| /* |
| * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc. |
| * All Rights Reserved. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it would be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write the Free Software Foundation, |
| * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA |
| */ |
| #include "xfs.h" |
| #include "xfs_fs.h" |
| #include "xfs_types.h" |
| #include "xfs_log.h" |
| #include "xfs_inum.h" |
| #include "xfs_trans.h" |
| #include "xfs_buf_item.h" |
| #include "xfs_sb.h" |
| #include "xfs_ag.h" |
| #include "xfs_dmapi.h" |
| #include "xfs_mount.h" |
| #include "xfs_trans_priv.h" |
| #include "xfs_extfree_item.h" |
| |
| |
| kmem_zone_t *xfs_efi_zone; |
| kmem_zone_t *xfs_efd_zone; |
| |
| STATIC void xfs_efi_item_unlock(xfs_efi_log_item_t *); |
| |
| void |
| xfs_efi_item_free(xfs_efi_log_item_t *efip) |
| { |
| int nexts = efip->efi_format.efi_nextents; |
| |
| if (nexts > XFS_EFI_MAX_FAST_EXTENTS) { |
| kmem_free(efip); |
| } else { |
| kmem_zone_free(xfs_efi_zone, efip); |
| } |
| } |
| |
| /* |
| * This returns the number of iovecs needed to log the given efi item. |
| * We only need 1 iovec for an efi item. It just logs the efi_log_format |
| * structure. |
| */ |
| /*ARGSUSED*/ |
| STATIC uint |
| xfs_efi_item_size(xfs_efi_log_item_t *efip) |
| { |
| return 1; |
| } |
| |
| /* |
| * This is called to fill in the vector of log iovecs for the |
| * given efi log item. We use only 1 iovec, and we point that |
| * at the efi_log_format structure embedded in the efi item. |
| * It is at this point that we assert that all of the extent |
| * slots in the efi item have been filled. |
| */ |
| STATIC void |
| xfs_efi_item_format(xfs_efi_log_item_t *efip, |
| xfs_log_iovec_t *log_vector) |
| { |
| uint size; |
| |
| ASSERT(efip->efi_next_extent == efip->efi_format.efi_nextents); |
| |
| efip->efi_format.efi_type = XFS_LI_EFI; |
| |
| size = sizeof(xfs_efi_log_format_t); |
| size += (efip->efi_format.efi_nextents - 1) * sizeof(xfs_extent_t); |
| efip->efi_format.efi_size = 1; |
| |
| log_vector->i_addr = (xfs_caddr_t)&(efip->efi_format); |
| log_vector->i_len = size; |
| XLOG_VEC_SET_TYPE(log_vector, XLOG_REG_TYPE_EFI_FORMAT); |
| ASSERT(size >= sizeof(xfs_efi_log_format_t)); |
| } |
| |
| |
| /* |
| * Pinning has no meaning for an efi item, so just return. |
| */ |
| /*ARGSUSED*/ |
| STATIC void |
| xfs_efi_item_pin(xfs_efi_log_item_t *efip) |
| { |
| return; |
| } |
| |
| |
| /* |
| * While EFIs cannot really be pinned, the unpin operation is the |
| * last place at which the EFI is manipulated during a transaction. |
| * Here we coordinate with xfs_efi_cancel() to determine who gets to |
| * free the EFI. |
| */ |
| /*ARGSUSED*/ |
| STATIC void |
| xfs_efi_item_unpin(xfs_efi_log_item_t *efip, int stale) |
| { |
| xfs_mount_t *mp; |
| struct xfs_ail *ailp; |
| |
| mp = efip->efi_item.li_mountp; |
| ailp = efip->efi_item.li_ailp; |
| spin_lock(&ailp->xa_lock); |
| if (efip->efi_flags & XFS_EFI_CANCELED) { |
| /* |
| * xfs_trans_delete_ail() drops the AIL lock. |
| */ |
| xfs_trans_delete_ail(mp, (xfs_log_item_t *)efip); |
| xfs_efi_item_free(efip); |
| } else { |
| efip->efi_flags |= XFS_EFI_COMMITTED; |
| spin_unlock(&ailp->xa_lock); |
| } |
| } |
| |
| /* |
| * like unpin only we have to also clear the xaction descriptor |
| * pointing the log item if we free the item. This routine duplicates |
| * unpin because efi_flags is protected by the AIL lock. Freeing |
