| /* |
| * This file is subject to the terms and conditions of the GNU General Public |
| * License. See the file "COPYING" in the main directory of this archive |
| * for more details. |
| * |
| * Synthesize TLB refill handlers at runtime. |
| * |
| * Copyright (C) 2004, 2005, 2006, 2008 Thiemo Seufer |
| * Copyright (C) 2005, 2007, 2008, 2009 Maciej W. Rozycki |
| * Copyright (C) 2006 Ralf Baechle (ralf@linux-mips.org) |
| * Copyright (C) 2008, 2009 Cavium Networks, Inc. |
| * |
| * ... and the days got worse and worse and now you see |
| * I've gone completly out of my mind. |
| * |
| * They're coming to take me a away haha |
| * they're coming to take me a away hoho hihi haha |
| * to the funny farm where code is beautiful all the time ... |
| * |
| * (Condolences to Napoleon XIV) |
| */ |
| |
| #include <linux/bug.h> |
| #include <linux/kernel.h> |
| #include <linux/types.h> |
| #include <linux/smp.h> |
| #include <linux/string.h> |
| #include <linux/init.h> |
| |
| #include <asm/mmu_context.h> |
| #include <asm/war.h> |
| |
| #include "uasm.h" |
| |
| static inline int r45k_bvahwbug(void) |
| { |
| /* XXX: We should probe for the presence of this bug, but we don't. */ |
| return 0; |
| } |
| |
| static inline int r4k_250MHZhwbug(void) |
| { |
| /* XXX: We should probe for the presence of this bug, but we don't. */ |
| return 0; |
| } |
| |
| static inline int __maybe_unused bcm1250_m3_war(void) |
| { |
| return BCM1250_M3_WAR; |
| } |
| |
| static inline int __maybe_unused r10000_llsc_war(void) |
| { |
| return R10000_LLSC_WAR; |
| } |
| |
| /* |
| * Found by experiment: At least some revisions of the 4kc throw under |
| * some circumstances a machine check exception, triggered by invalid |
| * values in the index register. Delaying the tlbp instruction until |
| * after the next branch, plus adding an additional nop in front of |
| * tlbwi/tlbwr avoids the invalid index register values. Nobody knows |
| * why; it's not an issue caused by the core RTL. |
| * |
| */ |
| static int __cpuinit m4kc_tlbp_war(void) |
| { |
| return (current_cpu_data.processor_id & 0xffff00) == |
| (PRID_COMP_MIPS | PRID_IMP_4KC); |
| } |
| |
| /* Handle labels (which must be positive integers). */ |
| enum label_id { |
| label_second_part = 1, |
| label_leave, |
| #ifdef MODULE_START |
| label_module_alloc, |
| #endif |
| label_vmalloc, |
| label_vmalloc_done, |
| label_tlbw_hazard, |
| label_split, |
| label_nopage_tlbl, |
| label_nopage_tlbs, |
| label_nopage_tlbm, |
| label_smp_pgtable_change, |
| label_r3000_write_probe_fail, |
| #ifdef CONFIG_HUGETLB_PAGE |
| label_tlb_huge_update, |
| #endif |
| }; |
| |
| UASM_L_LA(_second_part) |
| UASM_L_LA(_leave) |
| #ifdef MODULE_START |
| UASM_L_LA(_module_alloc) |
| #endif |
| UASM_L_LA(_vmalloc) |
| UASM_L_LA(_vmalloc_done) |
| UASM_L_LA(_tlbw_hazard) |
| UASM_L_LA(_split) |
| UASM_L_LA(_nopage_tlbl) |
| UASM_L_LA(_nopage_tlbs) |
| UASM_L_LA(_nopage_tlbm) |
| UASM_L_LA(_smp_pgtable_change) |
| UASM_L_LA(_r3000_write_probe_fail) |
| #ifdef CONFIG_HUGETLB_PAGE |
| UASM_L_LA(_tlb_huge_update) |
| #endif |
| |
| /* |
| * For debug purposes. |
| */ |
| static inline void dump_handler(const u32 *handler, int count) |
| { |
| int i; |
| |
| pr_debug("\t.set push\n"); |
| pr_debug("\t.set noreorder\n"); |
| |
| for (i = 0; i < count; i++) |
| pr_debug("\t%p\t.word 0x%08x\n", &handler[i], handler[i]); |
| |
| pr_debug("\t.set pop\n"); |
| } |
| |
| /* The only general purpose registers allowed in TLB handlers. */ |
| #define K0 26 |
| #define K1 27 |
| |
| /* Some CP0 registers */ |
| #define C0_INDEX 0, 0 |
| #define C0_ENTRYLO0 2, 0 |
| #define C0_TCBIND 2, 2 |
| #define C0_ENTRYLO1 3, 0 |
| #define C0_CONTEXT 4, 0 |
| #define C0_PAGEMASK 5, 0 |
| #define C0_BADVADDR 8, 0 |
| #define C0_ENTRYHI 10, 0 |
| #define C0_EPC 14, 0 |
| #define C0_XCONTEXT 20, 0 |
| |
| #ifdef CONFIG_64BIT |
| # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_XCONTEXT) |
| #else |
| # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_CONTEXT) |
| #endif |
| |
| /* The worst case length of the handler is around 18 instructions for |
| * R3000-style TLBs and up to 63 instructions for R4000-style TLBs. |
| * Maximum space available is 32 instructions for R3000 and 64 |
| * instructions for R4000. |
| * |
| * We deliberately chose a buffer size of 128, so we won't scribble |
| * over anything important on overflow before we panic. |
| */ |
| static u32 tlb_handler[128] __cpuinitdata; |
| |
| /* simply assume worst case size for labels and relocs */ |
| static struct uasm_label labels[128] __cpuinitdata; |
| static struct uasm_reloc relocs[128] __cpuinitdata; |
| |
| /* |
| * The R3000 TLB handler is simple. |
| */ |
| static void __cpuinit build_r3000_tlb_refill_handler(void) |
| { |
| long pgdc = (long)pgd_current; |
| u32 *p; |
| |
| memset(tlb_handler, 0, sizeof(tlb_handler)); |
| p = tlb_handler; |
| |
| uasm_i_mfc0(&p, K0, C0_BADVADDR); |
| uasm_i_lui(&p, K1, uasm_rel_hi(pgdc)); /* cp0 delay */ |
| uasm_i_lw(&p, K1, uasm_rel_lo(pgdc), K1); |
| uasm_i_srl(&p, K0, K0, 22); /* load delay */ |
| uasm_i_sll(&p, K0, K0, 2); |
| uasm_i_addu(&p, K1, K1, K0); |
| uasm_i_mfc0(&p, K0, C0_CONTEXT); |
| uasm_i_lw(&p, K1, 0, K1); /* cp0 delay */ |
| uasm_i_andi(&p, K0, K0, 0xffc); /* load delay */ |
| uasm_i_addu(&p, K1, K1, K0); |
| uasm_i_lw(&p, K0, 0, K1); |
| uasm_i_nop(&p); /* load delay */ |
| uasm_i_mtc0(&p, K0, C0_ENTRYLO0); |
| uasm_i_mfc0(&p, K1, C0_EPC); /* cp0 delay */ |
