blob: f010562534ebe056bc67ed57bad8f9a48c9458ff [file] [log] [blame]
Tuomas Tynkkynend8d7a082015-05-13 17:58:36 +03001/*
2 * clk-dfll.c - Tegra DFLL clock source common code
3 *
4 * Copyright (C) 2012-2014 NVIDIA Corporation. All rights reserved.
5 *
6 * Aleksandr Frid <afrid@nvidia.com>
7 * Paul Walmsley <pwalmsley@nvidia.com>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but WITHOUT
14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16 * more details.
17 *
18 * This library is for the DVCO and DFLL IP blocks on the Tegra124
19 * SoC. These IP blocks together are also known at NVIDIA as
20 * "CL-DVFS". To try to avoid confusion, this code refers to them
21 * collectively as the "DFLL."
22 *
23 * The DFLL is a root clocksource which tolerates some amount of
24 * supply voltage noise. Tegra124 uses it to clock the fast CPU
25 * complex when the target CPU speed is above a particular rate. The
26 * DFLL can be operated in either open-loop mode or closed-loop mode.
27 * In open-loop mode, the DFLL generates an output clock appropriate
28 * to the supply voltage. In closed-loop mode, when configured with a
29 * target frequency, the DFLL minimizes supply voltage while
30 * delivering an average frequency equal to the target.
31 *
32 * Devices clocked by the DFLL must be able to tolerate frequency
33 * variation. In the case of the CPU, it's important to note that the
34 * CPU cycle time will vary. This has implications for
35 * performance-measurement code and any code that relies on the CPU
36 * cycle time to delay for a certain length of time.
37 *
38 */
39
40#include <linux/clk.h>
41#include <linux/clk-provider.h>
42#include <linux/debugfs.h>
43#include <linux/device.h>
44#include <linux/err.h>
45#include <linux/i2c.h>
46#include <linux/io.h>
47#include <linux/kernel.h>
48#include <linux/module.h>
49#include <linux/of.h>
50#include <linux/pm_opp.h>
51#include <linux/pm_runtime.h>
52#include <linux/regmap.h>
53#include <linux/regulator/consumer.h>
54#include <linux/reset.h>
55#include <linux/seq_file.h>
56
57#include "clk-dfll.h"
Thierry Reding27ed2f72016-04-08 15:02:06 +020058#include "cvb.h"
Tuomas Tynkkynend8d7a082015-05-13 17:58:36 +030059
60/*
61 * DFLL control registers - access via dfll_{readl,writel}
62 */
63
64/* DFLL_CTRL: DFLL control register */
65#define DFLL_CTRL 0x00
66#define DFLL_CTRL_MODE_MASK 0x03
67
68/* DFLL_CONFIG: DFLL sample rate control */
69#define DFLL_CONFIG 0x04
70#define DFLL_CONFIG_DIV_MASK 0xff
71#define DFLL_CONFIG_DIV_PRESCALE 32
72
73/* DFLL_PARAMS: tuning coefficients for closed loop integrator */
74#define DFLL_PARAMS 0x08
75#define DFLL_PARAMS_CG_SCALE (0x1 << 24)
76#define DFLL_PARAMS_FORCE_MODE_SHIFT 22
77#define DFLL_PARAMS_FORCE_MODE_MASK (0x3 << DFLL_PARAMS_FORCE_MODE_SHIFT)
78#define DFLL_PARAMS_CF_PARAM_SHIFT 16
79#define DFLL_PARAMS_CF_PARAM_MASK (0x3f << DFLL_PARAMS_CF_PARAM_SHIFT)
80#define DFLL_PARAMS_CI_PARAM_SHIFT 8
81#define DFLL_PARAMS_CI_PARAM_MASK (0x7 << DFLL_PARAMS_CI_PARAM_SHIFT)
82#define DFLL_PARAMS_CG_PARAM_SHIFT 0
83#define DFLL_PARAMS_CG_PARAM_MASK (0xff << DFLL_PARAMS_CG_PARAM_SHIFT)
84
85/* DFLL_TUNE0: delay line configuration register 0 */
86#define DFLL_TUNE0 0x0c
87
88/* DFLL_TUNE1: delay line configuration register 1 */
89#define DFLL_TUNE1 0x10
90
91/* DFLL_FREQ_REQ: target DFLL frequency control */
92#define DFLL_FREQ_REQ 0x14
93#define DFLL_FREQ_REQ_FORCE_ENABLE (0x1 << 28)
94#define DFLL_FREQ_REQ_FORCE_SHIFT 16
95#define DFLL_FREQ_REQ_FORCE_MASK (0xfff << DFLL_FREQ_REQ_FORCE_SHIFT)
96#define FORCE_MAX 2047
97#define FORCE_MIN -2048
98#define DFLL_FREQ_REQ_SCALE_SHIFT 8
99#define DFLL_FREQ_REQ_SCALE_MASK (0xff << DFLL_FREQ_REQ_SCALE_SHIFT)
100#define DFLL_FREQ_REQ_SCALE_MAX 256
101#define DFLL_FREQ_REQ_FREQ_VALID (0x1 << 7)
102#define DFLL_FREQ_REQ_MULT_SHIFT 0
103#define DFLL_FREQ_REG_MULT_MASK (0x7f << DFLL_FREQ_REQ_MULT_SHIFT)
104#define FREQ_MAX 127
105
106/* DFLL_DROOP_CTRL: droop prevention control */
107#define DFLL_DROOP_CTRL 0x1c
108
109/* DFLL_OUTPUT_CFG: closed loop mode control registers */
110/* NOTE: access via dfll_i2c_{readl,writel} */
111#define DFLL_OUTPUT_CFG 0x20
112#define DFLL_OUTPUT_CFG_I2C_ENABLE (0x1 << 30)
113#define OUT_MASK 0x3f
114#define DFLL_OUTPUT_CFG_SAFE_SHIFT 24
115#define DFLL_OUTPUT_CFG_SAFE_MASK \
116 (OUT_MASK << DFLL_OUTPUT_CFG_SAFE_SHIFT)
117#define DFLL_OUTPUT_CFG_MAX_SHIFT 16
118#define DFLL_OUTPUT_CFG_MAX_MASK \
119 (OUT_MASK << DFLL_OUTPUT_CFG_MAX_SHIFT)
120#define DFLL_OUTPUT_CFG_MIN_SHIFT 8
121#define DFLL_OUTPUT_CFG_MIN_MASK \
122 (OUT_MASK << DFLL_OUTPUT_CFG_MIN_SHIFT)
123#define DFLL_OUTPUT_CFG_PWM_DELTA (0x1 << 7)
124#define DFLL_OUTPUT_CFG_PWM_ENABLE (0x1 << 6)
125#define DFLL_OUTPUT_CFG_PWM_DIV_SHIFT 0
126#define DFLL_OUTPUT_CFG_PWM_DIV_MASK \
127 (OUT_MASK << DFLL_OUTPUT_CFG_PWM_DIV_SHIFT)
128
129/* DFLL_OUTPUT_FORCE: closed loop mode voltage forcing control */
130#define DFLL_OUTPUT_FORCE 0x24
131#define DFLL_OUTPUT_FORCE_ENABLE (0x1 << 6)
132#define DFLL_OUTPUT_FORCE_VALUE_SHIFT 0
133#define DFLL_OUTPUT_FORCE_VALUE_MASK \
134 (OUT_MASK << DFLL_OUTPUT_FORCE_VALUE_SHIFT)
135
136/* DFLL_MONITOR_CTRL: internal monitor data source control */
137#define DFLL_MONITOR_CTRL 0x28
138#define DFLL_MONITOR_CTRL_FREQ 6
139
140/* DFLL_MONITOR_DATA: internal monitor data output */
141#define DFLL_MONITOR_DATA 0x2c
142#define DFLL_MONITOR_DATA_NEW_MASK (0x1 << 16)
143#define DFLL_MONITOR_DATA_VAL_SHIFT 0
144#define DFLL_MONITOR_DATA_VAL_MASK (0xFFFF << DFLL_MONITOR_DATA_VAL_SHIFT)
145
146/*
147 * I2C output control registers - access via dfll_i2c_{readl,writel}
148 */
149
150/* DFLL_I2C_CFG: I2C controller configuration register */
151#define DFLL_I2C_CFG 0x40
152#define DFLL_I2C_CFG_ARB_ENABLE (0x1 << 20)
153#define DFLL_I2C_CFG_HS_CODE_SHIFT 16
154#define DFLL_I2C_CFG_HS_CODE_MASK (0x7 << DFLL_I2C_CFG_HS_CODE_SHIFT)
155#define DFLL_I2C_CFG_PACKET_ENABLE (0x1 << 15)
156#define DFLL_I2C_CFG_SIZE_SHIFT 12
157#define DFLL_I2C_CFG_SIZE_MASK (0x7 << DFLL_I2C_CFG_SIZE_SHIFT)
158#define DFLL_I2C_CFG_SLAVE_ADDR_10 (0x1 << 10)
159#define DFLL_I2C_CFG_SLAVE_ADDR_SHIFT_7BIT 1
160#define DFLL_I2C_CFG_SLAVE_ADDR_SHIFT_10BIT 0
161
162/* DFLL_I2C_VDD_REG_ADDR: PMIC I2C address for closed loop mode */
163#define DFLL_I2C_VDD_REG_ADDR 0x44
164
165/* DFLL_I2C_STS: I2C controller status */
166#define DFLL_I2C_STS 0x48
167#define DFLL_I2C_STS_I2C_LAST_SHIFT 1
168#define DFLL_I2C_STS_I2C_REQ_PENDING 0x1
169
170/* DFLL_INTR_STS: DFLL interrupt status register */
171#define DFLL_INTR_STS 0x5c
172
173/* DFLL_INTR_EN: DFLL interrupt enable register */
174#define DFLL_INTR_EN 0x60
175#define DFLL_INTR_MIN_MASK 0x1
176#define DFLL_INTR_MAX_MASK 0x2
177
