| /* |
| * This file is subject to the terms and conditions of the GNU General Public |
| * License. See the file "COPYING" in the main directory of this archive |
| * for more details. |
| * |
| * Unified implementation of memcpy, memmove and the __copy_user backend. |
| * |
| * Copyright (C) 1998, 99, 2000, 01, 2002 Ralf Baechle (ralf@gnu.org) |
| * Copyright (C) 1999, 2000, 01, 2002 Silicon Graphics, Inc. |
| * Copyright (C) 2002 Broadcom, Inc. |
| * memcpy/copy_user author: Mark Vandevoorde |
| * |
| * Mnemonic names for arguments to memcpy/__copy_user |
| */ |
| |
| #include <asm/asm.h> |
| #include <asm/asm-offsets.h> |
| #include <asm/regdef.h> |
| |
| #define dst a0 |
| #define src a1 |
| #define len a2 |
| |
| /* |
| * Spec |
| * |
| * memcpy copies len bytes from src to dst and sets v0 to dst. |
| * It assumes that |
| * - src and dst don't overlap |
| * - src is readable |
| * - dst is writable |
| * memcpy uses the standard calling convention |
| * |
| * __copy_user copies up to len bytes from src to dst and sets a2 (len) to |
| * the number of uncopied bytes due to an exception caused by a read or write. |
| * __copy_user assumes that src and dst don't overlap, and that the call is |
| * implementing one of the following: |
| * copy_to_user |
| * - src is readable (no exceptions when reading src) |
| * copy_from_user |
| * - dst is writable (no exceptions when writing dst) |
| * __copy_user uses a non-standard calling convention; see |
| * arch/mips/include/asm/uaccess.h |
| * |
| * When an exception happens on a load, the handler must |
| # ensure that all of the destination buffer is overwritten to prevent |
| * leaking information to user mode programs. |
| */ |
| |
| /* |
| * Implementation |
| */ |
| |
| /* |
| * The exception handler for loads requires that: |
| * 1- AT contain the address of the byte just past the end of the source |
| * of the copy, |
| * 2- src_entry <= src < AT, and |
| * 3- (dst - src) == (dst_entry - src_entry), |
| * The _entry suffix denotes values when __copy_user was called. |
| * |
| * (1) is set up up by uaccess.h and maintained by not writing AT in copy_user |
| * (2) is met by incrementing src by the number of bytes copied |
| * (3) is met by not doing loads between a pair of increments of dst and src |
| * |
| * The exception handlers for stores adjust len (if necessary) and return. |
| * These handlers do not need to overwrite any data. |
| * |
| * For __rmemcpy and memmove an exception is always a kernel bug, therefore |
| * they're not protected. |
| */ |
| |
| #define EXC(inst_reg,addr,handler) \ |
| 9: inst_reg, addr; \ |
| .section __ex_table,"a"; \ |
| PTR 9b, handler; \ |
| .previous |
| |
| /* |
| * Only on the 64-bit kernel we can made use of 64-bit registers. |
| */ |
| |
| #define LOAD ld |
| #define LOADL ldl |
| #define LOADR ldr |
| #define STOREL sdl |
| #define STORER sdr |
