabled. Call it again with a |
| * proper value set one the external clock is set (most probably you would do |
| * that from a machine's driver 'hw_param' hook. |
| */ |
| static int sta32x_set_dai_sysclk(struct snd_soc_dai *codec_dai, |
| int clk_id, unsigned int freq, int dir) |
| { |
| struct snd_soc_component *component = codec_dai->component; |
| struct sta32x_priv *sta32x = snd_soc_component_get_drvdata(component); |
| |
| dev_dbg(component->dev, "mclk=%u\n", freq); |
| sta32x->mclk = freq; |
| |
| return 0; |
| } |
| |
| /** |
| * sta32x_set_dai_fmt - configure the codec for the selected audio format |
| * @codec_dai: the codec DAI |
| * @fmt: a SND_SOC_DAIFMT_x value indicating the data format |
| * |
| * This function takes a bitmask of SND_SOC_DAIFMT_x bits and programs the |
| * codec accordingly. |
| */ |
| static int sta32x_set_dai_fmt(struct snd_soc_dai *codec_dai, |
| unsigned int fmt) |
| { |
| struct snd_soc_component *component = codec_dai->component; |
| struct sta32x_priv *sta32x = snd_soc_component_get_drvdata(component); |
| u8 confb = 0; |
| |
| switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) { |
| case SND_SOC_DAIFMT_CBS_CFS: |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) { |
| case SND_SOC_DAIFMT_I2S: |
| case SND_SOC_DAIFMT_RIGHT_J: |
| case SND_SOC_DAIFMT_LEFT_J: |
| sta32x->format = fmt & SND_SOC_DAIFMT_FORMAT_MASK; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| switch (fmt & SND_SOC_DAIFMT_INV_MASK) { |
| case SND_SOC_DAIFMT_NB_NF: |
| confb |= STA32X_CONFB_C2IM; |
| break; |
| case SND_SOC_DAIFMT_NB_IF: |
| confb |= STA32X_CONFB_C1IM; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| return regmap_update_bits(sta32x->regmap, STA32X_CONFB, |
| STA32X_CONFB_C1IM | STA32X_CONFB_C2IM, confb); |
| } |
| |
| /** |
| * sta32x_hw_params - program the STA32X with the given hardware parameters. |
| * @substream: the audio stream |
| * @params: the hardware parameters to set |
| * @dai: the SOC DAI (ignored) |
| * |
| * This function programs the hardware with the values provided. |
| * Specifically, the sample rate and the data format. |
| */ |
| static int sta32x_hw_params(struct snd_pcm_substream *substream, |
| struct snd_pcm_hw_params *params, |
| struct snd_soc_dai *dai) |
| { |
| struct snd_soc_component *component = dai->component; |
| struct sta32x_priv *sta32x = snd_soc_component_get_drvdata(component); |
| int i, mcs = -EINVAL, ir = -EINVAL; |
| unsigned int confa, confb; |
| unsigned int rate, ratio; |
| int ret; |
| |
| if (!sta32x->mclk) { |
| dev_err(component->dev, |
| "sta32x->mclk is unset. Unable to determine ratio\n"); |
| return -EIO; |
| } |
| |
| rate = params_rate(params); |
| ratio = sta32x->mclk / rate; |
| dev_dbg(component->dev, "rate: %u, ratio: %u\n", rate, ratio); |
| |
| for (i = 0; i < ARRAY_SIZE(interpolation_ratios); i++) { |
| if (interpolation_ratios[i].fs == rate) { |
| ir = interpolation_ratios[i].ir; |
| break; |
| } |
| } |
| |
| if (ir < 0) { |
| dev_err(component->dev, "Unsupported samplerate: %u\n", rate); |
| return -EINVAL; |
| } |
| |
| for (i = 0; i < 6; i++) { |
| if (mcs_ratio_table[ir][i] == ratio) { |
| mcs = i; |
| break; |
| } |
| } |
| |
| if (mcs < 0) { |