178/*
179 * Integrated I2C controller registers - relative to td->i2c_controller_base
180 */
181
182/* DFLL_I2C_CLK_DIVISOR: I2C controller clock divisor */
183#define DFLL_I2C_CLK_DIVISOR 0x6c
184#define DFLL_I2C_CLK_DIVISOR_MASK 0xffff
185#define DFLL_I2C_CLK_DIVISOR_FS_SHIFT 16
186#define DFLL_I2C_CLK_DIVISOR_HS_SHIFT 0
187#define DFLL_I2C_CLK_DIVISOR_PREDIV 8
188#define DFLL_I2C_CLK_DIVISOR_HSMODE_PREDIV 12
189
190/*
191 * Other constants
192 */
193
194/* MAX_DFLL_VOLTAGES: number of LUT entries in the DFLL IP block */
195#define MAX_DFLL_VOLTAGES 33
196
197/*
198 * REF_CLK_CYC_PER_DVCO_SAMPLE: the number of ref_clk cycles that the hardware
199 * integrates the DVCO counter over - used for debug rate monitoring and
200 * droop control
201 */
202#define REF_CLK_CYC_PER_DVCO_SAMPLE 4
203
204/*
205 * REF_CLOCK_RATE: the DFLL reference clock rate currently supported by this
206 * driver, in Hz
207 */
208#define REF_CLOCK_RATE 51000000UL
209
Tuomas Tynkkynenc4fe70a2015-05-13 17:58:37 +0300210#define DVCO_RATE_TO_MULT(rate, ref_rate) ((rate) / ((ref_rate) / 2))
211#define MULT_TO_DVCO_RATE(mult, ref_rate) ((mult) * ((ref_rate) / 2))
Tuomas Tynkkynend8d7a082015-05-13 17:58:36 +0300212
213/**
214 * enum dfll_ctrl_mode - DFLL hardware operating mode
215 * @DFLL_UNINITIALIZED: (uninitialized state - not in hardware bitfield)
216 * @DFLL_DISABLED: DFLL not generating an output clock
217 * @DFLL_OPEN_LOOP: DVCO running, but DFLL not adjusting voltage
Tuomas Tynkkynenc4fe70a2015-05-13 17:58:37 +0300218 * @DFLL_CLOSED_LOOP: DVCO running, and DFLL adjusting voltage to match
219 * the requested rate
Tuomas Tynkkynend8d7a082015-05-13 17:58:36 +0300220 *
221 * The integer corresponding to the last two states, minus one, is
222 * written to the DFLL hardware to change operating modes.
223 */
224enum dfll_ctrl_mode {
225 DFLL_UNINITIALIZED = 0,
226 DFLL_DISABLED = 1,
227 DFLL_OPEN_LOOP = 2,
Tuomas Tynkkynenc4fe70a2015-05-13 17:58:37 +0300228 DFLL_CLOSED_LOOP = 3,
Tuomas Tynkkynend8d7a082015-05-13 17:58:36 +0300229};
230
231/**
232 * enum dfll_tune_range - voltage range that the driver believes it's in
233 * @DFLL_TUNE_UNINITIALIZED: DFLL tuning not yet programmed
234 * @DFLL_TUNE_LOW: DFLL in the low-voltage range (or open-loop mode)
235 *
236 * Some DFLL tuning parameters may need to change depending on the
237 * DVCO's voltage; these states represent the ranges that the driver
238 * supports. These are software states; these values are never
239 * written into registers.
240 */
241enum dfll_tune_range {
242 DFLL_TUNE_UNINITIALIZED = 0,
243 DFLL_TUNE_LOW = 1,
244};
245
Tuomas Tynkkynenc4fe70a2015-05-13 17:58:37 +0300246/**
247 * struct dfll_rate_req - target DFLL rate request data
248 * @rate: target frequency, after the postscaling
249 * @dvco_target_rate: target frequency, after the postscaling
250 * @lut_index: LUT index at which voltage the dvco_target_rate will be reached
251 * @mult_bits: value to program to the MULT bits of the DFLL_FREQ_REQ register
252 * @scale_bits: value to program to the SCALE bits of the DFLL_FREQ_REQ register
253 */
254struct dfll_rate_req {
255 unsigned long rate;
256 unsigned long dvco_target_rate;
257 int lut_index;
258 u8 mult_bits;
259 u8 scale_bits;
260};
261
Tuomas Tynkkynend8d7a082015-05-13 17:58:36 +0300262struct tegra_dfll {
263 struct device *dev;
264 struct tegra_dfll_soc_data *soc;
265
266 void __iomem *base;
267 void __iomem *i2c_base;
268 void __iomem *i2c_controller_base;
269 void __iomem *lut_base;
270
271 struct regulator *vdd_reg;
272 struct clk *soc_clk;
273 struct clk *ref_clk;
274 struct clk *i2c_clk;
275 struct clk *dfll_clk;
276 struct reset_control *dvco_rst;
277 unsigned long ref_rate;
278 unsigned long i2c_clk_rate;
279 unsigned long dvco_rate_min;
280
281 enum dfll_ctrl_mode mode;
282 enum dfll_tune_range tune_range;
283 struct dentry *debugfs_dir;
284 struct clk_hw dfll_clk_hw;
285 const char *output_clock_name;
Tuomas Tynkkynenc4fe70a2015-05-13 17:58:37 +0300286 struct dfll_rate_req last_req;
287 unsigned long last_unrounded_rate;
Tuomas Tynkkynend8d7a082015-05-13 17:58:36 +0300288
289 /* Parameters from DT */
290 u32 droop_ctrl;
Tuomas Tynkkynenc4fe70a2015-05-13 17:58:37 +0300291 u32 sample_rate;
292 u32 force_mode;
293 u32 cf;
294 u32 ci;
295 u32 cg;
296 bool cg_scale;
297
298 /* I2C interface parameters */
299 u32 i2c_fs_rate;
300 u32 i2c_reg;
301 u32 i2c_slave_addr;
302
303 /* i2c_lut array entries are regulator framework selectors */
304 unsigned i2c_lut[MAX_DFLL_VOLTAGES];
305 int i2c_lut_size;
306 u8 lut_min, lut_max, lut_safe;
Tuomas Tynkkynend8d7a082015-05-13 17:58:36 +0300307};
308
309#define clk_hw_to_dfll(_hw) container_of(_hw, struct tegra_dfll, dfll_clk_hw)
310
311/* mode_name: map numeric DFLL modes to names for friendly console messages */
312static const char * const mode_name[] = {
313 [DFLL_UNINITIALIZED] = "uninitialized",
314 [DFLL_DISABLED] = "disabled",
315 [DFLL_OPEN_LOOP] = "open_loop",
Tuomas Tynkkynenc4fe70a2015-05-13 17:58:37 +0300316 [DFLL_CLOSED_LOOP] = "closed_loop",
Tuomas Tynkkynend8d7a082015-05-13 17:58:36 +0300317};
318
319/*
320 * Register accessors
321 */
322
323static inline u32 dfll_readl(struct tegra_dfll *td, u32 offs)
324{
325 return __raw_readl(td->base + offs);
326}
327
328static inline void dfll_writel(struct tegra_dfll *td, u32 val, u32 offs)
329{
330 WARN_ON(offs >= DFLL_I2C_CFG);
331 __raw_writel(val, td->base + offs);
332}
333
334static inline void dfll_wmb(struct tegra_dfll *td)
335{
336 dfll_readl(td, DFLL_CTRL);
337}
338
339/* I2C output control registers - for addresses above DFLL_I2C_CFG */
340
341static inline u32 dfll_i2c_readl(struct tegra_dfll *td, u32 offs)
342{
343 return __raw_readl(td->i2c_base + offs);
344}
345
346static inline void dfll_i2c_writel(struct tegra_dfll *td, u32 val, u32 offs)
347{
348 __raw_writel(val, td->i2c_base + offs);
349}
350
351static inline void dfll_i2c_wmb(struct tegra_dfll *td)
352{
353 dfll_i2c_readl(td, DFLL_I2C_CFG);
354}
355
356/**
357 * dfll_is_running - is the DFLL currently generating a clock?
358 * @td: DFLL instance
359 *
360 * If the DFLL is currently generating an output clock signal, return
361 * true; otherwise return false.
362 */
363static bool dfll_is_running(struct tegra_dfll *td)
364{
365 return td->mode >= DFLL_OPEN_LOOP;
366}
367
368/*
369 * Runtime PM suspend/resume callbacks
370 */
371
372/**
373 * tegra_dfll_runtime_resume - enable all clocks needed by the DFLL
374 * @dev: DFLL device *
375 *
376 * Enable all clocks needed by the DFLL. Assumes that clk_prepare()
377 * has already been called on all the clocks.
378 *
379 * XXX Should also handle context restore when returning from off.