| uasm_i_tlbwr(&p); /* cp0 delay */ |
| uasm_i_jr(&p, K1); |
| uasm_i_rfe(&p); /* branch delay */ |
| |
| if (p > tlb_handler + 32) |
| panic("TLB refill handler space exceeded"); |
| |
| pr_debug("Wrote TLB refill handler (%u instructions).\n", |
| (unsigned int)(p - tlb_handler)); |
| |
| memcpy((void *)ebase, tlb_handler, 0x80); |
| |
| dump_handler((u32 *)ebase, 32); |
| } |
| |
| /* |
| * The R4000 TLB handler is much more complicated. We have two |
| * consecutive handler areas with 32 instructions space each. |
| * Since they aren't used at the same time, we can overflow in the |
| * other one.To keep things simple, we first assume linear space, |
| * then we relocate it to the final handler layout as needed. |
| */ |
| static u32 final_handler[64] __cpuinitdata; |
| |
| /* |
| * Hazards |
| * |
| * From the IDT errata for the QED RM5230 (Nevada), processor revision 1.0: |
| * 2. A timing hazard exists for the TLBP instruction. |
| * |
| * stalling_instruction |
| * TLBP |
| * |
| * The JTLB is being read for the TLBP throughout the stall generated by the |
| * previous instruction. This is not really correct as the stalling instruction |
| * can modify the address used to access the JTLB. The failure symptom is that |
| * the TLBP instruction will use an address created for the stalling instruction |
| * and not the address held in C0_ENHI and thus report the wrong results. |
| * |
| * The software work-around is to not allow the instruction preceding the TLBP |
| * to stall - make it an NOP or some other instruction guaranteed not to stall. |
| * |
| * Errata 2 will not be fixed. This errata is also on the R5000. |
| * |
| * As if we MIPS hackers wouldn't know how to nop pipelines happy ... |
| */ |
| static void __cpuinit __maybe_unused build_tlb_probe_entry(u32 **p) |
| { |
| switch (current_cpu_type()) { |
| /* Found by experiment: R4600 v2.0/R4700 needs this, too. */ |
| case CPU_R4600: |
| case CPU_R4700: |
| case CPU_R5000: |
| case CPU_R5000A: |
| case CPU_NEVADA: |
| uasm_i_nop(p); |
| uasm_i_tlbp(p); |
| break; |
| |
| default: |
| uasm_i_tlbp(p); |
| break; |
| } |
| } |
| |
| /* |
| * Write random or indexed TLB entry, and care about the hazards from |
| * the preceeding mtc0 and for the following eret. |
| */ |
| enum tlb_write_entry { tlb_random, tlb_indexed }; |
| |
| static void __cpuinit build_tlb_write_entry(u32 **p, struct uasm_label **l, |
| struct uasm_reloc **r, |
| enum tlb_write_entry wmode) |
| { |
| void(*tlbw)(u32 **) = NULL; |
| |
| switch (wmode) { |
| case tlb_random: tlbw = uasm_i_tlbwr; break; |
| case tlb_indexed: tlbw = uasm_i_tlbwi; break; |
| } |
| |
| if (cpu_has_mips_r2) { |
| if (cpu_has_mips_r2_exec_hazard) |
| uasm_i_ehb(p); |
| tlbw(p); |
| return; |
| } |
| |
| switch (current_cpu_type()) { |
| case CPU_R4000PC: |
| case CPU_R4000SC: |
| case CPU_R4000MC: |
| case CPU_R4400PC: |
| case CPU_R4400SC: |
| case CPU_R4400MC: |
| /* |
| * This branch uses up a mtc0 hazard nop slot and saves |
| * two nops after the tlbw instruction. |
| */ |
| uasm_il_bgezl(p, r, 0, label_tlbw_hazard); |
| tlbw(p); |
| uasm_l_tlbw_hazard(l, *p); |
| uasm_i_nop(p); |
| break; |
| |
| case CPU_R4600: |
| case CPU_R4700: |
| case CPU_R5000: |
| case CPU_R5000A: |
| uasm_i_nop(p); |
| tlbw(p); |
| uasm_i_nop(p); |
| break; |
| |
| case CPU_R4300: |
| case CPU_5KC: |
| case CPU_TX49XX: |
| case CPU_PR4450: |
| uasm_i_nop(p); |
| tlbw(p); |
| break; |
| |
| case CPU_R10000: |
| case CPU_R12000: |
| case CPU_R14000: |
| case CPU_4KC: |
| case CPU_4KEC: |
| case CPU_SB1: |
| case CPU_SB1A: |
| case CPU_4KSC: |
| case CPU_20KC: |
| case CPU_25KF: |
| case CPU_BCM3302: |
| case CPU_BCM4710: |
| case CPU_LOONGSON2: |
| case CPU_R5500: |
| if (m4kc_tlbp_war()) |
| uasm_i_nop(p); |
| case CPU_ALCHEMY: |
| tlbw(p); |
| break; |
| |
| case CPU_NEVADA: |
| uasm_i_nop(p); /* QED specifies 2 nops hazard */ |
| /* |
| * This branch uses up a mtc0 hazard nop slot and saves |
| * a nop after the tlbw instruction. |
| */ |
| uasm_il_bgezl(p, r, 0, label_tlbw_hazard); |
| tlbw(p); |
| uasm_l_tlbw_hazard(l, *p); |
| break; |
| |
| case CPU_RM7000: |
| uasm_i_nop(p); |
| uasm_i_nop(p); |
| uasm_i_nop(p); |
| uasm_i_nop(p); |
| tlbw(p); |
| break; |
| |
| case CPU_RM9000: |
| /* |
| * When the JTLB is updated by tlbwi or tlbwr, a subsequent |
| * use of the JTLB for instructions should not occur for 4 |
| * cpu cycles and use for data translations should not occur |
| * for 3 cpu cycles. |
| */ |
| uasm_i_ssnop(p); |
| uasm_i_ssnop(p); |
| uasm_i_ssnop(p); |
| uasm_i_ssnop(p); |
| tlbw(p); |
| uasm_i_ssnop(p); |
| uasm_i_ssnop(p); |
| uasm_i_ssnop(p); |
| uasm_i_ssnop(p); |
| break; |
| |
| case CPU_VR4111: |
| case CPU_VR4121: |
| case CPU_VR4122: |
| case CPU_VR4181: |
| case CPU_VR4181A: |
| uasm_i_nop(p); |
| uasm_i_nop(p); |
| tlbw(p); |
| uasm_i_nop(p); |
| uasm_i_nop(p); |
| break; |
| |
| case CPU_VR4131: |
| case CPU_VR4133: |
| case CPU_R5432: |
| uasm_i_nop(p); |
| uasm_i_nop(p); |
| tlbw(p); |
| break; |
| |
| default: |
| panic("No TLB refill handler yet (CPU type: %d)", |
| current_cpu_data.cputype); |
| break; |
| } |
| } |
| |
| #ifdef CONFIG_HUGETLB_PAGE |
| static __cpuinit void build_huge_tlb_write_entry(u32 **p, |
| struct uasm_label **l, |
| struct uasm_reloc **r, |
| unsigned int tmp, |
| enum tlb_write_entry wmode) |
| { |
| /* Set huge page tlb entry size */ |
| uasm_i_lui(p, tmp, PM_HUGE_MASK >> 16); |
| uasm_i_ori(p, tmp, tmp, PM_HUGE_MASK & 0xffff); |
| uasm_i_mtc0(p, tmp, C0_PAGEMASK); |