| #define STORE sd |
| #define ADD daddu |
| #define SUB dsubu |
| #define SRL dsrl |
| #define SRA dsra |
| #define SLL dsll |
| #define SLLV dsllv |
| #define SRLV dsrlv |
| #define NBYTES 8 |
| #define LOG_NBYTES 3 |
| |
| /* |
| * As we are sharing code base with the mips32 tree (which use the o32 ABI |
| * register definitions). We need to redefine the register definitions from |
| * the n64 ABI register naming to the o32 ABI register naming. |
| */ |
| #undef t0 |
| #undef t1 |
| #undef t2 |
| #undef t3 |
| #define t0 $8 |
| #define t1 $9 |
| #define t2 $10 |
| #define t3 $11 |
| #define t4 $12 |
| #define t5 $13 |
| #define t6 $14 |
| #define t7 $15 |
| |
| #ifdef CONFIG_CPU_LITTLE_ENDIAN |
| #define LDFIRST LOADR |
| #define LDREST LOADL |
| #define STFIRST STORER |
| #define STREST STOREL |
| #define SHIFT_DISCARD SLLV |
| #else |
| #define LDFIRST LOADL |
| #define LDREST LOADR |
| #define STFIRST STOREL |
| #define STREST STORER |
| #define SHIFT_DISCARD SRLV |
| #endif |
| |
| #define FIRST(unit) ((unit)*NBYTES) |
| #define REST(unit) (FIRST(unit)+NBYTES-1) |
| #define UNIT(unit) FIRST(unit) |
| |
| #define ADDRMASK (NBYTES-1) |
| |
| .text |
| .set noreorder |
| .set noat |
| |
| /* |
| * t7 is used as a flag to note inatomic mode. |
| */ |
| LEAF(__copy_user_inatomic) |
| b __copy_user_common |
| li t7, 1 |
| END(__copy_user_inatomic) |
| |
| /* |
| * A combined memcpy/__copy_user |
| * __copy_user sets len to 0 for success; else to an upper bound of |
| * the number of uncopied bytes. |
| * memcpy sets v0 to dst. |
| */ |
| .align 5 |
| LEAF(memcpy) /* a0=dst a1=src a2=len */ |
| move v0, dst /* return value */ |
| __memcpy: |
| FEXPORT(__copy_user) |
| li t7, 0 /* not inatomic */ |
| __copy_user_common: |
| /* |
| * Note: dst & src may be unaligned, len may be 0 |
| * Temps |
| */ |
| # |
| # Octeon doesn't care if the destination is unaligned. The hardware |
| # can fix it faster than we can special case the assembly. |
| # |
| pref 0, 0(src) |
| sltu t0, len, NBYTES # Check if < 1 word |
| bnez t0, copy_bytes_checklen |
| and t0, src, ADDRMASK # Check if src unaligned |
| bnez t0, src_unaligned |
| sltu t0, len, 4*NBYTES # Check if < 4 words |
| bnez t0, less_than_4units |
| sltu t0, len, 8*NBYTES # Check if < 8 words |
| bnez t0, less_than_8units |
| sltu t0, len, 16*NBYTES # Check if < 16 words |
| bnez t0, cleanup_both_aligned |
| sltu t0, len, 128+1 # Check if len < 129 |
| bnez t0, 1f # Skip prefetch if len is too short |
| sltu t0, len, 256+1 # Check if len < 257 |
| bnez t0, 1f # Skip prefetch if len is too short |
| pref 0, 128(src) # We must not prefetch invalid addresses |
| # |
| # This is where we loop if there is more than 128 bytes left |
| 2: pref 0, 256(src) # We must not prefetch invalid addresses |
| # |
| # This is where we loop if we can't prefetch anymore |
| 1: |
| EXC( LOAD t0, UNIT(0)(src), l_exc) |