380 */
381int tegra_dfll_runtime_resume(struct device *dev)
382{
383 struct tegra_dfll *td = dev_get_drvdata(dev);
384 int ret;
385
386 ret = clk_enable(td->ref_clk);
387 if (ret) {
388 dev_err(dev, "could not enable ref clock: %d\n", ret);
389 return ret;
390 }
391
392 ret = clk_enable(td->soc_clk);
393 if (ret) {
394 dev_err(dev, "could not enable register clock: %d\n", ret);
395 clk_disable(td->ref_clk);
396 return ret;
397 }
398
399 ret = clk_enable(td->i2c_clk);
400 if (ret) {
401 dev_err(dev, "could not enable i2c clock: %d\n", ret);
402 clk_disable(td->soc_clk);
403 clk_disable(td->ref_clk);
404 return ret;
405 }
406
407 return 0;
408}
409EXPORT_SYMBOL(tegra_dfll_runtime_resume);
410
411/**
412 * tegra_dfll_runtime_suspend - disable all clocks needed by the DFLL
413 * @dev: DFLL device *
414 *
415 * Disable all clocks needed by the DFLL. Assumes that other code
416 * will later call clk_unprepare().
417 */
418int tegra_dfll_runtime_suspend(struct device *dev)
419{
420 struct tegra_dfll *td = dev_get_drvdata(dev);
421
422 clk_disable(td->ref_clk);
423 clk_disable(td->soc_clk);
424 clk_disable(td->i2c_clk);
425
426 return 0;
427}
428EXPORT_SYMBOL(tegra_dfll_runtime_suspend);
429
430/*
431 * DFLL tuning operations (per-voltage-range tuning settings)
432 */
433
434/**
435 * dfll_tune_low - tune to DFLL and CPU settings valid for any voltage
436 * @td: DFLL instance
437 *
438 * Tune the DFLL oscillator parameters and the CPU clock shaper for
439 * the low-voltage range. These settings are valid for any voltage,
440 * but may not be optimal.
441 */
442static void dfll_tune_low(struct tegra_dfll *td)
443{
444 td->tune_range = DFLL_TUNE_LOW;
445
Thierry Reding27ed2f72016-04-08 15:02:06 +0200446 dfll_writel(td, td->soc->cvb->cpu_dfll_data.tune0_low, DFLL_TUNE0);
447 dfll_writel(td, td->soc->cvb->cpu_dfll_data.tune1, DFLL_TUNE1);
Tuomas Tynkkynend8d7a082015-05-13 17:58:36 +0300448 dfll_wmb(td);
449
450 if (td->soc->set_clock_trimmers_low)
451 td->soc->set_clock_trimmers_low();
452}
453
454/*
455 * Output clock scaler helpers
456 */
457
458/**
459 * dfll_scale_dvco_rate - calculate scaled rate from the DVCO rate
460 * @scale_bits: clock scaler value (bits in the DFLL_FREQ_REQ_SCALE field)
461 * @dvco_rate: the DVCO rate
462 *
463 * Apply the same scaling formula that the DFLL hardware uses to scale
464 * the DVCO rate.
465 */
466static unsigned long dfll_scale_dvco_rate(int scale_bits,
467 unsigned long dvco_rate)
468{
469 return (u64)dvco_rate * (scale_bits + 1) / DFLL_FREQ_REQ_SCALE_MAX;
470}
471
472/*
Tuomas Tynkkynend8d7a082015-05-13 17:58:36 +0300473 * DFLL mode switching
474 */
475
476/**
477 * dfll_set_mode - change the DFLL control mode
478 * @td: DFLL instance
479 * @mode: DFLL control mode (see enum dfll_ctrl_mode)
480 *
481 * Change the DFLL's operating mode between disabled, open-loop mode,
482 * and closed-loop mode, or vice versa.
483 */
484static void dfll_set_mode(struct tegra_dfll *td,
485 enum dfll_ctrl_mode mode)
486{
487 td->mode = mode;
488 dfll_writel(td, mode - 1, DFLL_CTRL);
489 dfll_wmb(td);
490}
491
492/*
Tuomas Tynkkynenc4fe70a2015-05-13 17:58:37 +0300493 * DFLL-to-I2C controller interface
494 */
495
496/**
497 * dfll_i2c_set_output_enabled - enable/disable I2C PMIC voltage requests
498 * @td: DFLL instance
499 * @enable: whether to enable or disable the I2C voltage requests
500 *
501 * Set the master enable control for I2C control value updates. If disabled,
502 * then I2C control messages are inhibited, regardless of the DFLL mode.
503 */
504static int dfll_i2c_set_output_enabled(struct tegra_dfll *td, bool enable)
505{
506 u32 val;
507
508 val = dfll_i2c_readl(td, DFLL_OUTPUT_CFG);
509
510 if (enable)
511 val |= DFLL_OUTPUT_CFG_I2C_ENABLE;
512 else
513 val &= ~DFLL_OUTPUT_CFG_I2C_ENABLE;
514
515 dfll_i2c_writel(td, val, DFLL_OUTPUT_CFG);
516 dfll_i2c_wmb(td);
517
518 return 0;
519}
520
521/**
522 * dfll_load_lut - load the voltage lookup table
523 * @td: struct tegra_dfll *
524 *
525 * Load the voltage-to-PMIC register value lookup table into the DFLL
526 * IP block memory. Look-up tables can be loaded at any time.
527 */
528static void dfll_load_i2c_lut(struct tegra_dfll *td)
529{
530 int i, lut_index;
531 u32 val;
532
533 for (i = 0; i < MAX_DFLL_VOLTAGES; i++) {
534 if (i < td->lut_min)
535 lut_index = td->lut_min;
536 else if (i > td->lut_max)
537 lut_index = td->lut_max;
538 else
539 lut_index = i;
540
Stephen Boydc5a132a2015-08-25 16:02:02 -0700541 val = regulator_list_hardware_vsel(td->vdd_reg,
Tuomas Tynkkynenc4fe70a2015-05-13 17:58:37 +0300542 td->i2c_lut[lut_index]);
543 __raw_writel(val, td->lut_base + i * 4);
544 }
545
546 dfll_i2c_wmb(td);
547}
548
549/**
550 * dfll_init_i2c_if - set up the DFLL's DFLL-I2C interface
551 * @td: DFLL instance
552 *
553 * During DFLL driver initialization, program the DFLL-I2C interface
554 * with the PMU slave address, vdd register offset, and transfer mode.
555 * This data is used by the DFLL to automatically construct I2C
556 * voltage-set commands, which are then passed to the DFLL's internal
557 * I2C controller.
558 */
559static void dfll_init_i2c_if(struct tegra_dfll *td)
560{
561 u32 val;
562
563 if (td->i2c_slave_addr > 0x7f) {
564 val = td->i2c_slave_addr << DFLL_I2C_CFG_SLAVE_ADDR_SHIFT_10BIT;
565 val |= DFLL_I2C_CFG_SLAVE_ADDR_10;
566 } else {
567 val = td->i2c_slave_addr << DFLL_I2C_CFG_SLAVE_ADDR_SHIFT_7BIT;
568 }
569 val |= DFLL_I2C_CFG_SIZE_MASK;
570 val |= DFLL_I2C_CFG_ARB_ENABLE;
571 dfll_i2c_writel(td, val, DFLL_I2C_CFG);
572
573 dfll_i2c_writel(td, td->i2c_reg, DFLL_I2C_VDD_REG_ADDR);
574
575 val = DIV_ROUND_UP(td->i2c_clk_rate, td->i2c_fs_rate * 8);
576 BUG_ON(!val || (val > DFLL_I2C_CLK_DIVISOR_MASK));
577 val = (val - 1) << DFLL_I2C_CLK_DIVISOR_FS_SHIFT;
578
579 /* default hs divisor just in case */
580 val |= 1 << DFLL_I2C_CLK_DIVISOR_HS_SHIFT;
581 __raw_writel(val, td->i2c_controller_base + DFLL_I2C_CLK_DIVISOR);
582 dfll_i2c_wmb(td);
583}
584
585/**
586 * dfll_init_out_if - prepare DFLL-to-PMIC interface
587 * @td: DFLL instance
588 *
589 * During DFLL driver initialization or resume from context loss,
590 * disable the I2C command output to the PMIC, set safe voltage and
591 * output limits, and disable and clear limit interrupts.
592 */
593static void dfll_init_out_if(struct tegra_dfll *td)
594{
595 u32 val;
596
597 td->lut_min = 0;
598 td->lut_max = td->i2c_lut_size - 1;
599 td->lut_safe = td->lut_min + 1;
600
601 dfll_i2c_writel(td, 0, DFLL_OUTPUT_CFG);
602 val = (td->lut_safe << DFLL_OUTPUT_CFG_SAFE_SHIFT) |
603 (td->lut_max << DFLL_OUTPUT_CFG_MAX_SHIFT) |
604 (td->lut_min << DFLL_OUTPUT_CFG_MIN_SHIFT);
605 dfll_i2c_writel(td, val, DFLL_OUTPUT_CFG);
606 dfll_i2c_wmb(td);
607
608 dfll_writel(td, 0, DFLL_OUTPUT_FORCE);
609 dfll_i2c_writel(td, 0, DFLL_INTR_EN);
610 dfll_i2c_writel(td, DFLL_INTR_MAX_MASK | DFLL_INTR_MIN_MASK,
611 DFLL_INTR_STS);
612
613 dfll_load_i2c_lut(td);
614 dfll_init_i2c_if(td);
615}
616
617/*
618 * Set/get the DFLL's targeted output clock rate
619 */
620
621/**
622 * find_lut_index_for_rate - determine I2C LUT index for given DFLL rate
623 * @td: DFLL instance
624 * @rate: clock rate
625 *
626 * Determines the index of a I2C LUT entry for a voltage that approximately
627 * produces the given DFLL clock rate. This is used when forcing a value
628 * to the integrator during rate changes. Returns -ENOENT if a suitable
629 * LUT index is not found.