| |
| build_tlb_write_entry(p, l, r, wmode); |
| |
| /* Reset default page size */ |
| if (PM_DEFAULT_MASK >> 16) { |
| uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16); |
| uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff); |
| uasm_il_b(p, r, label_leave); |
| uasm_i_mtc0(p, tmp, C0_PAGEMASK); |
| } else if (PM_DEFAULT_MASK) { |
| uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK); |
| uasm_il_b(p, r, label_leave); |
| uasm_i_mtc0(p, tmp, C0_PAGEMASK); |
| } else { |
| uasm_il_b(p, r, label_leave); |
| uasm_i_mtc0(p, 0, C0_PAGEMASK); |
| } |
| } |
| |
| /* |
| * Check if Huge PTE is present, if so then jump to LABEL. |
| */ |
| static void __cpuinit |
| build_is_huge_pte(u32 **p, struct uasm_reloc **r, unsigned int tmp, |
| unsigned int pmd, int lid) |
| { |
| UASM_i_LW(p, tmp, 0, pmd); |
| uasm_i_andi(p, tmp, tmp, _PAGE_HUGE); |
| uasm_il_bnez(p, r, tmp, lid); |
| } |
| |
| static __cpuinit void build_huge_update_entries(u32 **p, |
| unsigned int pte, |
| unsigned int tmp) |
| { |
| int small_sequence; |
| |
| /* |
| * A huge PTE describes an area the size of the |
| * configured huge page size. This is twice the |
| * of the large TLB entry size we intend to use. |
| * A TLB entry half the size of the configured |
| * huge page size is configured into entrylo0 |
| * and entrylo1 to cover the contiguous huge PTE |
| * address space. |
| */ |
| small_sequence = (HPAGE_SIZE >> 7) < 0x10000; |
| |
| /* We can clobber tmp. It isn't used after this.*/ |
| if (!small_sequence) |
| uasm_i_lui(p, tmp, HPAGE_SIZE >> (7 + 16)); |
| |
| UASM_i_SRL(p, pte, pte, 6); /* convert to entrylo */ |
| uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* load it */ |
| /* convert to entrylo1 */ |
| if (small_sequence) |
| UASM_i_ADDIU(p, pte, pte, HPAGE_SIZE >> 7); |
| else |
| UASM_i_ADDU(p, pte, pte, tmp); |
| |
| uasm_i_mtc0(p, pte, C0_ENTRYLO1); /* load it */ |
| } |
| |
| static __cpuinit void build_huge_handler_tail(u32 **p, |
| struct uasm_reloc **r, |
| struct uasm_label **l, |
| unsigned int pte, |
| unsigned int ptr) |
| { |
| #ifdef CONFIG_SMP |
| UASM_i_SC(p, pte, 0, ptr); |
| uasm_il_beqz(p, r, pte, label_tlb_huge_update); |
| UASM_i_LW(p, pte, 0, ptr); /* Needed because SC killed our PTE */ |
| #else |
| UASM_i_SW(p, pte, 0, ptr); |
| #endif |
| build_huge_update_entries(p, pte, ptr); |
| build_huge_tlb_write_entry(p, l, r, pte, tlb_indexed); |
| } |
| #endif /* CONFIG_HUGETLB_PAGE */ |
| |
| #ifdef CONFIG_64BIT |
| /* |
| * TMP and PTR are scratch. |
| * TMP will be clobbered, PTR will hold the pmd entry. |
| */ |
| static void __cpuinit |
| build_get_pmde64(u32 **p, struct uasm_label **l, struct uasm_reloc **r, |
| unsigned int tmp, unsigned int ptr) |
| { |
| long pgdc = (long)pgd_current; |
| |
| /* |
| * The vmalloc handling is not in the hotpath. |
| */ |
| uasm_i_dmfc0(p, tmp, C0_BADVADDR); |
| #ifdef MODULE_START |
| uasm_il_bltz(p, r, tmp, label_module_alloc); |
| #else |
| uasm_il_bltz(p, r, tmp, label_vmalloc); |
| #endif |
| /* No uasm_i_nop needed here, since the next insn doesn't touch TMP. */ |
| |
| #ifdef CONFIG_SMP |
| # ifdef CONFIG_MIPS_MT_SMTC |
| /* |
| * SMTC uses TCBind value as "CPU" index |
| */ |
| uasm_i_mfc0(p, ptr, C0_TCBIND); |
| uasm_i_dsrl(p, ptr, ptr, 19); |
| # else |
| /* |
| * 64 bit SMP running in XKPHYS has smp_processor_id() << 3 |
| * stored in CONTEXT. |
| */ |
| uasm_i_dmfc0(p, ptr, C0_CONTEXT); |
| uasm_i_dsrl(p, ptr, ptr, 23); |
| #endif |
| UASM_i_LA_mostly(p, tmp, pgdc); |
| uasm_i_daddu(p, ptr, ptr, tmp); |
| uasm_i_dmfc0(p, tmp, C0_BADVADDR); |
| uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr); |
| #else |
| UASM_i_LA_mostly(p, ptr, pgdc); |
| uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr); |
| #endif |
| |
| uasm_l_vmalloc_done(l, *p); |
| |
| if (PGDIR_SHIFT - 3 < 32) /* get pgd offset in bytes */ |
| uasm_i_dsrl(p, tmp, tmp, PGDIR_SHIFT-3); |
| else |
| uasm_i_dsrl32(p, tmp, tmp, PGDIR_SHIFT - 3 - 32); |
| |
| uasm_i_andi(p, tmp, tmp, (PTRS_PER_PGD - 1)<<3); |
| uasm_i_daddu(p, ptr, ptr, tmp); /* add in pgd offset */ |
| uasm_i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */ |
| uasm_i_ld(p, ptr, 0, ptr); /* get pmd pointer */ |
| uasm_i_dsrl(p, tmp, tmp, PMD_SHIFT-3); /* get pmd offset in bytes */ |
| uasm_i_andi(p, tmp, tmp, (PTRS_PER_PMD - 1)<<3); |
| uasm_i_daddu(p, ptr, ptr, tmp); /* add in pmd offset */ |
| } |
| |
| /* |
| * BVADDR is the faulting address, PTR is scratch. |
| * PTR will hold the pgd for vmalloc. |
| */ |
| static void __cpuinit |
| build_get_pgd_vmalloc64(u32 **p, struct uasm_label **l, struct uasm_reloc **r, |
| unsigned int bvaddr, unsigned int ptr) |
| { |
| long swpd = (long)swapper_pg_dir; |
| |
| #ifdef MODULE_START |
| long modd = (long)module_pg_dir; |
| |
| uasm_l_module_alloc(l, *p); |
| /* |
| * Assumption: |
| * VMALLOC_START >= 0xc000000000000000UL |
| * MODULE_START >= 0xe000000000000000UL |
| */ |
| UASM_i_SLL(p, ptr, bvaddr, 2); |
| uasm_il_bgez(p, r, ptr, label_vmalloc); |
| |
| if (uasm_in_compat_space_p(MODULE_START) && |
| !uasm_rel_lo(MODULE_START)) { |
| uasm_i_lui(p, ptr, uasm_rel_hi(MODULE_START)); /* delay slot */ |
| } else { |
| /* unlikely configuration */ |
| uasm_i_nop(p); /* delay slot */ |
| UASM_i_LA(p, ptr, MODULE_START); |
| } |
| uasm_i_dsubu(p, bvaddr, bvaddr, ptr); |
| |
| if (uasm_in_compat_space_p(modd) && !uasm_rel_lo(modd)) { |
| uasm_il_b(p, r, label_vmalloc_done); |
| uasm_i_lui(p, ptr, uasm_rel_hi(modd)); |
| } else { |