| dev_err(component->dev, "Unresolvable ratio: %u\n", ratio); |
| return -EINVAL; |
| } |
| |
| confa = (ir << STA32X_CONFA_IR_SHIFT) | |
| (mcs << STA32X_CONFA_MCS_SHIFT); |
| confb = 0; |
| |
| switch (params_width(params)) { |
| case 24: |
| dev_dbg(component->dev, "24bit\n"); |
| /* fall through */ |
| case 32: |
| dev_dbg(component->dev, "24bit or 32bit\n"); |
| switch (sta32x->format) { |
| case SND_SOC_DAIFMT_I2S: |
| confb |= 0x0; |
| break; |
| case SND_SOC_DAIFMT_LEFT_J: |
| confb |= 0x1; |
| break; |
| case SND_SOC_DAIFMT_RIGHT_J: |
| confb |= 0x2; |
| break; |
| } |
| |
| break; |
| case 20: |
| dev_dbg(component->dev, "20bit\n"); |
| switch (sta32x->format) { |
| case SND_SOC_DAIFMT_I2S: |
| confb |= 0x4; |
| break; |
| case SND_SOC_DAIFMT_LEFT_J: |
| confb |= 0x5; |
| break; |
| case SND_SOC_DAIFMT_RIGHT_J: |
| confb |= 0x6; |
| break; |
| } |
| |
| break; |
| case 18: |
| dev_dbg(component->dev, "18bit\n"); |
| switch (sta32x->format) { |
| case SND_SOC_DAIFMT_I2S: |
| confb |= 0x8; |
| break; |
| case SND_SOC_DAIFMT_LEFT_J: |
| confb |= 0x9; |
| break; |
| case SND_SOC_DAIFMT_RIGHT_J: |
| confb |= 0xa; |
| break; |
| } |
| |
| break; |
| case 16: |
| dev_dbg(component->dev, "16bit\n"); |
| switch (sta32x->format) { |
| case SND_SOC_DAIFMT_I2S: |
| confb |= 0x0; |
| break; |
| case SND_SOC_DAIFMT_LEFT_J: |
| confb |= 0xd; |
| break; |
| case SND_SOC_DAIFMT_RIGHT_J: |
| confb |= 0xe; |
| break; |
| } |
| |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| ret = regmap_update_bits(sta32x->regmap, STA32X_CONFA, |
| STA32X_CONFA_MCS_MASK | STA32X_CONFA_IR_MASK, |
| confa); |
| if (ret < 0) |
| return ret; |
| |
| ret = regmap_update_bits(sta32x->regmap, STA32X_CONFB, |
| STA32X_CONFB_SAI_MASK | STA32X_CONFB_SAIFB, |
| confb); |
| if (ret < 0) |
| return ret; |
| |
| return 0; |
| } |
| |
| static int sta32x_startup_sequence(struct sta32x_priv *sta32x) |
| { |
| if (sta32x->gpiod_nreset) { |
| gpiod_set_value(sta32x->gpiod_nreset, 0); |
| mdelay(1); |
| gpiod_set_value(sta32x->gpiod_nreset, 1); |
| mdelay(1); |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * sta32x_set_bias_level - DAPM callback |
| * @component: the component device |
| * @level: DAPM power level |
| * |
| * This is called by ALSA to put the component into low power mode |
| * or to wake it up. If the component is powered off completely |
| * all registers must be restored after power on. |
| */ |
| static int sta32x_set_bias_level(struct snd_soc_component *component, |
| enum snd_soc_bias_level level) |
| { |
| int ret; |
| struct sta32x_priv *sta32x = snd_soc_component_get_drvdata(component); |
| |
| dev_dbg(component->dev, "level = %d\n", level); |
| switch (level) { |
| case SND_SOC_BIAS_ON: |
| break; |
| |
| case SND_SOC_BIAS_PREPARE: |
| /* Full power on */ |
| regmap_update_bits(sta32x->regmap, STA32X_CONFF, |
| STA32X_CONFF_PWDN | STA32X_CONFF_EAPD, |
| STA32X_CONFF_PWDN | STA32X_CONFF_EAPD); |
| break; |
| |
| case SND_SOC_BIAS_STANDBY: |
| if (snd_soc_component_get_bias_level(component) == SND_SOC_BIAS_OFF) { |
| ret = regulator_bulk_enable(ARRAY_SIZE(sta32x->supplies), |
| sta32x->supplies); |
| if (ret != 0) { |
| dev_err(component->dev, |
| "Failed to enable supplies: %d\n", ret); |