630 */
631static int find_lut_index_for_rate(struct tegra_dfll *td, unsigned long rate)
632{
633 struct dev_pm_opp *opp;
634 int i, uv;
635
Thierry Redinge1595d82015-09-10 15:55:21 +0200636 rcu_read_lock();
637
Tuomas Tynkkynen62a8a092015-05-13 17:58:41 +0300638 opp = dev_pm_opp_find_freq_ceil(td->soc->dev, &rate);
Thierry Redinge1595d82015-09-10 15:55:21 +0200639 if (IS_ERR(opp)) {
640 rcu_read_unlock();
Tuomas Tynkkynenc4fe70a2015-05-13 17:58:37 +0300641 return PTR_ERR(opp);
Thierry Redinge1595d82015-09-10 15:55:21 +0200642 }
Tuomas Tynkkynenc4fe70a2015-05-13 17:58:37 +0300643 uv = dev_pm_opp_get_voltage(opp);
644
Thierry Redinge1595d82015-09-10 15:55:21 +0200645 rcu_read_unlock();
646
Tuomas Tynkkynenc4fe70a2015-05-13 17:58:37 +0300647 for (i = 0; i < td->i2c_lut_size; i++) {
648 if (regulator_list_voltage(td->vdd_reg, td->i2c_lut[i]) == uv)
649 return i;
650 }
651
652 return -ENOENT;
653}
654
655/**
656 * dfll_calculate_rate_request - calculate DFLL parameters for a given rate
657 * @td: DFLL instance
658 * @req: DFLL-rate-request structure
659 * @rate: the desired DFLL rate
660 *
661 * Populate the DFLL-rate-request record @req fields with the scale_bits
662 * and mult_bits fields, based on the target input rate. Returns 0 upon
663 * success, or -EINVAL if the requested rate in req->rate is too high
664 * or low for the DFLL to generate.
665 */
666static int dfll_calculate_rate_request(struct tegra_dfll *td,
667 struct dfll_rate_req *req,
668 unsigned long rate)
669{
670 u32 val;
671
672 /*
673 * If requested rate is below the minimum DVCO rate, active the scaler.
674 * In the future the DVCO minimum voltage should be selected based on
675 * chip temperature and the actual minimum rate should be calibrated
676 * at runtime.
677 */
678 req->scale_bits = DFLL_FREQ_REQ_SCALE_MAX - 1;
679 if (rate < td->dvco_rate_min) {
680 int scale;
681
682 scale = DIV_ROUND_CLOSEST(rate / 1000 * DFLL_FREQ_REQ_SCALE_MAX,
683 td->dvco_rate_min / 1000);
684 if (!scale) {
685 dev_err(td->dev, "%s: Rate %lu is too low\n",
686 __func__, rate);
687 return -EINVAL;
688 }
689 req->scale_bits = scale - 1;
690 rate = td->dvco_rate_min;
691 }
692
693 /* Convert requested rate into frequency request and scale settings */
694 val = DVCO_RATE_TO_MULT(rate, td->ref_rate);
695 if (val > FREQ_MAX) {
696 dev_err(td->dev, "%s: Rate %lu is above dfll range\n",
697 __func__, rate);
698 return -EINVAL;
699 }
700 req->mult_bits = val;
701 req->dvco_target_rate = MULT_TO_DVCO_RATE(req->mult_bits, td->ref_rate);
702 req->rate = dfll_scale_dvco_rate(req->scale_bits,
703 req->dvco_target_rate);
704 req->lut_index = find_lut_index_for_rate(td, req->dvco_target_rate);
705 if (req->lut_index < 0)
706 return req->lut_index;
707
708 return 0;
709}
710
711/**
712 * dfll_set_frequency_request - start the frequency change operation
713 * @td: DFLL instance
714 * @req: rate request structure
715 *
716 * Tell the DFLL to try to change its output frequency to the
717 * frequency represented by @req. DFLL must be in closed-loop mode.
718 */
719static void dfll_set_frequency_request(struct tegra_dfll *td,
720 struct dfll_rate_req *req)
721{
722 u32 val = 0;
723 int force_val;
724 int coef = 128; /* FIXME: td->cg_scale? */;
725
726 force_val = (req->lut_index - td->lut_safe) * coef / td->cg;
727 force_val = clamp(force_val, FORCE_MIN, FORCE_MAX);
728
729 val |= req->mult_bits << DFLL_FREQ_REQ_MULT_SHIFT;
730 val |= req->scale_bits << DFLL_FREQ_REQ_SCALE_SHIFT;
731 val |= ((u32)force_val << DFLL_FREQ_REQ_FORCE_SHIFT) &
732 DFLL_FREQ_REQ_FORCE_MASK;
733 val |= DFLL_FREQ_REQ_FREQ_VALID | DFLL_FREQ_REQ_FORCE_ENABLE;
734
735 dfll_writel(td, val, DFLL_FREQ_REQ);
736 dfll_wmb(td);
737}
738
739/**
740 * tegra_dfll_request_rate - set the next rate for the DFLL to tune to
741 * @td: DFLL instance
742 * @rate: clock rate to target
743 *
744 * Convert the requested clock rate @rate into the DFLL control logic
745 * settings. In closed-loop mode, update new settings immediately to
746 * adjust DFLL output rate accordingly. Otherwise, just save them
747 * until the next switch to closed loop. Returns 0 upon success,
748 * -EPERM if the DFLL driver has not yet been initialized, or -EINVAL
749 * if @rate is outside the DFLL's tunable range.
750 */
751static int dfll_request_rate(struct tegra_dfll *td, unsigned long rate)
752{
753 int ret;
754 struct dfll_rate_req req;
755
756 if (td->mode == DFLL_UNINITIALIZED) {
757 dev_err(td->dev, "%s: Cannot set DFLL rate in %s mode\n",
758 __func__, mode_name[td->mode]);
759 return -EPERM;
760 }
761
762 ret = dfll_calculate_rate_request(td, &req, rate);
763 if (ret)
764 return ret;
765
766 td->last_unrounded_rate = rate;
767 td->last_req = req;
768
769 if (td->mode == DFLL_CLOSED_LOOP)
770 dfll_set_frequency_request(td, &td->last_req);
771
772 return 0;
773}
774
775/*
Tuomas Tynkkynend8d7a082015-05-13 17:58:36 +0300776 * DFLL enable/disable & open-loop <-> closed-loop transitions
777 */
778
779/**
780 * dfll_disable - switch from open-loop mode to disabled mode
781 * @td: DFLL instance
782 *
783 * Switch from OPEN_LOOP state to DISABLED state. Returns 0 upon success
784 * or -EPERM if the DFLL is not currently in open-loop mode.
785 */
786static int dfll_disable(struct tegra_dfll *td)
787{
788 if (td->mode != DFLL_OPEN_LOOP) {
789 dev_err(td->dev, "cannot disable DFLL in %s mode\n",
790 mode_name[td->mode]);
791 return -EINVAL;
792 }
793
794 dfll_set_mode(td, DFLL_DISABLED);
795 pm_runtime_put_sync(td->dev);
796
797 return 0;
798}
799
800/**
801 * dfll_enable - switch a disabled DFLL to open-loop mode
802 * @td: DFLL instance
803 *
804 * Switch from DISABLED state to OPEN_LOOP state. Returns 0 upon success
805 * or -EPERM if the DFLL is not currently disabled.
806 */
807static int dfll_enable(struct tegra_dfll *td)
808{
809 if (td->mode != DFLL_DISABLED) {
810 dev_err(td->dev, "cannot enable DFLL in %s mode\n",
811 mode_name[td->mode]);
812 return -EPERM;
813 }
814
815 pm_runtime_get_sync(td->dev);
816 dfll_set_mode(td, DFLL_OPEN_LOOP);
817
818 return 0;
819}
820
821/**
822 * dfll_set_open_loop_config - prepare to switch to open-loop mode
823 * @td: DFLL instance
824 *
825 * Prepare to switch the DFLL to open-loop mode. This switches the
826 * DFLL to the low-voltage tuning range, ensures that I2C output
827 * forcing is disabled, and disables the output clock rate scaler.
828 * The DFLL's low-voltage tuning range parameters must be
829 * characterized to keep the downstream device stable at any DVCO
830 * input voltage. No return value.
831 */
832static void dfll_set_open_loop_config(struct tegra_dfll *td)
833{
834 u32 val;
835
836 /* always tune low (safe) in open loop */
837 if (td->tune_range != DFLL_TUNE_LOW)
838 dfll_tune_low(td);
839
840 val = dfll_readl(td, DFLL_FREQ_REQ);
841 val |= DFLL_FREQ_REQ_SCALE_MASK;
842 val &= ~DFLL_FREQ_REQ_FORCE_ENABLE;
843 dfll_writel(td, val, DFLL_FREQ_REQ);
844 dfll_wmb(td);
845}
846
Tuomas Tynkkynenc4fe70a2015-05-13 17:58:37 +0300847/**
848 * tegra_dfll_lock - switch from open-loop to closed-loop mode
849 * @td: DFLL instance
850 *
851 * Switch from OPEN_LOOP state to CLOSED_LOOP state. Returns 0 upon success,
852 * -EINVAL if the DFLL's target rate hasn't been set yet, or -EPERM if the
853 * DFLL is not currently in open-loop mode.
