blob: 0a6ad38653d78a0c757212cce6000d8fbfd52b6b [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2013-2019, The Linux Foundation. All rights reserved.
*/
#define pr_fmt(fmt) "%s: " fmt, __func__
#include <linux/err.h>
#include <linux/of.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/types.h>
#include <linux/batterydata-lib.h>
#include <linux/of_batterydata.h>
#include <linux/power_supply.h>
static int of_batterydata_read_lut(const struct device_node *np,
int max_cols, int max_rows, int *ncols, int *nrows,
int *col_legend_data, int *row_legend_data,
int *lut_data)
{
struct property *prop;
const __be32 *data;
int cols, rows, size, i, j, *out_values;
prop = of_find_property(np, "qcom,lut-col-legend", NULL);
if (!prop) {
pr_err("%s: No col legend found\n", np->name);
return -EINVAL;
} else if (!prop->value) {
pr_err("%s: No col legend value found, np->name\n", np->name);
return -ENODATA;
} else if (prop->length > max_cols * sizeof(int)) {
pr_err("%s: Too many columns\n", np->name);
return -EINVAL;
}
cols = prop->length/sizeof(int);
*ncols = cols;
data = prop->value;
for (i = 0; i < cols; i++)
*col_legend_data++ = be32_to_cpup(data++);
rows = 0;
prop = of_find_property(np, "qcom,lut-row-legend", NULL);
if (!prop || row_legend_data == NULL) {
/* single row lut */
rows = 1;
} else if (!prop->value) {
pr_err("%s: No row legend value found\n", np->name);
return -ENODATA;
} else if (prop->length > max_rows * sizeof(int)) {
pr_err("%s: Too many rows\n", np->name);
return -EINVAL;
}
if (rows != 1) {
rows = prop->length/sizeof(int);
*nrows = rows;
data = prop->value;
for (i = 0; i < rows; i++)
*row_legend_data++ = be32_to_cpup(data++);
}
prop = of_find_property(np, "qcom,lut-data", NULL);
if (!prop) {
pr_err("prop 'qcom,lut-data' not found\n");
return -EINVAL;
}
data = prop->value;
size = prop->length/sizeof(int);
if (size != cols * rows) {
pr_err("%s: data size mismatch, %dx%d != %d\n",
np->name, cols, rows, size);
return -EINVAL;
}
for (i = 0; i < rows; i++) {
out_values = lut_data + (max_cols * i);
for (j = 0; j < cols; j++) {
*out_values++ = be32_to_cpup(data++);
pr_debug("Value = %d\n", *(out_values-1));
}
}
return 0;
}
static int of_batterydata_read_sf_lut(struct device_node *data_node,
const char *name, struct sf_lut *lut)
{
struct device_node *node = of_find_node_by_name(data_node, name);
int rc;
if (!lut) {
pr_debug("No lut provided, skipping\n");
return 0;
} else if (!node) {
pr_err("Couldn't find %s node.\n", name);
return -EINVAL;
}
rc = of_batterydata_read_lut(node, PC_CC_COLS, PC_CC_ROWS,
&lut->cols, &lut->rows, lut->row_entries,
lut->percent, *lut->sf);
if (rc) {
pr_err("Failed to read %s node.\n", name);
return rc;
}
return 0;
}
static int of_batterydata_read_pc_temp_ocv_lut(struct device_node *data_node,
const char *name, struct pc_temp_ocv_lut *lut)
{
struct device_node *node = of_find_node_by_name(data_node, name);
int rc;
if (!lut) {
pr_debug("No lut provided, skipping\n");
return 0;
} else if (!node) {