| EXC( LOAD t1, UNIT(1)(src), l_exc_copy) |
| EXC( LOAD t2, UNIT(2)(src), l_exc_copy) |
| EXC( LOAD t3, UNIT(3)(src), l_exc_copy) |
| SUB len, len, 16*NBYTES |
| EXC( STORE t0, UNIT(0)(dst), s_exc_p16u) |
| EXC( STORE t1, UNIT(1)(dst), s_exc_p15u) |
| EXC( STORE t2, UNIT(2)(dst), s_exc_p14u) |
| EXC( STORE t3, UNIT(3)(dst), s_exc_p13u) |
| EXC( LOAD t0, UNIT(4)(src), l_exc_copy) |
| EXC( LOAD t1, UNIT(5)(src), l_exc_copy) |
| EXC( LOAD t2, UNIT(6)(src), l_exc_copy) |
| EXC( LOAD t3, UNIT(7)(src), l_exc_copy) |
| EXC( STORE t0, UNIT(4)(dst), s_exc_p12u) |
| EXC( STORE t1, UNIT(5)(dst), s_exc_p11u) |
| EXC( STORE t2, UNIT(6)(dst), s_exc_p10u) |
| ADD src, src, 16*NBYTES |
| EXC( STORE t3, UNIT(7)(dst), s_exc_p9u) |
| ADD dst, dst, 16*NBYTES |
| EXC( LOAD t0, UNIT(-8)(src), l_exc_copy) |
| EXC( LOAD t1, UNIT(-7)(src), l_exc_copy) |
| EXC( LOAD t2, UNIT(-6)(src), l_exc_copy) |
| EXC( LOAD t3, UNIT(-5)(src), l_exc_copy) |
| EXC( STORE t0, UNIT(-8)(dst), s_exc_p8u) |
| EXC( STORE t1, UNIT(-7)(dst), s_exc_p7u) |
| EXC( STORE t2, UNIT(-6)(dst), s_exc_p6u) |
| EXC( STORE t3, UNIT(-5)(dst), s_exc_p5u) |
| EXC( LOAD t0, UNIT(-4)(src), l_exc_copy) |
| EXC( LOAD t1, UNIT(-3)(src), l_exc_copy) |
| EXC( LOAD t2, UNIT(-2)(src), l_exc_copy) |
| EXC( LOAD t3, UNIT(-1)(src), l_exc_copy) |
| EXC( STORE t0, UNIT(-4)(dst), s_exc_p4u) |
| EXC( STORE t1, UNIT(-3)(dst), s_exc_p3u) |
| EXC( STORE t2, UNIT(-2)(dst), s_exc_p2u) |
| EXC( STORE t3, UNIT(-1)(dst), s_exc_p1u) |
| sltu t0, len, 256+1 # See if we can prefetch more |
| beqz t0, 2b |
| sltu t0, len, 128 # See if we can loop more time |
| beqz t0, 1b |
| nop |
| # |
| # Jump here if there are less than 16*NBYTES left. |
| # |
| cleanup_both_aligned: |
| beqz len, done |
| sltu t0, len, 8*NBYTES |
| bnez t0, less_than_8units |
| nop |
| EXC( LOAD t0, UNIT(0)(src), l_exc) |
| EXC( LOAD t1, UNIT(1)(src), l_exc_copy) |
| EXC( LOAD t2, UNIT(2)(src), l_exc_copy) |
| EXC( LOAD t3, UNIT(3)(src), l_exc_copy) |
| SUB len, len, 8*NBYTES |
| EXC( STORE t0, UNIT(0)(dst), s_exc_p8u) |
| EXC( STORE t1, UNIT(1)(dst), s_exc_p7u) |
| EXC( STORE t2, UNIT(2)(dst), s_exc_p6u) |
| EXC( STORE t3, UNIT(3)(dst), s_exc_p5u) |
| EXC( LOAD t0, UNIT(4)(src), l_exc_copy) |
| EXC( LOAD t1, UNIT(5)(src), l_exc_copy) |
| EXC( LOAD t2, UNIT(6)(src), l_exc_copy) |
| EXC( LOAD t3, UNIT(7)(src), l_exc_copy) |
| EXC( STORE t0, UNIT(4)(dst), s_exc_p4u) |
| EXC( STORE t1, UNIT(5)(dst), s_exc_p3u) |
| EXC( STORE t2, UNIT(6)(dst), s_exc_p2u) |
| EXC( STORE t3, UNIT(7)(dst), s_exc_p1u) |
| ADD src, src, 8*NBYTES |
| beqz len, done |
| ADD dst, dst, 8*NBYTES |
| # |
| # Jump here if there are less than 8*NBYTES left. |
| # |
| less_than_8units: |
| sltu t0, len, 4*NBYTES |
| bnez t0, less_than_4units |
| nop |
| EXC( LOAD t0, UNIT(0)(src), l_exc) |
| EXC( LOAD t1, UNIT(1)(src), l_exc_copy) |
| EXC( LOAD t2, UNIT(2)(src), l_exc_copy) |