854 */
855static int dfll_lock(struct tegra_dfll *td)
856{
857 struct dfll_rate_req *req = &td->last_req;
858
859 switch (td->mode) {
860 case DFLL_CLOSED_LOOP:
861 return 0;
862
863 case DFLL_OPEN_LOOP:
864 if (req->rate == 0) {
865 dev_err(td->dev, "%s: Cannot lock DFLL at rate 0\n",
866 __func__);
867 return -EINVAL;
868 }
869
870 dfll_i2c_set_output_enabled(td, true);
871 dfll_set_mode(td, DFLL_CLOSED_LOOP);
872 dfll_set_frequency_request(td, req);
873 return 0;
874
875 default:
876 BUG_ON(td->mode > DFLL_CLOSED_LOOP);
877 dev_err(td->dev, "%s: Cannot lock DFLL in %s mode\n",
878 __func__, mode_name[td->mode]);
879 return -EPERM;
880 }
881}
882
883/**
884 * tegra_dfll_unlock - switch from closed-loop to open-loop mode
885 * @td: DFLL instance
886 *
887 * Switch from CLOSED_LOOP state to OPEN_LOOP state. Returns 0 upon success,
888 * or -EPERM if the DFLL is not currently in open-loop mode.
889 */
890static int dfll_unlock(struct tegra_dfll *td)
891{
892 switch (td->mode) {
893 case DFLL_CLOSED_LOOP:
894 dfll_set_open_loop_config(td);
895 dfll_set_mode(td, DFLL_OPEN_LOOP);
896 dfll_i2c_set_output_enabled(td, false);
897 return 0;
898
899 case DFLL_OPEN_LOOP:
900 return 0;
901
902 default:
903 BUG_ON(td->mode > DFLL_CLOSED_LOOP);
904 dev_err(td->dev, "%s: Cannot unlock DFLL in %s mode\n",
905 __func__, mode_name[td->mode]);
906 return -EPERM;
907 }
908}
909
Tuomas Tynkkynend8d7a082015-05-13 17:58:36 +0300910/*
911 * Clock framework integration
Tuomas Tynkkynenc4fe70a2015-05-13 17:58:37 +0300912 *
913 * When the DFLL is being controlled by the CCF, always enter closed loop
914 * mode when the clk is enabled. This requires that a DFLL rate request
915 * has been set beforehand, which implies that a clk_set_rate() call is
916 * always required before a clk_enable().
Tuomas Tynkkynend8d7a082015-05-13 17:58:36 +0300917 */
918
919static int dfll_clk_is_enabled(struct clk_hw *hw)
920{
921 struct tegra_dfll *td = clk_hw_to_dfll(hw);
922
923 return dfll_is_running(td);
924}
925
926static int dfll_clk_enable(struct clk_hw *hw)
927{
928 struct tegra_dfll *td = clk_hw_to_dfll(hw);
Tuomas Tynkkynenc4fe70a2015-05-13 17:58:37 +0300929 int ret;
Tuomas Tynkkynend8d7a082015-05-13 17:58:36 +0300930
Tuomas Tynkkynenc4fe70a2015-05-13 17:58:37 +0300931 ret = dfll_enable(td);
932 if (ret)
933 return ret;
934
935 ret = dfll_lock(td);
936 if (ret)
937 dfll_disable(td);
938
939 return ret;
Tuomas Tynkkynend8d7a082015-05-13 17:58:36 +0300940}
941
942static void dfll_clk_disable(struct clk_hw *hw)
943{
944 struct tegra_dfll *td = clk_hw_to_dfll(hw);
Tuomas Tynkkynenc4fe70a2015-05-13 17:58:37 +0300945 int ret;
Tuomas Tynkkynend8d7a082015-05-13 17:58:36 +0300946
Tuomas Tynkkynenc4fe70a2015-05-13 17:58:37 +0300947 ret = dfll_unlock(td);
948 if (!ret)
949 dfll_disable(td);
950}
951
952static unsigned long dfll_clk_recalc_rate(struct clk_hw *hw,
953 unsigned long parent_rate)
954{
955 struct tegra_dfll *td = clk_hw_to_dfll(hw);
956
957 return td->last_unrounded_rate;
958}
959
Mikko Perttunen10d9be62015-09-15 12:55:15 +0300960/* Must use determine_rate since it allows for rates exceeding 2^31-1 */
961static int dfll_clk_determine_rate(struct clk_hw *hw,
962 struct clk_rate_request *clk_req)
Tuomas Tynkkynenc4fe70a2015-05-13 17:58:37 +0300963{
964 struct tegra_dfll *td = clk_hw_to_dfll(hw);
965 struct dfll_rate_req req;
966 int ret;
967
Mikko Perttunen10d9be62015-09-15 12:55:15 +0300968 ret = dfll_calculate_rate_request(td, &req, clk_req->rate);
Tuomas Tynkkynenc4fe70a2015-05-13 17:58:37 +0300969 if (ret)
970 return ret;
971
972 /*
Mikko Perttunen10d9be62015-09-15 12:55:15 +0300973 * Don't set the rounded rate, since it doesn't really matter as
Tuomas Tynkkynenc4fe70a2015-05-13 17:58:37 +0300974 * the output rate will be voltage controlled anyway, and cpufreq
975 * freaks out if any rounding happens.
976 */
Mikko Perttunen10d9be62015-09-15 12:55:15 +0300977
978 return 0;
Tuomas Tynkkynenc4fe70a2015-05-13 17:58:37 +0300979}
980
981static int dfll_clk_set_rate(struct clk_hw *hw, unsigned long rate,
982 unsigned long parent_rate)
983{
984 struct tegra_dfll *td = clk_hw_to_dfll(hw);
985
986 return dfll_request_rate(td, rate);
Tuomas Tynkkynend8d7a082015-05-13 17:58:36 +0300987}
988
989static const struct clk_ops dfll_clk_ops = {
990 .is_enabled = dfll_clk_is_enabled,
991 .enable = dfll_clk_enable,
992 .disable = dfll_clk_disable,
Tuomas Tynkkynenc4fe70a2015-05-13 17:58:37 +0300993 .recalc_rate = dfll_clk_recalc_rate,
Mikko Perttunen10d9be62015-09-15 12:55:15 +0300994 .determine_rate = dfll_clk_determine_rate,
Tuomas Tynkkynenc4fe70a2015-05-13 17:58:37 +0300995 .set_rate = dfll_clk_set_rate,
Tuomas Tynkkynend8d7a082015-05-13 17:58:36 +0300996};
997
998static struct clk_init_data dfll_clk_init_data = {
Tuomas Tynkkynend8d7a082015-05-13 17:58:36 +0300999 .ops = &dfll_clk_ops,
1000 .num_parents = 0,
1001};
1002
1003/**
1004 * dfll_register_clk - register the DFLL output clock with the clock framework
1005 * @td: DFLL instance
1006 *
1007 * Register the DFLL's output clock with the Linux clock framework and register
1008 * the DFLL driver as an OF clock provider. Returns 0 upon success or -EINVAL
1009 * or -ENOMEM upon failure.
1010 */
1011static int dfll_register_clk(struct tegra_dfll *td)
1012{
1013 int ret;
1014
1015 dfll_clk_init_data.name = td->output_clock_name;
1016 td->dfll_clk_hw.init = &dfll_clk_init_data;
1017
1018 td->dfll_clk = clk_register(td->dev, &td->dfll_clk_hw);
1019 if (IS_ERR(td->dfll_clk)) {
1020 dev_err(td->dev, "DFLL clock registration error\n");
1021 return -EINVAL;
1022 }
1023
1024 ret = of_clk_add_provider(td->dev->of_node, of_clk_src_simple_get,
1025 td->dfll_clk);
1026 if (ret) {
1027 dev_err(td->dev, "of_clk_add_provider() failed\n");
1028
1029 clk_unregister(td->dfll_clk);
1030 return ret;
1031 }
1032
1033 return 0;
1034}
1035
1036/**
1037 * dfll_unregister_clk - unregister the DFLL output clock
1038 * @td: DFLL instance
1039 *
1040 * Unregister the DFLL's output clock from the Linux clock framework
1041 * and from clkdev. No return value.
1042 */
1043static void dfll_unregister_clk(struct tegra_dfll *td)
1044{
1045 of_clk_del_provider(td->dev->of_node);
1046 clk_unregister(td->dfll_clk);
1047 td->dfll_clk = NULL;
1048}
1049
1050/*
1051 * Debugfs interface
1052 */
1053
1054#ifdef CONFIG_DEBUG_FS
Thierry Reding4182b8d2015-08-14 12:40:09 +02001055/*
1056 * Monitor control
1057 */
1058
1059/**
1060 * dfll_calc_monitored_rate - convert DFLL_MONITOR_DATA_VAL rate into real freq
1061 * @monitor_data: value read from the DFLL_MONITOR_DATA_VAL bitfield
1062 * @ref_rate: DFLL reference clock rate
1063 *
1064 * Convert @monitor_data from DFLL_MONITOR_DATA_VAL units into cycles
1065 * per second. Returns the converted value.
1066 */
1067static u64 dfll_calc_monitored_rate(u32 monitor_data,
1068 unsigned long ref_rate)
1069{
1070 return monitor_data * (ref_rate / REF_CLK_CYC_PER_DVCO_SAMPLE);
1071}
1072
1073/**
1074 * dfll_read_monitor_rate - return the DFLL's output rate from internal monitor
1075 * @td: DFLL instance
1076 *
1077 * If the DFLL is enabled, return the last rate reported by the DFLL's
1078 * internal monitoring hardware. This works in both open-loop and
1079 * closed-loop mode, and takes the output scaler setting into account.