| * the descriptor and then calling unpin would force us to drop the AIL |
| * lock which would open up a race condition. |
| */ |
| STATIC void |
| xfs_efi_item_unpin_remove(xfs_efi_log_item_t *efip, xfs_trans_t *tp) |
| { |
| xfs_mount_t *mp; |
| struct xfs_ail *ailp; |
| xfs_log_item_desc_t *lidp; |
| |
| mp = efip->efi_item.li_mountp; |
| ailp = efip->efi_item.li_ailp; |
| spin_lock(&ailp->xa_lock); |
| if (efip->efi_flags & XFS_EFI_CANCELED) { |
| /* |
| * free the xaction descriptor pointing to this item |
| */ |
| lidp = xfs_trans_find_item(tp, (xfs_log_item_t *) efip); |
| xfs_trans_free_item(tp, lidp); |
| /* |
| * pull the item off the AIL. |
| * xfs_trans_delete_ail() drops the AIL lock. |
| */ |
| xfs_trans_delete_ail(mp, (xfs_log_item_t *)efip); |
| xfs_efi_item_free(efip); |
| } else { |
| efip->efi_flags |= XFS_EFI_COMMITTED; |
| spin_unlock(&ailp->xa_lock); |
| } |
| } |
| |
| /* |
| * Efi items have no locking or pushing. However, since EFIs are |
| * pulled from the AIL when their corresponding EFDs are committed |
| * to disk, their situation is very similar to being pinned. Return |
| * XFS_ITEM_PINNED so that the caller will eventually flush the log. |
| * This should help in getting the EFI out of the AIL. |
| */ |
| /*ARGSUSED*/ |
| STATIC uint |
| xfs_efi_item_trylock(xfs_efi_log_item_t *efip) |
| { |
| return XFS_ITEM_PINNED; |
| } |
| |
| /* |
| * Efi items have no locking, so just return. |
| */ |
| /*ARGSUSED*/ |
| STATIC void |
| xfs_efi_item_unlock(xfs_efi_log_item_t *efip) |
| { |
| if (efip->efi_item.li_flags & XFS_LI_ABORTED) |
| xfs_efi_item_free(efip); |
| return; |
| } |
| |
| /* |
| * The EFI is logged only once and cannot be moved in the log, so |
| * simply return the lsn at which it's been logged. The canceled |
| * flag is not paid any attention here. Checking for that is delayed |
| * until the EFI is unpinned. |
| */ |
| /*ARGSUSED*/ |
| STATIC xfs_lsn_t |
| xfs_efi_item_committed(xfs_efi_log_item_t *efip, xfs_lsn_t lsn) |
| { |
| return lsn; |
| } |
| |
| /* |
| * There isn't much you can do to push on an efi item. It is simply |
| * stuck waiting for all of its corresponding efd items to be |
| * committed to disk. |
| */ |
| /*ARGSUSED*/ |
| STATIC void |
| xfs_efi_item_push(xfs_efi_log_item_t *efip) |
| { |
| return; |
| } |
| |
| /* |
| * The EFI dependency tracking op doesn't do squat. It can't because |
| * it doesn't know where the free extent is coming from. The dependency |
| * tracking has to be handled by the "enclosing" metadata object. For |
| * example, for inodes, the inode is locked throughout the extent freeing |
| * so the dependency should be recorded there. |
| */ |
| /*ARGSUSED*/ |
| STATIC void |
| xfs_efi_item_committing(xfs_efi_log_item_t *efip, xfs_lsn_t lsn) |
| { |
| return; |
| } |
| |
| /* |
| * This is the ops vector shared by all efi log items. |
| */ |
| static struct xfs_item_ops xfs_efi_item_ops = { |
| .iop_size = (uint(*)(xfs_log_item_t*))xfs_efi_item_size, |
| .iop_format = (void(*)(xfs_log_item_t*, xfs_log_iovec_t*)) |
| xfs_efi_item_format, |
| .iop_pin = (void(*)(xfs_log_item_t*))xfs_efi_item_pin, |
| .iop_unpin = (void(*)(xfs_log_item_t*, int))xfs_efi_item_unpin, |
| .iop_unpin_remove = (void(*)(xfs_log_item_t*, xfs_trans_t *)) |
| xfs_efi_item_unpin_remove, |
| .iop_trylock = (uint(*)(xfs_log_item_t*))xfs_efi_item_trylock, |
| .iop_unlock = (void(*)(xfs_log_item_t*))xfs_efi_item_unlock, |