| EXC( LOAD t3, UNIT(3)(src), l_exc_copy) |
| SUB len, len, 4*NBYTES |
| EXC( STORE t0, UNIT(0)(dst), s_exc_p4u) |
| EXC( STORE t1, UNIT(1)(dst), s_exc_p3u) |
| EXC( STORE t2, UNIT(2)(dst), s_exc_p2u) |
| EXC( STORE t3, UNIT(3)(dst), s_exc_p1u) |
| ADD src, src, 4*NBYTES |
| beqz len, done |
| ADD dst, dst, 4*NBYTES |
| # |
| # Jump here if there are less than 4*NBYTES left. This means |
| # we may need to copy up to 3 NBYTES words. |
| # |
| less_than_4units: |
| sltu t0, len, 1*NBYTES |
| bnez t0, copy_bytes_checklen |
| nop |
| # |
| # 1) Copy NBYTES, then check length again |
| # |
| EXC( LOAD t0, 0(src), l_exc) |
| SUB len, len, NBYTES |
| sltu t1, len, 8 |
| EXC( STORE t0, 0(dst), s_exc_p1u) |
| ADD src, src, NBYTES |
| bnez t1, copy_bytes_checklen |
| ADD dst, dst, NBYTES |
| # |
| # 2) Copy NBYTES, then check length again |
| # |
| EXC( LOAD t0, 0(src), l_exc) |
| SUB len, len, NBYTES |
| sltu t1, len, 8 |
| EXC( STORE t0, 0(dst), s_exc_p1u) |
| ADD src, src, NBYTES |
| bnez t1, copy_bytes_checklen |
| ADD dst, dst, NBYTES |
| # |
| # 3) Copy NBYTES, then check length again |
| # |
| EXC( LOAD t0, 0(src), l_exc) |
| SUB len, len, NBYTES |
| ADD src, src, NBYTES |
| ADD dst, dst, NBYTES |
| b copy_bytes_checklen |
| EXC( STORE t0, -8(dst), s_exc_p1u) |
| |
| src_unaligned: |
| #define rem t8 |
| SRL t0, len, LOG_NBYTES+2 # +2 for 4 units/iter |
| beqz t0, cleanup_src_unaligned |
| and rem, len, (4*NBYTES-1) # rem = len % 4*NBYTES |
| 1: |
| /* |
| * Avoid consecutive LD*'s to the same register since some mips |
| * implementations can't issue them in the same cycle. |
| * It's OK to load FIRST(N+1) before REST(N) because the two addresses |
| * are to the same unit (unless src is aligned, but it's not). |
| */ |
| EXC( LDFIRST t0, FIRST(0)(src), l_exc) |
| EXC( LDFIRST t1, FIRST(1)(src), l_exc_copy) |
| SUB len, len, 4*NBYTES |
| EXC( LDREST t0, REST(0)(src), l_exc_copy) |
| EXC( LDREST t1, REST(1)(src), l_exc_copy) |
| EXC( LDFIRST t2, FIRST(2)(src), l_exc_copy) |
| EXC( LDFIRST t3, FIRST(3)(src), l_exc_copy) |
| EXC( LDREST t2, REST(2)(src), l_exc_copy) |
| EXC( LDREST t3, REST(3)(src), l_exc_copy) |
| ADD src, src, 4*NBYTES |
| EXC( STORE t0, UNIT(0)(dst), s_exc_p4u) |
| EXC( STORE t1, UNIT(1)(dst), s_exc_p3u) |
| EXC( STORE t2, UNIT(2)(dst), s_exc_p2u) |
| EXC( STORE t3, UNIT(3)(dst), s_exc_p1u) |
| bne len, rem, 1b |
| ADD dst, dst, 4*NBYTES |
| |
| cleanup_src_unaligned: |
| beqz len, done |
| and rem, len, NBYTES-1 # rem = len % NBYTES |
| beq rem, len, copy_bytes |
| nop |
| 1: |
| EXC( LDFIRST t0, FIRST(0)(src), l_exc) |
| EXC( LDREST t0, REST(0)(src), l_exc_copy) |
| SUB len, len, NBYTES |
| EXC( STORE t0, 0(dst), s_exc_p1u) |
| ADD src, src, NBYTES |
| bne len, rem, 1b |
| ADD dst, dst, NBYTES |
| |
| copy_bytes_checklen: |
| beqz len, done |
| nop |
| copy_bytes: |
| /* 0 < len < NBYTES */ |
| #define COPY_BYTE(N) \ |
| EXC( lb t0, N(src), l_exc); \ |