| return ret; |
| } |
| |
| sta32x_startup_sequence(sta32x); |
| sta32x_cache_sync(component); |
| sta32x_watchdog_start(sta32x); |
| } |
| |
| /* Power down */ |
| regmap_update_bits(sta32x->regmap, STA32X_CONFF, |
| STA32X_CONFF_PWDN | STA32X_CONFF_EAPD, |
| 0); |
| |
| break; |
| |
| case SND_SOC_BIAS_OFF: |
| /* The chip runs through the power down sequence for us. */ |
| regmap_update_bits(sta32x->regmap, STA32X_CONFF, |
| STA32X_CONFF_PWDN | STA32X_CONFF_EAPD, 0); |
| msleep(300); |
| sta32x_watchdog_stop(sta32x); |
| |
| gpiod_set_value(sta32x->gpiod_nreset, 0); |
| |
| regulator_bulk_disable(ARRAY_SIZE(sta32x->supplies), |
| sta32x->supplies); |
| break; |
| } |
| return 0; |
| } |
| |
| static const struct snd_soc_dai_ops sta32x_dai_ops = { |
| .hw_params = sta32x_hw_params, |
| .set_sysclk = sta32x_set_dai_sysclk, |
| .set_fmt = sta32x_set_dai_fmt, |
| }; |
| |
| static struct snd_soc_dai_driver sta32x_dai = { |
| .name = "sta32x-hifi", |
| .playback = { |
| .stream_name = "Playback", |
| .channels_min = 2, |
| .channels_max = 2, |
| .rates = STA32X_RATES, |
| .formats = STA32X_FORMATS, |
| }, |
| .ops = &sta32x_dai_ops, |
| }; |
| |
| static int sta32x_probe(struct snd_soc_component *component) |
| { |
| struct sta32x_priv *sta32x = snd_soc_component_get_drvdata(component); |
| struct sta32x_platform_data *pdata = sta32x->pdata; |
| int i, ret = 0, thermal = 0; |
| |
| sta32x->component = component; |
| |
| ret = regulator_bulk_enable(ARRAY_SIZE(sta32x->supplies), |
| sta32x->supplies); |
| if (ret != 0) { |
| dev_err(component->dev, "Failed to enable supplies: %d\n", ret); |
| return ret; |
| } |
| |
| ret = sta32x_startup_sequence(sta32x); |
| if (ret < 0) { |
| dev_err(component->dev, "Failed to startup device\n"); |
| return ret; |
| } |
| |
| /* CONFA */ |
| if (!pdata->thermal_warning_recovery) |
| thermal |= STA32X_CONFA_TWAB; |
| if (!pdata->thermal_warning_adjustment) |
| thermal |= STA32X_CONFA_TWRB; |
| if (!pdata->fault_detect_recovery) |
| thermal |= STA32X_CONFA_FDRB; |
| regmap_update_bits(sta32x->regmap, STA32X_CONFA, |
| STA32X_CONFA_TWAB | STA32X_CONFA_TWRB | |
| STA32X_CONFA_FDRB, |
| thermal); |
| |
| /* CONFC */ |
| regmap_update_bits(sta32x->regmap, STA32X_CONFC, |
| STA32X_CONFC_CSZ_MASK, |
| pdata->drop_compensation_ns |
| << STA32X_CONFC_CSZ_SHIFT); |
| |
| /* CONFE */ |
| regmap_update_bits(sta32x->regmap, STA32X_CONFE, |
| STA32X_CONFE_MPCV, |
| pdata->max_power_use_mpcc ? |
| STA32X_CONFE_MPCV : 0); |
| regmap_update_bits(sta32x->regmap, STA32X_CONFE, |
| STA32X_CONFE_MPC, |
| pdata->max_power_correction ? |
| STA32X_CONFE_MPC : 0); |
| regmap_update_bits(sta32x->regmap, STA32X_CONFE, |
| STA32X_CONFE_AME, |
| pdata->am_reduction_mode ? |
| STA32X_CONFE_AME : 0); |
| regmap_update_bits(sta32x->regmap, STA32X_CONFE, |
| STA32X_CONFE_PWMS, |
| pdata->odd_pwm_speed_mode ? |
| STA32X_CONFE_PWMS : 0); |
| |
| /* CONFF */ |
| regmap_update_bits(sta32x->regmap, STA32X_CONFF, |
| STA32X_CONFF_IDE, |
| pdata->invalid_input_detect_mute ? |
| STA32X_CONFF_IDE : 0); |
| |
| /* select output configuration */ |
| regmap_update_bits(sta32x->regmap, STA32X_CONFF, |
| STA32X_CONFF_OCFG_MASK, |
| pdata->output_conf |