pr_err("Couldn't find %s node.\n", name);
return -EINVAL;
}
rc = of_batterydata_read_lut(node, PC_TEMP_COLS, PC_TEMP_ROWS,
&lut->cols, &lut->rows, lut->temp, lut->percent,
*lut->ocv);
if (rc) {
pr_err("Failed to read %s node.\n", name);
return rc;
}
return 0;
}
static int of_batterydata_read_ibat_temp_acc_lut(struct device_node *data_node,
const char *name, struct ibat_temp_acc_lut *lut)
{
struct device_node *node = of_find_node_by_name(data_node, name);
int rc;
if (!lut) {
pr_debug("No lut provided, skipping\n");
return 0;
} else if (!node) {
pr_debug("Couldn't find %s node.\n", name);
return 0;
}
rc = of_batterydata_read_lut(node, ACC_TEMP_COLS, ACC_IBAT_ROWS,
&lut->cols, &lut->rows, lut->temp, lut->ibat,
*lut->acc);
if (rc) {
pr_err("Failed to read %s node.\n", name);
return rc;
}
return 0;
}
static int of_batterydata_read_single_row_lut(struct device_node *data_node,
const char *name, struct single_row_lut *lut)
{
struct device_node *node = of_find_node_by_name(data_node, name);
int rc;
if (!lut) {
pr_debug("No lut provided, skipping\n");
return 0;
} else if (!node) {
pr_err("Couldn't find %s node.\n", name);
return -EINVAL;
}
rc = of_batterydata_read_lut(node, MAX_SINGLE_LUT_COLS, 1,
&lut->cols, NULL, lut->x, NULL, lut->y);
if (rc) {
pr_err("Failed to read %s node.\n", name);
return rc;
}
return 0;
}
static int of_batterydata_read_batt_id_kohm(const struct device_node *np,
const char *propname, struct batt_ids *batt_ids)
{
struct property *prop;
const __be32 *data;
int num, i, *id_kohm = batt_ids->kohm;
prop = of_find_property(np, "qcom,batt-id-kohm", NULL);
if (!prop) {
pr_err("%s: No battery id resistor found\n", np->name);
return -EINVAL;
} else if (!prop->value) {
pr_err("%s: No battery id resistor value found, np->name\n",
np->name);
return -ENODATA;
} else if (prop->length > MAX_BATT_ID_NUM * sizeof(__be32)) {
pr_err("%s: Too many battery id resistors\n", np->name);
return -EINVAL;
}
num = prop->length/sizeof(__be32);
batt_ids->num = num;
data = prop->value;
for (i = 0; i < num; i++)
*id_kohm++ = be32_to_cpup(data++);
return 0;
}
#define OF_PROP_READ(property, qpnp_dt_property, node, rc, optional) \
do { \
if (rc) \
break; \
rc = of_property_read_u32(node, "qcom," qpnp_dt_property, \
&property); \
\
if ((rc == -EINVAL) && optional) { \
property = -EINVAL; \
rc = 0; \
} else if (rc) { \
pr_err("Error reading " #qpnp_dt_property \
" property rc = %d\n", rc); \
} \
} while (0)
static int of_batterydata_load_battery_data(struct device_node *node,
int best_id_kohm,
struct bms_battery_data *batt_data)
{
int rc;
rc = of_batterydata_read_single_row_lut(node, "qcom,fcc-temp-lut",
batt_data->fcc_temp_lut);
if (rc)
return rc;
rc = of_batterydata_read_pc_temp_ocv_lut(node,
"qcom,pc-temp-ocv-lut",
batt_data->pc_temp_ocv_lut);
if (rc)
return rc;
rc = of_batterydata_read_sf_lut(node, "qcom,rbatt-sf-lut",
batt_data->rbatt_sf_lut);
if (rc)
return rc;
rc = of_batterydata_read_ibat_temp_acc_lut(node, "qcom,ibat-acc-lut",
batt_data->ibat_acc_lut);