| UASM_i_LA_mostly(p, ptr, modd); |
| uasm_il_b(p, r, label_vmalloc_done); |
| if (uasm_in_compat_space_p(modd)) |
| uasm_i_addiu(p, ptr, ptr, uasm_rel_lo(modd)); |
| else |
| uasm_i_daddiu(p, ptr, ptr, uasm_rel_lo(modd)); |
| } |
| |
| uasm_l_vmalloc(l, *p); |
| if (uasm_in_compat_space_p(MODULE_START) && |
| !uasm_rel_lo(MODULE_START) && |
| MODULE_START << 32 == VMALLOC_START) |
| uasm_i_dsll32(p, ptr, ptr, 0); /* typical case */ |
| else |
| UASM_i_LA(p, ptr, VMALLOC_START); |
| #else |
| uasm_l_vmalloc(l, *p); |
| UASM_i_LA(p, ptr, VMALLOC_START); |
| #endif |
| uasm_i_dsubu(p, bvaddr, bvaddr, ptr); |
| |
| if (uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd)) { |
| uasm_il_b(p, r, label_vmalloc_done); |
| uasm_i_lui(p, ptr, uasm_rel_hi(swpd)); |
| } else { |
| UASM_i_LA_mostly(p, ptr, swpd); |
| uasm_il_b(p, r, label_vmalloc_done); |
| if (uasm_in_compat_space_p(swpd)) |
| uasm_i_addiu(p, ptr, ptr, uasm_rel_lo(swpd)); |
| else |
| uasm_i_daddiu(p, ptr, ptr, uasm_rel_lo(swpd)); |
| } |
| } |
| |
| #else /* !CONFIG_64BIT */ |
| |
| /* |
| * TMP and PTR are scratch. |
| * TMP will be clobbered, PTR will hold the pgd entry. |
| */ |
| static void __cpuinit __maybe_unused |
| build_get_pgde32(u32 **p, unsigned int tmp, unsigned int ptr) |
| { |
| long pgdc = (long)pgd_current; |
| |
| /* 32 bit SMP has smp_processor_id() stored in CONTEXT. */ |
| #ifdef CONFIG_SMP |
| #ifdef CONFIG_MIPS_MT_SMTC |
| /* |
| * SMTC uses TCBind value as "CPU" index |
| */ |
| uasm_i_mfc0(p, ptr, C0_TCBIND); |
| UASM_i_LA_mostly(p, tmp, pgdc); |
| uasm_i_srl(p, ptr, ptr, 19); |
| #else |
| /* |
| * smp_processor_id() << 3 is stored in CONTEXT. |
| */ |
| uasm_i_mfc0(p, ptr, C0_CONTEXT); |
| UASM_i_LA_mostly(p, tmp, pgdc); |
| uasm_i_srl(p, ptr, ptr, 23); |
| #endif |
| uasm_i_addu(p, ptr, tmp, ptr); |
| #else |
| UASM_i_LA_mostly(p, ptr, pgdc); |
| #endif |
| uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */ |
| uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr); |
| uasm_i_srl(p, tmp, tmp, PGDIR_SHIFT); /* get pgd only bits */ |
| uasm_i_sll(p, tmp, tmp, PGD_T_LOG2); |
| uasm_i_addu(p, ptr, ptr, tmp); /* add in pgd offset */ |
| } |
| |
| #endif /* !CONFIG_64BIT */ |
| |
| static void __cpuinit build_adjust_context(u32 **p, unsigned int ctx) |
| { |
| unsigned int shift = 4 - (PTE_T_LOG2 + 1) + PAGE_SHIFT - 12; |
| unsigned int mask = (PTRS_PER_PTE / 2 - 1) << (PTE_T_LOG2 + 1); |
| |
| switch (current_cpu_type()) { |
| case CPU_VR41XX: |
| case CPU_VR4111: |
| case CPU_VR4121: |
| case CPU_VR4122: |
| case CPU_VR4131: |
| case CPU_VR4181: |
| case CPU_VR4181A: |
| case CPU_VR4133: |
| shift += 2; |
| break; |
| |
| default: |
| break; |
| } |
| |
| if (shift) |
| UASM_i_SRL(p, ctx, ctx, shift); |
| uasm_i_andi(p, ctx, ctx, mask); |
| } |
| |
| static void __cpuinit build_get_ptep(u32 **p, unsigned int tmp, unsigned int ptr) |
| { |
| /* |
| * Bug workaround for the Nevada. It seems as if under certain |
| * circumstances the move from cp0_context might produce a |
| * bogus result when the mfc0 instruction and its consumer are |
| * in a different cacheline or a load instruction, probably any |
| * memory reference, is between them. |
| */ |
| switch (current_cpu_type()) { |
| case CPU_NEVADA: |
| UASM_i_LW(p, ptr, 0, ptr); |
| GET_CONTEXT(p, tmp); /* get context reg */ |
| break; |
| |
| default: |
| GET_CONTEXT(p, tmp); /* get context reg */ |
| UASM_i_LW(p, ptr, 0, ptr); |
| break; |
| } |
| |
| build_adjust_context(p, tmp); |
| UASM_i_ADDU(p, ptr, ptr, tmp); /* add in offset */ |
| } |
| |
| static void __cpuinit build_update_entries(u32 **p, unsigned int tmp, |
| unsigned int ptep) |
| { |
| /* |
| * 64bit address support (36bit on a 32bit CPU) in a 32bit |
| * Kernel is a special case. Only a few CPUs use it. |
| */ |
| #ifdef CONFIG_64BIT_PHYS_ADDR |
| if (cpu_has_64bits) { |
| uasm_i_ld(p, tmp, 0, ptep); /* get even pte */ |
| uasm_i_ld(p, ptep, sizeof(pte_t), ptep); /* get odd pte */ |
| uasm_i_dsrl(p, tmp, tmp, 6); /* convert to entrylo0 */ |
| uasm_i_mtc0(p, tmp, C0_ENTRYLO0); /* load it */ |
| uasm_i_dsrl(p, ptep, ptep, 6); /* convert to entrylo1 */ |
| uasm_i_mtc0(p, ptep, C0_ENTRYLO1); /* load it */ |
| } else { |
| int pte_off_even = sizeof(pte_t) / 2; |
| int pte_off_odd = pte_off_even + sizeof(pte_t); |
| |
| /* The pte entries are pre-shifted */ |
| uasm_i_lw(p, tmp, pte_off_even, ptep); /* get even pte */ |
| uasm_i_mtc0(p, tmp, C0_ENTRYLO0); /* load it */ |
| uasm_i_lw(p, ptep, pte_off_odd, ptep); /* get odd pte */ |
| uasm_i_mtc0(p, ptep, C0_ENTRYLO1); /* load it */ |
| } |
| #else |
| UASM_i_LW(p, tmp, 0, ptep); /* get even pte */ |
| UASM_i_LW(p, ptep, sizeof(pte_t), ptep); /* get odd pte */ |
| if (r45k_bvahwbug()) |
| build_tlb_probe_entry(p); |
| UASM_i_SRL(p, tmp, tmp, 6); /* convert to entrylo0 */ |
| if (r4k_250MHZhwbug()) |
| uasm_i_mtc0(p, 0, C0_ENTRYLO0); |
| uasm_i_mtc0(p, tmp, C0_ENTRYLO0); /* load it */ |
| UASM_i_SRL(p, ptep, ptep, 6); /* convert to entrylo1 */ |
| if (r45k_bvahwbug()) |
| uasm_i_mfc0(p, tmp, C0_INDEX); |
| if (r4k_250MHZhwbug()) |
| uasm_i_mtc0(p, 0, C0_ENTRYLO1); |
| uasm_i_mtc0(p, ptep, C0_ENTRYLO1); /* load it */ |
| #endif |
| } |
| |
| /* |
| * For a 64-bit kernel, we are using the 64-bit XTLB refill exception |
| * because EXL == 0. If we wrap, we can also use the 32 instruction |
| * slots before the XTLB refill exception handler which belong to the |
| * unused TLB refill exception. |
| */ |
| #define MIPS64_REFILL_INSNS 32 |
| |