| << STA32X_CONFF_OCFG_SHIFT); |
| |
| /* channel to output mapping */ |
| regmap_update_bits(sta32x->regmap, STA32X_C1CFG, |
| STA32X_CxCFG_OM_MASK, |
| pdata->ch1_output_mapping |
| << STA32X_CxCFG_OM_SHIFT); |
| regmap_update_bits(sta32x->regmap, STA32X_C2CFG, |
| STA32X_CxCFG_OM_MASK, |
| pdata->ch2_output_mapping |
| << STA32X_CxCFG_OM_SHIFT); |
| regmap_update_bits(sta32x->regmap, STA32X_C3CFG, |
| STA32X_CxCFG_OM_MASK, |
| pdata->ch3_output_mapping |
| << STA32X_CxCFG_OM_SHIFT); |
| |
| /* initialize coefficient shadow RAM with reset values */ |
| for (i = 4; i <= 49; i += 5) |
| sta32x->coef_shadow[i] = 0x400000; |
| for (i = 50; i <= 54; i++) |
| sta32x->coef_shadow[i] = 0x7fffff; |
| sta32x->coef_shadow[55] = 0x5a9df7; |
| sta32x->coef_shadow[56] = 0x7fffff; |
| sta32x->coef_shadow[59] = 0x7fffff; |
| sta32x->coef_shadow[60] = 0x400000; |
| sta32x->coef_shadow[61] = 0x400000; |
| |
| if (sta32x->pdata->needs_esd_watchdog) |
| INIT_DELAYED_WORK(&sta32x->watchdog_work, sta32x_watchdog); |
| |
| snd_soc_component_force_bias_level(component, SND_SOC_BIAS_STANDBY); |
| /* Bias level configuration will have done an extra enable */ |
| regulator_bulk_disable(ARRAY_SIZE(sta32x->supplies), sta32x->supplies); |
| |
| return 0; |
| } |
| |
| static void sta32x_remove(struct snd_soc_component *component) |
| { |
| struct sta32x_priv *sta32x = snd_soc_component_get_drvdata(component); |
| |
| sta32x_watchdog_stop(sta32x); |
| regulator_bulk_disable(ARRAY_SIZE(sta32x->supplies), sta32x->supplies); |
| } |
| |
| static const struct snd_soc_component_driver sta32x_component = { |
| .probe = sta32x_probe, |
| .remove = sta32x_remove, |
| .set_bias_level = sta32x_set_bias_level, |
| .controls = sta32x_snd_controls, |
| .num_controls = ARRAY_SIZE(sta32x_snd_controls), |
| .dapm_widgets = sta32x_dapm_widgets, |
| .num_dapm_widgets = ARRAY_SIZE(sta32x_dapm_widgets), |
| .dapm_routes = sta32x_dapm_routes, |
| .num_dapm_routes = ARRAY_SIZE(sta32x_dapm_routes), |
| .suspend_bias_off = 1, |
| .idle_bias_on = 1, |
| .use_pmdown_time = 1, |
| .endianness = 1, |
| .non_legacy_dai_naming = 1, |
| }; |
| |
| static const struct regmap_config sta32x_regmap = { |
| .reg_bits = 8, |
| .val_bits = 8, |
| .max_register = STA32X_FDRC2, |
| .reg_defaults = sta32x_regs, |
| .num_reg_defaults = ARRAY_SIZE(sta32x_regs), |
| .cache_type = REGCACHE_RBTREE, |
| .wr_table = &sta32x_write_regs, |
| .rd_table = &sta32x_read_regs, |
| .volatile_table = &sta32x_volatile_regs, |
| }; |
| |
| #ifdef CONFIG_OF |
| static const struct of_device_id st32x_dt_ids[] = { |
| { .compatible = "st,sta32x", }, |
| { } |
| }; |
| MODULE_DEVICE_TABLE(of, st32x_dt_ids); |
| |
| static int sta32x_probe_dt(struct device *dev, struct sta32x_priv *sta32x) |
| { |
| struct device_node *np = dev->of_node; |
| struct sta32x_platform_data *pdata; |
| u16 tmp; |
| |
| pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL); |
| if (!pdata) |
| return -ENOMEM; |
| |
| of_property_read_u8(np, "st,output-conf", |
| &pdata->output_conf); |
| of_property_read_u8(np, "st,ch1-output-mapping", |
| &pdata->ch1_output_mapping); |
| of_property_read_u8(np, "st,ch2-output-mapping", |
| &pdata->ch2_output_mapping); |
| of_property_read_u8(np, "st,ch3-output-mapping", |