1080 * Assumes that the monitor was programmed to monitor frequency before
1081 * the sample period started. If the driver believes that the DFLL is
1082 * currently uninitialized or disabled, it will return 0, since
1083 * otherwise the DFLL monitor data register will return the last
1084 * measured rate from when the DFLL was active.
1085 */
1086static u64 dfll_read_monitor_rate(struct tegra_dfll *td)
1087{
1088 u32 v, s;
1089 u64 pre_scaler_rate, post_scaler_rate;
1090
1091 if (!dfll_is_running(td))
1092 return 0;
1093
1094 v = dfll_readl(td, DFLL_MONITOR_DATA);
1095 v = (v & DFLL_MONITOR_DATA_VAL_MASK) >> DFLL_MONITOR_DATA_VAL_SHIFT;
1096 pre_scaler_rate = dfll_calc_monitored_rate(v, td->ref_rate);
1097
1098 s = dfll_readl(td, DFLL_FREQ_REQ);
1099 s = (s & DFLL_FREQ_REQ_SCALE_MASK) >> DFLL_FREQ_REQ_SCALE_SHIFT;
1100 post_scaler_rate = dfll_scale_dvco_rate(s, pre_scaler_rate);
1101
1102 return post_scaler_rate;
1103}
Tuomas Tynkkynend8d7a082015-05-13 17:58:36 +03001104
1105static int attr_enable_get(void *data, u64 *val)
1106{
1107 struct tegra_dfll *td = data;
1108
1109 *val = dfll_is_running(td);
1110
1111 return 0;
1112}
1113static int attr_enable_set(void *data, u64 val)
1114{
1115 struct tegra_dfll *td = data;
1116
1117 return val ? dfll_enable(td) : dfll_disable(td);
1118}
1119DEFINE_SIMPLE_ATTRIBUTE(enable_fops, attr_enable_get, attr_enable_set,
1120 "%llu\n");
1121
Tuomas Tynkkynenc4fe70a2015-05-13 17:58:37 +03001122static int attr_lock_get(void *data, u64 *val)
1123{
1124 struct tegra_dfll *td = data;
1125
1126 *val = (td->mode == DFLL_CLOSED_LOOP);
1127
1128 return 0;
1129}
1130static int attr_lock_set(void *data, u64 val)
1131{
1132 struct tegra_dfll *td = data;
1133
1134 return val ? dfll_lock(td) : dfll_unlock(td);
1135}
1136DEFINE_SIMPLE_ATTRIBUTE(lock_fops, attr_lock_get, attr_lock_set,
1137 "%llu\n");
1138
Tuomas Tynkkynend8d7a082015-05-13 17:58:36 +03001139static int attr_rate_get(void *data, u64 *val)
1140{
1141 struct tegra_dfll *td = data;
1142
1143 *val = dfll_read_monitor_rate(td);
1144
1145 return 0;
1146}
Tuomas Tynkkynenc4fe70a2015-05-13 17:58:37 +03001147
1148static int attr_rate_set(void *data, u64 val)
1149{
1150 struct tegra_dfll *td = data;
1151
1152 return dfll_request_rate(td, val);
1153}
1154DEFINE_SIMPLE_ATTRIBUTE(rate_fops, attr_rate_get, attr_rate_set, "%llu\n");
Tuomas Tynkkynend8d7a082015-05-13 17:58:36 +03001155
1156static int attr_registers_show(struct seq_file *s, void *data)
1157{
1158 u32 val, offs;
1159 struct tegra_dfll *td = s->private;
1160
1161 seq_puts(s, "CONTROL REGISTERS:\n");
1162 for (offs = 0; offs <= DFLL_MONITOR_DATA; offs += 4) {
1163 if (offs == DFLL_OUTPUT_CFG)
1164 val = dfll_i2c_readl(td, offs);
1165 else
1166 val = dfll_readl(td, offs);
1167 seq_printf(s, "[0x%02x] = 0x%08x\n", offs, val);
1168 }
1169
1170 seq_puts(s, "\nI2C and INTR REGISTERS:\n");
1171 for (offs = DFLL_I2C_CFG; offs <= DFLL_I2C_STS; offs += 4)
1172 seq_printf(s, "[0x%02x] = 0x%08x\n", offs,
1173 dfll_i2c_readl(td, offs));
1174 for (offs = DFLL_INTR_STS; offs <= DFLL_INTR_EN; offs += 4)
1175 seq_printf(s, "[0x%02x] = 0x%08x\n", offs,
1176 dfll_i2c_readl(td, offs));
1177
1178 seq_puts(s, "\nINTEGRATED I2C CONTROLLER REGISTERS:\n");
1179 offs = DFLL_I2C_CLK_DIVISOR;
1180 seq_printf(s, "[0x%02x] = 0x%08x\n", offs,
1181 __raw_readl(td->i2c_controller_base + offs));
1182
1183 seq_puts(s, "\nLUT:\n");
1184 for (offs = 0; offs < 4 * MAX_DFLL_VOLTAGES; offs += 4)
1185 seq_printf(s, "[0x%02x] = 0x%08x\n", offs,
1186 __raw_readl(td->lut_base + offs));
1187
1188 return 0;
1189}
1190
1191static int attr_registers_open(struct inode *inode, struct file *file)
1192{
1193 return single_open(file, attr_registers_show, inode->i_private);
1194}
1195
1196static const struct file_operations attr_registers_fops = {
1197 .open = attr_registers_open,
1198 .read = seq_read,
1199 .llseek = seq_lseek,
1200 .release = single_release,
1201};
1202
1203static int dfll_debug_init(struct tegra_dfll *td)
1204{
1205 int ret;
1206
1207 if (!td || (td->mode == DFLL_UNINITIALIZED))
1208 return 0;
1209
1210 td->debugfs_dir = debugfs_create_dir("tegra_dfll_fcpu", NULL);
1211 if (!td->debugfs_dir)
1212 return -ENOMEM;
1213
1214 ret = -ENOMEM;
1215
1216 if (!debugfs_create_file("enable", S_IRUGO | S_IWUSR,
1217 td->debugfs_dir, td, &enable_fops))
1218 goto err_out;
1219
Tuomas Tynkkynenc4fe70a2015-05-13 17:58:37 +03001220 if (!debugfs_create_file("lock", S_IRUGO,
1221 td->debugfs_dir, td, &lock_fops))
1222 goto err_out;
1223
Tuomas Tynkkynend8d7a082015-05-13 17:58:36 +03001224 if (!debugfs_create_file("rate", S_IRUGO,
1225 td->debugfs_dir, td, &rate_fops))
1226 goto err_out;
1227
1228 if (!debugfs_create_file("registers", S_IRUGO,
1229 td->debugfs_dir, td, &attr_registers_fops))
1230 goto err_out;
1231
1232 return 0;
1233
1234err_out:
1235 debugfs_remove_recursive(td->debugfs_dir);
1236 return ret;
1237}
1238
1239#endif /* CONFIG_DEBUG_FS */
1240
1241/*
1242 * DFLL initialization
1243 */
1244
1245/**
1246 * dfll_set_default_params - program non-output related DFLL parameters
1247 * @td: DFLL instance
1248 *
1249 * During DFLL driver initialization or resume from context loss,
1250 * program parameters for the closed loop integrator, DVCO tuning,
1251 * voltage droop control and monitor control.
1252 */
1253static void dfll_set_default_params(struct tegra_dfll *td)
1254{
Tuomas Tynkkynenc4fe70a2015-05-13 17:58:37 +03001255 u32 val;
1256
1257 val = DIV_ROUND_UP(td->ref_rate, td->sample_rate * 32);
1258 BUG_ON(val > DFLL_CONFIG_DIV_MASK);
1259 dfll_writel(td, val, DFLL_CONFIG);
1260
1261 val = (td->force_mode << DFLL_PARAMS_FORCE_MODE_SHIFT) |
1262 (td->cf << DFLL_PARAMS_CF_PARAM_SHIFT) |
1263 (td->ci << DFLL_PARAMS_CI_PARAM_SHIFT) |
1264 (td->cg << DFLL_PARAMS_CG_PARAM_SHIFT) |
1265 (td->cg_scale ? DFLL_PARAMS_CG_SCALE : 0);
1266 dfll_writel(td, val, DFLL_PARAMS);
1267
Tuomas Tynkkynend8d7a082015-05-13 17:58:36 +03001268 dfll_tune_low(td);
1269 dfll_writel(td, td->droop_ctrl, DFLL_DROOP_CTRL);
1270 dfll_writel(td, DFLL_MONITOR_CTRL_FREQ, DFLL_MONITOR_CTRL);
1271}
1272
1273/**
1274 * dfll_init_clks - clk_get() the DFLL source clocks
1275 * @td: DFLL instance
1276 *
1277 * Call clk_get() on the DFLL source clocks and save the pointers for later
1278 * use. Returns 0 upon success or error (see devm_clk_get) if one or more
1279 * of the clocks couldn't be looked up.