| static void __cpuinit build_r4000_tlb_refill_handler(void) |
| { |
| u32 *p = tlb_handler; |
| struct uasm_label *l = labels; |
| struct uasm_reloc *r = relocs; |
| u32 *f; |
| unsigned int final_len; |
| |
| memset(tlb_handler, 0, sizeof(tlb_handler)); |
| memset(labels, 0, sizeof(labels)); |
| memset(relocs, 0, sizeof(relocs)); |
| memset(final_handler, 0, sizeof(final_handler)); |
| |
| /* |
| * create the plain linear handler |
| */ |
| if (bcm1250_m3_war()) { |
| UASM_i_MFC0(&p, K0, C0_BADVADDR); |
| UASM_i_MFC0(&p, K1, C0_ENTRYHI); |
| uasm_i_xor(&p, K0, K0, K1); |
| UASM_i_SRL(&p, K0, K0, PAGE_SHIFT + 1); |
| uasm_il_bnez(&p, &r, K0, label_leave); |
| /* No need for uasm_i_nop */ |
| } |
| |
| #ifdef CONFIG_64BIT |
| build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */ |
| #else |
| build_get_pgde32(&p, K0, K1); /* get pgd in K1 */ |
| #endif |
| |
| #ifdef CONFIG_HUGETLB_PAGE |
| build_is_huge_pte(&p, &r, K0, K1, label_tlb_huge_update); |
| #endif |
| |
| build_get_ptep(&p, K0, K1); |
| build_update_entries(&p, K0, K1); |
| build_tlb_write_entry(&p, &l, &r, tlb_random); |
| uasm_l_leave(&l, p); |
| uasm_i_eret(&p); /* return from trap */ |
| |
| #ifdef CONFIG_HUGETLB_PAGE |
| uasm_l_tlb_huge_update(&l, p); |
| UASM_i_LW(&p, K0, 0, K1); |
| build_huge_update_entries(&p, K0, K1); |
| build_huge_tlb_write_entry(&p, &l, &r, K0, tlb_random); |
| #endif |
| |
| #ifdef CONFIG_64BIT |
| build_get_pgd_vmalloc64(&p, &l, &r, K0, K1); |
| #endif |
| |
| /* |
| * Overflow check: For the 64bit handler, we need at least one |
| * free instruction slot for the wrap-around branch. In worst |
| * case, if the intended insertion point is a delay slot, we |
| * need three, with the second nop'ed and the third being |
| * unused. |
| */ |
| /* Loongson2 ebase is different than r4k, we have more space */ |
| #if defined(CONFIG_32BIT) || defined(CONFIG_CPU_LOONGSON2) |
| if ((p - tlb_handler) > 64) |
| panic("TLB refill handler space exceeded"); |
| #else |
| if (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 1) |
| || (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 3) |
| && uasm_insn_has_bdelay(relocs, |
| tlb_handler + MIPS64_REFILL_INSNS - 3))) |
| panic("TLB refill handler space exceeded"); |
| #endif |
| |
| /* |
| * Now fold the handler in the TLB refill handler space. |
| */ |
| #if defined(CONFIG_32BIT) || defined(CONFIG_CPU_LOONGSON2) |
| f = final_handler; |
| /* Simplest case, just copy the handler. */ |
| uasm_copy_handler(relocs, labels, tlb_handler, p, f); |
| final_len = p - tlb_handler; |
| #else /* CONFIG_64BIT */ |
| f = final_handler + MIPS64_REFILL_INSNS; |
| if ((p - tlb_handler) <= MIPS64_REFILL_INSNS) { |
| /* Just copy the handler. */ |
| uasm_copy_handler(relocs, labels, tlb_handler, p, f); |
| final_len = p - tlb_handler; |
| } else { |
| #if defined(CONFIG_HUGETLB_PAGE) |
| const enum label_id ls = label_tlb_huge_update; |
| #elif defined(MODULE_START) |
| const enum label_id ls = label_module_alloc; |
| #else |
| const enum label_id ls = label_vmalloc; |
| #endif |
| u32 *split; |
| int ov = 0; |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(labels) && labels[i].lab != ls; i++) |
| ; |
| BUG_ON(i == ARRAY_SIZE(labels)); |
| split = labels[i].addr; |
| |
| /* |
| * See if we have overflown one way or the other. |
| */ |
| if (split > tlb_handler + MIPS64_REFILL_INSNS || |
| split < p - MIPS64_REFILL_INSNS) |
| ov = 1; |
| |
| if (ov) { |
| /* |
| * Split two instructions before the end. One |
| * for the branch and one for the instruction |
| * in the delay slot. |
| */ |
| split = tlb_handler + MIPS64_REFILL_INSNS - 2; |
| |
| /* |
| * If the branch would fall in a delay slot, |
| * we must back up an additional instruction |
| * so that it is no longer in a delay slot. |
| */ |
| if (uasm_insn_has_bdelay(relocs, split - 1)) |
| split--; |
| } |
| /* Copy first part of the handler. */ |
| uasm_copy_handler(relocs, labels, tlb_handler, split, f); |
| f += split - tlb_handler; |
| |
| if (ov) { |
| /* Insert branch. */ |
| uasm_l_split(&l, final_handler); |
| uasm_il_b(&f, &r, label_split); |
| if (uasm_insn_has_bdelay(relocs, split)) |
| uasm_i_nop(&f); |
| else { |
| uasm_copy_handler(relocs, labels, |
| split, split + 1, f); |
| uasm_move_labels(labels, f, f + 1, -1); |
| f++; |
| split++; |
| } |
| } |
| |
| /* Copy the rest of the handler. */ |
| uasm_copy_handler(relocs, labels, split, p, final_handler); |
| final_len = (f - (final_handler + MIPS64_REFILL_INSNS)) + |
| (p - split); |
| } |
| #endif /* CONFIG_64BIT */ |
| |
| uasm_resolve_relocs(relocs, labels); |
| pr_debug("Wrote TLB refill handler (%u instructions).\n", |
| final_len); |
| |
| memcpy((void *)ebase, final_handler, 0x100); |
| |
| dump_handler((u32 *)ebase, 64); |
| } |
| |
| /* |
| * TLB load/store/modify handlers. |
| * |
| * Only the fastpath gets synthesized at runtime, the slowpath for |
| * do_page_fault remains normal asm. |
| */ |
| extern void tlb_do_page_fault_0(void); |
| extern void tlb_do_page_fault_1(void); |
| |
| /* |
| * 128 instructions for the fastpath handler is generous and should |
| * never be exceeded. |
| */ |
| #define FASTPATH_SIZE 128 |
| |
| u32 handle_tlbl[FASTPATH_SIZE] __cacheline_aligned; |
| u32 handle_tlbs[FASTPATH_SIZE] __cacheline_aligned; |
| u32 handle_tlbm[FASTPATH_SIZE] __cacheline_aligned; |
| |
| static void __cpuinit |
| iPTE_LW(u32 **p, unsigned int pte, unsigned int ptr) |
| { |
| #ifdef CONFIG_SMP |
| # ifdef CONFIG_64BIT_PHYS_ADDR |