| .iop_committed = (xfs_lsn_t(*)(xfs_log_item_t*, xfs_lsn_t)) |
| xfs_efi_item_committed, |
| .iop_push = (void(*)(xfs_log_item_t*))xfs_efi_item_push, |
| .iop_pushbuf = NULL, |
| .iop_committing = (void(*)(xfs_log_item_t*, xfs_lsn_t)) |
| xfs_efi_item_committing |
| }; |
| |
| |
| /* |
| * Allocate and initialize an efi item with the given number of extents. |
| */ |
| xfs_efi_log_item_t * |
| xfs_efi_init(xfs_mount_t *mp, |
| uint nextents) |
| |
| { |
| xfs_efi_log_item_t *efip; |
| uint size; |
| |
| ASSERT(nextents > 0); |
| if (nextents > XFS_EFI_MAX_FAST_EXTENTS) { |
| size = (uint)(sizeof(xfs_efi_log_item_t) + |
| ((nextents - 1) * sizeof(xfs_extent_t))); |
| efip = (xfs_efi_log_item_t*)kmem_zalloc(size, KM_SLEEP); |
| } else { |
| efip = (xfs_efi_log_item_t*)kmem_zone_zalloc(xfs_efi_zone, |
| KM_SLEEP); |
| } |
| |
| efip->efi_item.li_type = XFS_LI_EFI; |
| efip->efi_item.li_ops = &xfs_efi_item_ops; |
| efip->efi_item.li_mountp = mp; |
| efip->efi_item.li_ailp = mp->m_ail; |
| efip->efi_format.efi_nextents = nextents; |
| efip->efi_format.efi_id = (__psint_t)(void*)efip; |
| |
| return (efip); |
| } |
| |
| /* |
| * Copy an EFI format buffer from the given buf, and into the destination |
| * EFI format structure. |
| * The given buffer can be in 32 bit or 64 bit form (which has different padding), |
| * one of which will be the native format for this kernel. |
| * It will handle the conversion of formats if necessary. |
| */ |
| int |
| xfs_efi_copy_format(xfs_log_iovec_t *buf, xfs_efi_log_format_t *dst_efi_fmt) |
| { |
| xfs_efi_log_format_t *src_efi_fmt = (xfs_efi_log_format_t *)buf->i_addr; |
| uint i; |
| uint len = sizeof(xfs_efi_log_format_t) + |
| (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_t); |
| uint len32 = sizeof(xfs_efi_log_format_32_t) + |
| (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_32_t); |
| uint len64 = sizeof(xfs_efi_log_format_64_t) + |
| (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_64_t); |
| |
| if (buf->i_len == len) { |
| memcpy((char *)dst_efi_fmt, (char*)src_efi_fmt, len); |
| return 0; |
| } else if (buf->i_len == len32) { |
| xfs_efi_log_format_32_t *src_efi_fmt_32 = |
| (xfs_efi_log_format_32_t *)buf->i_addr; |
| |
| dst_efi_fmt->efi_type = src_efi_fmt_32->efi_type; |
| dst_efi_fmt->efi_size = src_efi_fmt_32->efi_size; |
| dst_efi_fmt->efi_nextents = src_efi_fmt_32->efi_nextents; |
| dst_efi_fmt->efi_id = src_efi_fmt_32->efi_id; |
| for (i = 0; i < dst_efi_fmt->efi_nextents; i++) { |
| dst_efi_fmt->efi_extents[i].ext_start = |
| src_efi_fmt_32->efi_extents[i].ext_start; |
| dst_efi_fmt->efi_extents[i].ext_len = |
| src_efi_fmt_32->efi_extents[i].ext_len; |
| } |
| return 0; |
| } else if (buf->i_len == len64) { |
| xfs_efi_log_format_64_t *src_efi_fmt_64 = |
| (xfs_efi_log_format_64_t *)buf->i_addr; |
| |
| dst_efi_fmt->efi_type = src_efi_fmt_64->efi_type; |
| dst_efi_fmt->efi_size = src_efi_fmt_64->efi_size; |
| dst_efi_fmt->efi_nextents = src_efi_fmt_64->efi_nextents; |
| dst_efi_fmt->efi_id = src_efi_fmt_64->efi_id; |
| for (i = 0; i < dst_efi_fmt->efi_nextents; i++) { |
| dst_efi_fmt->efi_extents[i].ext_start = |
| src_efi_fmt_64->efi_extents[i].ext_start; |
| dst_efi_fmt->efi_extents[i].ext_len = |
| src_efi_fmt_64->efi_extents[i].ext_len; |
| } |
| return 0; |
| } |
| return EFSCORRUPTED; |
| } |
| |
| /* |
| * This is called by the efd item code below to release references to |
| * the given efi item. Each efd calls this with the number of |