| &pdata->ch3_output_mapping); |
| |
| if (of_get_property(np, "st,thermal-warning-recovery", NULL)) |
| pdata->thermal_warning_recovery = 1; |
| if (of_get_property(np, "st,thermal-warning-adjustment", NULL)) |
| pdata->thermal_warning_adjustment = 1; |
| if (of_get_property(np, "st,needs_esd_watchdog", NULL)) |
| pdata->needs_esd_watchdog = 1; |
| |
| tmp = 140; |
| of_property_read_u16(np, "st,drop-compensation-ns", &tmp); |
| pdata->drop_compensation_ns = clamp_t(u16, tmp, 0, 300) / 20; |
| |
| /* CONFE */ |
| if (of_get_property(np, "st,max-power-use-mpcc", NULL)) |
| pdata->max_power_use_mpcc = 1; |
| |
| if (of_get_property(np, "st,max-power-correction", NULL)) |
| pdata->max_power_correction = 1; |
| |
| if (of_get_property(np, "st,am-reduction-mode", NULL)) |
| pdata->am_reduction_mode = 1; |
| |
| if (of_get_property(np, "st,odd-pwm-speed-mode", NULL)) |
| pdata->odd_pwm_speed_mode = 1; |
| |
| /* CONFF */ |
| if (of_get_property(np, "st,invalid-input-detect-mute", NULL)) |
| pdata->invalid_input_detect_mute = 1; |
| |
| sta32x->pdata = pdata; |
| |
| return 0; |
| } |
| #endif |
| |
| static int sta32x_i2c_probe(struct i2c_client *i2c, |
| const struct i2c_device_id *id) |
| { |
| struct device *dev = &i2c->dev; |
| struct sta32x_priv *sta32x; |
| int ret, i; |
| |
| sta32x = devm_kzalloc(&i2c->dev, sizeof(struct sta32x_priv), |
| GFP_KERNEL); |
| if (!sta32x) |
| return -ENOMEM; |
| |
| mutex_init(&sta32x->coeff_lock); |
| sta32x->pdata = dev_get_platdata(dev); |
| |
| #ifdef CONFIG_OF |
| if (dev->of_node) { |
| ret = sta32x_probe_dt(dev, sta32x); |
| if (ret < 0) |
| return ret; |
| } |
| #endif |
| |
| /* GPIOs */ |
| sta32x->gpiod_nreset = devm_gpiod_get_optional(dev, "reset", |
| GPIOD_OUT_LOW); |
| if (IS_ERR(sta32x->gpiod_nreset)) |
| return PTR_ERR(sta32x->gpiod_nreset); |
| |
| /* regulators */ |
| for (i = 0; i < ARRAY_SIZE(sta32x->supplies); i++) |
| sta32x->supplies[i].supply = sta32x_supply_names[i]; |
| |
| ret = devm_regulator_bulk_get(&i2c->dev, ARRAY_SIZE(sta32x->supplies), |
| sta32x->supplies); |
| if (ret != 0) { |
| dev_err(&i2c->dev, "Failed to request supplies: %d\n", ret); |
| return ret; |
| } |
| |
| sta32x->regmap = devm_regmap_init_i2c(i2c, &sta32x_regmap); |
| if (IS_ERR(sta32x->regmap)) { |
| ret = PTR_ERR(sta32x->regmap); |
| dev_err(dev, "Failed to init regmap: %d\n", ret); |
| return ret; |
| } |
| |
| i2c_set_clientdata(i2c, sta32x); |
| |
| ret = devm_snd_soc_register_component(dev, &sta32x_component, |
| &sta32x_dai, 1); |
| if (ret < 0) |
| dev_err(dev, "Failed to register component (%d)\n", ret); |
| |
| return ret; |
| } |
| |
| static const struct i2c_device_id sta32x_i2c_id[] = { |
| { "sta326", 0 }, |
| { "sta328", 0 }, |
| { "sta329", 0 }, |
| { } |
| }; |
| MODULE_DEVICE_TABLE(i2c, sta32x_i2c_id); |
| |
| static struct i2c_driver sta32x_i2c_driver = { |
| .driver = { |
| .name = "sta32x", |
| .of_match_table = of_match_ptr(st32x_dt_ids), |
| }, |
| .probe = sta32x_i2c_probe, |
| .id_table = sta32x_i2c_id, |
| }; |
| |
| module_i2c_driver(sta32x_i2c_driver); |
| |
| MODULE_DESCRIPTION("ASoC STA32X driver"); |
| MODULE_AUTHOR("Johannes Stezenbach <js@sig21.net>"); |
| MODULE_LICENSE("GPL"); |