| if (cpu_has_64bits) |
| uasm_i_lld(p, pte, 0, ptr); |
| else |
| # endif |
| UASM_i_LL(p, pte, 0, ptr); |
| #else |
| # ifdef CONFIG_64BIT_PHYS_ADDR |
| if (cpu_has_64bits) |
| uasm_i_ld(p, pte, 0, ptr); |
| else |
| # endif |
| UASM_i_LW(p, pte, 0, ptr); |
| #endif |
| } |
| |
| static void __cpuinit |
| iPTE_SW(u32 **p, struct uasm_reloc **r, unsigned int pte, unsigned int ptr, |
| unsigned int mode) |
| { |
| #ifdef CONFIG_64BIT_PHYS_ADDR |
| unsigned int hwmode = mode & (_PAGE_VALID | _PAGE_DIRTY); |
| #endif |
| |
| uasm_i_ori(p, pte, pte, mode); |
| #ifdef CONFIG_SMP |
| # ifdef CONFIG_64BIT_PHYS_ADDR |
| if (cpu_has_64bits) |
| uasm_i_scd(p, pte, 0, ptr); |
| else |
| # endif |
| UASM_i_SC(p, pte, 0, ptr); |
| |
| if (r10000_llsc_war()) |
| uasm_il_beqzl(p, r, pte, label_smp_pgtable_change); |
| else |
| uasm_il_beqz(p, r, pte, label_smp_pgtable_change); |
| |
| # ifdef CONFIG_64BIT_PHYS_ADDR |
| if (!cpu_has_64bits) { |
| /* no uasm_i_nop needed */ |
| uasm_i_ll(p, pte, sizeof(pte_t) / 2, ptr); |
| uasm_i_ori(p, pte, pte, hwmode); |
| uasm_i_sc(p, pte, sizeof(pte_t) / 2, ptr); |
| uasm_il_beqz(p, r, pte, label_smp_pgtable_change); |
| /* no uasm_i_nop needed */ |
| uasm_i_lw(p, pte, 0, ptr); |
| } else |
| uasm_i_nop(p); |
| # else |
| uasm_i_nop(p); |
| # endif |
| #else |
| # ifdef CONFIG_64BIT_PHYS_ADDR |
| if (cpu_has_64bits) |
| uasm_i_sd(p, pte, 0, ptr); |
| else |
| # endif |
| UASM_i_SW(p, pte, 0, ptr); |
| |
| # ifdef CONFIG_64BIT_PHYS_ADDR |
| if (!cpu_has_64bits) { |
| uasm_i_lw(p, pte, sizeof(pte_t) / 2, ptr); |
| uasm_i_ori(p, pte, pte, hwmode); |
| uasm_i_sw(p, pte, sizeof(pte_t) / 2, ptr); |
| uasm_i_lw(p, pte, 0, ptr); |
| } |
| # endif |
| #endif |
| } |
| |
| /* |
| * Check if PTE is present, if not then jump to LABEL. PTR points to |
| * the page table where this PTE is located, PTE will be re-loaded |
| * with it's original value. |
| */ |
| static void __cpuinit |
| build_pte_present(u32 **p, struct uasm_reloc **r, |
| unsigned int pte, unsigned int ptr, enum label_id lid) |
| { |
| uasm_i_andi(p, pte, pte, _PAGE_PRESENT | _PAGE_READ); |
| uasm_i_xori(p, pte, pte, _PAGE_PRESENT | _PAGE_READ); |
| uasm_il_bnez(p, r, pte, lid); |
| iPTE_LW(p, pte, ptr); |
| } |
| |
| /* Make PTE valid, store result in PTR. */ |
| static void __cpuinit |
| build_make_valid(u32 **p, struct uasm_reloc **r, unsigned int pte, |
| unsigned int ptr) |
| { |
| unsigned int mode = _PAGE_VALID | _PAGE_ACCESSED; |
| |
| iPTE_SW(p, r, pte, ptr, mode); |
| } |
| |
| /* |
| * Check if PTE can be written to, if not branch to LABEL. Regardless |
| * restore PTE with value from PTR when done. |
| */ |
| static void __cpuinit |
| build_pte_writable(u32 **p, struct uasm_reloc **r, |
| unsigned int pte, unsigned int ptr, enum label_id lid) |
| { |
| uasm_i_andi(p, pte, pte, _PAGE_PRESENT | _PAGE_WRITE); |
| uasm_i_xori(p, pte, pte, _PAGE_PRESENT | _PAGE_WRITE); |
| uasm_il_bnez(p, r, pte, lid); |
| iPTE_LW(p, pte, ptr); |
| } |
| |
| /* Make PTE writable, update software status bits as well, then store |
| * at PTR. |
| */ |
| static void __cpuinit |
| build_make_write(u32 **p, struct uasm_reloc **r, unsigned int pte, |
| unsigned int ptr) |
| { |
| unsigned int mode = (_PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID |
| | _PAGE_DIRTY); |
| |
| iPTE_SW(p, r, pte, ptr, mode); |
| } |
| |
| /* |
| * Check if PTE can be modified, if not branch to LABEL. Regardless |
| * restore PTE with value from PTR when done. |
| */ |
| static void __cpuinit |
| build_pte_modifiable(u32 **p, struct uasm_reloc **r, |
| unsigned int pte, unsigned int ptr, enum label_id lid) |
| { |
| uasm_i_andi(p, pte, pte, _PAGE_WRITE); |
| uasm_il_beqz(p, r, pte, lid); |
| iPTE_LW(p, pte, ptr); |
| } |
| |
| /* |
| * R3000 style TLB load/store/modify handlers. |
| */ |
| |
| /* |
| * This places the pte into ENTRYLO0 and writes it with tlbwi. |
| * Then it returns. |
| */ |
| static void __cpuinit |
| build_r3000_pte_reload_tlbwi(u32 **p, unsigned int pte, unsigned int tmp) |
| { |
| uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */ |
| uasm_i_mfc0(p, tmp, C0_EPC); /* cp0 delay */ |
| uasm_i_tlbwi(p); |
| uasm_i_jr(p, tmp); |
| uasm_i_rfe(p); /* branch delay */ |
| } |
| |
| /* |
| * This places the pte into ENTRYLO0 and writes it with tlbwi |
| * or tlbwr as appropriate. This is because the index register |
| * may have the probe fail bit set as a result of a trap on a |
| * kseg2 access, i.e. without refill. Then it returns. |
| */ |
| static void __cpuinit |
| build_r3000_tlb_reload_write(u32 **p, struct uasm_label **l, |
| struct uasm_reloc **r, unsigned int pte, |
| unsigned int tmp) |
| { |
| uasm_i_mfc0(p, tmp, C0_INDEX); |
| uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */ |
| uasm_il_bltz(p, r, tmp, label_r3000_write_probe_fail); /* cp0 delay */ |
| uasm_i_mfc0(p, tmp, C0_EPC); /* branch delay */ |
| uasm_i_tlbwi(p); /* cp0 delay */ |
| uasm_i_jr(p, tmp); |
| uasm_i_rfe(p); /* branch delay */ |
| uasm_l_r3000_write_probe_fail(l, *p); |
| uasm_i_tlbwr(p); /* cp0 delay */ |
| uasm_i_jr(p, tmp); |
| uasm_i_rfe(p); /* branch delay */ |
| } |
| |
| static void __cpuinit |
| build_r3000_tlbchange_handler_head(u32 **p, unsigned int pte, |
| unsigned int ptr) |
| { |
| long pgdc = (long)pgd_current; |
| |
| uasm_i_mfc0(p, pte, C0_BADVADDR); |
| uasm_i_lui(p, ptr, uasm_rel_hi(pgdc)); /* cp0 delay */ |
| uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr); |
| uasm_i_srl(p, pte, pte, 22); /* load delay */ |