if (rc)
return rc;
rc = of_property_read_string(node, "qcom,battery-type",
&batt_data->battery_type);
if (rc) {
pr_err("Error reading qcom,battery-type property rc=%d\n", rc);
batt_data->battery_type = NULL;
return rc;
}
OF_PROP_READ(batt_data->fcc, "fcc-mah", node, rc, false);
OF_PROP_READ(batt_data->default_rbatt_mohm,
"default-rbatt-mohm", node, rc, false);
OF_PROP_READ(batt_data->rbatt_capacitive_mohm,
"rbatt-capacitive-mohm", node, rc, false);
OF_PROP_READ(batt_data->flat_ocv_threshold_uv,
"flat-ocv-threshold-uv", node, rc, true);
OF_PROP_READ(batt_data->max_voltage_uv,
"max-voltage-uv", node, rc, true);
OF_PROP_READ(batt_data->cutoff_uv, "v-cutoff-uv", node, rc, true);
OF_PROP_READ(batt_data->iterm_ua, "chg-term-ua", node, rc, true);
OF_PROP_READ(batt_data->fastchg_current_ma,
"fastchg-current-ma", node, rc, true);
OF_PROP_READ(batt_data->fg_cc_cv_threshold_mv,
"fg-cc-cv-threshold-mv", node, rc, true);
batt_data->batt_id_kohm = best_id_kohm;
return rc;
}
static int64_t of_batterydata_convert_battery_id_kohm(int batt_id_uv,
int rpull_up, int vadc_vdd)
{
int64_t resistor_value_kohm, denom;
if (batt_id_uv == 0) {
/* vadc not correct or batt id line grounded, report 0 kohms */
return 0;
}
/* calculate the battery id resistance reported via ADC */
denom = div64_s64(vadc_vdd * 1000000LL, batt_id_uv) - 1000000LL;
if (denom == 0) {
/* batt id connector might be open, return 0 kohms */
return 0;
}
resistor_value_kohm = div64_s64(rpull_up * 1000000LL + denom/2, denom);
pr_debug("batt id voltage = %d, resistor value = %lld\n",
batt_id_uv, resistor_value_kohm);
return resistor_value_kohm;
}
struct device_node *of_batterydata_get_best_profile(
const struct device_node *batterydata_container_node,
int batt_id_kohm, const char *batt_type)
{
struct batt_ids batt_ids;
struct device_node *node, *best_node = NULL;
const char *battery_type = NULL;
int delta = 0, best_delta = 0, best_id_kohm = 0, id_range_pct,
i = 0, rc = 0, limit = 0;
bool in_range = false;
/* read battery id range percentage for best profile */
rc = of_property_read_u32(batterydata_container_node,
"qcom,batt-id-range-pct", &id_range_pct);
if (rc) {
if (rc == -EINVAL) {
id_range_pct = 0;
} else {
pr_err("failed to read battery id range\n");
return ERR_PTR(-ENXIO);
}
}
/*
* Find the battery data with a battery id resistor closest to this one
*/
for_each_child_of_node(batterydata_container_node, node) {
if (batt_type != NULL) {
rc = of_property_read_string(node, "qcom,battery-type",
&battery_type);
if (!rc && strcmp(battery_type, batt_type) == 0) {
best_node = node;
best_id_kohm = batt_id_kohm;
break;
}
} else {
rc = of_batterydata_read_batt_id_kohm(node,
"qcom,batt-id-kohm",
&batt_ids);
if (rc)
continue;
for (i = 0; i < batt_ids.num; i++) {
delta = abs(batt_ids.kohm[i] - batt_id_kohm);
limit = (batt_ids.kohm[i] * id_range_pct) / 100;
in_range = (delta <= limit);
/*
* Check if the delta is the lowest one
* and also if the limits are in range
* before selecting the best node.