1280 */
1281static int dfll_init_clks(struct tegra_dfll *td)
1282{
1283 td->ref_clk = devm_clk_get(td->dev, "ref");
1284 if (IS_ERR(td->ref_clk)) {
1285 dev_err(td->dev, "missing ref clock\n");
1286 return PTR_ERR(td->ref_clk);
1287 }
1288
1289 td->soc_clk = devm_clk_get(td->dev, "soc");
1290 if (IS_ERR(td->soc_clk)) {
1291 dev_err(td->dev, "missing soc clock\n");
1292 return PTR_ERR(td->soc_clk);
1293 }
1294
1295 td->i2c_clk = devm_clk_get(td->dev, "i2c");
1296 if (IS_ERR(td->i2c_clk)) {
1297 dev_err(td->dev, "missing i2c clock\n");
1298 return PTR_ERR(td->i2c_clk);
1299 }
1300 td->i2c_clk_rate = clk_get_rate(td->i2c_clk);
1301
1302 return 0;
1303}
1304
1305/**
1306 * dfll_init - Prepare the DFLL IP block for use
1307 * @td: DFLL instance
1308 *
1309 * Do everything necessary to prepare the DFLL IP block for use. The
1310 * DFLL will be left in DISABLED state. Called by dfll_probe().
1311 * Returns 0 upon success, or passes along the error from whatever
1312 * function returned it.
1313 */
1314static int dfll_init(struct tegra_dfll *td)
1315{
1316 int ret;
1317
1318 td->ref_rate = clk_get_rate(td->ref_clk);
1319 if (td->ref_rate != REF_CLOCK_RATE) {
1320 dev_err(td->dev, "unexpected ref clk rate %lu, expecting %lu",
1321 td->ref_rate, REF_CLOCK_RATE);
1322 return -EINVAL;
1323 }
1324
1325 reset_control_deassert(td->dvco_rst);
1326
1327 ret = clk_prepare(td->ref_clk);
1328 if (ret) {
1329 dev_err(td->dev, "failed to prepare ref_clk\n");
1330 return ret;
1331 }
1332
1333 ret = clk_prepare(td->soc_clk);
1334 if (ret) {
1335 dev_err(td->dev, "failed to prepare soc_clk\n");
1336 goto di_err1;
1337 }
1338
1339 ret = clk_prepare(td->i2c_clk);
1340 if (ret) {
1341 dev_err(td->dev, "failed to prepare i2c_clk\n");
1342 goto di_err2;
1343 }
1344
Tuomas Tynkkynenc4fe70a2015-05-13 17:58:37 +03001345 td->last_unrounded_rate = 0;
1346
Tuomas Tynkkynend8d7a082015-05-13 17:58:36 +03001347 pm_runtime_enable(td->dev);
1348 pm_runtime_get_sync(td->dev);
1349
1350 dfll_set_mode(td, DFLL_DISABLED);
1351 dfll_set_default_params(td);
1352
1353 if (td->soc->init_clock_trimmers)
1354 td->soc->init_clock_trimmers();
1355
1356 dfll_set_open_loop_config(td);
1357
Tuomas Tynkkynenc4fe70a2015-05-13 17:58:37 +03001358 dfll_init_out_if(td);
1359
Tuomas Tynkkynend8d7a082015-05-13 17:58:36 +03001360 pm_runtime_put_sync(td->dev);
1361
1362 return 0;
1363
1364di_err2:
1365 clk_unprepare(td->soc_clk);
1366di_err1:
1367 clk_unprepare(td->ref_clk);
1368
1369 reset_control_assert(td->dvco_rst);
1370
1371 return ret;
1372}
1373
1374/*
1375 * DT data fetch
1376 */
1377
Tuomas Tynkkynenc4fe70a2015-05-13 17:58:37 +03001378/*
1379 * Find a PMIC voltage register-to-voltage mapping for the given voltage.
1380 * An exact voltage match is required.
1381 */
1382static int find_vdd_map_entry_exact(struct tegra_dfll *td, int uV)
1383{
1384 int i, n_voltages, reg_uV;
1385
1386 n_voltages = regulator_count_voltages(td->vdd_reg);
1387 for (i = 0; i < n_voltages; i++) {
1388 reg_uV = regulator_list_voltage(td->vdd_reg, i);
1389 if (reg_uV < 0)
1390 break;
1391
1392 if (uV == reg_uV)
1393 return i;
1394 }
1395
1396 dev_err(td->dev, "no voltage map entry for %d uV\n", uV);
1397 return -EINVAL;
1398}
1399
1400/*
1401 * Find a PMIC voltage register-to-voltage mapping for the given voltage,
1402 * rounding up to the closest supported voltage.
1403 * */
1404static int find_vdd_map_entry_min(struct tegra_dfll *td, int uV)
1405{
1406 int i, n_voltages, reg_uV;
1407
1408 n_voltages = regulator_count_voltages(td->vdd_reg);
1409 for (i = 0; i < n_voltages; i++) {
1410 reg_uV = regulator_list_voltage(td->vdd_reg, i);
1411 if (reg_uV < 0)
1412 break;
1413
1414 if (uV <= reg_uV)
1415 return i;
1416 }
1417
1418 dev_err(td->dev, "no voltage map entry rounding to %d uV\n", uV);
1419 return -EINVAL;
1420}
1421
1422/**
1423 * dfll_build_i2c_lut - build the I2C voltage register lookup table
1424 * @td: DFLL instance
1425 *
1426 * The DFLL hardware has 33 bytes of look-up table RAM that must be filled with
1427 * PMIC voltage register values that span the entire DFLL operating range.
1428 * This function builds the look-up table based on the OPP table provided by
1429 * the soc-specific platform driver (td->soc->opp_dev) and the PMIC
1430 * register-to-voltage mapping queried from the regulator framework.
1431 *
1432 * On success, fills in td->i2c_lut and returns 0, or -err on failure.
1433 */
1434static int dfll_build_i2c_lut(struct tegra_dfll *td)
1435{
1436 int ret = -EINVAL;
1437 int j, v, v_max, v_opp;
1438 int selector;
1439 unsigned long rate;
1440 struct dev_pm_opp *opp;
Stephen Boydc5a132a2015-08-25 16:02:02 -07001441 int lut;
Tuomas Tynkkynenc4fe70a2015-05-13 17:58:37 +03001442
1443 rcu_read_lock();
1444
1445 rate = ULONG_MAX;
Tuomas Tynkkynen62a8a092015-05-13 17:58:41 +03001446 opp = dev_pm_opp_find_freq_floor(td->soc->dev, &rate);
Tuomas Tynkkynenc4fe70a2015-05-13 17:58:37 +03001447 if (IS_ERR(opp)) {
1448 dev_err(td->dev, "couldn't get vmax opp, empty opp table?\n");
1449 goto out;
1450 }
1451 v_max = dev_pm_opp_get_voltage(opp);
1452
Thierry Reding27ed2f72016-04-08 15:02:06 +02001453 v = td->soc->cvb->min_millivolts * 1000;
Stephen Boydc5a132a2015-08-25 16:02:02 -07001454 lut = find_vdd_map_entry_exact(td, v);
1455 if (lut < 0)
Tuomas Tynkkynenc4fe70a2015-05-13 17:58:37 +03001456 goto out;
Stephen Boydc5a132a2015-08-25 16:02:02 -07001457 td->i2c_lut[0] = lut;
Tuomas Tynkkynenc4fe70a2015-05-13 17:58:37 +03001458
1459 for (j = 1, rate = 0; ; rate++) {
Tuomas Tynkkynen62a8a092015-05-13 17:58:41 +03001460 opp = dev_pm_opp_find_freq_ceil(td->soc->dev, &rate);
Tuomas Tynkkynenc4fe70a2015-05-13 17:58:37 +03001461 if (IS_ERR(opp))
1462 break;
1463 v_opp = dev_pm_opp_get_voltage(opp);
1464
Thierry Reding27ed2f72016-04-08 15:02:06 +02001465 if (v_opp <= td->soc->cvb->min_millivolts * 1000)
Tuomas Tynkkynenc4fe70a2015-05-13 17:58:37 +03001466 td->dvco_rate_min = dev_pm_opp_get_freq(opp);
1467
1468 for (;;) {
1469 v += max(1, (v_max - v) / (MAX_DFLL_VOLTAGES - j));
1470 if (v >= v_opp)
1471 break;
1472
1473 selector = find_vdd_map_entry_min(td, v);
1474 if (selector < 0)
1475 goto out;
1476 if (selector != td->i2c_lut[j - 1])
1477 td->i2c_lut[j++] = selector;
1478 }
1479
1480 v = (j == MAX_DFLL_VOLTAGES - 1) ? v_max : v_opp;
1481 selector = find_vdd_map_entry_exact(td, v);
1482 if (selector < 0)
1483 goto out;
1484 if (selector != td->i2c_lut[j - 1])
1485 td->i2c_lut[j++] = selector;
1486
1487 if (v >= v_max)
1488 break;
1489 }
1490 td->i2c_lut_size = j;
1491
1492 if (!td->dvco_rate_min)
1493 dev_err(td->dev, "no opp above DFLL minimum voltage %d mV\n",
Thierry Reding27ed2f72016-04-08 15:02:06 +02001494 td->soc->cvb->min_millivolts);
Tuomas Tynkkynenc4fe70a2015-05-13 17:58:37 +03001495 else
1496 ret = 0;
1497
1498out:
1499 rcu_read_unlock();
1500
1501 return ret;
1502}
1503
Tuomas Tynkkynend8d7a082015-05-13 17:58:36 +03001504/**
1505 * read_dt_param - helper function for reading required parameters from the DT
1506 * @td: DFLL instance
1507 * @param: DT property name
1508 * @dest: output pointer for the value read
1509 *
1510 * Read a required numeric parameter from the DFLL device node, or complain
1511 * if the property doesn't exist. Returns a boolean indicating success for
1512 * easy chaining of multiple calls to this function.