| uasm_i_sll(p, pte, pte, 2); |
| uasm_i_addu(p, ptr, ptr, pte); |
| uasm_i_mfc0(p, pte, C0_CONTEXT); |
| uasm_i_lw(p, ptr, 0, ptr); /* cp0 delay */ |
| uasm_i_andi(p, pte, pte, 0xffc); /* load delay */ |
| uasm_i_addu(p, ptr, ptr, pte); |
| uasm_i_lw(p, pte, 0, ptr); |
| uasm_i_tlbp(p); /* load delay */ |
| } |
| |
| static void __cpuinit build_r3000_tlb_load_handler(void) |
| { |
| u32 *p = handle_tlbl; |
| struct uasm_label *l = labels; |
| struct uasm_reloc *r = relocs; |
| |
| memset(handle_tlbl, 0, sizeof(handle_tlbl)); |
| memset(labels, 0, sizeof(labels)); |
| memset(relocs, 0, sizeof(relocs)); |
| |
| build_r3000_tlbchange_handler_head(&p, K0, K1); |
| build_pte_present(&p, &r, K0, K1, label_nopage_tlbl); |
| uasm_i_nop(&p); /* load delay */ |
| build_make_valid(&p, &r, K0, K1); |
| build_r3000_tlb_reload_write(&p, &l, &r, K0, K1); |
| |
| uasm_l_nopage_tlbl(&l, p); |
| uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff); |
| uasm_i_nop(&p); |
| |
| if ((p - handle_tlbl) > FASTPATH_SIZE) |
| panic("TLB load handler fastpath space exceeded"); |
| |
| uasm_resolve_relocs(relocs, labels); |
| pr_debug("Wrote TLB load handler fastpath (%u instructions).\n", |
| (unsigned int)(p - handle_tlbl)); |
| |
| dump_handler(handle_tlbl, ARRAY_SIZE(handle_tlbl)); |
| } |
| |
| static void __cpuinit build_r3000_tlb_store_handler(void) |
| { |
| u32 *p = handle_tlbs; |
| struct uasm_label *l = labels; |
| struct uasm_reloc *r = relocs; |
| |
| memset(handle_tlbs, 0, sizeof(handle_tlbs)); |
| memset(labels, 0, sizeof(labels)); |
| memset(relocs, 0, sizeof(relocs)); |
| |
| build_r3000_tlbchange_handler_head(&p, K0, K1); |
| build_pte_writable(&p, &r, K0, K1, label_nopage_tlbs); |
| uasm_i_nop(&p); /* load delay */ |
| build_make_write(&p, &r, K0, K1); |
| build_r3000_tlb_reload_write(&p, &l, &r, K0, K1); |
| |
| uasm_l_nopage_tlbs(&l, p); |
| uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff); |
| uasm_i_nop(&p); |
| |
| if ((p - handle_tlbs) > FASTPATH_SIZE) |
| panic("TLB store handler fastpath space exceeded"); |
| |
| uasm_resolve_relocs(relocs, labels); |
| pr_debug("Wrote TLB store handler fastpath (%u instructions).\n", |
| (unsigned int)(p - handle_tlbs)); |
| |
| dump_handler(handle_tlbs, ARRAY_SIZE(handle_tlbs)); |
| } |
| |
| static void __cpuinit build_r3000_tlb_modify_handler(void) |
| { |
| u32 *p = handle_tlbm; |
| struct uasm_label *l = labels; |
| struct uasm_reloc *r = relocs; |
| |
| memset(handle_tlbm, 0, sizeof(handle_tlbm)); |
| memset(labels, 0, sizeof(labels)); |
| memset(relocs, 0, sizeof(relocs)); |
| |
| build_r3000_tlbchange_handler_head(&p, K0, K1); |
| build_pte_modifiable(&p, &r, K0, K1, label_nopage_tlbm); |
| uasm_i_nop(&p); /* load delay */ |
| build_make_write(&p, &r, K0, K1); |
| build_r3000_pte_reload_tlbwi(&p, K0, K1); |
| |
| uasm_l_nopage_tlbm(&l, p); |
| uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff); |
| uasm_i_nop(&p); |
| |
| if ((p - handle_tlbm) > FASTPATH_SIZE) |
| panic("TLB modify handler fastpath space exceeded"); |
| |
| uasm_resolve_relocs(relocs, labels); |
| pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n", |
| (unsigned int)(p - handle_tlbm)); |
| |
| dump_handler(handle_tlbm, ARRAY_SIZE(handle_tlbm)); |
| } |
| |
| /* |
| * R4000 style TLB load/store/modify handlers. |
| */ |
| static void __cpuinit |
| build_r4000_tlbchange_handler_head(u32 **p, struct uasm_label **l, |
| struct uasm_reloc **r, unsigned int pte, |
| unsigned int ptr) |
| { |
| #ifdef CONFIG_64BIT |
| build_get_pmde64(p, l, r, pte, ptr); /* get pmd in ptr */ |
| #else |
| build_get_pgde32(p, pte, ptr); /* get pgd in ptr */ |
| #endif |
| |
| #ifdef CONFIG_HUGETLB_PAGE |
| /* |
| * For huge tlb entries, pmd doesn't contain an address but |
| * instead contains the tlb pte. Check the PAGE_HUGE bit and |
| * see if we need to jump to huge tlb processing. |
| */ |
| build_is_huge_pte(p, r, pte, ptr, label_tlb_huge_update); |
| #endif |
| |
| UASM_i_MFC0(p, pte, C0_BADVADDR); |
| UASM_i_LW(p, ptr, 0, ptr); |
| UASM_i_SRL(p, pte, pte, PAGE_SHIFT + PTE_ORDER - PTE_T_LOG2); |
| uasm_i_andi(p, pte, pte, (PTRS_PER_PTE - 1) << PTE_T_LOG2); |
| UASM_i_ADDU(p, ptr, ptr, pte); |
| |
| #ifdef CONFIG_SMP |
| uasm_l_smp_pgtable_change(l, *p); |
| #endif |
| iPTE_LW(p, pte, ptr); /* get even pte */ |
| if (!m4kc_tlbp_war()) |
| build_tlb_probe_entry(p); |
| } |
| |
| static void __cpuinit |
| build_r4000_tlbchange_handler_tail(u32 **p, struct uasm_label **l, |
| struct uasm_reloc **r, unsigned int tmp, |
| unsigned int ptr) |
| { |
| uasm_i_ori(p, ptr, ptr, sizeof(pte_t)); |
| uasm_i_xori(p, ptr, ptr, sizeof(pte_t)); |
| build_update_entries(p, tmp, ptr); |
| build_tlb_write_entry(p, l, r, tlb_indexed); |
| uasm_l_leave(l, *p); |
| uasm_i_eret(p); /* return from trap */ |
| |
| #ifdef CONFIG_64BIT |
| build_get_pgd_vmalloc64(p, l, r, tmp, ptr); |
| #endif |
| } |
| |
| static void __cpuinit build_r4000_tlb_load_handler(void) |
| { |
| u32 *p = handle_tlbl; |
| struct uasm_label *l = labels; |
| struct uasm_reloc *r = relocs; |
| |
| memset(handle_tlbl, 0, sizeof(handle_tlbl)); |
| memset(labels, 0, sizeof(labels)); |
| memset(relocs, 0, sizeof(relocs)); |
| |
| if (bcm1250_m3_war()) { |
| UASM_i_MFC0(&p, K0, C0_BADVADDR); |
| UASM_i_MFC0(&p, K1, C0_ENTRYHI); |
| uasm_i_xor(&p, K0, K0, K1); |
| UASM_i_SRL(&p, K0, K0, PAGE_SHIFT + 1); |
| uasm_il_bnez(&p, &r, K0, label_leave); |
| /* No need for uasm_i_nop */ |
| } |
| |
| build_r4000_tlbchange_handler_head(&p, &l, &r, K0, K1); |