| SUB len, len, 1; \ |
| beqz len, done; \ |
| EXC( sb t0, N(dst), s_exc_p1) |
| |
| COPY_BYTE(0) |
| COPY_BYTE(1) |
| COPY_BYTE(2) |
| COPY_BYTE(3) |
| COPY_BYTE(4) |
| COPY_BYTE(5) |
| EXC( lb t0, NBYTES-2(src), l_exc) |
| SUB len, len, 1 |
| jr ra |
| EXC( sb t0, NBYTES-2(dst), s_exc_p1) |
| done: |
| jr ra |
| nop |
| END(memcpy) |
| |
| l_exc_copy: |
| /* |
| * Copy bytes from src until faulting load address (or until a |
| * lb faults) |
| * |
| * When reached by a faulting LDFIRST/LDREST, THREAD_BUADDR($28) |
| * may be more than a byte beyond the last address. |
| * Hence, the lb below may get an exception. |
| * |
| * Assumes src < THREAD_BUADDR($28) |
| */ |
| LOAD t0, TI_TASK($28) |
| LOAD t0, THREAD_BUADDR(t0) |
| 1: |
| EXC( lb t1, 0(src), l_exc) |
| ADD src, src, 1 |
| sb t1, 0(dst) # can't fault -- we're copy_from_user |
| bne src, t0, 1b |
| ADD dst, dst, 1 |
| l_exc: |
| LOAD t0, TI_TASK($28) |
| LOAD t0, THREAD_BUADDR(t0) # t0 is just past last good address |
| SUB len, AT, t0 # len number of uncopied bytes |
| bnez t7, 2f /* Skip the zeroing out part if inatomic */ |
| /* |
| * Here's where we rely on src and dst being incremented in tandem, |
| * See (3) above. |
| * dst += (fault addr - src) to put dst at first byte to clear |
| */ |
| ADD dst, t0 # compute start address in a1 |
| SUB dst, src |
| /* |
| * Clear len bytes starting at dst. Can't call __bzero because it |
| * might modify len. An inefficient loop for these rare times... |
| */ |
| beqz len, done |
| SUB src, len, 1 |
| 1: sb zero, 0(dst) |
| ADD dst, dst, 1 |
| bnez src, 1b |
| SUB src, src, 1 |
| 2: jr ra |
| nop |
| |
| |
| #define SEXC(n) \ |
| s_exc_p ## n ## u: \ |
| jr ra; \ |
| ADD len, len, n*NBYTES |
| |
| SEXC(16) |
| SEXC(15) |
| SEXC(14) |
| SEXC(13) |
| SEXC(12) |
| SEXC(11) |
| SEXC(10) |
| SEXC(9) |
| SEXC(8) |
| SEXC(7) |
| SEXC(6) |
| SEXC(5) |
| SEXC(4) |
| SEXC(3) |
| SEXC(2) |
| SEXC(1) |
| |
| s_exc_p1: |
| jr ra |
| ADD len, len, 1 |
| s_exc: |
| jr ra |
| nop |
| |
| .align 5 |
| LEAF(memmove) |
| ADD t0, a0, a2 |
| ADD t1, a1, a2 |
| sltu t0, a1, t0 # dst + len <= src -> memcpy |
| sltu t1, a0, t1 # dst >= src + len -> memcpy |
| and t0, t1 |
| beqz t0, __memcpy |
| move v0, a0 /* return value */ |
| beqz a2, r_out |
| END(memmove) |
| |
| /* fall through to __rmemcpy */ |
| LEAF(__rmemcpy) /* a0=dst a1=src a2=len */ |
| sltu t0, a1, a0 |
| beqz t0, r_end_bytes_up # src >= dst |
| nop |
| ADD a0, a2 # dst = dst + len |
| ADD a1, a2 # src = src + len |
| |
| r_end_bytes: |
| lb t0, -1(a1) |
| SUB a2, a2, 0x1 |
| sb t0, -1(a0) |
| SUB a1, a1, 0x1 |
| bnez a2, r_end_bytes |
| SUB a0, a0, 0x1 |
| |
| r_out: |
| jr ra |
| move a2, zero |
| |
| r_end_bytes_up: |
| lb t0, (a1) |
| SUB a2, a2, 0x1 |
| sb t0, (a0) |
| ADD a1, a1, 0x1 |
| bnez a2, r_end_bytes_up |
| ADD a0, a0, 0x1 |
| |
| jr ra |
| move a2, zero |
| END(__rmemcpy) |