*/
if ((delta < best_delta || !best_node)
&& in_range) {
best_node = node;
best_delta = delta;
best_id_kohm = batt_ids.kohm[i];
}
}
}
}
if (best_node == NULL) {
pr_err("No battery data found\n");
return best_node;
}
/* check that profile id is in range of the measured batt_id */
if (abs(best_id_kohm - batt_id_kohm) >
((best_id_kohm * id_range_pct) / 100)) {
pr_err("out of range: profile id %d batt id %d pct %d\n",
best_id_kohm, batt_id_kohm, id_range_pct);
return NULL;
}
rc = of_property_read_string(best_node, "qcom,battery-type",
&battery_type);
if (!rc)
pr_info("%s found\n", battery_type);
else
pr_info("%s found\n", best_node->name);
return best_node;
}
struct device_node *of_batterydata_get_best_aged_profile(
const struct device_node *batterydata_container_node,
int batt_id_kohm, int batt_age_level, int *avail_age_level)
{
struct batt_ids batt_ids;
struct device_node *node, *best_node = NULL;
const char *battery_type = NULL;
int delta = 0, best_id_kohm = 0, id_range_pct, i = 0, rc = 0, limit = 0;
u32 val;
bool in_range = false;
/* read battery id range percentage for best profile */
rc = of_property_read_u32(batterydata_container_node,
"qcom,batt-id-range-pct", &id_range_pct);
if (rc) {
if (rc == -EINVAL) {
id_range_pct = 0;
} else {
pr_err("failed to read battery id range\n");
return ERR_PTR(-ENXIO);
}
}
/*
* Find the battery data with a battery id resistor closest to this one
*/
for_each_available_child_of_node(batterydata_container_node, node) {
val = 0;
of_property_read_u32(node, "qcom,batt-age-level", &val);
rc = of_batterydata_read_batt_id_kohm(node,
"qcom,batt-id-kohm", &batt_ids);
if (rc)
continue;
for (i = 0; i < batt_ids.num; i++) {
delta = abs(batt_ids.kohm[i] - batt_id_kohm);
limit = (batt_ids.kohm[i] * id_range_pct) / 100;
in_range = (delta <= limit);
/*
* Check if the battery aging level matches and the
* limits are in range before selecting the best node.
*/
if ((batt_age_level == val || !best_node) && in_range) {
best_node = node;
best_id_kohm = batt_ids.kohm[i];
*avail_age_level = val;
break;
}
}
}
if (best_node == NULL) {
pr_err("No battery data found\n");
return best_node;
}
/* check that profile id is in range of the measured batt_id */
if (abs(best_id_kohm - batt_id_kohm) >
((best_id_kohm * id_range_pct) / 100)) {
pr_err("out of range: profile id %d batt id %d pct %d\n",
best_id_kohm, batt_id_kohm, id_range_pct);
return NULL;
}
rc = of_property_read_string(best_node, "qcom,battery-type",
&battery_type);
if (!rc)
pr_info("%s age level %d found\n", battery_type,
*avail_age_level);
else
pr_info("%s age level %d found\n", best_node->name,
*avail_age_level);
return best_node;
}
int of_batterydata_get_aged_profile_count(
const struct device_node *batterydata_node,
int batt_id_kohm, int *count)
{
struct device_node *node;
int id_range_pct, i = 0, rc = 0, limit = 0, delta = 0;
bool in_range = false;
u32 batt_id;
/* read battery id range percentage for best profile */
rc = of_property_read_u32(batterydata_node,
"qcom,batt-id-range-pct", &id_range_pct);
if (rc) {
if (rc == -EINVAL) {
id_range_pct = 0;
} else {
pr_err("failed to read battery id range\n");
return -ENXIO;
}
}
for_each_available_child_of_node(batterydata_node, node) {
if (!of_find_property(node, "qcom,batt-age-level", NULL))
continue;
if (!of_find_property(node, "qcom,soh-range", NULL))
continue;
rc = of_property_read_u32(node, "qcom,batt-id-kohm", &batt_id);
if (rc)
continue;