| build_pte_present(&p, &r, K0, K1, label_nopage_tlbl); |
| if (m4kc_tlbp_war()) |
| build_tlb_probe_entry(&p); |
| build_make_valid(&p, &r, K0, K1); |
| build_r4000_tlbchange_handler_tail(&p, &l, &r, K0, K1); |
| |
| #ifdef CONFIG_HUGETLB_PAGE |
| /* |
| * This is the entry point when build_r4000_tlbchange_handler_head |
| * spots a huge page. |
| */ |
| uasm_l_tlb_huge_update(&l, p); |
| iPTE_LW(&p, K0, K1); |
| build_pte_present(&p, &r, K0, K1, label_nopage_tlbl); |
| build_tlb_probe_entry(&p); |
| uasm_i_ori(&p, K0, K0, (_PAGE_ACCESSED | _PAGE_VALID)); |
| build_huge_handler_tail(&p, &r, &l, K0, K1); |
| #endif |
| |
| uasm_l_nopage_tlbl(&l, p); |
| uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff); |
| uasm_i_nop(&p); |
| |
| if ((p - handle_tlbl) > FASTPATH_SIZE) |
| panic("TLB load handler fastpath space exceeded"); |
| |
| uasm_resolve_relocs(relocs, labels); |
| pr_debug("Wrote TLB load handler fastpath (%u instructions).\n", |
| (unsigned int)(p - handle_tlbl)); |
| |
| dump_handler(handle_tlbl, ARRAY_SIZE(handle_tlbl)); |
| } |
| |
| static void __cpuinit build_r4000_tlb_store_handler(void) |
| { |
| u32 *p = handle_tlbs; |
| struct uasm_label *l = labels; |
| struct uasm_reloc *r = relocs; |
| |
| memset(handle_tlbs, 0, sizeof(handle_tlbs)); |
| memset(labels, 0, sizeof(labels)); |
| memset(relocs, 0, sizeof(relocs)); |
| |
| build_r4000_tlbchange_handler_head(&p, &l, &r, K0, K1); |
| build_pte_writable(&p, &r, K0, K1, label_nopage_tlbs); |
| if (m4kc_tlbp_war()) |
| build_tlb_probe_entry(&p); |
| build_make_write(&p, &r, K0, K1); |
| build_r4000_tlbchange_handler_tail(&p, &l, &r, K0, K1); |
| |
| #ifdef CONFIG_HUGETLB_PAGE |
| /* |
| * This is the entry point when |
| * build_r4000_tlbchange_handler_head spots a huge page. |
| */ |
| uasm_l_tlb_huge_update(&l, p); |
| iPTE_LW(&p, K0, K1); |
| build_pte_writable(&p, &r, K0, K1, label_nopage_tlbs); |
| build_tlb_probe_entry(&p); |
| uasm_i_ori(&p, K0, K0, |
| _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY); |
| build_huge_handler_tail(&p, &r, &l, K0, K1); |
| #endif |
| |
| uasm_l_nopage_tlbs(&l, p); |
| uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff); |
| uasm_i_nop(&p); |
| |
| if ((p - handle_tlbs) > FASTPATH_SIZE) |
| panic("TLB store handler fastpath space exceeded"); |
| |
| uasm_resolve_relocs(relocs, labels); |
| pr_debug("Wrote TLB store handler fastpath (%u instructions).\n", |
| (unsigned int)(p - handle_tlbs)); |
| |
| dump_handler(handle_tlbs, ARRAY_SIZE(handle_tlbs)); |
| } |
| |
| static void __cpuinit build_r4000_tlb_modify_handler(void) |
| { |
| u32 *p = handle_tlbm; |
| struct uasm_label *l = labels; |
| struct uasm_reloc *r = relocs; |
| |
| memset(handle_tlbm, 0, sizeof(handle_tlbm)); |
| memset(labels, 0, sizeof(labels)); |
| memset(relocs, 0, sizeof(relocs)); |
| |
| build_r4000_tlbchange_handler_head(&p, &l, &r, K0, K1); |
| build_pte_modifiable(&p, &r, K0, K1, label_nopage_tlbm); |
| if (m4kc_tlbp_war()) |
| build_tlb_probe_entry(&p); |
| /* Present and writable bits set, set accessed and dirty bits. */ |
| build_make_write(&p, &r, K0, K1); |
| build_r4000_tlbchange_handler_tail(&p, &l, &r, K0, K1); |
| |
| #ifdef CONFIG_HUGETLB_PAGE |
| /* |
| * This is the entry point when |
| * build_r4000_tlbchange_handler_head spots a huge page. |
| */ |
| uasm_l_tlb_huge_update(&l, p); |
| iPTE_LW(&p, K0, K1); |
| build_pte_modifiable(&p, &r, K0, K1, label_nopage_tlbm); |
| build_tlb_probe_entry(&p); |
| uasm_i_ori(&p, K0, K0, |
| _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY); |
| build_huge_handler_tail(&p, &r, &l, K0, K1); |
| #endif |
| |
| uasm_l_nopage_tlbm(&l, p); |
| uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff); |
| uasm_i_nop(&p); |
| |
| if ((p - handle_tlbm) > FASTPATH_SIZE) |
| panic("TLB modify handler fastpath space exceeded"); |
| |
| uasm_resolve_relocs(relocs, labels); |
| pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n", |
| (unsigned int)(p - handle_tlbm)); |
| |
| dump_handler(handle_tlbm, ARRAY_SIZE(handle_tlbm)); |
| } |
| |
| void __cpuinit build_tlb_refill_handler(void) |
| { |
| /* |
| * The refill handler is generated per-CPU, multi-node systems |
| * may have local storage for it. The other handlers are only |
| * needed once. |
| */ |
| static int run_once = 0; |
| |
| switch (current_cpu_type()) { |
| case CPU_R2000: |
| case CPU_R3000: |
| case CPU_R3000A: |
| case CPU_R3081E: |
| case CPU_TX3912: |
| case CPU_TX3922: |
| case CPU_TX3927: |
| build_r3000_tlb_refill_handler(); |
| if (!run_once) { |
| build_r3000_tlb_load_handler(); |
| build_r3000_tlb_store_handler(); |
| build_r3000_tlb_modify_handler(); |
| run_once++; |
| } |
| break; |
| |
| case CPU_R6000: |
| case CPU_R6000A: |
| panic("No R6000 TLB refill handler yet"); |
| break; |
| |
| case CPU_R8000: |
| panic("No R8000 TLB refill handler yet"); |
| break; |
| |
| default: |
| build_r4000_tlb_refill_handler(); |
| if (!run_once) { |
| build_r4000_tlb_load_handler(); |
| build_r4000_tlb_store_handler(); |
| build_r4000_tlb_modify_handler(); |
| run_once++; |
| } |
| } |
| } |
| |
| void __cpuinit flush_tlb_handlers(void) |
| { |
| local_flush_icache_range((unsigned long)handle_tlbl, |
| (unsigned long)handle_tlbl + sizeof(handle_tlbl)); |
| local_flush_icache_range((unsigned long)handle_tlbs, |
| (unsigned long)handle_tlbs + sizeof(handle_tlbs)); |
| local_flush_icache_range((unsigned long)handle_tlbm, |
| (unsigned long)handle_tlbm + sizeof(handle_tlbm)); |
| } |