1513 */
1514static bool read_dt_param(struct tegra_dfll *td, const char *param, u32 *dest)
1515{
1516 int err = of_property_read_u32(td->dev->of_node, param, dest);
1517
1518 if (err < 0) {
1519 dev_err(td->dev, "failed to read DT parameter %s: %d\n",
1520 param, err);
1521 return false;
1522 }
1523
1524 return true;
1525}
1526
1527/**
Tuomas Tynkkynenc4fe70a2015-05-13 17:58:37 +03001528 * dfll_fetch_i2c_params - query PMIC I2C params from DT & regulator subsystem
1529 * @td: DFLL instance
1530 *
1531 * Read all the parameters required for operation in I2C mode. The parameters
1532 * can originate from the device tree or the regulator subsystem.
1533 * Returns 0 on success or -err on failure.
1534 */
1535static int dfll_fetch_i2c_params(struct tegra_dfll *td)
1536{
1537 struct regmap *regmap;
1538 struct device *i2c_dev;
1539 struct i2c_client *i2c_client;
1540 int vsel_reg, vsel_mask;
1541 int ret;
1542
1543 if (!read_dt_param(td, "nvidia,i2c-fs-rate", &td->i2c_fs_rate))
1544 return -EINVAL;
1545
1546 regmap = regulator_get_regmap(td->vdd_reg);
1547 i2c_dev = regmap_get_device(regmap);
1548 i2c_client = to_i2c_client(i2c_dev);
1549
1550 td->i2c_slave_addr = i2c_client->addr;
1551
1552 ret = regulator_get_hardware_vsel_register(td->vdd_reg,
1553 &vsel_reg,
1554 &vsel_mask);
1555 if (ret < 0) {
1556 dev_err(td->dev,
1557 "regulator unsuitable for DFLL I2C operation\n");
1558 return -EINVAL;
1559 }
1560 td->i2c_reg = vsel_reg;
1561
1562 ret = dfll_build_i2c_lut(td);
1563 if (ret) {
1564 dev_err(td->dev, "couldn't build I2C LUT\n");
1565 return ret;
1566 }
1567
1568 return 0;
1569}
1570
1571/**
Tuomas Tynkkynend8d7a082015-05-13 17:58:36 +03001572 * dfll_fetch_common_params - read DFLL parameters from the device tree
1573 * @td: DFLL instance
1574 *
1575 * Read all the DT parameters that are common to both I2C and PWM operation.
1576 * Returns 0 on success or -EINVAL on any failure.
1577 */
1578static int dfll_fetch_common_params(struct tegra_dfll *td)
1579{
1580 bool ok = true;
1581
1582 ok &= read_dt_param(td, "nvidia,droop-ctrl", &td->droop_ctrl);
Tuomas Tynkkynenc4fe70a2015-05-13 17:58:37 +03001583 ok &= read_dt_param(td, "nvidia,sample-rate", &td->sample_rate);
1584 ok &= read_dt_param(td, "nvidia,force-mode", &td->force_mode);
1585 ok &= read_dt_param(td, "nvidia,cf", &td->cf);
1586 ok &= read_dt_param(td, "nvidia,ci", &td->ci);
1587 ok &= read_dt_param(td, "nvidia,cg", &td->cg);
1588 td->cg_scale = of_property_read_bool(td->dev->of_node,
1589 "nvidia,cg-scale");
Tuomas Tynkkynend8d7a082015-05-13 17:58:36 +03001590
1591 if (of_property_read_string(td->dev->of_node, "clock-output-names",
1592 &td->output_clock_name)) {
1593 dev_err(td->dev, "missing clock-output-names property\n");
1594 ok = false;
1595 }
1596
1597 return ok ? 0 : -EINVAL;
1598}
1599
1600/*
1601 * API exported to per-SoC platform drivers
1602 */
1603
1604/**
1605 * tegra_dfll_register - probe a Tegra DFLL device
1606 * @pdev: DFLL platform_device *
1607 * @soc: Per-SoC integration and characterization data for this DFLL instance
1608 *
1609 * Probe and initialize a DFLL device instance. Intended to be called
1610 * by a SoC-specific shim driver that passes in per-SoC integration
1611 * and configuration data via @soc. Returns 0 on success or -err on failure.
1612 */
1613int tegra_dfll_register(struct platform_device *pdev,
1614 struct tegra_dfll_soc_data *soc)
1615{
1616 struct resource *mem;
1617 struct tegra_dfll *td;
1618 int ret;
1619
1620 if (!soc) {
1621 dev_err(&pdev->dev, "no tegra_dfll_soc_data provided\n");
1622 return -EINVAL;
1623 }
1624
1625 td = devm_kzalloc(&pdev->dev, sizeof(*td), GFP_KERNEL);
1626 if (!td)
1627 return -ENOMEM;
1628 td->dev = &pdev->dev;
1629 platform_set_drvdata(pdev, td);
1630
1631 td->soc = soc;
1632
1633 td->vdd_reg = devm_regulator_get(td->dev, "vdd-cpu");
1634 if (IS_ERR(td->vdd_reg)) {
1635 dev_err(td->dev, "couldn't get vdd_cpu regulator\n");
1636 return PTR_ERR(td->vdd_reg);
1637 }
1638
1639 td->dvco_rst = devm_reset_control_get(td->dev, "dvco");
1640 if (IS_ERR(td->dvco_rst)) {
1641 dev_err(td->dev, "couldn't get dvco reset\n");
1642 return PTR_ERR(td->dvco_rst);
1643 }
1644
1645 ret = dfll_fetch_common_params(td);
1646 if (ret) {
1647 dev_err(td->dev, "couldn't parse device tree parameters\n");
1648 return ret;
1649 }
1650
Tuomas Tynkkynenc4fe70a2015-05-13 17:58:37 +03001651 ret = dfll_fetch_i2c_params(td);
1652 if (ret)
1653 return ret;
1654
Tuomas Tynkkynend8d7a082015-05-13 17:58:36 +03001655 mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1656 if (!mem) {
1657 dev_err(td->dev, "no control register resource\n");
1658 return -ENODEV;
1659 }
1660
1661 td->base = devm_ioremap(td->dev, mem->start, resource_size(mem));
1662 if (!td->base) {
1663 dev_err(td->dev, "couldn't ioremap DFLL control registers\n");
1664 return -ENODEV;
1665 }
1666
1667 mem = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1668 if (!mem) {
1669 dev_err(td->dev, "no i2c_base resource\n");
1670 return -ENODEV;
1671 }
1672
1673 td->i2c_base = devm_ioremap(td->dev, mem->start, resource_size(mem));
1674 if (!td->i2c_base) {
1675 dev_err(td->dev, "couldn't ioremap i2c_base resource\n");
1676 return -ENODEV;
1677 }
1678
1679 mem = platform_get_resource(pdev, IORESOURCE_MEM, 2);
1680 if (!mem) {
1681 dev_err(td->dev, "no i2c_controller_base resource\n");
1682 return -ENODEV;
1683 }
1684
1685 td->i2c_controller_base = devm_ioremap(td->dev, mem->start,
1686 resource_size(mem));
1687 if (!td->i2c_controller_base) {
1688 dev_err(td->dev,
1689 "couldn't ioremap i2c_controller_base resource\n");
1690 return -ENODEV;
1691 }
1692
1693 mem = platform_get_resource(pdev, IORESOURCE_MEM, 3);
1694 if (!mem) {
1695 dev_err(td->dev, "no lut_base resource\n");
1696 return -ENODEV;
1697 }
1698
1699 td->lut_base = devm_ioremap(td->dev, mem->start, resource_size(mem));
1700 if (!td->lut_base) {
1701 dev_err(td->dev,
1702 "couldn't ioremap lut_base resource\n");
1703 return -ENODEV;
1704 }
1705
1706 ret = dfll_init_clks(td);
1707 if (ret) {
1708 dev_err(&pdev->dev, "DFLL clock init error\n");
1709 return ret;
1710 }
1711
1712 /* Enable the clocks and set the device up */
1713 ret = dfll_init(td);
1714 if (ret)
1715 return ret;
1716
1717 ret = dfll_register_clk(td);
1718 if (ret) {
1719 dev_err(&pdev->dev, "DFLL clk registration failed\n");
1720 return ret;
1721 }
1722
1723#ifdef CONFIG_DEBUG_FS
1724 dfll_debug_init(td);
1725#endif
1726
1727 return 0;
1728}
1729EXPORT_SYMBOL(tegra_dfll_register);
1730
1731/**
1732 * tegra_dfll_unregister - release all of the DFLL driver resources for a device
1733 * @pdev: DFLL platform_device *
1734 *
1735 * Unbind this driver from the DFLL hardware device represented by
1736 * @pdev. The DFLL must be disabled for this to succeed. Returns 0
1737 * upon success or -EBUSY if the DFLL is still active.
1738 */
1739int tegra_dfll_unregister(struct platform_device *pdev)
1740{
1741 struct tegra_dfll *td = platform_get_drvdata(pdev);
1742
1743 /* Try to prevent removal while the DFLL is active */
1744 if (td->mode != DFLL_DISABLED) {
1745 dev_err(&pdev->dev,
1746 "must disable DFLL before removing driver\n");
1747 return -EBUSY;
1748 }
1749
1750 debugfs_remove_recursive(td->debugfs_dir);
1751
1752 dfll_unregister_clk(td);
1753 pm_runtime_disable(&pdev->dev);
1754
1755 clk_unprepare(td->ref_clk);
1756 clk_unprepare(td->soc_clk);
1757 clk_unprepare(td->i2c_clk);
1758
1759 reset_control_assert(td->dvco_rst);
1760
1761 return 0;
1762}
1763EXPORT_SYMBOL(tegra_dfll_unregister);