| * extents that it has logged, and when the sum of these reaches |
| * the total number of extents logged by this efi item we can free |
| * the efi item. |
| * |
| * Freeing the efi item requires that we remove it from the AIL. |
| * We'll use the AIL lock to protect our counters as well as |
| * the removal from the AIL. |
| */ |
| void |
| xfs_efi_release(xfs_efi_log_item_t *efip, |
| uint nextents) |
| { |
| xfs_mount_t *mp; |
| struct xfs_ail *ailp; |
| int extents_left; |
| |
| mp = efip->efi_item.li_mountp; |
| ailp = efip->efi_item.li_ailp; |
| ASSERT(efip->efi_next_extent > 0); |
| ASSERT(efip->efi_flags & XFS_EFI_COMMITTED); |
| |
| spin_lock(&ailp->xa_lock); |
| ASSERT(efip->efi_next_extent >= nextents); |
| efip->efi_next_extent -= nextents; |
| extents_left = efip->efi_next_extent; |
| if (extents_left == 0) { |
| /* |
| * xfs_trans_delete_ail() drops the AIL lock. |
| */ |
| xfs_trans_delete_ail(mp, (xfs_log_item_t *)efip); |
| xfs_efi_item_free(efip); |
| } else { |
| spin_unlock(&ailp->xa_lock); |
| } |
| } |
| |
| STATIC void |
| xfs_efd_item_free(xfs_efd_log_item_t *efdp) |
| { |
| int nexts = efdp->efd_format.efd_nextents; |
| |
| if (nexts > XFS_EFD_MAX_FAST_EXTENTS) { |
| kmem_free(efdp); |
| } else { |
| kmem_zone_free(xfs_efd_zone, efdp); |
| } |
| } |
| |
| /* |
| * This returns the number of iovecs needed to log the given efd item. |
| * We only need 1 iovec for an efd item. It just logs the efd_log_format |
| * structure. |
| */ |
| /*ARGSUSED*/ |
| STATIC uint |
| xfs_efd_item_size(xfs_efd_log_item_t *efdp) |
| { |
| return 1; |
| } |
| |
| /* |
| * This is called to fill in the vector of log iovecs for the |
| * given efd log item. We use only 1 iovec, and we point that |
| * at the efd_log_format structure embedded in the efd item. |
| * It is at this point that we assert that all of the extent |
| * slots in the efd item have been filled. |
| */ |
| STATIC void |
| xfs_efd_item_format(xfs_efd_log_item_t *efdp, |
| xfs_log_iovec_t *log_vector) |
| { |
| uint size; |
| |
| ASSERT(efdp->efd_next_extent == efdp->efd_format.efd_nextents); |
| |
| efdp->efd_format.efd_type = XFS_LI_EFD; |
| |
| size = sizeof(xfs_efd_log_format_t); |
| size += (efdp->efd_format.efd_nextents - 1) * sizeof(xfs_extent_t); |
| efdp->efd_format.efd_size = 1; |
| |
| log_vector->i_addr = (xfs_caddr_t)&(efdp->efd_format); |
| log_vector->i_len = size; |
| XLOG_VEC_SET_TYPE(log_vector, XLOG_REG_TYPE_EFD_FORMAT); |
| ASSERT(size >= sizeof(xfs_efd_log_format_t)); |
| } |
| |
| |
| /* |
| * Pinning has no meaning for an efd item, so just return. |
| */ |
| /*ARGSUSED*/ |
| STATIC void |
| xfs_efd_item_pin(xfs_efd_log_item_t *efdp) |
| { |
| return; |
| } |
| |
| |
| /* |
| * Since pinning has no meaning for an efd item, unpinning does |
| * not either. |
| */ |
| /*ARGSUSED*/ |
| STATIC void |
| xfs_efd_item_unpin(xfs_efd_log_item_t *efdp, int stale) |
| { |
| return; |
| } |
| |
| /*ARGSUSED*/ |
| STATIC void |
| xfs_efd_item_unpin_remove(xfs_efd_log_item_t *efdp, xfs_trans_t *tp) |
| { |
| return; |
| } |
| |
| /* |
| * Efd items have no locking, so just return success. |
| */ |
| /*ARGSUSED*/ |
| STATIC uint |
| xfs_efd_item_trylock(xfs_efd_log_item_t *efdp) |
| { |
| return XFS_ITEM_LOCKED; |
| } |
| |
| /* |
| * Efd items have no locking or pushing, so return failure |
| * so that the caller doesn't bother with us. |
| */ |
| /*ARGSUSED*/ |
| STATIC void |