delta = abs(batt_id_kohm - batt_id);
limit = (batt_id_kohm * id_range_pct) / 100;
in_range = (delta <= limit);
if (!in_range) {
pr_debug("not in range batt_id: %d\n", batt_id);
continue;
}
i++;
}
if (i <= 1) {
pr_err("Less number of profiles to support SOH\n");
return -EINVAL;
}
*count = i;
return 0;
}
int of_batterydata_read_soh_aged_profiles(
const struct device_node *batterydata_node,
int batt_id_kohm, struct soh_range *soh_data)
{
struct device_node *node;
u32 val, temp[2], i = 0;
int rc, batt_id, id_range_pct, limit = 0, delta = 0;
bool in_range = false;
if (!batterydata_node || !soh_data)
return -ENODEV;
/* read battery id range percentage for best profile */
rc = of_property_read_u32(batterydata_node,
"qcom,batt-id-range-pct", &id_range_pct);
if (rc) {
if (rc == -EINVAL) {
id_range_pct = 0;
} else {
pr_err("failed to read battery id range\n");
return -ENXIO;
}
}
for_each_available_child_of_node(batterydata_node, node) {
rc = of_property_read_u32(node, "qcom,batt-age-level", &val);
if (rc)
continue;
rc = of_property_read_u32(node, "qcom,batt-id-kohm", &batt_id);
if (rc)
continue;
delta = abs(batt_id_kohm - batt_id);
limit = (batt_id_kohm * id_range_pct) / 100;
in_range = (delta <= limit);
if (!in_range) {
pr_debug("not in range batt_id: %d\n", batt_id);
continue;
}
if (!of_find_property(node, "qcom,soh-range", NULL))
continue;
rc = of_property_count_elems_of_size(node, "qcom,soh-range",
sizeof(u32));
if (rc != 2) {
pr_err("Incorrect element size for qcom,soh-range, rc=%d\n",
rc);
return -EINVAL;
}
rc = of_property_read_u32_array(node, "qcom,soh-range", temp,
2);
if (rc < 0) {
pr_err("Error in reading qcom,soh-range, rc=%d\n", rc);
return rc;
}
if (temp[0] > 100 || temp[1] > 100 || (temp[0] > temp[1])) {
pr_err("Incorrect SOH range [%d %d]\n", temp[0],
temp[1]);
return -ERANGE;
}
pr_debug("batt_age_level: %d soh: [%d %d]\n", val, temp[0],
temp[1]);
soh_data[i].batt_age_level = val;
soh_data[i].soh_min = temp[0];
soh_data[i].soh_max = temp[1];
i++;
}
return 0;
}
int of_batterydata_read_data(struct device_node *batterydata_container_node,
struct bms_battery_data *batt_data,
int batt_id_uv)
{
struct device_node *node, *best_node;
struct batt_ids batt_ids;
const char *battery_type = NULL;
int delta, best_delta, batt_id_kohm, rpull_up_kohm,
vadc_vdd_uv, best_id_kohm, i, rc = 0;
node = batterydata_container_node;
OF_PROP_READ(rpull_up_kohm, "rpull-up-kohm", node, rc, false);
OF_PROP_READ(vadc_vdd_uv, "vref-batt-therm", node, rc, false);
if (rc)
return rc;
batt_id_kohm = of_batterydata_convert_battery_id_kohm(batt_id_uv,
rpull_up_kohm, vadc_vdd_uv);
best_node = NULL;
best_delta = 0;
best_id_kohm = 0;
/*
* Find the battery data with a battery id resistor closest to this one
*/
for_each_child_of_node(batterydata_container_node, node) {
rc = of_batterydata_read_batt_id_kohm(node,
"qcom,batt-id-kohm",
&batt_ids);
if (rc)
continue;
for (i = 0; i < batt_ids.num; i++) {
delta = abs(batt_ids.kohm[i] - batt_id_kohm);
if (delta < best_delta || !best_node) {
best_node = node;
best_delta = delta;
best_id_kohm = batt_ids.kohm[i];
}
}
}
if (best_node == NULL) {
pr_err("No battery data found\n");
return -ENODATA;
}
rc = of_property_read_string(best_node, "qcom,battery-type",
&battery_type);
if (!rc)
pr_info("%s loaded\n", battery_type);
else
pr_info("%s loaded\n", best_node->name);
return of_batterydata_load_battery_data(best_node,
best_id_kohm, batt_data);
}
MODULE_LICENSE("GPL v2");