| xfs_efd_item_unlock(xfs_efd_log_item_t *efdp) |
| { |
| if (efdp->efd_item.li_flags & XFS_LI_ABORTED) |
| xfs_efd_item_free(efdp); |
| return; |
| } |
| |
| /* |
| * When the efd item is committed to disk, all we need to do |
| * is delete our reference to our partner efi item and then |
| * free ourselves. Since we're freeing ourselves we must |
| * return -1 to keep the transaction code from further referencing |
| * this item. |
| */ |
| /*ARGSUSED*/ |
| STATIC xfs_lsn_t |
| xfs_efd_item_committed(xfs_efd_log_item_t *efdp, xfs_lsn_t lsn) |
| { |
| /* |
| * If we got a log I/O error, it's always the case that the LR with the |
| * EFI got unpinned and freed before the EFD got aborted. |
| */ |
| if ((efdp->efd_item.li_flags & XFS_LI_ABORTED) == 0) |
| xfs_efi_release(efdp->efd_efip, efdp->efd_format.efd_nextents); |
| |
| xfs_efd_item_free(efdp); |
| return (xfs_lsn_t)-1; |
| } |
| |
| /* |
| * There isn't much you can do to push on an efd item. It is simply |
| * stuck waiting for the log to be flushed to disk. |
| */ |
| /*ARGSUSED*/ |
| STATIC void |
| xfs_efd_item_push(xfs_efd_log_item_t *efdp) |
| { |
| return; |
| } |
| |
| /* |
| * The EFD dependency tracking op doesn't do squat. It can't because |
| * it doesn't know where the free extent is coming from. The dependency |
| * tracking has to be handled by the "enclosing" metadata object. For |
| * example, for inodes, the inode is locked throughout the extent freeing |
| * so the dependency should be recorded there. |
| */ |
| /*ARGSUSED*/ |
| STATIC void |
| xfs_efd_item_committing(xfs_efd_log_item_t *efip, xfs_lsn_t lsn) |
| { |
| return; |
| } |
| |
| /* |
| * This is the ops vector shared by all efd log items. |
| */ |
| static struct xfs_item_ops xfs_efd_item_ops = { |
| .iop_size = (uint(*)(xfs_log_item_t*))xfs_efd_item_size, |
| .iop_format = (void(*)(xfs_log_item_t*, xfs_log_iovec_t*)) |
| xfs_efd_item_format, |
| .iop_pin = (void(*)(xfs_log_item_t*))xfs_efd_item_pin, |
| .iop_unpin = (void(*)(xfs_log_item_t*, int))xfs_efd_item_unpin, |
| .iop_unpin_remove = (void(*)(xfs_log_item_t*, xfs_trans_t*)) |
| xfs_efd_item_unpin_remove, |
| .iop_trylock = (uint(*)(xfs_log_item_t*))xfs_efd_item_trylock, |
| .iop_unlock = (void(*)(xfs_log_item_t*))xfs_efd_item_unlock, |
| .iop_committed = (xfs_lsn_t(*)(xfs_log_item_t*, xfs_lsn_t)) |
| xfs_efd_item_committed, |
| .iop_push = (void(*)(xfs_log_item_t*))xfs_efd_item_push, |
| .iop_pushbuf = NULL, |
| .iop_committing = (void(*)(xfs_log_item_t*, xfs_lsn_t)) |
| xfs_efd_item_committing |
| }; |
| |
| |
| /* |
| * Allocate and initialize an efd item with the given number of extents. |
| */ |
| xfs_efd_log_item_t * |
| xfs_efd_init(xfs_mount_t *mp, |
| xfs_efi_log_item_t *efip, |
| uint nextents) |
| |
| { |
| xfs_efd_log_item_t *efdp; |
| uint size; |
| |
| ASSERT(nextents > 0); |
| if (nextents > XFS_EFD_MAX_FAST_EXTENTS) { |
| size = (uint)(sizeof(xfs_efd_log_item_t) + |
| ((nextents - 1) * sizeof(xfs_extent_t))); |
| efdp = (xfs_efd_log_item_t*)kmem_zalloc(size, KM_SLEEP); |
| } else { |
| efdp = (xfs_efd_log_item_t*)kmem_zone_zalloc(xfs_efd_zone, |
| KM_SLEEP); |
| } |
| |
| efdp->efd_item.li_type = XFS_LI_EFD; |
| efdp->efd_item.li_ops = &xfs_efd_item_ops; |
| efdp->efd_item.li_mountp = mp; |
| efdp->efd_item.li_ailp = mp->m_ail; |
| efdp->efd_efip = efip; |
| efdp->efd_format.efd_nextents = nextents; |
| efdp->efd_format.efd_efi_id = efip->efi_format.efi_id; |
| |
| return (efdp); |
| } |